Automatic Program
Construction Techniques

Editors

Alan W. Biermann

Gérard Guiho
Y ves Kodratoff

Macmillan Publishing Company
A Division of Macmillan, Inc.
NEW YORK

Collier Macmillan Publishers
LONDON

Copyright © 1984 by Macmillan Publishing Company
a division of Macmillan, Inc.

All rights reserved. No part of this book may be reproduced
or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any
information storage and retrieval system, without permission
in writing from the Publisher.

Macmillan Publishing Company
866 Third Avenue, New York, N.Y. 10022

Collier Macmillan Canada, Inc.
Printed in the United States of America

printing number

12345678910

Library of Congress Cataloging in Publication Data
Main entry under title:

Automatic program construction techniques.

“Outgrowth of a meeting that was held several
vears ago at the beautiful Centre culturel de Bonas
in southern France. The sponsors were the U.S. Army
Research and Standardization Group, the French Centre
national de la recherche scientifique and the Institut
national de recherche en informatique et automatique™-
Pref.

Includes bibliographies and index.

I. Automatic programming (Computer scicnee) Ad-
dresses, essays, lectures. 1. Biermann, Alan W,

Library of Congress Cataloging in Publication Data

1939- . 11. Guiho, Gérard, 1945-

IT1. Kodratoff, Yves. IV. U.S. Army Research and
Standardization Group. V. Centre national de la
recherche scientifique (France) V1. Institut national

de recherche en informatique et en automatique (France)
QA76.6.A89 1984 001.642 83-26817
ISBN 0-02-949070-7

INVARIANCE PROOF METHODS 243

CHAPTER 12

Invariance Proof Methods And Analysis Techniques For

Parallel Programs

Patrick Cousot
Université de Metz
Faculté des Sciences

Ile du Saulcy
57045 Metz cedex
France

Radhia Cousot
Centre de Recherche en Informatique de Nancy
France

A. Introduction

We propose a unified approach for the study, comparison and systcmatic construction of program proof
and analysis methods. Our presentation will be mostly informal but the underlying formal theory can be found
in Cousot and Cousot [1980b, 1979], and Cousot, P. [1981].

244 COUSOT AND COUSOT

We use discrete state transition systems (Keller [1976], Cousot, P. [1979, 1981]) as abstract models of
programs so that our approach is independent of any particular programming language. We use parallel pro-
grams with shared variables for illustration purposes.

Our approach is also independent of the particular class of program properties which is considered. For
simplicity we only consider invariance properties in this paper. Important properties falling under this category
are partial correctness, non termination, absence of run-time errors, deadlock freedom, mutual exclusion, etc.

Since programs are finite descriptions of arbitrarily long and sometimes infinite computations, properties
of these computations can only be proved using some inductive reasoning. Hence program proof methods rely
upon basic induction principles. For a given class of program properties several different induction principles
can be considered. For simplicity, only one basic induction principle will be considered in this paper, which
underlies Floyd [1967]’s partial correctness proof method. (A number of different although equivalent induc-
tion principles for invariance can be found in Cousot and Cousot [1982].)

All proof methods which rely upon the same induction principle intuitively look similar, but can be
difficult to compare in the abstract. We offer a unified view for comparing them. It consists in showing that
the verification conditions involved in any of these methods can be obtained by decomposition of the global
inductive hypothesis used in the induction principle into an equivalent set of local inductive hypotheses. (Such
decompositions can be formalized as connections between lattices (see Cousot and Cousot [1979, 1980b]) and
in particular obtained by a cover of the set of states of the program where each local inductive hypothesis holds
for a given block of the cover (Cousot [1979]). It is possible to find as many proof methods as such different
decompositions. We illustrate only three of them which respectively lead to the Floyd [1967], Owicki and Gries
[1976], and Lamport [1977, 1980] invariance proof methods. This approach also provides a framework for sys-
tematically constructing new sound and complete proof methods based on unexplored induction principles or
decompositions. (See for example Cousot, R. [1981], Cousot and Cousot {1980a]).

Static program flow analysis techniques can be used for discovering semantic properties of programs, that
is, for discovering properties of the runtime behavior of programs without actually running them. Such analysis
methods consist in solving a fixed point system of equations (by elimination or iteration algorithms) associated
with the program to be analyzed (Cousot and Cousot [1977]). In the design of such methods the essential part
consists in defining correctly the rules for associating the system of equations with the program. We have
shown (Cousot and Cousot [1979]) that they can be derived from the verification conditions of a proof method
using an approximate decomposition, hence from a basic induction principle. We illustrate this point of view by
generalizing Cousot and Cousot [1976] to parallel programs with shared variables. Another example can be
found in Cousot and Cousot [1980b] that generalizes Cousot and Halbwachs [1978] to parallel processes com-
municating by rendezvous.

B. An Abstract Model of Parallel Programs: Non-Deterministic Transition Systems

An essential step in understanding invariance proof methods consists in considering an abstract model of
programs so that irrelevant details can be left unspecified. For that purpose we will consider that a program P
defines a dynamic discrete transition system that is a quadruple (S,t,b,e) where:

S is a set of states,
t € (SxS — f{tt,ff}) is a transition relation,
b € (S — i, ff) characterizes entry states,

e € (S — {it,ff) characterizes exit states.

INVARIANCE PROOF METHODS 245

The set S of states is a model of the set of possible data that can be contained in the store(s) on which
the program operates. We ignore for the moment the particular structure of the states. In practice a state has
several memory components (assigning values to program variables, input and output files, ...) and control
components (assigning values to program location counters, ...). Program execution always begins with entry
states. The total function b from states into truth values {tt,ff} characterizes entry states. This means that
b(s) = tt if and only if state s is an entry state and b(s) = ff otherwise. Program execution properly ends
when an exit state is reached. Exit states are characterized by e. The transition relation t specifies the effect
of executing an elementary program step. More precisely t(s,s’) = tt means that starting in state s and exe-
cuting one program step can put the program in successor state s’. A sequential program is modeled by a deter-
ministic transition relation since a state s can only have one successor state s’, if any. A parallel program is
modeled by a non-deterministic transition relation since a state s can have no or several successor states s’.
This is because the transition relation is usually defined in terms of arbitrarily choosing an active process and
executing one step of that process. Some states s may have no successor (that is t(s,s’) = ff for all §'€S), in
which case they are called blocking states. For example, a sequential program can be in a blocking state after a
run-time error or a parallel program can be in a blocking state because all processes which are not terminated
are waiting for some event that never happens.

ExampleB.1: Defining the semantics of a sequential program by means of a deterministic transition system.

We will consider sequential programs with assignment, conditional and iteration commands. Labels will
only be used to designate program points. For simplicity, type and variable declarations are left implicit.

For example, the following program computes 2" for n 2> 0:

L2:
while N > 0 do
L3:
N:=N-1;P:=2xP;
L4:
od;
LS:

Let I = {li,....,hi} be the set of integers included between the lowest and greatest machine representable
integers li and hi. A state (1,n,p) €S consists of a memory state, that is a pair (n,p) €M assigning integer values
to program variables N,P and of a control state 1 €C which is one of the program points, L1,...,LS. Therefore,

C = [L1,....L5}
M = I3
S=CxM

246 COUSOT AND COUSOT

Program execution begins at point L1 and ends at point L5 so that

b(l,n,p) = [l =L1] characterizes entry states,
e(l,n,p) = [1 =LS5] characterizes exit states.

We define the transition relation t by the following clauses (where n €Il and p €ID):

(L1,n,p) +— (L2,n,1) iff 1€ll
(L2,n,p) *— (L3,n,p) iff n>0
(L2,n,p) = (L5,n,p) iff n<0
(L3,n,p) *— (L4,n—1,2xp) iff (n—1) €Il and (2xp) €Il
(L4,n,p) +— (L3,n,p) iff n>0
(L4,n,p) <— (L5,n,p) if n<0

A clause [s +— f(s) iff c(s)] means that for all s€S, t(s,f(s)) = tt whenever condition c(s) holds.

Starting with N=2 and P=p, execution of that program leads to the sequence of states
(L1,2,p) +—(1.2,2,1) 2—(L3,2,1) +— (L4,1,2) +—(L3,1,2) *— (L4,0,4) *— (L5,0,4).0

Example B.2: Defining the semantics of a parallel program by means of a non-deterministic transition system.

We consider parallel programs [P, |..| P,] which consist of k>1 sequential processes Pj,...,Px executed
concurrently. These processes share (implicitly declared) global variables. (If variables need to be local to
some process P;, we will use instead global variables neither used nor modified by the other processes P;, j=i.)

It is sometimes necessary that processes have exclusive access to shared global variables. For that purpose
we will enclose atomic operations inside square brackets. The execution of such operations is indivisible so that
it cannot interfere with the concurrent execution of other processes. For example the program

[[N:=N+1] | [N:=N+1]11
will increment N by two, whereas the program
[[TL:=NI:{T1:=T1+1};[N:=T1] | [T2:=N];[T2:=T2+1];[N:=T2] 1

will increment N by one if both processes read the value of N before it is modified by the other process and
by two if one process reads the value of N after it has been incremented by the other process.

INVARIANCE PROOF METHODS 247

The following parallel program computes 2" when n = 0:

LO:
[
L11:
[P1:=1];
L12:
while [N>1] do
L13:
[N := N-1; P1 := 2xP1];
L14:
od;
L15:
I
L21:
P2 :=11;
L22:
while [N>1] do
L23:
[N := N-1; P2 := 2xP2];
L24:
od;
L25:
I
L1:
if N = 0 then P := P1xP2 else P := 2xP1 xP2 fi;
L2:

A state is of the form (c,n,pl,p2,p) where the values n,pl,p2,p of variables N,P1,P2,P belong to II =
{li,....hi} and the control state ¢ is either LO, L1, L2 or a pair (11,12) of labels, one control location for each of
the two processes:

C = {LO,L1,L2} U ({L11,....L15}x{L21,....L25})

M=T1
S=CxM
ble.n,pl,p2,p) = [c
e(c.n,pl,p2,p) = lc

LO] - characterizes entry states
L2] characterizes exit states

We define the transition relation t by the following clauses (where
I1 € {L11,...,L15} 12 € {L21,....L25}; n,pl,p2,p € ID):

248 COUSOT AND COUSOT

(a) (LO,n,pl,p2,p) *— ((L11,L21),n,p1,p2,p)
(b) ((L11,12),n,p1,p2,p) “— ((L12,12),n,1,p2,p)
(b) ((L12,12),n,p1,p2,p) <— ((L13,12),n,p1,p2,p)
(b) ((L12,12),n,pl,p2,p) ~— ((L15,12),n,pl,p2,p)
(c) (b) ((L13,12),n,pl,p2,p) -— ((L14,12),n-1,2xpl,p2,p)
(b) ((L14,12),n,p1,p2,p) <— ((L13,12),n,pl,p2,p)

(b) ((L14,12) ,n,pl,p2,p) — ((L15.12),n,p1,p2,p)

. similar clauses for process 2 ...

(d) ((L15,L25),n,pl,p2,p) +— (L1,n,pl.,p2.p)
(L1,n,pl,p2,p) -— (L2,n,pl,p2,pl xp2)

(L1,n,pl,p2,p) *— (L2.n,pl,p2,2xpl xp2)

iff

iff

1 €1l
n>1
n<l
(n—1) €M and (2xpl) €01

n>1

(n=0) and (plxp2) €Il

(n=0) and (2xpl xp2) €Il

On program entry, executions of both processes begin simultaneously (a). Then each process progresses
at its own speed independently of the other (b). The concurrent execution of commands in different processes
is modelled by an interleaved execution which proceeds as a sequence of discrete steps. In each step a com-
mand is selected in only one of the processes and is executed to completion before the same or another process
may initiate an elementary command and proceed to complete it. Since execution of atomic operations is indi-
visible it is modelled by a single transition (¢). Notice that since P1 and P2 are not shared we could have split
[N:=N-1;Pi:=2xPi] into [N:=N-1];[Ti:=Pi];[Ti:=2 xTi];[Pi:=Ti]. However the update of N must be indi-
visible. This can be achieved by any hardware or software mutual exclusion mechanism. The concurrent exe-

cution of the two processes ends when both have terminated (d).

A possible execution sequence for N=2 could be:

(L0,2,pl,p2,p) *+— ((LI11,L21),2,p1,p2,p) +— ((L12,L21),2,1,p2,p) —

((L13,L2D),2,1,p2,p) -+ ((L14,L21),1,2,p2,p) -*— ((L14,L22),1,2,1,p) =

((L15,L22),1,2,1,p) *— ((L15,L25),1,2,1,p) *—(L1,1,2,1,p) *— (L2,1,2,1,4).

In the above sequence the value of N at L1 was 1. It can also be 0 if both processes simultaneously test that
N>1 when N=2. This is the case in the following execution sequence:

INVARIANCE PROOF METHODS 249

(L0,2,p1,p2,p) +— ((L11,L21),2,pl,p2,p) = ((L12,L21),2,1,p2,p) -
((L12,L22).2,1,1,p) *— ((L13,L22),2,1,1,p) =—((L13,L23),2,1,1,p) *—
((L14,L23),1,2,1,p) +— ((L15,L23),1,2,1,p) —+— ((L15,024),0,2,2,p) -*—

((L15,L25),0,2,2,p) *— (L1,0,2,2,p) -— (L2,0,2,2,4).

Notice that the undeterminacy about the values of N and P when both processes end can easily be taken
into account to yield the correct result. This solution is certainly less costly than the one which would consist
in synchronizing the processes in order to avoid possible simultaneous tests of N. Another solution would con-
sist in having one process iterate | n/2] times and the other [n/2 | times. The drawback of this solution is
that its efficiency does depend upon the assumption that both processes are executed at about the same speed.
On the contrary, the efficiency of the above parallel program does not depend upon the relative speed of execu-
tion of the two processes. Another advantage is that it can be easily generalized to an arbitrary number of
processes. O

Abstraction from the above examples is left to the reader. In general, the semantics of a programming
language can be defined operationally. This consists in defining the transition system associated with each pro-
gram of the language by induction on the context-free syntax of programs. (See e.g. Cousot, R. [1981]).

C. Invariance Properties of Parallel Programs

Some properties of programs, such as partial correctness, can be proved without reasoning about the set of
sequences of states which represent all possible executions of the program starting from any possible entry
state. It is sufficient to reason about the set of states which can be reached during execution. This is because
the ‘‘time’’ at which a particular state is reached during execution (if ever), is irrelevant for such invariance
proverties.

C.1 Definition: Invariance Property
Let t* be the reflexive transitive closure of t, that is

t'(s,s) =[3n =1, sq,...,5, € S" | s=s; A (Vi €{l,....,n—1}, t(s;,854)) A sp=s1.

Let € € (S—{tt,ff}) and o € (S—{tt,ff}) be characterizations of initial and final states.

A relation ¥ € (SxS—{tt,ff}) is said to be invariant if and only if it is a necessary relation between the
initial states and their descendants which are final, that is

Vs.s'€S, [e(s) A t'(s,8) A o(s)] => ¥(s,8).

An assertion ¥ € (S—ftt.ff}) is said to be invariant if and only if it characterizes a super-set of the set of
final states that can be reached during some execution started with an initial state, that is

Vs.s'€S, [e(s) A t'(s,s) A o(s)] => ¥(s).

C.2 Partial Correctness

Proving that a program is partially correct consists in showing that if execution starts at program entry
point with initial values x of the variables satisfying some precondition ¢ (x) and terminates with final values x
of the variables then some relation 8(x,X) should hold between the input values x and output values X of the
variables. This is an invariance property which can be stated as

Vs,s €S, le(s) A t'(s,5) A o(3)] => ¥(s,3).

250 COUSOT AND COUSOT

More precisely, if states s €S are pairs (¢,x) consisting of a control state c €C and a memory state X€M, b
characterizes entry states and e characterizes exit states, partial correctness can be stated as

VeT€eC xx €M, [ble,x) At(c,x),@x) Ae©] => [o(x) => 6(x,%)]

Notice that the fact that an exit state (€,X) can be reached when execution is started with an entry state (¢,x) is
an hypothesis which is assumed to be true for ¥((c,x),(C,X)) = [¢(x) => 6(x,X)] to hold. Therefore termi-
nation is not implied. In particular, any non-terminating program is partially correct since
ff => [¢(x) => 0(x.,0].

Example C.2.1: Partial correctness of programs B.1 and B.2.

We will prove that programs B.1 and B.2 are partially correct with respect to ¢(n.p) =[n > 0] and
6((n,p),(A,p) =[p=29. O

C.3 Non termination

A program never terminates if and only if any state which can be reached during execution is not an exit
state and has at least one successor state. Non-termination is also an invariance property where e characterizes
entry states, o is identically true and ¥(3) holds if and only if § is neither an exit nor a blocking state.

Vs, 5 €S, [bls) At'(s,8] => [A (TseS | t(5,9))]

C.4 Absence of Run-time Errors

Absence of run-time errors is also an invariance property. It means that whenever a state which is not an
exit state is reached during execution, a next computation step is possible without causing a run-time error
(such as division by zero, arithmetic overflow, subscript out of range, ...).

Example C.4.1: Clean behavior of program B.1.

For each label 1 of program B.1, let us formulate a necessary and sufficient condition v (n,p) which
guarantees that execution of the program commands labelled | in memory state (n,p) will not cause a run-time
error:

yi(n,p) =[li <1 < hil
¥2(n,p) = y4(n,p) = ys(n,p) =t
y3(n,p) =i <n—1 <hi A li <2xp < hil

For program B.1 the condition that all integers between 0 and 22 are machine representable is sufficient to
avoid run-time errors. This can be stated as
[b(L,n,p) A t'((L,n,p),(L,n,p))] => ¥((L,n,p),(,n,p))
where
¥((Ln,p),0,np) = [0 <nAli <0 <22 <hil => y(n,p] O

INVARIANCE PROOF METHODS 251

C.5 Global and Local Invariants

Let P be a program with states S = CxM. A global invariant y € (M—{tt,ff}) is a predicate on memory
states which is always true during execution:

V s€S, c€C, x€M, [bls) A t'(s,(c,x))] => y(x).

A predicate 8 € (M—{tt,ff}) on memory states which holds whenever control is at program points 1€L,
where L C C, is called an invariant local to L:

V s€S, c€C, xeM, [b(s) A t'(s,(c,x))] => [(c €L) => 8(x)].

Example C.5.1: Using program flow analysis algorithms for generating local invariants.

Some program analysis techniques, such as Cousot and Halbwachs [1978], can be used for automatic com-
putation of local invariants of programs. Since the strongest set of local invariants is not computable, only
approximate results can be automatically obtained. The invariant 8(x) associated with program points 1€L is
approximate in the sense that it is correct:

[b(s) A t'(s,(1,x))] => 8(x)
but does not provide full information, since we may have

[b(s) A t'(s,(1,x))] # 8(x) O

C.6 Absence of Global Deadlocks

Parallel processes may need to be synchronized for the concurrent access of shared resources. For exam-
ple a process P, may be willing to use a common resource, which can only be used by one process at the same
time, and which is currently being used by some other process P, j=i. Then P; has to be blocked temporarily
and to wait until this resource is released by process P;. If several processes are waiting it may be necessary to
specify the order in which waiting processes will be allowed to use the common resource.

Because of programming errors, it may happen that all processes are blocked permanently so that there is
no way to recover. The absence of such global deadlocks is an invariance property. (It may also happen that
some subset of the processes in a program is blocked while the other processes remain permanently active. The
absence of such individual starvations or livelock is not an invariance property.)

For illustration purposes, we will use conditional critical regions as the synchronization tool. When a pro-
cess attempts to execute a command

await [B then C]

it is delayed until the condition B is true. Then the command C is executed as an atomic action, the evaluation
of B to true and execution of C being indivisible. Command C cannot contain a nested await command. If two
or more processes are waiting for the same condition B, any one may be allowed to proceed when B becomes
true while the others continue waiting. When invariance properties are considered the order in which waiting
processes are scheduled is often irrelevant.

Let us consider a parallel program {[P, |..] P,]. The corresponding states are of the form ((1y,...,I),x)
where each [; is a location of process P; and x the memory state of the shared variables X. Let W; be the set of
waiting locations of process P; so that P, contains await commands

Lij:await [B(Lij) (X) then C] , for Lij € W;

Let Lie be the exit location of process P;, We define W as the set of control states (ly,...,1i) corresponding to
waiting or exit locations, not all of them being exit locations. Formally

252 COUSOT AND COUSOT

W o= {(Iy,...1 | Vi € {I,..k}, ; € W; U {Lie}} — {(Lle,...,.Lke) }.

A blocking state is a state where not all processes have terminated and all of the processes that have not
yet terminated are delayed at an await (because the corresponding condition evaluates to false).

Formally a blocking state is characterized by 8 € (S—f{tt,ff}) such that
B((ll,...,lk),X) = [(11,...,1k) EWA (Vl € [l,k], (li;éLie) => “B(l,)(X))] .

A sufficient condition ensuring absence of global deadlocks is that all states that can be reached during execu-
tion are not blocking states. This invariance property can be stated as

Vs.s €8S, [bls) At'(s,s)] => =p(s)

C.7 Mutual Exclusion

Let P be a parallel program [P, |..| Pl with states of the form ((l;,...,1),x) where each ; is a label of pro-
cess P, and x is the memory state of the shared variables. Two statements labelled L; and L; in processes
Piand Pj, i, j € {1,....k} are mutually exclusive if they cannot be executed at the same time. This invariance
property can be formulated as:

Vs, ((y,..,00,%) €8S, [b(s) A t'(s,((y,....1,),x))] => = (Q=Ly A (;=Ly)]

D. The Basic Sound and Complete Induction Principle for
Proving Invariance Properties of Programs

We now begin to introduce our mathematical approach for constructing invariance proof methods. This
study is abstract in that by considering a general model of programs (dynamic discrete transition systems) we
are not bound to particular programming language features. Also by considering an abstract class of program
properties (invariance properties) the study is independent of which particular property in the class is con-
sidered. In this paragraph we state the general induction principle underlying almost all methods for proving
invariance properties. Next we will explain how particular methods can be derived from this induction princi-
ple.

For proving that a program property ¥ is invariant, one usually has to guess a stronger property I which
is shown to hold for all descendants of the initial states (a), (b) and to imply ¥ for final states (c). The proof
that the inductive invariant I holds for any possible descendant of any initial state is by induction (on the
minimal number n of computation steps until execution reaches this descendant of the initial state). The
basis (a) consists in proving that the inductive invariant | holds for initial states (that is after n=0 computa-
tion step). The induction step (b) consists in proving that if the inductive invariant [holds for some state s’
(which is reachable from the initial state by n >0 computation steps) then [also holds for all possible succes-
sors s of that state s’ (successors s, which are therefore reachable from the initial states by n+1 computation
steps). By induction on n, all descendants of initial states satisfy 1. In particular (c), since I implies ¥ for
final states, ¥ holds if and when such a final state is reached during execution.

In the following theorem we give a very general formulation of the above invariance proof method using
the transition systems framework. In the proof of this theorem we formally rephrase the above soundness
(correctness, consistency) argument. We also add a semantic completeness argument (showing that if a pro-
perty ¥ is invariant, then this can be proved using the general induction principle).

INVARIANCE PROOF METHODS 253

THEOREM D.1

[31 € (SxS — {tt,ff) | Vs 5.5 €8,

(a) e(s) =>1(s,9)

(b) " [3s' €S| 1(s,s) A t(s',s9)] => I(s,s)

(c) " [1(s,5) A o(8)] => ¥(s,5)]
<==>

[Vs.§ €S, [es) A 15,9 A o@] => ¥(s.5)]

Proof: For the soundness proof (= >) we show by recurrence on n that

(Vn 21,sp,...,8, €S, le(sp A (Vi € {1,....n—1}, t(s;si4)] => I(sy,5.)].
We use (a) for the basis n=1 and (b) for the induction step n>1. From this lemma we conclude that
[e(s) A t'(s,9) A o(3)] => [I(s,5) A o(5)] which according to (c) implies ¥(s,3).

The completeness proof (<=) is also very simple since we can choose I(s,s) = [e(s) A t'(s.s)] so that (a)
and (b) follow from the definition of the reflexive transitive closure whereas (c) follows from the hypothesis
[e(s) A t'(s,8) A o(3)] => ¥(s,5). O

The invariance property is sometimes not a relation between initial and final states but an assertion on
final states. In this case we can use the following induction principle, the soundness and correctness proofs of
which are easily derived from the above theorem. (A version of this induction principle was originally pro-
posed by Keller [1976]):

Corollary D.2

[3ie—itf)|Vssses,

(a) e(s) =>i(s)

(b) " [3s" €S [i(s) A t(s',8)] =>i(s)

(c) " i3 A o(3)] => ¥(5)]
<==>

(Vs,5€S, [e(s) At'(s,3 A o(®)] => (5]

Proof: The soundness proof (= >) consists in defining 1(s,s) =i(s), ¥(s,5) = ¢(5) and applying theorem D.1.
The completeness proof (<=) consists in proving that if 1(s,s) satisfies conditions D.1 (a) —(c) then i(s) =

[3s €S| e(s) A I(s,s)] satisfies conditions D.2 (a) —(c). O

254 COUSOT AND COUSOT

Example D.3: Proving the partial correctness of a parallel program by direct application of the basic induction
principle.
The program

[L11: [N:=N+1}:L12: 1 L21: [N:=N+1};L22:1

defines a non-deterministic transition system (S,t,b,e) such that

S = {L11,L12}x{L21,L22}xII states

b(11,12,n) = [11=L11 A 12=L21} entry states
e(11,12,n) = [11=L12 A 12=L22] exit states
(L11,12,n) +— (L12,12,n+1) iff (n+1) €11 transition relation

(11,L21,n) 4= (11,L22,n+1) iff (n+1) € II

Let us prove that if execution of that program begins with N=0 and happens to end then N=2. This partial
correctness property can be formulated as

Vs §€S, [els) At'(s.5) N o(3)] => ¢(5)

where
e(11,12,n) = [b(11,12,n) A n=0] input specification
o(11,12,n) =e(11,12,n)
¢(11,12,n) = [n=2] . output specification

This can be proved using the following inductive assertion:

i(11,i2,n) = [(1=L11 A 12=L21 A n=0) V (11=L11 A 12=L22 A n=1)
V (I1=L12 A 12=L21 A n=1) V (11=L12 A 12=L22 A n=2)]

which, as can easily be checked by the reader, satisfies conditions D.2 (a) —(c). O

Readers familiar with fixpoint theory can consult Cousot, P. [1981] where it is shown that the invariants
can be defined as fixpoints of predicate transformers. In Cousot and Cousot [1981), other equivalent induction prin-
ciples are derived from the above ones, and this leads to the construction of new invariance proof methods.

E. Design of a Proof Method by Decomposition of the Global Invariant
of an Induction Principle into a Set of Local Invariants

We now informally explain how practical invariance proof methods can be constructively derived from
induction principles D.1 and D.2. The essential idea is to provide for a standard decomposition of the global
inductive invariant 1 into a (logically equivalent) set of local invariants {Q; | 1 € L}, each one holding when
control is at some points of the program. Then the verification conditions D.1 (a) —(c) or D.2 (a) —(c) can be

INVARIANCE PROOF METHODS 255

decomposed into a conjunction of simpler verification conditions, each one corresponding to a basic command
of the program and each one involving only some of the local invariants Q,.

Example E.1. The standard decomposition for sequential programs.

Naur [1966], Floyd [1967] and Hoare [1969]’s partial correctness proof method is applicable to sequential
programs. A local inductive invariant on memory states Q, is associated with each program point 1. The
verification conditions ensure that when execution reaches some program point k which is immediately followed
by program point I, then the assumption that Q, is true when control is at point k implies that Q, must be true
if and when control reaches program point 1.

The verification conditions for proving the partial correctness of program B.1 are (for all n,n,p.,p,p’ € ID:

(@ [n >0} =>Q(n,n,p)
(b) [Qi(n,n,p) A 1€ A p=1] => Q,(n,n,p)
[Q2(n,n,p) A n>0] => Q3(n ,n,p)
[Q,(n,n,p) A n<0] => Qs(n ,n,p)
[Qs(n,n’,p) A (n'—1) €EITA n=(n'—1) A (2xp") €I1 A p=2xp'] => Q4(n,n,p)
[Q4(n,n,p) A n>0] => Q3(n,n,p)
[Q4(n,n,p) A n<0}] => Qs(n,n,p)
(¢ Qs(n,n,p) =>[p=29

Observe that by substitutions we could have eliminated Q, and Q,, keeping only the loop invariant Q3. This
leads to Floyd’s method.

The reader can check that the following local invariants satisfy the above verification conditions:;

Qi(n,n,p) = [n =n>=0]
Qy(n,n,p) =[n =n2=0 A p=l]
Q;(n,n,p) =[n>0 A p=2271]
Q4(n,n,p) =[n20 A p=2271]
Qs(n,n,p) = [n=0 A p=29

In order to understand how this partial correctness proof method can be constructively derived from
induction principle D.1, let us define

e(l,n,p) = [I=L1 A n >0]

5
I((,n,p),(,n,p)) = kV1 [I=Lk A Qy(n,n,p)]

256 COUSOT AND COUSOT

Then verification D.1(a) which was
(e(l,n,p) => 1((1,n,p),(L,n,p)))

can be simplified into condition E.1.(a) as follows:

5
(I1=L1 A n 20] => kV1 [1=Lk A Q¢(n ,n,p)])

5
([n 0] => kV1 [L1=Lk A Qg(n,n,p)D)

= ([n >0] => Q,(n,n,p))

The same way, condition D.1.(b):
[1(s,s) A t(s',9)] => I(s,s)

can be written as a conjunction of five conditions for k=1,...,5:
[1((1,n,p),(Lk,n’,p)) A t((Lk,n’,p),(,n,p))] => 1((L,n,p),(I,n,p))

Replacing [and t by their definitions further simplifications lead to the verification conditions E.1.(b).
Finally E.1.(c) is equivalent to D.1.(¢c) where:

o(,ap) = [1=L5]
¥((L,n,p).0,0p) = [F=29. ©

More generally, observe that the basic induction principles D.1 and D.2 have verification conditions of the
form:

(@) (31 €A]| VD)

Invariance proof methods apply induction principles D1 or D2 indirectly in that one uses other verification con-
ditions of the form

(B (FQeA|VWQ).

Using (B) instead of (a) is sound iff (8) => (a), complete iff () => (B) and equivalent iff () <= >(B).

In practice we can establish a correspondence between I and Q by means of a pair of functions
p € [A—A'l and p € [A'—A] so that a sufficient soundness condition is

YQ €A, VQ =>V(pQ)
and a sufficient completeness condition is
YIeA, VD =>V(pd).

INVARIANCE PROOF METHODS 257

Example E.2: The standard decomposition for sequential programs leads to sound and complete proof methods.
Coming back to the partial correctness proof method which we illustrated by example E.1 we had:

C = {L1,...L5)
S = CxI?
A = (82 — {tt,ff})

A =TT (B — {t,fF)
1€C

That is Q €A’ was a vector of assertions Q;, | € C on (n,n,p) € 1> The correspondence between A and A’ was
defined by p € [A’ — Al such that:

5
p(Q((l,n,p),(,n,p)) = kV1 [I=Lk A Q(n,n,p)]

and p € [A — A'] such that:

p() = (Qy,...,Q5)

where

Qfn,n,p) =[31€C,n,p € I|I((L,n,p),,n,p))].

This correspondence formally defines what is usually explained as "Q,(n,n,p) relates the initial value n of N and
the current values n,p of variables N,P when control is at program point 1".

Notice that p is one-to-one-onto and p is its inverse. Since
YQ €A, V(Q =V(p(Q)
the method is sound. Moreover,
YIeA VID=>V(p(p)) =V(pl)),

so that the method is also complete. O

In Cousot and Cousot [1980] we have shown that A and A’ can be chosen as complete lattices and the pair
(p,p) as a Galois connection between these lattices.

Cousot, P. [1981] proposes a systematic method for constructing the set of local invariants A’ and the
corresponding pair (p,p’) using a cover of the set S of states of the transition system (S.t,b,e) defined by the
operational semantics of a program. There, each local invariant is defined so as to be isomorphic with the res-
triction of the global inductive invariant to the states belonging to some block of the cover. For example, the
decomposition leading to Floyd’s method for proving partial correctness of sequential programs (see examples
6.1, 6.2) has been derived in this way, using a partition of the set of states such that states belonging to a given
block of the partition all correspond to the same control point of the program.

However our idea of using connections between the lattices A and A’ which induce a connection between
the predicate transformers corresponding to the verification conditions V and V' (which goes back to Cousot

258 COUSOT AND COUSOT

and Cousot [1976]) is more general in that it is suitable for reasoning about program proof methods (where
(A.V) and (A'.V") have to be equivalent) and also for reasoning about mechanizable hence fundamentally
incomplete program analysis methods (Cousot and Cousot [1979]).

F. Two Invariance Proof Methods for Parallel Programs

We now present two methods for proving invariance properties of parallel programs. Both are derived
from induction principle D.2 but using different decompositions of the global invariant involved in this induc-
tion principle. The first decomposition consists in associating a local invariant about memory and control states
with each point of each process of the program. Choosing this decomposition we obtain Owicki and Gries
[1976] (up to the use of auxiliary variables for simulating control states) and Lamport [1977] invariance proof
methods. The second decomposition of .the global program invariant consists in associating a global process
invariant on control and memory states with each process of the program. Choosing this decomposition leads
to the Lamport [1980] invariance proof method. We have chosen these two decompositions on purpose, in
order to study from a unified point of view two classical methods which are intuitively understood as variations
on Floyd’s basic method of invariants but are difficult to compare because dissimilar formalisms are used for
assertion languages and for the presentation of verification conditions.

F.1 Decomposition of the Global Program Invariant Leading to
Owicki and Gries [1976]-Lamport [1977] Proof Method

F.1.1 Decomposition

Let us consider a parallel program [Py |..] P,Jl with memory states M and control states Ci for each pro-
cess P,, i = 1, ...k. A global invariant [€ (C1x - - XCkxM — {tt.ff}) can be expressed as a conjunction of
local invariants Q; € (C1x - -+ xCi—1xCi+1x - - - xCkxM — {tt,ff}) on control states (of processes P;,j=i)
and memory states. A local invariant Qy is attached to each program point | € Ci of each process P;, i=1,...,k.
More precisely,

o~

I(Cl,‘..,Ck,X) = N A [(Ci =]) => Qi](Cl,...,Ci_l,Ci.H,...,Ck, X)]
i=1 1€C;

and
Qn(Cl,...,Ci_l,CH.l,Ck,X) = I(C1,...,Ci_l,l,Ci.H,...,Ck,X) .

Example F.1.1.1: The global invariant

i(cl,c2,n) =[(cl=1 A c2=3 A n=0) V (cl=1 A c2=4 A n=2) V
(c1=2 A 2=3 A n=1) V (c1=2 A c2=4 A n=3)]

of the parallel program
[1:IN:=N+1]; 2:13: [N:=N+2}; 4: 1

can be expressed by the set of local invariants

INVARIANCE PROOF METHODS 259

Qi(c2,n) =[(c2=3 A n=0) V (c2=4 A n=2)]
Qy(c2,n) =[(c2=3 A n=1) V (c2=4 A n=3)]
Qs(cl,n) = [(cl=1 A n=0) V (c1=2 A n=1)]
Q4lcl,n) =[(cl=1 A n=2) V (c1=2 A n=3)]

Notice that if program point 1 belongs to process i then Q, holds when control is at | in process i (wherever con-
trol can be in the other processes). Therefore these local invariants can be interspread at appropriate places in
the program text, with the interpretation that Q,’is a valid comment at program point 1. O

F.1.2 Derivation of the verification conditions

Verification condition D.1(b), which for simplicity we denote IAt = > I can be decomposed into a con-
junction of verification conditions

I(C’l,...,C’k,X’) A t((C’l,...,C'k,X,),(C],‘..,Ci_l,l,Ci.H,...,Ck,X)) => Q“‘(Cl,...,Ci_],CH.l,...,Ck,X)

for each process i € {1, ...k} and program point | € C; of that process. Since t is defined as a disjunction of
cases, one for each elementary command of the program, the above verification condition can be further
decomposed. When the transition corresponds to execution of a command of process i we get verification
conditions corresponding to the sequential proof (of process i regarded as an independent sequential program):

I(C],...,Ci_l,]',CH.l,...,Ck,X') N t((Cl,...,Ci_l,l',CH.l,...,Ck,X’) \ (Cl,...,Ci_l,l,Ci.H,...,Ck,X))

=> Qilr(Cl,...,Ci..l,CiH,...,Ck,X)

When the transition corresponds to execution of a command of process j=i, we get verification conditions of
the form:

!

I(Cl,...,Cj_l,l’,Cj_H,...,Ci_l,l,CH.l,...,Ck,X’) A t((Cl,...,l,,...,l,...,Ck,X’),(Cl,...,l’,...,1,...,Ck,X))

—_ N !
= > Qil(Cl,...,Cj_l,l ’,C_H.],...,Ci_l,Ci.H,...,Ck,X)

which consists in proving that the local invariants of each process are left invariantly true under parallel execu-
tion of the other processes. These verification conditions were termed ‘‘interference freeness checks’ by
Owicki and Gries [1976] and ‘‘monotonicity conditions’” by Lamport [1977]. However, these authors did not
exactly propose the above verification conditions but instead the following simpler (and stronger) ones:

— sequential proof:

Qir(C1, 0, Cim1sCits s ChoX) A t((Cl,---,Ci—lal',Ci+1"u,Ck,X'),(Cl,---»CiflJ,CiH,---,Ck,X))

=> Qﬂ(C],...,Ci_l,Ci.H,...,Ck,X)

260 COUSOT AND COUSOT

— interference freeness checks:

QitC1s e sCim1 o€ty sCimts it o5 CeX) A QjrlCy,ees i1, Cjtt 5 Cimts] Citne 1 Cier X

A t((Cl,...,ll,...,l,...,Ck,X’),(Cl,.‘.,l”,...,l,...,Ck,X)) = > Qii(Cl,...,Cj..l,ll’,Cj+1,...,Ci_l,CH.l,...,Ck,X)

These verification conditions are obviously sufficient since they imply the above ones

(because I = A A Qy).
i1

Example F.1.2.1:
The verification conditions corresponding to program F.1.1.1 that is:

[1: [N:=N+1]; 2:]3: [N:=N+2]; 4: 1

are

(a) initialization:

¢ (n) => [Q,(3,n) A Q;(1,n)], where ¢ is the input specification

(b) induction step:
— sequential proof of process 1:
[Q(c2,n) A (n'+1) €Il A n=n'+1] = > Q,(c2,n)

— absence of interference of the proof of process 1 with process 2:
[Q;(3,n) A Q;(1,n") A (n'+2) €l A n=n'+2] = > Q,(4,n)
[Q,(3,n) A Q;5(1,n) A (n'+2) €l1 A n=n'+2] = > Q,(4,n)

— sequential proof of process 2:

[Q;(cl,n) A (n'4+2) €1 A n=n"+2] = > Q4(cl,n)

— absence of interference of the proof of process 2 with process 1:
[Q;5(1,n) A Q(3,n) A (n'+1) €T A n=n"+1] = > Q3(2,n)
[Q4(1,n) A Q{(3,n") A (n'+1) €M1 A n=n'+1] = > Q4(2,n)

(c) finalization:

[Q,(4,m) A Q4(2,mM] => 6(n), where @ is the output specification.O]

INVARIANCE PROOF METHODS 261

If we define

k
p(Q) =1 iff I(Cl,...,Ck,X) = /\1 IAC [(Ci=l) => Qil(Cl,...,Ci_l,Ci+1,...,Ck,X)]
i= € i

and

p(l) =Q iff Qil(Cl,...,Ci_l,CH.l,...,Ck,X) =I(Cl,...,Ci_l,l,Ci.H,...,Ck,X)

we have established a formal correspondence between induction principle D.2 and the Owicki-Lamport invari-
ance proof method. We have informally proved that the verification conditions proposed by Owicki-Lamport
are sound (i.e. using the notations of paragraph E, that V'(Q) => V(p(Q)). The sufficient completeness con-
dition (V) => V'(p(I))) can also be checked by the reader. Intuitively, this condition is satisfied because
each local invariant Q; can always be made strong enough so as to exactly describe the possible states of the
whole program when process i is at point 1.

F.1.3 Example

Let us prove that program B.2 is partially correct (according to definition C.2.1). Instead of using induc-
tion principle D.2 which underlies the Owicki and Gries’ method we use D.1 so as to be able to relate the
current value n of variable N to its initial value n. (Owicki and Gries would instead introduce an auxiliary
variable in order to memorize the initial value of N).

Since both processes are symmetric we need only reason about process 1. We will prove that the relation
Inv(n,c2,n,pl,p2) = [(c2=L21 A p1=22"" V (c2#L21 A pl xp2=2071)]

is invariant in process 1 after initialization of variable P1. To prove this we will show that the invariant remains
true after execution of any command of process 1 and that it is not invalidated by execution of some command
of process 2. Since partial correctness follows from the invariant with c2=L25 (process 2 has terminated) and
0 < n <1, we will also show that the value of N after the parallel command is either 0 or 1. Since the initial
value n of N is assumed to be positive, the only difficulty is for n > 1. In this case N is decremented until
reaching value 2. On one hand both processes can test that N>1 before it is decremented by the other one,
then each process will decrement N and terminate. In this case N would equal 0 on exit of the parallel com-
mand. On the other hand, when N=2. one process can test for N>1 and decrement N to 1 before the other
process tests for N>1. Then both processes terminate and N=1 on exit of the parallel command. For an
invariance proof, the above operational arguments can be rephrased in a ‘‘time independent manner’’, which
leads to the following local invariants:

Qll(r_l»C2sn7pl 5p2) = Qlé(rlscz»na 1 apz)

Qp(n,c2,n,pl,p2) = [Inv(n,c2,n,p1,p2) A [(c2€{L21,L22} A n=n A n>0)
V (c2=L23 A n>1) V (c2=L24 A n>1) V (c2=L25 A 0<n<D]]

Qy3(n,c2,n,pl,p2) = [Inv(n,c2,n,pl1,p2) A [(c2€fL21,L22,L23} A n>1)
V (c2=L24 A n>=1) V (c2=L25 A n=1)]]

262 COUSOT AND COUSOT

Qu4(n.c2,n,p1,p2) = [Inv(n,c2,n,pl,p2) A [(c2€{L21,L22,L23} A n>0)
V (c2=L24 A n20) V (c2=L25 A 0<n<D]]

Qis5(n,c2,n,pl,p2) = [Inv(n,c2,n,p2,p1) A [(c2=L23 A n=1) V (c2#L23 A 0<n<1)]

Qi(n,n,pl,p2) = [pl xp2=22" A 0<n<l]

Qz(r_\,p) = [P=2&]

It is a simple mathematical exercise to show that these local invariants satisfy the following verification
conditions (which are universally quantified over n,n,n’,pl,pl’,p2,p2',p € II, cl € {L11,...L15):

— Initialization:
[n > 0] => [Q,(n,L21,n,p1,p2) A Qu(n,L11,n,p2,p1)]

— Sequential proof (similar to E.1):
[Qyi(n,c2,n,p1",p2) A 1€} => Qy5(n,c2,n,1,p2)
[Qi2(n,c2,n,p1,p2) A n>1] => Q3(n,c2,n,pl,p2)
[Q12(n,c2,n,pl,p2) A n<1] => Qys(n c2,n,pl,p2)
[Qu3(n.c2,n’,pl",p2) A (n'=1) €1 A (2xpl’) €ll] => Qy4(n,c2,n'~1,2xpl’,p2)
[Q4(n,c2,n,p1,p2) A n>1] => Qi3(n,c2,n,pl,p2)
[Qa(n,c2,n,p1,p2) A n<1] => Qys5(n,c2,n,pl,p2)

— Interference freeness check (for k=1,...,5):
[Qi(n,L21,n,p1,p2') A Qp(n,L1k,n,p2',pl) A 1€M] => Qy(n,L22,n,pl,1)
[Qk(n,L22,n,p1,p2) A Qp(n,L1k,n,p2,p1) A n>1] => Qy(n,L23,n,pl,p2)
[Qu(n,L22,n,p1,p2) A Q(n Llk,n,p2,p1) A n<1] => Qy(n,L25,n,p1,p2)

[Qu(n.,L23,n',p1,p2) A Qaafn,Llk,n’,p2',pl) A (n'—1) €Il A (2xp2) €N}

=> Qu(n,L24,n'—1,p1,2xp2)
[Qq(n,L24,n,p1,p2) A Qua(n,L1k,n,p2,p1) A n>1] => Q(n,L23,n,p1,p2)
[Qu(n,L24.n,p1,p2) A Qaq(n,L1k,n,p2,p1) A n<1] => Qyi(n,L25,n,p1,p2)

INVARIANCE PROOF METHODS 263

— Finalization:
[Q;5(n,L25,n,p1,p2) A Qps(n,L15,n,p2,p1)] => Q(n,n,pl,p2)
[Q,(n,n,pl,p2) A n=0 A (p1xp2) €lll => Q,(n,pl xp2)
[Qi(n,n,pl,p2) A n=0 A (2xplxp2) €ll} => Q,(n,2 xpl xp2)
Q,(n,p) => [p=2Y.

Notice that for the whole program we have got 77 veritication conditions. Theoretically the number of
sequential verification conditions is linear in the size of the program whereas the number of verification condi-
tions for checking interference freeness grows exponentially with the number and size of processes. The practi-
cal method for avoiding this combinatorial explosion is to make informal proofs and to choose the local invari-
ants of each process as independent as possible of the other processes. In that case most of the interference
freeness checks become trivial.

F.2 Decomposition of the Global Program Invariant Leading to Lamport [1980] Proof Method

F.2.1 Decomposition

Another way to avoid the proliferation of simple verification conditions is to use a coarser decomposition
which consists in associating a global invariant Q; with each process P; of program [P, .l P . Each predicate
Q; may depend upon the values of variables as well as upon program control locations. The correspondence
with induction principle D2 is established along the lines of paragraph E by defining global inductive invariant
[as the conjunction of the global invariants Q; for each process P;:

k
1=pQ = AQ

1_—.

F.2.2 Derivation of the verification conditions

For the basis D.2(a) we must prove that 1 is initially true and this verification condition can be decom-
posed into checks that each Q;,i =1,...,k is initially true.
The induction step D.2(b) which consists in proving that I is invariant, that is IAt => I, can be decom-
k

posed into proofs that IAt => Q; for i=1,....k. Moreover, the induction hypothesis I = A Qj can be weak-
j=1
ened and one can choose (simpler but sufficient since stronger) conditions (A Q) At => Q;for §; C {1,..k}
JE€S;
and S; # @. (These verification conditions satisfy the completeness criterion of paragraph E for
p() =Qiff Q; =1Ifori =1,..k. This formalizes the intuitive idea that the method is complete since all global
invariants Q; for each process i=1, ...,k can always be chosen as the global program invariant which is used for
the completeness proof of induction principle D.2.) A further decomposition of the verification conditions

(A Q) At=>Q; is possible since t is a disjunction of cases. For each process i, one can distinguish
J€S;

between a sequential proof (A Q) A t; => Q; (when t corresponds to execution of a basic command
J€S;

264 COUSOT AND COUSOT

labelled 1 of process i) and an interference freeness check (A Q) Aty => Q; (when t corresponds to
J€Sh
execution of a basic command labelled | of process h # i).

F.2.3 Example

Let us give another proof of program B.2, using process invariants. Obviously, the proof is just a refor-
mulation of F.1.3 using a global invariant for each process instead of local invariants attached to program
points. Since both processes are symmetric, we use the same process invariant for each of them and reason

only on process one.
In order to be able to designate program locations let us introduce:

Not-started = (cl=L11 A c2=L21)
P2-started = (c1=L11 A c2#L21)
Pl-started = (c1#L11 A c2=L21)
Started = (c1=L11 A c2#L21)

The central idea of program B.2 is to maintain invariant the following relation:

Inv(n,cl,c2,n,pl,p2) = [(Not—started A n=n) V (P2—started A p2=22"")
V (P1—started A pl=22"") V (Started A pl xp2=22"")

The other essential observation for the partial correctness proof is that the program can only terminate
when 0 < N < 1. To prove this, let us introduce:

Before—test = [(c1 €{L11,L21} A c2€{L21,L22}) V (cl =L14 A c2 =L24)]
After—test = [(c1=L13 A ¢2¢€ {L21,L22,L23})) V (c1€{L11,L12,L13} A c2=L23)]
After—test—and—decrement = [(c1=L14 A c2€{L21,L22.L.23}

V (c1 €{L11,L12,L13} A c2=L24)]
One—decrement—left = [(c1=L15 A ¢2=L23) V (c1=L13 A c2=L25)]
No—decrement—left = [(c1=L15 A ¢2#L23) V (c1#L23 A ¢2=L25)]

For each process, one can choose the following global invariant:
Q(n,cl,c2,n,p1,p2) = [Inv(n,cl,c2,n,pl,p2) A [(Before—test A n>0)

V (After—test A n>1) V (After—test—and—decrement A n>1)
V (One—decrement—left A n=1) V (No—decrement—left A 0 <n<1)]]

This global invariant satisfies the following verification conditions:

INVARIANCE PROOF METHODS 265

— Initialization.
[n > 0] => Q(n,L11,L21,n,pl,p2)

— Sequential proof of process 1:
[Q(n,L11,¢2,n,p1’,p2) A 1 €M} => Q(n,L12,c2,n, 1,p2)
[Q(n,L12,¢2,n,p1,p2) A n>1] => Q(n,L13,c2,n,pl,p2)
[Q(n,L12,c2,n,p1,p2) A n<1] => Q(n,L15,c2,n,p1,p2)
[Q(n,L13,c2,n',pl",p2) A (n'=1) €l A (2xpl") €[] => Q(n,L14,c2,n'—1,2%pl",p2)
[Q(n,L14,c2,n,p1,p2) A n>1] => Q(n,L13,c2,n,pl,p2)
(Q(n,L14,c2,n,p1,p2) A n<1] => Q(n,L15,¢2,n,pl,p2)

— The proof of absence of interference of execution of process 2 with the global invariant of process 1 exactly
amounts to the sequential proof of process 2.

— Finalization:
Q(n,L15,L25,n,p1,p2) => Q;(n,n,pl,p2)

When compared with F.1.3 the use of a coarser decomposition leads, for that example, to a natural factor-
ization of similar verification conditions.

F.3 Classification of Program Proof Methods

Program proof methods can be classified according to the class of properties that can be proved. Methods
for proving properties in a given class can be classified according to the basic induction principle underlying
them. Finally for a given induction principle, proof methods can be compared according to the decomposition
of the global inductive hypothesis involved in this induction principle into a set of local inductive hypotheses.

Decompositions can be partially ordered, a decomposition being coarser than another if the former can be
further decomposed into the latter.

Example F.3.1 A comparison of two invariance proof methods.

The decomposition of the global program invariant of D2 into the global process invariants of F.2 is
coarser than the decomposition into the local invariants of F.1. If we have proved program [P, |1 PJ using
global process invariants Gy,...,Gy we can rephrase the proof using local invariants Qj, i€{l,....k}, 1€C; which
are the decomposition of the G;, in the sense of paragraph E, that is:

Q = p(G) s.t. Qi|A(Cl,...,Ci_1,Ci+1,...,Ck,X) =Gi(Cl,...,Ci_l,l,Ci.H,...,Ck,X).

266 COUSOT AND COUSOT

Rcciprocally, a proof using global process invariants can be derived from a proof using local invariants using

G = p'(Q) s.t. Gi(Cl,...,Ck,X) =lé/ [(Cl_l) A Qll(cl* Ci—1,C l+17"'sck7x)]

i

since p is bijective and p its inverse the methods are equivalent. O

The above informal idea of comparing proof methods corresponding to a given induction principle accord-
ing to the decomposition of a global invariant into local invariants can be made formal. The partial ordering on
program proof methods is chosen as the ordering on the closure operators p'Op on the partially ordered set of
global invariants (A,= >), induced by the Galois connections (p,p) corresponding to each of these methods.
In this way, a complete lattice of proof methods is obtained, which is part of the lattice of program analysis
methods considered in Cousot and Cousot [1979].

G. Flow Analysis of Parallel Programs

Approximate semantic analysis of programs also called program flow analysis (Muchnick and Jones
[1981]) is ‘‘a tool for discovering properties of the run-time behavior of a program without actually running it.
The properties discovered usually apply to all possible sequences of control and data flow and so give global
information impossible to obtain by individual runs or by inspection of only a part of the program.”

G.1 Design of a Flow Analysis Algorithm

Almost all program flow analysis techniques have been designed for sequential programs. Using the
approach of Cousot and Cousot [1979], Cousot, P. [1981], the extension of these techniques to parallel pro-
grams is trivial. It consists in choosing an induction principle and a decomposition (a,y) of the global invariant
into a set of machine representable local invariants. Once the corresponding verification conditions have been
designed, they are considered as a fixed point system of equations F(X) => X (or X = > F(X)), the least (or
greatest) fixed point D of which leads to the best (i.e. more precise) possible set of local invariants (for the
given decomposition (a,y)) since F(D) = D and if F(X) => X then D => X (or X = > F(X) then X = >
D). In order to avoid computability problems, the decomposition is chosen to be approximate, so that the
verification conditions F are incomplete. If the approximation is strong enough the least (greatest) fixed point.
of F can be machine computed as V F(]) (or A F(T)) where | is p(f) (resp. p(tt)) and
Fo(X) =X, Fit'(X) = F(Fi(X)). If the convergence is not rapid enough extrapolation techniques are available
(Cousot and Cousot [1977]).

G.2 Example of Approximate Decomposition for Parallel Programs

In order to illustrate how our approach to program flow analysis applies equally well to parallel programs
than to sequential programs, we will use program B.2 (the reasoning on this program can be extended to a pro-
gramming language via induction on the syntax of programs).

Assume we want to determine statically for each possible point of control in the program a finite descrip-
tion of the set of data states the program could be in when execution passes through that point. The descrip-
tion Dj attached to point 1 of process j=1,2 is chosen to be an interval of values for each variable and
each point h€ C; of the other process j (where 1=2 A 2=1). Therefore DJI()h) is a triple <n,p;,p;> of abstract
values of vanables N, P;,P; where each n,p;,p; is either | (bottom, which stands for the predicate ff) or a
numerical interval [a,b] such that li<a<b<hi where 1li and hi are the lowest and greatest machine

INVARIANCE PROOF METHODS 267

representable integer. We will use the selectors <n,p;,p; > [N] =n, <n,p;,p; > [P] = p; and
<n,p;,p; > (P = p; The meaning of a description D can be explained in terms of the local invariants Q
considered at paragraph F.1 by the connection Q = y(D) such that:

Qy(n,cin,pj,pp) = h\E/C ((c;=h) A (V v€(N,P1,P2}, D;yGh) [VI=] A veDyGh) VD).
]

For example D4(23) = <I[1,hi-11,[2,hi],[1,hi] > means that at point L14 of process 1 it is true that
(1 <n<hi—-1) A 2<p;<hi) A (1<p,<hi)) when control is at point L23 of process 2. Reciprocally a set of
local invariants Q can be approximated by D = «(Q) such that

DyGh) = < 1,1 ,1 >iff Qu(n.Ly.n.ppp =fF

<[min V(N),max V(N)],[min V(Pj),max V(P)},[min V(P;,max V{Py] >
where

V(N) = {n€ll | (3 n,p;p;€ll | Qy(n,Ly.n,pjpp)
and similarly for V(P) . V(P).

Notice that «(Q) is an approximation of Q "in that, for example, relationships between variables cannot
be expressed.

G.3 Fixed Point System of Approximate Equations Associated with a Parallel Program

The verification conditions of paragraph F.1.3 can be written as a system of inequations Q <=V(Q) which
was obtained by decomposition of

I <= As,s) . [e(s) V (Ts' | I(s,s) A t(s',9))]

using the connection (p,p) defined at paragraph F.1.1. A further decomposition leads to a fixed point system
of approximate equations D = F(D) using the connection («,vy) of paragraph G.2 and F = «oVovy. Then the
meaning of the least fixed point Ifp(F) of F is an invariant of the program, that is Vs.s€S, [e(s) A
t'(s,s)] => poallfp(F))(s).

Before giving the system of equations corresponding to program B.2 let us introduce some notations:

- <n,pl,p2> [pl:pl’]l = <n,pl’,p2> substitution
<n,pl,p2> [p2:p2’} = <n,pl,p2’>

-1 Ax=xA | =] forxe{l}uU{la,bl | a<b} approximate conjunction
[a,b] A [c,d]=1[max(a,c),min(b,d)] iff max(a,c) <min(b,d)
=] iff b<cor d<a
-1 Vx=xV _l=xforxe{l} U {la,b] | a<b} approximate disjunction

[a,b] V [c,d] = [min(a,c),max(b,d)]

268 COUSOT AND COUSOT

-1-1= approximate decrement

la,b] - 1 = [a-1,b-1] A [li,hil

-2x] = approximate shift.
2x[a,b] = [2xa,2xb] A [li,hi]

In the following presentation of the fixed point system of approximate equations for program B.2, it is assumed
that initially we must have n >0. For each equation we distinguish a term corresponding to the sequential proof
and a term corresponding to the interference check:

Dy = <[0,hil, [1i,hil, [li,hi] >
D11(21) = Do
D11(2k) = interll(Zk)

D1p(2K) = D1y (2K [pL:IL1T] V inter;»(2K) :z _ f 2

D13(2K) = (Dyz(2k) A <[2,hil, 1, hil [hil >) K= L
V (D1s2K) A <20l 1, il li,hil >) V inter;3(2K)

D14(2k) = <D13(2k) (n) -1, 2xDy3(2k) (p1), Dy3(2k) (p2) > V inter4(2k)

Dys5(2k) = (D15(2k) A <[, 11,11, hil, [li,hil >) k=1..5

V (D14(2k) A <Iii, 11, [1i,hil, [1i,hil >) V inter4(2k)
where
inter, (21) = </ ,1.1>
inter)(22) = (D1, (21) A Dy (1k)) [p2:(1,11]
inter;(23) = (D1x(22) A Dp(1k) A <[2,hil, [1i,hil, [1i, hi] >)
V (D1(24) A Dys(1k) A <[2,hil, [1i,hil,[1i,hi] >)

inter;, (24) = <(D(23)(n) A Dy3(1k) (n)) —1, D(23) (p1) A Dy3(1k) (pl),
2x(D1(23) (p2) A Dps3(1k) (p2)) >

inter; (25) = (D1,(22) A Dyp(1k) A <[, 1), [1i,hil, [1i, hil >)
V (D (24) A Dy(1k) A <[1i, 11, 01, hil, [li, hil >)

... similar equations for process 2
D1 = D15(25) /\ D25(15)

G.4 lterative Resolution of the Equations Using Extrapolation
Techniques for Accelerating the Convergence

This system of equations can be solved using any asynchronous iterative strategy (Cousot, P. [1977]).
Initially one set Dy(ih) = <] .,1.] > for i =1,2,1€C;, h€C; Then one iterates through the system applying
any equation until no changes take place.

INVARIANCE PROOF METHODS 269

The convergence can be accelerated using Cousot and Cousot [1976,1977] extrapolation techniques. This
consists in defining a widening operation V such as:

1 Vx=x
[a,b] V [c,d] =[if ¢ < athenlielse a, if d > b then hi else b]

and replacing equations Dj3; = 1,2 by

D;3(Gk) = DyGk) V [(DpGk) A <[2,hil, i, hil, [1i,hi] >)
V (Djs(Gk) A <[2,hil,[1i,hil, [li,hi] >) V inter;3Gk)]

and then solving iteratively. The result we have obtained (for process 1) is:

k=1 k=2 k=3 k=4 k=5
n pl p2 n pl p2 n pl p2 n pl p2 n pl p2

Dyy@e | [0l [hil Gihil | [0 [ihil [1,1] | [2,hi) [ihi) [L,ki) | [1,hi-1] 0ihi) (2,hi] | [0,1) [ihi} (1,hi)
Dk | [0hi] [1,1) Dikil | [0kl (1,00 (1,1 | 2,k (4,10 [kl § [Lhis1] 1,10 [2,hi] | 10,11 (1,11 [1,hil
Dy32K) | [2,hi] [L,hi) [ihil | [2,hi) [Lhi] 0,1 | [2,hi] [L,hi) [Lhi] | [Ghi-1] [0hi) [2,hi] | 14,8 [1,hi] [1hi)
D14@K | [Lhi-1) [2,hi] {1i,hi] | [Lhi-1] [2,hi] [1,1] | [1,hi-1] [2,hi] [Lhi] | [0,hi-2) [2,hi] [2,hi] | [0,1] [2,hi) {1 ,hil

Dysr) | 10,10 [Lhi) Dihil | [0,1] [Lhi) [1,1) | (1,1 (L,hi] [Lhi] | [0,1) (Lhil [2,hi] | (0,1) [1,hi] {1,hi]

Notice that the decomposition is approximate enough to allow a computer implementation of this kind of
analyses. However, as shown by the above example, the results of such approximate analyses can be useful
since we obtain

D, = <[0,11,[1,hi],[1,hi] >

which proves that N € {0,1} on exit of the parallel command of program B.2, a result which is not trivial to
obtain by hand.

References

Cousot P, [1977]
P. Cousot, ‘“Asynchronous iterative methods for solving a fixed point system of monotone equations in a com-
plete lattice,”> Research Report No. 88, IMAG, University of Grenoble, France (Sept. 1977).

270 COUSOT AND COUSOT

Cousot P. {1978]
P. Cousot, ‘*Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones sur
un treillis, analyse s€mantique des programmes,’” These d’Etat, University of Grenoble, France (March 1978).

Cousot P. [1979]

P. Cousot, ‘‘Analysis of the behavior of dynamic discrete systems,”” Research Report No. 161, IMAG, Univer-
sity of Grenoble, France (Jan. 1979).

Cousot P. [1981]

P. Cousot, ‘‘Semantic foundations of program analysis,”” in Program Flow Analysis, Theory and Applications, S.S
Muchnick & N.J. Jones (eds.), Prentice-Hall, Inc. (1981), pp. 303—342.

Cousot R. [1981]
R. Cousot, “Proving invariance properties of parallel programs by backward induction,” Research Report,
CRIN—81—P026, Nancy, France (March 1981), to appear in Acta Informatica.

Cousot and Cousot [1976]
P. Cousot and R. Cousot, ‘‘Static determination of dynamic properties of programs,” Proc. 2nd Int. Symp. on
Programming, Dunod, Paris, France (April 1976), pp. 106 —130.

Cousot and Cousot [1977]
P. Cousot and R. Cousot, ‘“Abstract interpretation: a unified lattice model for static analysis of programs by

construction or approximation of fixpoints,”” Conf. Rec. of 4th ACM Symp. on Principles of Programming
Languages, Los Angeles, CA. (Jan. 1977), pp. 238 —252.

Cousot and Cousot [1979]
P. Cousot and R. Cousot, ‘‘Systematic design of program analysis frameworks,”” Conf. Rec. of 6th ACM Symp.
on Principles of Programming Languages, San Antonio, TX (Jan. 1979), pp. 269—282.

Cousot and Cousot [1980a]
P. Cousot and R. Cousot, “‘Semantic analysis of communicating sequential processes,”” Automata, Languages

and Programming, 7th Collog. Noordwijkerhout, Lecture Notes in Comp. Science 85, Springer-Verlag (July 1980),
pp. 119—133.

Cousot and Cousot [1980b]
P. Cousot and R. Cousot, ‘‘Constructing program invariance proof methods,”” Proc. Int. Workshop on Program
Construction, Chateau de Bonas, France, Tome 1 INRIA Ed. (Sept. 1980).

Cousot and Cousot [1982]
P. Cousot and R. Cousot, “‘Induction principles for proving invariance properties of programs,” in Tools and

Notions for Program Construction, Nice, France, (Dec. 7-18, 1981), Cambridge University Press (1982), pp.
75—119.

Cousot and Halbwachs [1978]
P. Cousot and N. Halbwachs, ‘‘Automatic discovery of linear restraints among variables of a program,”” Conf.
Rec. of 5th ACM Symp. on Principles of Programming Languages, Tuscon, AZ (Jan. 1978), pp. 84—97.

Floyd [1967]
R.W. Floyd, ‘‘Assigning meanings to programs,” Proc. Symp. in Applied Math., Vol. 19, AMS, Providence, RI
(1967), pp. 19—32.

INVARIANCE PROOF METHODS 271

Hoare [1969]
C.AR. Hoare, ‘“‘An axiomatic basis for computer programming,” C.ACM 12, 10(Oct. 1969), pp. 576—580,
583.

Keller [1976]
R.M. Keller, ‘‘Formal verification of parallel programs,”” C.ACM 19, 7(July 1976), pp. 371 —384,

Lamport [1977]
L. Lamport, “‘Proving the correctness of multiprocess programs,” [IEEE Trans. on Soft. Eng., SE3, 2(March
1977), pp. 125—143.

Lamport [1980]
L. Lamport, ““The ‘Hoare Logic’ of concurrent programs,” Acta Informatica 14 (1980), pp. 21 —37.

Muchnick and Jones [1981]
S.S. Muchnick and N.D. Jones (eds.), Program Flow Analysis: Theory and Applications, Prentice-Hall Inc.
(1981).

Naur [1966]
P. Naur, ‘‘Proof of algorithms by general snapshots,”” BIT 6 (1966), pp. 310—316.

Owicki and Gries {1976]
J. Owicki and D. Gries, ““An axiomatic proof technique for parallel programs 1,”* Acta Informatica 6 (1976). pp.
319—340.

