
INFORMATION AND COMPUTATION 80, 165-191 (1989)

A Language Independent Proof
of the Soundness and Completeness

of Generalized Hoare Logic

PATRICK COUSOT

&Cole Polytechnique, Laboratoire d’lnformatique (LIX),
91128 Palaiseau - cedex, France

AND

RADHIA COUSOT

UniversitP de Paris-&d, Centre d’Orsay,
LRI, Bat. 490, 91405 0rsa.v - cedex, France

Generalized Hoare logic (GHL) is a formal logical system for proving invariance
properties of programs. It was first introduced by Lamport to reason about simple
concurrent programs with shared variables. It was generalized by Lamport and
Schneider who noticed that the inference rules for each language construct
(enabling invariance properties of statements to be derived from invariance
properties of their components) can be viewed as special cases of simple logical
meta-rules. We give a rigorous definition of GHL, based upon an abstract formal-
ization of the syntax and semantics of programs so as to provide an interpretation
for formulas of GHL which is independent of the specilic instructions of the
programming language used. We prove that the proof system of GHL is sound and
relatively complete under hypotheses, which we formulate independently of any
programming language; these are simple conditions which relate the axiom
schemata for atomic actions and the axiom schemata, which dehne the control flow
semantics, to the semantics of programs. %I 1989 Academic Press, Inc.

1. INTRoDUC-~ION

Lamport (1980) introduced the “Hoare Logic” of concurrent programs.
We understand it as a Hoare-style logical system which essentially for-
malizes Ashcroft’s (1975) method for proving invariance properties of
parallel processes with shared variables (Ashcroft’s method was originally
introduced in the style of Floyd (1967)). Moreover, Lamport introduced
predicates for reasoning about program locations (replacing Ashcroft’s
(1975) explicit use of program location counters).

The logic was generalized by Lamport and Schneider (1984) who noticed
that the inference rules for non-atomic language constructs (which enable
invariance properties of statements to be derived from invariance proper-

165
0890-Ml/89 53.00

Copyright Q 1989 by Academic Press, Inc.
All rights of reproduction in any form reserved.

166 COUSOTAND COUSOT

ties of their components) can be viewed as special cases of simple logical
meta-rules that apply to all programming constructs. This, in particular,
provides a uniform way to compare a variety of invariance proof methods
which were designed for different programming constructs.

We propose a formalization of the syntax and semantics of programs
(Section 2) which is abstract enough so as to allow a rigorous definition of
GHL (Section 3) and its interpretation (Section 4) in a language indepen-
dent way. We prove that the proof system of GHL is sound (Section 5) and
relatively complete (Section 6) under conditions on the semantics of
programs and axiom schemata for atomic actions and definition of the con-
trol flow semantics which we formulate independently of any particular
programming language.

2. PROGRAMMING LANGUAGES

2.1. Abstract Syntax

A programming language P is a non-empty set of programs. A program is
made up of declarations (which we ignore but for the fact that for some
programming languages they are used to define the set of states of the
program and the meaning of the program variables with respect to these
states) and an executable program fragment Z~E PE L.

A program fragment x E L consists of a non-empty finite set y [n] of
smaller program fragments or else is an atomic action (in which case
y[n] = 0). Hence a program fragment can be understood as a tree with
program subfragments as nodes and atomic actions as leaves.

The set of subfragments that make up program fragment ‘II is denoted
y*f~]. More precisely, the subfragments of a program fragment K are rc
itself as well as the subfragments of all the fragments K’ E y[x] of n. In
particular, the only subfragment of an atomic action is that atomic action
itself.

The set of atomic actions that make up program fragment z is denoted
en.

For example, the structure of program 7c= (x := 1; y :=2)11(x := 2;
y := 1) can be depicted by the tree

(x:=l;y:=2)1)(x:=2;y:=l)

/-/‘\‘-I (x:==l;y:=2) X’ ; . .=2 v.=l)

/\ /\
x := 1 y :=2 x:=2 y := 1

ON THE SOUNDNESS AND COMPLETENESSOF GHL 167

so that,

y[7c] = {(x := 1; y := 2), (x := 2; y := l)}
y[(x := l;y := 2)j = {x := 1, y := 2)
y[x:=2;y:=l)]={x:=2;y:=l}
y[rx := ID= yb := 2~= r~.x := 21= y[y := in = 0

y*jr~n={~,(~:=i;y:=2),(~~:=2;y:=i), x:=1, ,y:=2, x:=2,

y:=l}
a[nn = {x := 1, y := 2, x := 2, .V := I}.

(The program structure is usually described more precisely using
abstract operations (such as ; or 11) between programming constructs. This
is not necessary since we are only interested in the set of subfragments of a
program fragment.)

More formally, we make the following

HYPOTHESES. (1) Let L be a non-empty set (of program fragments).

(2) Let PC L be a non-empty set (of programs).

(3) Let Y be a non-empty set (of types or sorts) and VP be a set (of
program variables) such that Y, V,, and L are disjoint. Let A E (V, -+ Y) be
a type assignment (assigning a type A(v) to each program variable v E V,).

(4) Let y E (L -+ 2L) be such that:

(a) Vn E L, y[7rJ is fkite,

(b) There is no infinite chain n,,, x,, xi, . . . in L such that for all
i>O, nIc,+I ~ylI~,ll,

(c) If there are chains x0, n,,, and nb, $, in L such that for all
O<i<m, 7ci+, Er[n,n, for all 06i<n, TC:+IEY[n:n, 7c0=7cb,
and rc,,, = n; then m = n and for all i E [1, n], ?ri = xi.

(y[x1] is the set of immediate components of program fragment n E L. This
set is finite (a). No program fragment can be indefinitely decomposed
into smaller fragments (b). Subfragments of a program fragment are ail
different (c).)

DEFINITIONS. (5) y* E (L + (2L- 0)). y* = Ix. {n’ 1 3n,, 71, E L.
(x=x1) A (ViE[l,n[.Ki+IEyCRin) A (71,=x’)}. (y*[xn is the set of all
subfragments composing program fragment 7c EL.)

(6) aE(L+(2L-0)), a=~~.{aEy*jrnnIrrran=Qi>. (a[nJ is the
set of all atomic actions composing program fragment 7~ EL.)

168 COUSOT AND COUSOT

2.2. Operational Semantics

Programs can be viewed as defining a transition relation on states (see
(7) and (8) below).

More precisely, execution of a program I!E P is started from some initial
state SUE S[Z7] and goes on from one state SUE S[Z7] to another state
si+ , E S[Z7] by execution of an atomic action a E a[Z7]. Execution never
terminates or stops when reaching a state with no possible successor.

Execution of an atomic action a E cl[Z7] always terminates and is
indivisible (so that it cannot pass through any visible intermediate states).
Hence a program step t[17](si, s, + ,) can be understood as a transition
t[a] (s;, si+ 1) between states corresponding to indivisible execution of
atomic action “a” of ZI, (9).

The states s, include control information to determine which atomic
action (or which actions for non-deterministic programs) can occur next.
Following Lamport (1980), we write at[[n] when control resides at an entry
point of program fragment rt Ey*[I7]; in[n] when control resides
somewhere in rt, including at its entry points and after[n] when control
resides at a point immediately following rr, but not in[rr]. Notice that the
starting points of rr are considered to be in n but the points at which n: may
terminate have to be considered to be outside, but not independent, of rt
(lo), (121, (13L (14), (15).

The meaning (hence, in particular, the states) of a program fragment rc’
cannot be understood independently of its context. More precisely, if
program fragment rr’ is part of a larger fragment rt then all states of rt for
which control resides in or after n’ are states relevant to rc’ (16).

If n: is an atomic action, so that there are no places in rc at which control
can reside except at its starting point (1 1), the execution of n: is possible
only when control is at[rr]. When execution of an atomic action rt
terminates, control is after [n], (17).

When discussing Hoare-style logics, program variables are usually easy
to interpret since states are functions assigning to each variable a value
from some domain (Apt, 1981). We do not adopt this ndive point of view
which, for example, is not powerful enough to describe precisely the
execution stack in Pascal. On the contrary, we will understand a program
variable as a function which given a program state returns the value of the
variable in that state. This value may be undefined and special constants
may be used to denote the undefined value of uninitialized variables.
Moreover, since states have a control component, the meaning of a
program variable may be different at different program places so that scope
issues can be taken into account (18), (19).

This intuitive understanding of the operational semantics of programs is
made precise by the following:

ON THE SOUNDNESS AND COMPLETENESSOF GHL 169

HYPOTHESES. For all ITE P, an operational semantics is a tuple (S, t, at,
in, after, v) such that for all 7c E y*[lT], a E a[n] we have

(7) S[rr] is a non-empty set (of program states relevant to fragment X
of program Z7).

(8) t[nJ E ((S[Z] x S[X]) + { tt, ff }) (the transition relation for II, i.e.,
a function from pairs of states to truth values (tt is true and ff is false)
describing execution of an elementary step of n).

(9) tunn = V,,,[nj t[a] (it is assumed that execution of an elementary
step of program fragment 71 corresponds to execution of one of the con-
stituent atomic actions of x).

(10) at[n], inIn], after[x] E (s[71jj + { tt, ff }) (are functions from
states to truth values which respectively characterize those program states for
which control resides at, in, and after program fragment n).

(11) at[a] = in[a] (the only control points inside an atomic action are
its entry points).

(12) at[n] =S in[n] (the starting points of 7c are considered to be
inside rc).

(13) if n’ E y* [n] then inEn’] =E. in[nj (tf control resides somewhere in
a subfragment n’ of program fragment x then control also resides in n).

(14) after [En * 1 in En] (the points at which program fragment R
terminates are considered to be outside TC).

(15) zf n’~y*[~] then after[x’] =S (in[x] v after[x]) (if control
resides after a subfragment rc’ of program fragment 7c then control resides in
7t or after n).

(16) Vn’Ey*[n]. S[z’] = {s~S[n] Iin[n’](s) v after[z’](s)} (it is
assumed that the program states relevant to subfragment rtcI of program
fragment x are those states of 7c for which control resides in or after n’).

(17) Vs, s’ES[a]. t[a](s, s’)+ (at[aj(s) A after[a](s’)) (it is possible
to execute an atomic action “a” only tf control resides at an entry point of
“a.” Moreover, after execution of “a,” control must reside after “a,” that is,
at one of the exit points of “a”),

(18) For every sort s in Y, v(s) is a non-empty set (of values of
program variables of type s).

(19) For every program variable x E V, of type A(x), v[x] is a
function S[lTj + v(A(x)).

(The meaning of variable x in state s is v[x](s)).

From these hypotheses we derive the following theorem which will be
very useful later on:

170 COUSOTANDCOUSOT

THEOREM. (20) Vs, S'E S[n]l. t[x](s,s') * [in[lnJl(s) A (inQnl](s’) v
after[n4(s’))]. (Execution of an elementary program step inside rt is only
possible when control resides in n. Afterwards, control remains in II or
resides at a point immediately following n.)

Proof: t[7c] (s, s’) * (‘I (3aEa[71], 2fa](s, s’)) a”” (3a e a[7-c], at[aJ(s)
A after[uJ(s’)) *““(kEa[7t], in[aJ(s) A after [an(Y)) =P@) (Sz~y*[nJ,

in[aJ(s)~after[al](s’)) * “3).‘15)(in[r7rJ(~) A (in [xJ(s’)v after[nJ(s’))). 1

3. THE LOGIC GHL

3.1. The Language of GHL

As usual for Hoare-style program logics (Apt, 1981, 1982) the formulas
of GHL include assertions (or predicates on the values of the program
variables and program locations) and asserted programs of the form
{P} rt{Q} having the following interpretation (which differs from Hoare’s
P{rt} Q): if execution is begun anywhere in rc with the assertion P true,
then executing rt will leave P true while control resides inside rt and will
make Q true if and when S terminates.

3.1.1. Assertions

Let A be a (maybe inlinitary) many-sorted first-order logic, (Feferman,
1974).

More precisely, we consider a collection of symbols falling into the
following disjoint classes:

(21) A non-empty set, the elements of which are called sorts, which
contains b (the sort of truth values), Y (the sorts of program variables).

(22) A set of finitary sorted relurion symbols (each relation symbol r
is equipped with some sort r: sr x ... x s,, + b). In particular, true, false,
and for all 17 E P, rt E y * [nl], at[rcl], in[n] and afler[n] are 0-ary symbols of
sort -+b.

(23) A set of finitary sorted function symbols (each function symbolf
is equipped with some sort f: s, x . . x s #I -+ s), 0-ary function symbols are
called individual constants.

(24) A set V’ of free variables which is partitioned into a set V{ of
logical free variables (which may appear in proofs but not in programs)
and a set Vi E VP of program free variables (which may appear both in
proofs and programs). The sort of free variable x E V’ is d(x).

(25) A set Vb of bound variables partitioned into Vf and Vi c V,.
The sort of bound variable x E Vb is d(x).

ON THE SOUNDNESS AND COMPLETENESS OF GHL 171

(26) The symbols ZE for identity, v (maybe inlinitary) for dis-
junctions, A (maybe inlinitary) for conjonction, i for negation, * for
implication, 3 existential quantifier, V universal quantifier.

In order to define the class of assertions we introduce as usual:

(27) The class of terms of sort s is the least class containing the free
variables and individual constants of sort s and the expressions of the form
.f(t I , t,), where n = #f > 0, f: s1 x . . x s, -P s, and the ti are terms of
sort si.

(28) The atomic assertions are expressions of the form r(t,, t,),
where the ti are terms of sort sj, r: s1 x ... x s, + b, and n = #r, or of the
form t, = t,, where t, and t, have the same sort.

We take for granted the notion of substitution: &w/x) denotes the result
of substituting w for x at each occurrence of the free variable x in 4.

(29) The class of assertions is the least class A such that:

l A contains all atomic assertions,

l A contains 1 P, P =z. Q, P E Q, v 8, A 8 whenever P, Q E A and
0 c A is a set with altogether finitely many free variables occur-
ring in the formulas in 8,

l A contains 3~. P(w/x) and VW. P(w/x) whenever x is a variable
actually occurring as a free variable in PEA, u’ is a bound
variable not occurring in P and x and M’ have the same sort
d(x) = d(w).

In the following we will usually suppress our distinction between free and
bound variables so that we refer to 3x.4, x being a free variable in 4, mean-
ing 3w.#(w/x). (However, the distinction between logical and program
variables is essential since they have different interpretations.)

3.1.2. Asserted Programs

Formulas of GHL are either assertions of A or are asserted programs of
the form {P}z{Q}, where P, Q are assertions and rc is a program
fragment :

(30) F={{P}~{Q}[P,QEA, 317~P. 7c~y*[IZ7]}.

3.2. The Formal System of GHL

The basic proof system of GHL consists of a formal system r concerning
assertions of A (31) and a formal system H concerning asserted programs
of F.

r must contain axiom schemata specifying the control flow semantics of
program fragments. In Lamport (1980), examples of such axiom schemata

172 COUSOT AND COUSOT

are given which specify the relation between the predicates loc[l[~] (where
&[rcI] denotes any one of the predicates a?[~], in[nj, and ufter[z]) for the
entire program fragment 7c and predicates loc[[rc’] for its component sub-
fragments rc’ E y * [rz]. An extension to language independent general axiom
schemata would be very useful, but we have found no sound and complete
one. (For example, one can attempt to reduce control predicates to more
elementary control predicates upon control locations of atomic actions.
Then a genera1 axiom schema of the form in[n] = V,,,IE, at[nj would be
correct for sequential programs but does not work for concurrent programs
with multiple program counters). Therefore we have to assume that GHL
includes for each non-atomic program fragment, a specification of its
lot predicates, which serve to define its control flow semantics
(32~ (33), (34).

In the same way, it is hopeless to look for a language independent
specification of the effect of atomic actions in H. One can only make very
general hypotheses upon the form of such specifications, (37).

Apart from these language dependent axiom schemata, GHL can be
defined by simple language independent meta-rules (35), (36), (38),..., (43).

3.2.1. The Forrnul System t for Assertions of A

(3 1) r is an Hilbert-style formal system for assertions of A augmen-
ted with the following axiom schemata (specifying the control flow
semantics of program fragments):

(32) For all HE P, a E cr[I7],

at[aj = ini[aj.

For all I~EP, ~~(y*[l7-cci[Z7]),

(33) For all l7~ P, uccr[Z7],

ON THE SOUNDNESS AND COMPLETENESS OF GHL 173

For all 276 P, ICE (y*[ZI] -cr[Z7]),

(The control predicates of a program fragment rc (i.e., atlrc], in[rc],
after[rrr]) are defined by an assertion of A (AT[rr], IN[rc], AFTER[n])
which only depends upon the control predicates of the immediate com-
ponents 7~’ of rc or upon the control predicates of the program fragments
z’ which have rr as immediate component (i.e., {/oc[x’] 1 Z’E r[n] v
~Mwn)).)

3.2.2. The Formal System H for Asserted Programs of F

3.2.2.1. Axiom schemata of H. For all IIEP, n~y*[lI], aEu[n], P, Q,
R, ZE A, n > 1, PI, P,, Q,, Qn E A,

(35) {i+j } 7t{ true}

(36) (true} z{after[n]}

(37a) (PRE[aJ(Q)} u{Q}, where PRE[aJ E (A -+ A). (PRE[aJ(Q) is
a (preferably the weakest) pre-condition on those values of the program
variables corresponding to a state for which control resides at an entry
point of atomic action “a” such that in the successor state after activation
and termination of “a,” the values of the program variables corresponding
to that successor state satisfy Q.)

(37b) (P}a{POST[a](P)}, where POST[a] E (A --) A). (POST
[a](P) is (preferably the strongest) post-condition corresponding to pre-
condition P.)

3.2.2.2. Rules of inference of H.

(38) (Decomposition principle)

{I) 71’(Z) for all 71+q71]

(0 OVA .

(39) (Locality rule)

{in[n] A P> Iz(after[x] A Q}

{P>n{Q> ’

(40) (Conjunction rule)

{PI > n{Q, >,..v {Pn> nfQ,>
{/I:= 1 Pi> n{Al= 1 Pi} ’ n> 1.

174 COUSOT AND COUSOT

(41) (Right consequence rule)

iPI G?>, Q =+R
PI x(R) .

(42) (Left identity rule)

R-P, {PI n(Q)
{Rb{Ql ’

(43) (Left consequence rule)

(As noticed by Lamport (1980) and contrary to Hoare’s logic, this
derivation does not hold for non-atomic actions. For a counterexample we
have {x>,O)x:=x+ l;x:=s+2 {true) and ((x=O)*(x>O)), but in
GHL we do not have {X = 0 > x := SC + 1; x := x + 2 {true 1, since assuming
x=0 at x :=x+ 1 we have x#O after x:=x+ 1.)

3.3. Proofs in GHL

(44) A proof of formula @ from a set A of formulas in a formal
system 3 is a finite sequence of formulas Y,, Yn with Y,, = @ each of
which is either an axiom of E, a member of A or else follows from earlier
!Pi by one of the rules of inference of 3. If there is a proof of @ from A in 3
we say that @ is provable from A in Z and write

Al-,@.

In particular, when A is empty we write

h5 CD.

3.4. ExampIes of Proofs in GHL

We give a number of very simple (meta-) proofs which will be useful
later. We leave implicit the fact that they use tautologies, equality axioms,
modus ponens,... of z:

(45) (a) {p> nlQ> t-r, N {in[7cj A P} n{after[n] A Q}.

Proof:

(b) { inllnl] n {true}, by (35);

(cl {true) ~{af~erU~ll>, by (36);

ON THE SOUNDNESS AND COMPLETENESS OF GHL 175

Cd)

(4
(f)
k)
(h)

(46) (a)

Proof

(b)

(cl

(d)

(4

(f)

(8)

(h)

0)

(47) (4

Proof:

(b)

Cc)

Cd)

63

V)

w

{PA in[n] A true) n{Q A true A ufter[z]}, by (a), (b),
(C)T (40);

P A in[7c] A true s in[x] A P, by definition of t;

{ in[?rj A P} n{ Q A true A ufer[Tn] }, by (e), (d), (42);

Q A true A ufter[7rJ a ufterl7zj A Q, by z;

{ inbn A P} ?‘c{&‘riTn1] A Q), by (f), k), (41). i

If’) n(Q) +r, H (in[nj *P A nfter[n] -Q} ?E {infEn 3

P A ujiiter[7rj =7 Q}.

ufter[7rj A Q a ufter[nJ A (if+g a P A ufter[n] + Q), by
(C)T z;

(ufer[n] A (in[7tJ + PA ufer[7rJ => Q)) =2 (ufter[ff] A Q),
by (34), t;

{jnlnl] A P> 71 {&wbl A Q>, by (d), (e), (41);

If’> n{Q>v by (39). I

176 COUSOT AND COUSOT

(Contrary to Lamport and Schneider’s (1984) decomposition principle,
we do not only require that the atomic actions of n: are just the atomic
actions of the rri together. We also require that the rri be subfragments of rc.
Otherwise the inference could be incorrect as shown by the following coun-
terexample, where I is a = 0, rr, is y := 1, rc2 is y := 0; a :=y and rc is y := 0;
.v := 1; a :=y so that cz[nl =a[~,] ua[n,l, {I} rr,{Z} and {I} rrt,{Z} are
true but (I} n{Z} is not).

Proof: Let us inductively build a (syntactic) tree of 7c as follows:

. Initially, n: is the root of the tree.

l At each step, add to all leaves n’ of the tree which are not among
n(I, ..., n, their immediate descendants ~[rc’J.

By hypotheses (4a), (4b), and Koening’s lemma the resulting tree is
finite.

We now prove that all leaves in this tree are among n,, rr, so as to be
able to later prove (48) by induction using a traversal of the tree in
postfixed order.

To prove that all leaves in the tree are among rc,,..., rc, we proceed by
reductio ad absurdum. Assuming that 71’ is a leave not in rc,, rrn we
construct two different chains n, r-c’,, rc’,- ,, z’ and n, ny, rck- ,, rc’ in
contradiction with hypothesis (4~).

To define the first chain, observe that by the construction process
x’ E y* [7r] and y [[n’n = @ so that by (6), 7~’ E a[xJ. Since
a[[~] G lJ:=, a[nJ, we have rr’~a[rc~J for some in [l, n]. Since rc’~a[rrJ
and rci~ y*[xJ, there is by definitions (5) and (6) a chain of the form
71 = ?rb, . ..) Jr; = Jr;, . ..) r$ = rr’ such that k <p (since otherwise rcII, = n’) and
such that 7(;. E y[[n;. + J forj = O,..., p - 1. To define the second chain, observe
that by the tree construction process there is a chain of the form
n = 7c;, . ..) I$ - - rr’ such that n, # rry for Z = 0, m (since otherwise by the
construction process rck = rci and again nj = rc’) and r$ EY[[$‘+ II for
j = 0, m - 1. The fact that the two chains rr, rr; ,..., 7~;~ r, rc’ and rc,
lt;, . ..(r$ _ ,, rr’ are different (since rri belongs to the first and does not
appear in the second) is contrary to hypothesis (4~) so that by reductio ad
absurdum we have proved that all leaves in the tree are in n,, rc,.

We can now built the proof of {I} n {I} as follows: Initially we have
{I} 7ci{Z}‘for i= 1, m and treated all leaves of the tree. At each step we
treat a node TI’ such that its sons 7~” E Y[rr’J have already been treated.
Unless we are done (n’ = n) this choice is always possible because we have
a finite tree and so each node has a finite number of sons. Hence from
{I} 7c”{ Z} for all rc” E y[n’n and (38) we derive {I} X’(Z). This algorithm
terminates because the tree is finite so that at the root we have proved
10 7w I

ON THE SOUNDNESS AND COMPLETENESS OF GHL 177

Let us give two.additional proofs in GHL, about sequential and parallel
composition, which show how to extend GHL to particular programming
constructs:

(49) Sequential composition. Assume IZE P, y[rz, ; x2] E r*[Z7J and
~171,; d = {n,, x2} then

(4
(b)
(cl
(d)
(e)
(f)
k)

Proof
(h)

(iJ

(id

(k)

(L)

(is)

(i)

(jd

(.iJ

(jJ

(id

(L)

(.A)

(jd

CL)

(LJ

(jd

(j)

(k)

178 COUSOT AND COUSOT

ON THE SOUNDNESS AND COMPLETENESS OF GHL 179

The above processes can communicate only using shared variables. In
order to consider CSP-like programs, we must also consider sending
actions L’c L (such as Pi ! e in CSP) and receiving actions L’ E L. Some
sending and receiving actions match to perform channel communications
LlClCXLcGL.

Since sending and receiving actions of a parallel program r-c, I(7c2 cannot
be executed separately they are not considered as subfragments of zr II rr2.
To do so they have to be grouped into matching pairs performing channel
communications. Therefore,

Applying the decomposition principle we can prove {I} rcr 11 rc2(Z} by first
considering the concurrent program without any communication over
channels (or equivalently consider operations of zu L’ as “halts”):

180 COUSOTANDCOUSOT

and then, considering channel communications in a cooperation proof,

V7c’eL”n [(y*[7r,] uy*[7r,])nLx(y*[rrJ uy*[7czJ)nLc]. {I} ?T’{Z}.

4. INTERPRETATION OF GHL

So far the formulas of GHL are simply finite strings of symbols. We now
assign a meaning to formulas of GHL. This is done by defining a satisfac-
tion relation +, I$ between interpretations I of logical symbols and
programs on the one hand and formulas 4 of GHL on the other.

An interpretation I of GHL for a program Z7 E P is a pair (M, S) where:

(51) M is a set-theoretic structure of A (which assigns an appropriate
meaning to the logical symbols of A).

(52) S = (S, t, at, in, after, v) is an operational semantics of
program 17 (satisfying hypotheses (7) to (19)).

4.1. Interpretation of Assertions

4.1.1. Set- Theoretic Structure for A

A set-theoretic structure for A is a function M with domain A such that:

(53) For each sort s in A, M(s) is a non-empty set (of values for
objects of sort s). In particular,

l For the sort b of truth values, M(b) = {tt,fl},

l For the sorts s E Y of program variables, we have M(s) = v(s)
(therefore the set of possible values of program variables of type
s is the same in the logic and in the program semantics, see
(18)).

(54) For every relation symbol r: (sI x ... x s,, -+ b) in A,
M(r)E(M(sl)x ... x M(s..) -+ { tt, ff }). In particular M(true) = tt and
M(false) = f$ Moreover, for all n E y*[Z7], M(at[nJJ) = at [n],
M(in [Ire]) = in[ng and M(after [rc]) = after Err].

(55) For every function symbol f: (sl x . . . x s#,.--, s), we have
M(f)E (Iw(s,) x ... x M(s.,) --+ M(s)). In particular, if c is an individual
constant of sort s, M(c) E M(s).

4.1.2. Interpretation of Terms

(56) An assigment 6 in M assigns a meaning 6(x) belonging to the set
M(d(x)) to each free logical variable x E V{ of sort d(x).

ON THE SOUNDNESS AND COMPLETENESS OF GHL 181

We can now define, by induction on the complexity of terms, the inter-
pretation of a term t of sort s as a function Z(t) which maps assignments
(giving a meaning to logical free variables) and states (giving a meaning to
control assertions and program variables) to elements of M(s). More
precisely,

(57) For every term t E A of sort s, assignment 6, and state s E S[ZZJ,
we define the interpretation Z(t)[S, s] as follows:

l If t E V{ is a logical free variable then Z(t)[d, s] = 6(t),

. If t E V$ is a program free variable then Z(t)[S, s] = v(t)(s),

l If t is an individual constant then Z(t)[S, s] = M(t),

l If t is a term f(t, , t,) where f is an n-ary function symbol then
wit, , . ..> t,))Ch $1 = ~(f)(4t,)[~, sl, ...v I(tn)IIJ, $1).

4.1.3. Interpretation of Assertions

We now define the satisfaction relation:

I= A~~ $1
(read: the assignment 6 and state s satisfy assertion P in I) for all
assignments 6, states s E S[ZZJ, and assertions P E A as follows:

Atomic Assertions (t, , t, are terms; r, a relational symbol):

(58) t=At, =tdCh $1 iff I(t,)Ck sl=4t2)C4 ~1
(59) b ,r(fl,.... t,)CJ, ~1 iff M(rMt,)Ch sl,..., I(t,)C& ~1) is tt
(60) k, at[nJ[S, s] iff at[lrJ(s) is tt

(61) k, in[nj[& s] iff in[rrj(s) is tt

(62) j=, after[7tl[6, s] iff after[lnJJ(s) is tt.

Assertions (P, QEA, OcA, WE Vf’, XE VT, UE Vi,y~ V{):

(63) t= ,l P[b, s] iff not j= ,P[6, s]

(64) I=,(A e)[S, s] iff /=,P[d, s] for all P of 8

(65) ~,(v~)[c$s] iff k,P[d,s] forsome Pof8

(66) +f(P*Q)[6, s] iff either not f=fP[6, s] or else +,Q[s, s]

(67) kJP=Q)Cksl 8 l=,V’*QKksl and k,(Q*P)CJ,sl.
(In the following we use St: for the assignment 6’ which agrees with 6

except that S’(X) = II.)

(68) k&lw.P(w/x))[d, s] iff there is a u ~M(d(x)) such that
t= ,pcc sl

(69) k ,(Vw.P(w/x))[d, s] iff for all u E M(~(x)), k ,P[d;, s].

182 COUSOTAND COUSOT

(In the following when s, s’ E S[Z7]i we write s’ z s\y iff for all
Ml/,-w)~ mnw=mi(~), and for all n E: r*i[IIJ we have
at [nJ(s’) = at 1711 (s) and in [rcJ(s’) = in[rrJ(s) and after [rrJ(.s’) =
after[na (s).)

(70) ~,(!lu.P(u/y))[G, s] iff there is an S’E S(lZ71 such that s’z s\y
and k ,P[6, s’]

(71) /= ,(V’u.P(u/~))[G, s] iff for all s’ E S[I71 such that s’ z s\y we
have b ,P[6, s’].

We make a distinction between logical and program variables: logical
variables are understood with respect to logical assignments whereas
program variables are understood with respect to program states. Contrary
to Apt (1981) we do not identify assignments and states because the mean-
ing of logical variables is always static whereas the meaning of program
variables may be dynamic, that is, depends upon the control part of the
states.

4.2. Interpretation of Asserted Programs

For all P, Q E A, n E y* [IZl and assignment 6 we define the satisfaction
relation:

(72) /=,W C2H31 iff
(a) ~s,~'ES(~~D.(~,P[~,~IA tbm.0)

*((in[l~B(s’) A t=,PC&.fl) v (after[xIl(s’) A b,Q[h ~‘1)).
{P} z{Q} means that if control is anywhere in 71 (see (20))
and P holds, then executing one step in rr will either leave con-
trol in n with P true or leave control at an exit point of K with
Q true. This also holds when considering any number of steps
as shown by the following:

(73) THEOREM. b,(P) z{Q}[b] iff

(b) tls,s’~S[nJ .(j=,P[h, s] A in[nJ(.r) A t[nJ*(.s, s’))
=, ((inllxlfs’) A k ,PCh ~‘1) v (afterlI~l(s’) A i= ,Q[l& ~‘11).

Proof. By definition:
(74) tfn]* = VnZO t[n]“, where

(75) t[np(s, ~1) = cs = s’)

(76) t[?g’ ‘(S, S’) = (h”E s[7cn . (t[7t]“(S, S”) A t[@(S”, S’))).

Therefore for n = 1, (b) obviously implies (a). Reciprocally, according to
(74) we just have to prove (by induction on n) that (a) implies

(C) vS,s’ESI[7c] .(/===,p[&S] A in[K](S) A f[7t]“(S,S’))=>

((in[7rl(s’) A t=, P[& ~‘1) v (afterlInT] A k,QC& ~‘1)).

ON THE SOUNDNESS AND COMPLETENESS OF GHL 183

The basis n = 0 obviously follows from (75). For the induction
step, assuming (s, s’ are universally quantified over S[nj),

(d) t==,P[& s] A in[aJ(s) A rezJn+‘(s, s’); we derive

(e) ~s”ES[~C],~,P[& S] A in[?T](S) A t[7T]“(S, sn) A in[7Cn(S”) A

tUnD(s”, 0, by Cd), (76), (20);

(f) 3S”Es[7L] . ((in[7t](S”) A +,,P[d, S”]) V (after[TT](S”) A kI

Q[& s”])) A in[[rcJ(s”) A t[rrJ(s”, s’), by induction hypothesis;

(g) ~ES[I~~.~,P[G, ~“1 A tu7w, ~7, by (f), (14), (20);
0-4 ((inUnl(s’) A MT4 ~‘1) v WwI4l(s’) A t=,Q[h ~‘1))~ by

(iii% (a). I
In particular when P = Q = Z, {I} rc{ Z} means that a step, hence any

number of steps of rc leaves Z invariant.

(77) THEOREM. k=,(Z) n{Z}[d] i f f

vS, S’ E s[71] . (+, z[b, S] A @j(S, S’)) a k ,I[& S’].

Proof: (72), (20). 1

(78) THEOREM. ~I{Z}~{Z}[6] i f f

vS, S’ E qncl] . (k ,z[d, S] A t[7tn *(S, S’)) + f= ,I[& S’].

ProoJ: One essentially has to prove by induction on n > 0 that

t/S, S’ E s[Rn . (+ ,z[6, S] A @g(S, S’)) a k ,I[& S’]. 1

Remark. Instead of choosing (72) as definition of the interpretation of
asserted programs in GHL, we could equivalently and following Lamport
and Schneider (1984) have chosen (77). Then (P}z{ Q} would have been
understood as an abbreviation for (in[lr] * P A after[n] =S Q} TC{ in[n] =E-
P A afterIn] * Q} (see (46) and (47)) from which (72) hence (73) would be
easy to derive.

(79) When PEA, we define +,P as +,P[d, s] for all assignments 6
and states s E S[nj.

(80) When A c A, we define t=,A as f=,P for all PEA.
(81) When 4 E F, we define k I4 as k ,b[S] for all assignments 6.

(82) When A&A and ~EF, we define Ai=p$ as (k,A=>+=,q3).

5. SOUNDNESS

Let Z be an interpretation of GHL for a program ZZE P. The purpose of
this paragraph is to show that no provable formula of GHL is incorrect
with respect to Z.

184 COUSOT AND COUSOT

Since we have left r partly unspecified and given a meta-formal system
for GHL, this correctness condition can only be proved under the
assumption that the unspecified part of z is sound and that the particular
instances of the meta-axiom schemata are valid.

HYPOTHESES.

(83) The unspecified part of t is sound. For all 7c E (~*[Z7j - cr[ZIJ),
assignment 6 and s E S[Z71,

(84) ~,AT[rtJ(loc[rt’~ Ix’EY[?~~ v nEy[d])[&s] onZy ifat[n](S)

(85) k,,IN[7tj(Eoc[n’n I~c’E~[[~cJ v rtEy[n’n)[6, S] only ifin[zj(s)

(86) k I AFTER[zj(loc[rc’j) rc’ E y[nl v n E r[z’n)[& s] only if
after[nj (s).

(87) With these hypotheses the classical soundness proof for z can be
easily adapted to handle assignments and states which play similar roles.
Moreover, the soundness of (32) follows from (1 1), (84), (12); the
soundness of (33) follows from (13) (85); the soundness of (34) follows
from (14) (15), (86).

We now consider the soundness of proof system H. We need hypotheses
about the meta-axiom schemata (37).

HYPOTHESES. For all 7c E y* [Z7j and a E cl[nJ we assume

(88a) Either (37a) E H and for all Q E A and assignments 6,

(88b) or (37b) E H and for all PE A and assignments 6,

The soundness of H can be proved independently of the soundness of t
provided all assertions of A which appear in the proof are assumed to be
valid:

(89) Soundness of H:

VA&A, P, QEA. A+,(P) n(Q) =W=,{P) n(Q).

Proof. One, proves, by induction on n that if \cI1, $, is a proof of
{P} X{ Q} from A in H then k I { P} z{ Q}. This amounts to the proof that
the axiom schemata of H are valid and that the inference rules preserve the
truth under I of the asserted programs. Hence by case analysis, we have

(90) WinU~ll~ n{frue)

oV6. ~,I(in[[nJ}x{true}[~], by (81)

ON THE SOUNDNESS AND COMPLETENESS OF GHL 185

0 v’6, v’s, s’ E S[n]. (k, in[?c] [S, s] A t[?rJ(s, s’))

* ((inU7cl(s’) A I=, inUnD Cd, s’l)
v (after[nl(s’) A +,true[6, s’])), by (72)

0 v’6, VS, S’ E s[n], (in[7cJ(s) A t[xn(s, s’)) => (in[7tJ (s’) v

afterltnl(s’)), by (61h (591, (54)

e= (20).

The same way one can prove

(91) i4w+edw
Wa) I=, {PWal(Q)} 4Q>

oV’6,Vs,s’~S[a] .(k,PRE[uJ(Q)[G,s] A t[uJ(S,S’))
3 ((in[aj(s’) A k, PRE[uJ(Q)[d, s’]) v (afterIan

A I= ,Q[I& s’l)), by (81 h (72)

o V~,Vs~S~u~,~,PRE[ru~(Q)[~,s]~(3s’~S[ru~.t~ulj(s,s’)
* l=,Q[k ~‘11, by (17h (14)

-+ (88a)

Wb) htf’) 4’OW~HJ’))
- vb,bE.s[Un .(3&s&q .(~=,fqyd,S] A f [U](S,d))

* ~,POST[u~(P)[&s’]), by (81), (72), (17), (14)
-c= (88b).

(93) Decomposition principle:

wwkn. k-m w))
o(vx’Ey~~n,v/6,vs,s’ES~~‘n .(t=Iz[d,s] A tc~‘n(s,S’))~C=.,z[S,S’]),

by (811, (77).
o(~~'~y~R~,~6,~s,s'~~~~'n,~~~crjrn'n.

(i=,Z[h $1 A tUdl(s, s’))=’ i=,Z[h s’lh by (9)
o (v~EJJ~~L~~~,~~,s~E s[dph2E~pdn.

(+,z[d,s] A in[Uj(s) A t[Uj(S,S') A [in[Uj(,S')

v afterIall(s’)l) + k ,I[& s’l), by (20)
o(v~‘~y[r71n,v’6,v~~crITn’n,vs,s’~{s~Si[~c’nIin%ulj(s)

v after[ul](s) .
(k;z[d,S] A in[Un(J) A t[Un(S,S') A [in[Un(S')

v after[uj(s’)]) * +,Z[d, s’])
o(vrr’Ey~~n,v6,vu~~~~‘n,vs,s’~S[run.

(/=,z[&S] A in[Uj(S) A f[U&,d) A [in[Un(d)

v afWI~D(.f)l)~ ‘FJC~ ~‘11, by (16)
0 (vuEc(~~~,v~,v~,~'Es(~~~.

(k,z[&S) A in[Uj(S) A @j(S,S') A [in[Un(s')

v after[un(s’)]) 3 k ,I[& s’]).

186 COUSOT AND COUSOT

Because 4~1 = UnsEyanl 4I~ll by (4), (5), (6),
o(V6,Va~cr[l~D,Vs,s’~{s~Sllnl]Iin~un(s) v after[un(s)}.

(k,Z[d, s] A in[uJ(s) A t[un(s, s’) A [in[uJ(s’)
v afterCdl(~‘H)~ kJC& ~‘1)~ by (161, (6)

o(v6,v~~cr~~n,vs,~'~~[[~lj.

hI[k ~1) A in[rd(s) A mm s') A bnbn(S')

v after[ujj(s’)]) = +,Z[d, s’])

0 (vd, VU E a[?T], VS, S’ E s[X] . (k ,I[& S) A Z[U](& S'))

=a I= JCh s’l), by (20)
0 (a, vS, S’ E s[71] . (k ,z[d, s) A @I(& S’))

* I= JCh ~‘11, by (9)

* I=, (1) 4% by (77), (80).
(94) Locality rule:

+,{inbl A p> ~{d”terU~Il A Q>)
0 (t/d, VS, s’E s[[7C] . (kI (in[[7C] A P)[d, S] A @n(S, S’))

* ((inUd(s’) A i=, G43ll A N& ~‘1)
v ~afMMl(~‘) A ~,I(dWIKI A QW, d)H, by @U (72)

0 (a, v’s, S’ E s[7C] . (t= ,P[h, S] A @Tj(S, S’))

=S ((in[n](S’) A +,P[d, S’]) V (after[7rn(d)
A klQ[& s’l))), by (64), (61), (Q), (20)

* (l=I{P> 7@>L by (7~)~ (81).

(95) Conjunction rule:

0 (vie [1, n], vi?, VS, S’ E spg . (k ,P,[b, S] A @j(S, S’))

a ((in[n](S’) A k,P,[b, S]) V (after[n](S’)

A k ,QiCh, ~‘1 H), by @1)3 (72)
a Vi E [1, ~21, V6, VS, S’ E s[nn

h((~,(~~Pi)[6,slAtD.I(S.I’)hafterI[nII(S’))3~,Qi16.s’l),

by (14), (64)

o ~6, VS, d E sf7tn .

ON THE SOUNDNESS AND COMPLETENESS OF GHL 187

(96) Right consequence rule:

(/=AP> n{Q> * (Q*R)EA)
=+,lP) dQ> * l=,(Q*R)), since k ,A by hypothesis and (80)

o(V6, VS,S’ES[lZI] .(k,P[C?,s] A t[7T](s,s’))
* (WMl(~‘) A WW, ~‘1) v WterlIdl A k,QFt ~‘1)))

* (V6,Vs~srrna,(~,QCs,sl)~(~,RC6,sl)),
by (811, (721, (791, (661, (16)
+ (~6, VS, S’ E sl7tj . (k ,~[a, S] A tCnj (s, s’))

=-((iNI~l(s’) * l=d’C& ~‘1) v (afterFz11 A k&6, ~‘1)))
* (hip> +)), by (81), (72).

(97) Left identity rule: The soundness proof is similar to the above
one (using (67) instead of (66)).

(98) Left consequence rule:

((R*P)EA * l=,{f’> u(Q),
=-(l=AR*P) * I=#‘> 4Q>), since /= ,A by hypothesis and (80)
o(vs,vsES[r17n.(~,R[6,sl)~(~,P[6,sl))

A (~6, VS, S’E s[Taj . +=,~[a, S] A tlaj(s, SO)

* G-+W) A l=Jl3 ~1) v (afW4W) A b,QCk s’l))),
by (791, (661, (72)

188 COUSOTANDCOUSOT

9(v6,v’sEslrna.(~,RC6,sl)=>(~,PC6,sl))
A (V/6, v’s, S’E S[a]. (k,P[& s) A t[u](s, s’))

*(afWull(.f) A k,Q[k ~‘1))~ by (17), (14)

0 k,(R) 4Q>, by (72) (81). I

6. RELATIVE COMPLETENESS

Let I be an interpretation of GHL for a program Z7g P, rt E y*1[17], and
P, Q E A. Assume we have l= ,{P} rc{Q>. We would like to have this
provable in ruH, i.e., krvH{P} x{Q}.

In fact, this cannot be proved in GHL without considering a particular
programming language and the corresponding instances of the meta-axiom
schemata (37a) or (37b) for all atomic actions or else without assuming the
completeness of these meta-axiom schemata.

HYPOTHESES. For all 71 E y*[Z7] and a E cc[x] we assume

(99a) Either (37a) E H and for all Q E A and assignments 6,

(99b) or (37b) E H and for all PEA and assignments 6,

vS’ E s[U] . (b ,PosT[Ul](P)[d, S’] + (3s E s[Un . + ,P[6, S] A t[Uj(S, S’))).

Notice that in the case of Hoare’s (1969) logic hypothesis (99a) is
satisfied (since, e.g., for assignment commands PRE is the weakest pre-
condition). However, there are two other causes of incompleteness:

(a) Because of the consequence rule, one has to rely upon r which,
by Kurt Godel’s second incompleteness theorem, cannot be consistent,
contain arithmetic, and be complete. For this reason, the best one might
hope for would be to prove relative completeness of H, that is,

(b) Unfortunately in the case of Hoare’s logic even this cannot be
proved. This is because the necessary intermediate assertions (more

ON THE SOUNDNESS AND COMPLETENESS OF GHL 189

precisely loop invariant assertions) may not be expressible in the assertion
language A (Wand, 1978).

Fortunately this is not the case in GHL because whenever)=,{P}rr{Q}
hotds, P is invariant for 7c (72), hence P is invariant for loops in rc (73).
Consequently, and contrary to Hoare’s Logic, no loop invariant assertion
(stronger than P) is needed in the relative completeness proof (which can
be carried out without assuming Cook’s expressiveness condition (Cook,
1978)):

(100) HZ) 44 * {~-w=,~~ +Hvl OVA.

ProoJ:

0 W, VA s’ E SUnI . (k ,zCk ~1 ,+, tInI@, ~‘1) * k ,I[& ~‘11, by (77)
0 (‘da, VUECI[~~J, Vs, S’E {s~S[alj lin[aj(s) v afterJan(s

(+,Z[s, s] A in[aJ(s) A t[aJ(s, s’) A after[aJ(s’)) 2 k,Z[& s’]),
by (9), (171, (11)

-3 (Vu E a[Tc]*

(fl) v6, VS, S’ Em +,zm Si A tuUn(S, S’)) a i=m, S’i),
by (16) (17), (11).

Either (37a) E H and then

~9 - w, V’S E SEUD . (i= ,m, SI = w E ma . mno, ~7 3 I= ,m ~7)))
* 0’4 vs E slal . I= A& $3 * I=, PRECal(N& sl), by P9a)
* (k ,(I=- PREU~IU)),, by (661, (79)

* (a) ((~~PRElI~lU))~ {~~~Il=I~l).
Or (37b) E H and then

(p) 0 (v6,vS'Es[U] .(%Es[Uj .~Iz[i?,S] A frrUn(S,S'))~~,z[~,S'])

= (V6, b’s’~S[a] .POST[a7](Z)[6,s’]* /=,Z[&s’]), by (99b)
* k, WWaD(4 =a 0, by (661, (79)

* (b) ((POSTU~lU)=4~ {~~4=,W.

We can now give the relative completeness proof. a[zJ is finite and for
all uea[rcjj we have either

Cc) {PREU~IV)) a{z>, by Wa)

(d) {zb{zj, by (a), (cl, (43)

or

(e) {~~4POSTU~llV)}~ by W’b)
(d) Vb{~>~ by @I, (d), (41)

W abl = U,E,rnn a[a], since a[&] = {a>, by (5), (6)

(8) W4h by (0, Cd), (49). I

190 COUSOT AND COUSOT

(101) RELATIVE COMPLETENESS THEOREM.

- (V6, vs, S’ E S[7cj . (t=, P[& s] A t [nl(s, s’))
* (Mnlb’) A l=,PCh ~‘1) v (afWI~il(.O A !F,Q[& ~‘1)))~
by (81), (72)

o (VS, VS, S’E S[[Z] .(k,((in[n] 5 P) A (aftergnn a Q))[h, S]
A mm ~7)
=> l=I((wInn *PJ A (4WI~cll =Q)Kk s’l),
by (20), (14), (61), (62), (66), (64)

* k,(((dI~li *PI A (&erUnIi * Q))) n{((Nl~ll *PI
A (&erk~II *Q))) (77)

* {~Wl=,~~ +Hwmd +p) A WW~n *Q))> ~(Wblj *P) A (dWInli = Q,,}, by (l(Jo)
*{R4k,N 4Pl n(Q), by (47). I

One should not conclude from the fact that relative completeness (101)
has been proved without assuming an expressiveness condition a la Cook
that GHL is complete in a stronger sense than Hoare’s (1969) logic. More
precisely, if using GHL we had to prove P(n) Q in the sense of Hoare, we
would have to find a program invariant I such that:

and

but now, as it is the case for Hoare’s logic, no such I might belong to A
(except when, but this is not necessary, A is expressive relative to Z and P
in the sense of Cook (1978).

7. CONCLUSION

We have shown that GHL is a meta-formal system for proving
invariance properties of programs which (contrary to Hoare’s logic) can be
developed (to a large extent) in a programming language independent way.
This interesting property allowed us to prove soundness and relative
completeness without having to consider a particular language (as in
Apt, 1981) for Hoare’s logic).

As shown by the relative completeness proof, the central idea of GHL is
to use a single global program invariant, which has to be shown to be left

ON THE SOUNDNESS AND COMPLETENESS OF GHL 191

invariant by each atomic action of the program. In most other proof
methods, this global invariant would have to be decomposed into local
invariants attached to particular program points (or particular values of
the control state). The essential difference between these other proof
methods is only that different decompositions are used (Cousot, 1980). The
advantage of GHL, as shown by Lamport and Schneider (1984), is that,
using control predicates, these local invariants can be factored into a global
invariant so that the corresponding proof method can be explained in
terms of GHL. The disadvantage of GHL is that no decomposition of the
global invariant is enforced so that no guideline is offered to the program-
mer for expressing properties of his program in a simple way.

ACKNOWLEDGMENTS

P. Cousot would like to acknowledge a discussion with F. Schneider on the possible
interpretations or mis-interpretations of asserted programs in GHL. We wish to thank
W. P. de Roever for helpful comments.

RECEIVED February 16, 1983; ACCEPTED March 7, 1984

REFERENCES

APT, K. R. (1981) Ten years of Hoare’s logic, A survey, Part I, ACM TOPUS 3, No. 4,
431-483.

APT, K. R. (1982), Ten years of Hoare’s logic, A survey, Part II, Theoret. Comput. Sci. 28,
83-109.

ASHCROF~, E. A. (1975). Proving properties about parallel programs, J. Compur. System Sci.
10, 11&135.

COOK, S. A. (1978), Soundness and completeness of an axiom system for program verification,
SIAM J. Comput. 7, 1, l&90.

COUSOT, P., AND COUSOT, R. (1980), Reasoning about program invariance proof methods, in
“Proceedings, Internat. Workshop on Program Construction, Vol. 1, INRIA, Chlteau de
Bonas, France.

FEFERMAN, S. (1974), Applications of many-sorted interpolation theorems, in “Proceedings,
Tarski Symp., pp. 19-32, Amer. Math. Sot., Providence, RI.

FLOYD, R. W. (1967), Assigning meanings to programs, in “Proceedings, Symp. on Applied
Math.,” pp. 19-32, Amer. Math. Sot., Providence, RI.

HOARE, C. A. R. (1969) An axiomatic basis for computer programming, Comm. ACM 12,
No. 10, 576580, 583.

LAMPORT, L. (1980), The “Hoare Logic” of concurrent programs, Acta Inform. 14, 21-37.
LAMPORT, L., AND SCHNEIDER, F. B. (1984), The “Hoare Logic” of CSP, and all that, ACM

TOPLAS 6, No. 2, 281-296.
WAND, M. (1978), A new incompleteness result for Hoare’s system, Assoc. Compuf. Mach. 25,

No. 1, 168-175.

Printed in Belgium

