
Formal Language� Grammar and Set�Constraint�Based

Program Analysis by Abstract Interpretation

Patrick COUSOT

LIENS� �Ecole Normale Sup�erieure

����� Paris cedex ��� France

cousot�dmi�ens�fr

Radhia COUSOT

LIX� CNRS 	 �Ecole Polytechnique

���� Palaiseau cedex� France

rcousot�lix�polytechnique�fr

Abstract

Grammar�based program analysis �a la Jones and Much�
nick and set�constraint�based program analysis �a la Ai�
ken and Heintze are static analysis techniques that have
traditionally been seen as quite di�erent from abstract�
interpretation�based analyses� in particular because of
their apparent non�iterative nature� For example� on
page �� of 	�
�� it is alleged that �The
nitary nature
of abstract interpretation implies that there is a funda�
mental limitation on the accuracy of this approach to
program analysis� There are decidable kinds of analysis
that cannot be computed using abstract interpretation
�even with widening and narrowing�� The set�based
analysis considered in this thesis is one example��
On the contrary� we show that grammar and set�

constraint�based program analyses are similar abstract
interpretations with iterative
xpoint computation us�
ing either a widening or a
nitary grammar�set�con�
straints transformer or even a
nite domain for each
particular program�
The understanding of grammar�based and set�con�

straint�based program analysis as a particular instance
of abstract interpretation of a semantics has several ad�
vantages� First� the approximation process is formal�
ized and not only explained using examples� Second�
a domain of abstract properties is exhibited which is
of general scope� Third� these analyses can be eas�
ily combined with other abstract�interpretation�based
analyses� in particular for the analysis of numerical val�
ues� Fourth� they can be generalized to very power�
ful attribute�dependent and context�dependent analy�
ses� Finally� a few misunderstandings may be removed�

Permission to make digital�hard copies of all or parts of this material with�

out fee is granted provided that the copies are not made or distributed

for profit or commercial advantage� the ACM copyright�server

notice� the title of the publication and its date appear� and notice is given

that copyright is by permission of the Association for Computing Machinery�

Inc� �ACM�� To copy otherwise� to republish� to post on servers or to

redistribute to lists� requires specific permission and�or fee�

FPCA �	
� La Jolla� CA USA c� ACM ���	
	��
�	
������ � � ���
�

Conference Record of FPCA ��� SIGPLAN�SIGARCH�WG��� Con�
ference on Functional Programming Languages and Computer Archi�
tecture	 La Jolla	 California	 ����� June
���	 ACM Press	 New York	
U�S�A�	 pp�
��

�
�

�� Introduction

We construct program analyses by abstract interpre�
tation of a collecting semantics where abstract prop�
erties are coded using tuples of formal languages� A
further approximation is to approximate such formal
languages by di�erent kinds of formal systems such as
grammars or systems of set�constraints� The idea of us�
ing regular tree grammars for program analysis� is due
to Jones and Muchnick 	��� ��� ��� following Reynolds
	���� It was further developed by Aiken� Mishra� Mur�
phy� Reddy and S�rensen 	�� �
� ���� implemented by
Aiken and Murphy 	�� and reformulated by Heintze and
Ja�ar 	��� �
� ��� ��� as set�constraint�based program
analysis� We show that in such formal�language�based
program analyses� the abstract semantics specifying the
strongest abstract program property is de
ned as the
least
xpoint of an abstract property transformer� This
abstract semantics can be also presented as a system
of constraints� For program analysis by resolution of
such systems of set�constraints� no iteration is apparent�
Therefore we are interested in understanding whether or
not this least
xpoint is computed iteratively or approx�
imated by non�iterative methods �e�g� by elimination��
We show that actually this least
xpoint is computed
by a chaotic iteration� Convergence can be enforced us�
ing either a widening� or a
nitary abstract property
transformer or else by choosing for each particular pro�
gram an abstract domain which satis
es the ascending
chain condition �and even is
nite�� This new point
of view on grammar and set�constraint�based analysis
allows us to easily combine these dependence�free anal�
yses with existing non�grammar or non�set�constraint�
based abstract interpretations and to generalize them to
obtain very powerful in
nitary context�dependent pro�
gram analyses�

�� Standard Semantics

A standard semantics associates a behavior Ssd		P �� �
Bsd to each program P of the language� This behav�
ior is a speci
cation of the possible program execu�

���

tions� Elements of the behavior domain Bsd can be
higher�dimensional automata� execution traces� judg�
ments� functions� sets of states� etc�

Example The standard semantics fsd of the following
functional program f�

f�N� �

if �N �� �� then

cons��	 cons��	 cons��	 nil���

else let X � f�N
�� in

cons�a�hd�X��	 cons�b�hd�tl�X���	

cons�c�hd�tl�tl�X����	 nil����

���

�where hd�cons�H	 T��
def
� H and tl�cons�H	 T��

def
�

T � can be chosen as the function computed by this pro�
gram� that is simply�

fsd � �n� if n � � then
cons��� cons��� cons��� nil���

else
cons�an���� cons�bn���� cons�cn���� nil���

where we use the abbreviation�

ai��� � a�� � � a�� �z �
i times

�� � � ��

In this example� we have Bsd � Z �� �L � f�g� where
L is the set of lists and � denotes non�termination� ut

We assume that Bsd involves symbolic semantic values
�in L� associated to indexes �in I�� These symbolic se�
mantic values are assumed to be described by sentences
of a formal language L such that�

� the ranked alphabet A contains function symbols
fn � � of
xed arity n � ��

� the language L is the set of ground terms t on A
�written in pre
x parenthesized notation��

t ��� f� j fn�t
� � � � � tn��

�L can be understood isomorphically as the algebra T�
of trees on the signature ���

Example For the program ���� the ranked alphabet is
A � f��� nil�� a
� b
� c
� cons�g� The language L is the
set of ground terms t de
ned by the grammar�

t ��� � j a�t� j b�t� j c�t� j nil j cons�t
� t��

Integers are simply �arbitrarily� ignored� ut

The set I of indexes is assumed to be
nite� The preci�
sion of the analysis depends upon the choice of this set
I of indexes which can be program points� variables� ex�
pression labels� store locations� auxiliary variables �e�g�
to denote intersections 	�
��� etc�

Example For the program ���� the set of indexes can
be chosen to be I � fXg� This �arbitrary� choice is
made to compute a single global program invariant �as�
sociated to the index X
�� A more re
ned choice would
consist of program points so as to compute local invari�
ants �associated to these program points�� ut

�The name X is certainly not meaningful because it is associ�
ated with f� X has been preferred to other choices �such as F�
because it will later correspond to an unknown�

�� Collecting Semantics

A collecting semantics associates a strongest property
ScofjP jg �Dco to each program P of the language� ScofjP jg
def
� fSsd		P ��g� Here a property is understood as the set of
behaviors satisfying this property� The concrete seman�

tic domain Dco

def
� ��Bsd� is a complete boolean lattice

�Dco� �� 	� Bsd� ��
� ��� We are interested in answer�
ing questions of the form Sco � Pco where Pco � Dco is
a semantic property�
We assume that the collecting semantics Sco

� can

be expressed as the least
xpoint Sco

def
� lfpFco of a

	�strict complete ��morphism concrete property trans�
former Fco � Dco �� Dco

�� Usually Fco is de
ned by
induction on the syntax of the program� an aspect that
we neglect here for simplicity�

Dco usually formalizes program properties as the set
of elements having this property� Many choices are pos�
sible� A few simple examples of collecting semantics for
formal�language program analysis of functional� imper�
ative� parallel and logic programs are considered below�

Example The collecting semantics fco for the func�
tional program ��� can be chosen as the set of possible
functions computed by this program ignoring possible
non�termination� that is simply�

fco � f�n� if n � � then
cons��� cons��� cons��� nil���

else
cons�an���� cons�bn���� cons�cn���� nil���g

In this example� we have Dco � ��Z �� L�� A program
property is therefore chosen to be an invariant I � Dco�
The collecting semantics of a program P is the strongest
property of P � that is the singleton set fco � ffsdg �
Dco

�� This allows us to formalize �P has property I� as
fco � I that is equivalently fsd � I� ut

Example The collecting semantics of the following im�
perative program�

�� X �� cons��	 cons��	 cons��	 nil����

�� while N � � do begin

�� X �� cons�a�hd�X��	 cons�b�hd�tl�X���	

cons�c�hd�tl�tl�X����	 nil����

�� N �� N
 ��

�� end�

��

���

associates to each program point p the set �co	p� of pairs
hn� xi of possible values of variables N and X�

�co	�� � fhn� xi � n � Z � x � Lg

�In what follows we write Sco for ScofjP jg thus leaving the
involved program P implicit�

�The general situation in abstract interpretation is more com�
plicated since the approximation ordering �for comparing pro�
gram properties by implication� and the computational ordering

�for computing �xpoints� do not coincide �see ��	�� This situation
does not appear for the invariance properties considered here�

�For more details on collecting semantics
 see e�g� ��	�

���

�co	�� � fhn� xi � n � Z � x � cons��� cons���

cons��� nil���g

�co	�� � fhn� xi � n � � � x � fcons�ai����

cons�bi���� cons�ci���� nil��� � i � �gg

�co	�� � fhn� xi � n � � � x � fcons�ai����

cons�bi���� cons�ci���� nil��� � i � �gg

�co	�� � fhn� xi � n � � � x � fcons�ai����

cons�bi���� cons�ci���� nil��� � i � �gg

�co	�� � fhn� xi � n
 � � x � fcons�ai����

cons�bi���� cons�ci���� nil��� � i � �gg

In this example� we have Bsd � P � Z � L where P
� f�� � � � � �g is the set of program points� Dco is P ��
��Z� L� which is isomorphic to ��P� Z� L�� ut

Example The standard semantics Psd of the following
cml�like parallel program P�c	 n��
P�c�	 �� �

transmit�c�	 cons��	 cons��	 cons��	 nil����

P�csn	 s�n�� �

let val cn � channel��

in spawn�P�cn	 n���

let r � receive cn

in transmit�csn	

cons�a�hd�r��	 cons�b�hd�tl�r���	

cons�c�hd�tl�tl�r����	 nil�����

���

maps the channel c and natural number n parameters
to a list of possible values transmitted on that channel
c and the returned value �here the unit ���� If there
is no transmission� this list is empty� In case of non
termination� it can be in
nite� We have Bsd � �C �
N� �� �L� � L�� Pco � fPsdg is�

Pco �
�
�hc� ni� h	cons�an���� cons�bn����

cons�cn���� nil����� ��ig

which belongs to Dco � ��Bsd�� ut

Example The ground bottom�up collecting semantics
Bco of the following logic program�

P��	 cons��	 cons��	 cons��	 nil���� �
 �

P�s�N�	 cons�a�X�	 cons�b�Y�	 cons�c�Z�	 nil����

�
 P�N	 cons�X	 cons�Y	 cons�Z	 nil�����

���

is the set of successful ground goals�

Bco � fP�sn���� cons�an���� cons�bn����
cons�cn���� nil���� � n � �g

In this example� Bsd is the set of ground atoms and Dco

� ��Bsd�� ut

�� Formal�Language�Based Abstraction

As an intermediate conceptual step� we consider the
abstraction of program properties as formal languages
�not necessarily
nitely presentable�� This� coupled with
a notion of formal�language transformers� provides the
basis for grammar�based abstract semantics� and a di�
rect connection to set�constraints�

��� Formal�Language�Based Abstract Semantics

Given that behaviors in Bsd� hence the collecting se�
mantics Sco� involve semantic values described by sen�
tences of L associated to indexes in I� we assume that

the formal language abstract domain is Dfl

def
� I �� ��L��

For the pointwise subset ordering ��� this is a complete

boolean lattice� �Dfl� ��� ��fl� ��fl� ��� �
� ��� where ��fl

def
�

�i� 	 and ��fl

def
� �i�L�

Let us recall that a Galois connection is a pair h�� 	i
of maps � � L �� P and 	 � P �� L between posets
�L�
� and �P��� such that for all x � L and all y � P �
��x� � y if and only if x
 	�y�� This is denoted

�L�
� ����
�

� �P���� Following 	��� the approximation
of program semantic properties Pco � Dco by abstract
properties �fl�Pco� � Dfl is assumed to be formalized by
a Galois connection�

�Dco��� ����
�fl

�fl �Dfl� ���

This formal language abstraction h�fl� 	fli is language
and application dependent� It is built compositionally
using typical dependence�free abstractions for cartesian
products� functions �with domain � � I� and lists such
as�

�c � �
�
L� L

�
��
�
��L�� ��L�

�
�c� � � hfx � hx� yi � g� fy � hx� yi � gi

�f � �
�
� �� L

�
��
�
� �� ��L�

�
�f�!� � �X �f
�X � �
 � !g

�l � ��L�� �� ��L�

�l�"� � f�i � � � " � i � dom"g

The abstraction h�fl� 	fli is lifted to higher�order 	��
with ��fl � �Dco �� Dco� �� �Dfl �� Dfl� de
ned by ��fl�F �
def
� �fl � F � 	fl and �	fl � �Dfl �� Dfl� �� �Dco �� Dco�

de
ned by �	fl�F
��

def
� 	fl � F

�
� �fl such that�

��Dco �� Dco�� ��� ����
��fl

��fl
��Dfl �� Dfl�� ���

The resulting formal language semantics is Sfl

def
� lfpFfl

where the formal language transformer Ffl � Dfl �� Dfl

is Ffl

def
� ��fl�Fco��

For a given programming language� the abstraction
�fl must be de
ned by induction on the syntax of pro�
grams� We consider simple examples ���� ���� ��� and
����

Example For the functional program ���� we can ap�
proximate the collecting semantics fco of the function f

by Fco which maps a set N of values n for the argument
N to the set of corresponding results ff�n� � n � Ng�

Fco � �N� fcons�an���� cons�bn����
cons�cn���� nil��� � n � N � n � �g

� fcons��� cons��� cons��� nil��� �
n � N � n
 �g

���

Here� the abstraction Fco
def
� �tfl�fco� approximates a set

of functions in ��Z �� L� by a set transformer in ��Z� ��
��L�� Formally�

�tfl � ��Z �� L� �� ���Z� �� ��L��

�tfl�F �
def
� �X�ff�x� � f � F � x � Xg

Fco
def
� �tfl�fco�

Furthermore� the set transformer Fco can be approxi�
mated by its codomain�

�rfl � ���Z� �� ��L�� �� ��L�

�rfl�F �
def
�

�
fF �X� � X � ��Z�g

ffl
def
� �rfl�Fco�

For the program ���� we have�

�fl�fco��X � � �rfl��
t
fl�fco�� ���

The collecting semantics fco of the function f is approx�
imated by the set of the possible results when applied
to all possible arguments N� This set is associated to
the index X corresponding to function f in ���� This is
an approximation of the collecting semantics in that it
is no longer possible to know the speci
c result corre�
sponding to a given argument� ut

Example For the imperative program ���� we de
ne�

�fl��co� �
��

i�
������

�fl��co	i�� ���

�fl�fhnj � xji � j � �g��X � � fxj � j � �g

thus ignoring program points and numerical values� ut

Example For the parallel program ���� we can de
ne�

�fl�Pco��X � � fv � �P � Pco� n � N� � � L��

 � L� � P �c� n� � h� � 	v� �
� rig

�
�

so that the collecting semantics Pco is approximated by
the set X of values v which can be transmitted on chan�
nel c for some possible value n of the argument n and
some possible behavior P of the program P�c	 n�� ut

Example For the logic program ���� we can de
ne�

�fl�Bco��X � � fx � P�n� x� � Bcog ���

This abstraction consists in recording only the set of
possible values of the second argument of predicate P�
which is associated to index X � ut

��� Speci�cation of formal�language transformers

In order to specify the formal language semantics Sfl �
lfpFfl at a greater level of details without considering
a particular abstraction for a particular programming
language we design a meta�language Lfl which can be
used to specify formal language transformers Ffl�
Non�ground terms T in Lfl denote sets of ground

terms built to some pattern�

T ��� x j f� j fn�T
� � � � � Tn�

�any term�variable x � v is free in the term T �� Meta�
expressions e in Lfl denote set�of�ground�terms trans�
formers �thus generalizing the mathematical notation

f�X �
def
� ff�x� � x � Xg��

e ��� X j fT � � T
 � e
� � � � � Tn � eng

j e
 � e� j �e ���

�set�variables X � V include indexes I � V�� In fT � �
T
 � e
� � � � � Tn � eng� term variables in T �� T
� � � � � Tn
are local while the set�variables in e
� � � � � en are free�

Example In the meta�expression�

fcons��� cons��� cons��� nil���g

� fcons�a�x�� cons�b�y�� cons�c�z�� nil��� �

cons�x� cons�y� cons�z� nil��� � Xg

the local term�variables are x� y and z while X is a free
set�variable� ut

We use the abbreviation fT �g for fT � � T
 � e
� � � � � Tn �

eng when n � �� �
def
� fxg� �

def
� �� and e

 e�

def
�

fx � x � e
� x � e�g�
The term semantics 		T �� of non�ground term T is the

map 		T �� � �v �� L� �� L inductively de
ned as�

		x���
def
� ��x� 		f����

def
� f�

		fn�T
� � � � � Tn����
def
� fn�		T
���� � � � � 		Tn����

The semantics fjejg of a meta�expression e is the map
fjejg �

�
V �� ��L�

�
�� ��L� inductively de
ned as�

fjX jg�
def
� ��X �

fjfT � � T
 � e
� � � � � Tn � engjg�
def
�

f		T ���� � � � v �� L �
Vn

i�
 		Ti��� � fjeijg�g

fje
 � e�jg�
def
� fje
jg� � fje�jg�

fj�ejg�
def
� L� fjejg�

The use of negation within an expression e is assumed
to be restricted to positive terms so that fjejg is ���
monotonic�
The formal language transformer Ffl can now be

speci
ed using the meta�language Lfl as the
xpoint
equation� � � Ffl��� where � � Dfl � I �� ��L�� This
can be detailed as the system of equations below��

��X � � Ffl����X �

X � �

where � � V and� by convention� unde
ned variables
are assumed to correspond to empty sets� that is �� �
Ffl����X � � 	 whenever X � V � �� We will assume
that this system of equations can be written using the
meta�language Lfl as follows��

X � eX
X � �

����

where all free variables in eX belong to �� Ffl����X �
� fjeX jg� and set variables are indexes so that V � I�
If necessary� we can assume that trivial equations like

���

X � X have been eliminated� The semantics of the
system of equations ���� is��

��X � � fjeX jg�

X � �

�
��X � � 	

X � I��

By Tarski#s
xpoint theorem� lfpFfl � �
fX � Ffl�X� ��
Xg so that the
xpoint equation ���� has the same least
solution as the system of constraints��

eX � X

X � �

Moreover constraints such as e
�e� � X can be simpli�

ed to e
 � X and e� � X � The constraint fT � � T
 �
e
� � � � � Tn � eng � X is equivalent to �T
 � e
 � � � � �
Tn � en� � T � � X or �fT
g � e
 � � � � � fTng � en�
� fT �g � X � Using such simple set theoretic algebraic
identities� program analysis methods formulated as a

xpoint resolution problem ���� can be reformulated as
the problem of solving a system of constraints �see e�g�
	�����

Example Considering the formal language abstrac�
tions h�fl� 	fli respectively de
ned by ���� ���� �
� and
��� for programs ���� ���� ��� and ���� we get� in all
cases� the same
xpoint equation�

X � fcons��� cons��� cons��� nil���g

� fcons�a�x�� cons�b�y�� cons�c�z�� nil��� �

cons�x� cons�y� cons�z� nil��� � Xg

����

This can also be presented in system of constraints form�

� fcons��� cons��� cons��� nil���g � X

� fcons�x� cons�y� cons�z� nil���g � X �

fcons�a�x�� cons�b�y�� cons�c�z�� nil���g � X

In all cases� the least solution is�

X � fcons�an���� cons�bn���� cons�cn���� nil��� � n � �g

This least solution encodes fanbncn � n � �g� a lan�
guage which is not context�free� ut

	� Grammar�Based Abstraction

In general� elements of Dfl are not computer�representa�
ble� A further abstraction consists in considering sub�
sets of L that are representable by computer�implemen�
table grammars�� A context�free grammar G � Dgr is
a triple hT� N� Pi where T � A is the set of terminals�
N � V is the set of non�terminals X and productions
in P are of the form X � � where � � �A � V��� The

�The use of a �nite grammar abstract domain seems in contra�
diction with the claim �No use is made of abstract domains �such
as those commonly employed in abstract�interpretation styles of
program analysis ��	�� We remark that the results of the analysis
are typically in�nite sets of values and that we make no a priori

requirement that these sets be �nitely presentable
 at the end of
section � of ���	� We nevertheless imagine no way of circumvent�
ing the a priori requirement that �nite computer representations
are to be found in the implementation of set�based program anal�
ysis ���	�

language LG�X � generated by the grammar for non�ter�

minal X is LG�X �
def
� fw � A� � X

�
�G wg�

Grammar�based analysis and its equivalent set�con�
straint�based presentation are restricted to regular tree
grammars 	��� ��� �describing
nite trees or terms of a
Herbrand universe�� In this case the productions can
be normalized in Greibach normal form� X � f� or
X � fn�X
� � � � �Xn� where f�� fn � � are function
symbols and X
� � � � � Xn are non�terminals� The gram�
mar abstract domain is de
ned as�

Dgr

def
� fG � G is a regular tree grammarg

The concretization function 	gr � Dgr �� Dfl is the
language generated by the grammar for each non�ter�

minal 	gr
def
� �G��X �LG�X �� Grammars are ordered

by inclusion of the generated languages G

�� G�

def
�

�X � V � LG�
�X � � LG�

�X �� Grammar equivalence
G
 �� G� is de
ned as G

�� G� �G�
�� G
� Equivalent

grammars can be identi
ed by reasoning on the quotient
poset �Dgr� ��� ���� later simply written �Dgr� ����
Some questions about in
nite sets of values de
ned

by a regular tree grammar G can be answered algo�
rithmically 	�� such as LG�X � � 	� t � LG�X � and
�t � LG�X � � ftg where X is a non�terminal and t
a term� In particular abstract questions of the form
LG�

�X � � LG�
�X � are decidable�

Besides regular tree grammars� many other di�erent
isomorphic formalisms can be used to describe regular
tree languages such as ��expressions� systems of
xpoint
equations� systems of constraints� etc� By Ginsburg $
Rice� Sch%utzenberger#s theorem� the languages gener�
ated by a grammar G � hT� N� Pi for each non�ter�
minal X � N is the ��least solution to the system of

xpoint equations��	

�

�
LG�X � � ff� j X � f� � Pg �

ffn�t�� � � � � tn� j X � fn�X�� � � � �Xn� � P

� 	i � �� � � � � n � ti � LG�Xi�g

X � N

which representing the language LG�X � by the set�var�
iable X itself leads to�	

�

�
X �

S
fff�g j X � f� � Pg �S
fffn�t
� � � � � tn� � �i � �� � � � � n � ti � Xig

j X � fn�X
� � � � �Xn� � Pg

X � N

so that� by de
ning f
� def
� ff�g and f

n�L
� � � � � Ln�
def
�

ffn�t
� � � � � tn� j �i � �� � � � � n � ti � Lig� we obtain the
system of
xpoint equations�	

�

�
X �

S
ff � j X � f� � Pg �S
ff n�X
� � � � �Xn� j
X � fn�X
� � � � �Xn� � Pg

X � N

����

�Observe that we have two di�erent �xpoints
 one for the
grammar transformer Fgr de�ning a grammar G and one for the
grammar G de�ning the language generated by G�

���

By Tarski#s
xpoint theorem� ���� has the same least
solution as the system of inequations�	

�

�
X �

S
ff � j X � f� � Pg �S
ff n�X
� � � � �Xn� j
X � fn�X
� � � � �Xn� � Pg

X � N

or equivalently as the collection of set�constraints��
f
� � X � f

n�X
� � � � �Xn� � X

X � f� � P� X � fn�X
� � � � �Xn� � P

Reciprocally� given a collection of set�constraints��
f
�
i � X � f

n
j �X
� � � � �Xn� � X

i� j � &

the grammar��
X � f�i � X � fnj �X
� � � � �Xn�

i� j � &

generates the same least solution� This isomorphism
seems to have been
rst suspected in 	��� where 	���
��� is mentioned as �earlier related work�� It is more
apparent in 	��� �
� where regular tree grammars are
used as an �explicit representation� of set�constraints�
Set constraints transformation algorithms equivalent to
those on regular tree grammars 	�� �� are also given by
	���

� Grammar Abstract Semantics

We now study how to approximate the language trans�
former Ffl so as to de
ne a computable abstract seman�
tics of programs using grammars �or equivalently� sets of
constraints�� The restriction to regular tree grammars
does not directly solve the program analysis problem
since �Dgr� ���� which is not a complete partial order�
contains in
nite strictly increasing chains of grammars
without limits �least upper bound��

Example The grammar transformer Fgr for program
��� is the grammar abstraction of the formal language
transformer Ffl de
ned by equation ����� For example
it can be de
ned as��

Fgr�hT� N� Pi� � hT � f�� a� b� c� cons� nilg� N � fXg�

fX � cons��� cons��� cons��� nil���g �

fX � cons�a�x�� cons�b�y�� cons�c�z�� nil��� �

X � cons�x� cons�y� cons�z� nil��� � Pgi

The iterates Fgr
n��gr�� where �gr � h	� 	� 	i� corre�

spond to the strictly increasing chain of grammars Gn�
n � � with productions�	�

�
X � cons

�
ai���� cons

�
bi����

cons
�
ci���� nil

���
i � �� � � � � n

which is both in
nite and without limit� ut
�Another grammar abstraction leading to a di�erent grammar

transformer Fgr will be proposed in forthcoming Sec� ������

The situation has been considered e�g� in 	
� and is sim�
ilar to 	��� where there exist in
nite chains of in
nite
sets �polyhedra� with
nite representations �set of in�
equalities or system of generators� without limits �e�g�
polyhedra inscribed in a circle�� Three standard ways
to cope with the problem consist of using either�
� a widening�
� or a
nitary abstract property transformer�
� or else a �program�dependent� abstract domain sat�

isfying the ascending chain condition �or even
�
nite��

�� Widening

A widening � � Dgr�Dgr �� Dgr is such that for all R�
S � Dgr we have 	gr

�
R
�
�� 	gr

�
R � S

�
and 	gr

�
S
�
��

	gr
�
R � S

�
and for all increasing chains Sk� k � �� the

chain R� � S�� � � � � Rk�
 � Rk � Sk� � � � is not strictly
increasing for ��� The widening� can be used to upper�
approximate possibly non�existent least upper�bounds
and to enforce convergence 	��� Now� the iterates R� �
�gr and Rn�
 � Rn � Fgr�R

n� ultimately stabilize� so
that we can de
ne�

Sgr

def
� Rn� n is �the least�� k such

that Fgr�R
k� �� Rk

����

in which case� we conclude that the abstract semantics
is sound Sco � 	fl � 	gr

�
Sgr

�
�

We have an abstract interpretation with iteration
such that�

�a� The abstract domain Dgr has in�nitely many ab�
stract values G representing in�nite concrete sets
	gr
�
G
�
�X ��

�b� All abstract values in domain Dgr have a �nite com�
puter representation�

�c� The abstract domain �Dgr� ��� has in�nite strictly in�
creasing chains for �� without limits in Dgr �which�
consequently is not a complete partial order��

�d� Fgr satis�es the soundness condition Ffl � 	gr �� 	gr �
Fgr and is computable�

�e� The increasing chain Fgr
n��gr�� n � � of iterates

is not converging in a �nite number of steps to an
approximation Sgr of Sfl � lfpFfl �so that a widening
is necessary�	

Widenings for regular tree grammars have been de�

ned implicitly in 	�� ����� A similar widening is ob�
tained by enforcing the iterates to deterministic regular
tree grammars �i�e� without two di�erent productions of
the form X � fn�T
� � � � � Tn� and X � fn�T �
� � � � � T

�
n���

Such a widening G

� G� can be de
ned as the re�

peated application to G
 �G� de
ned as hT
 � T�� N

	Alternatively
 by removing the requirement that n be the
least rank of a post�xpoint
 we can account for approximate �but
more e�cient� inclusion tests �
 where R� S implies R � S but
not reciprocally
 as e�g� in ��	

Although no widening is mentioned explicitly
 it is used in
section ��� and lemma ��� of ��	 and section � of ���	�

���

� N�� P
 � P�i of the transformation which consists in
replacing all m � � productions
� of the form�

X � fn�T i

� � � � � T

i
n�

i � �� � � � �m
by� 	

�

�
X � fn�Z
� � � � � Zn�

Zk � T i
k

i � �� � � � �m

k � �� � � � � n
where�

�� fZk � k � �� � � � � ng is a set of non�terminals not
used in any production of G
 or G��

�� If some T i
k is a non�terminal then all its occurrences

in the productions are replaced by Zk�

�� Useless productions are eliminated �e�g� X � X or
productions X � T whose lefthand side X never
appears in a production necessary to de
ne an index
corresponding to a program object��

With this widening relational information is lost� Many
variants can be considered� A simple example consists
in performing the grammar transformation only if m is
strictly greater than some given threshold l � � �which
can be determined statically or may vary dynamically
so as to decrease in order to control the time�space
consumption of the iterative computation ������

Example When applied to ����� we start with a gram�
mar with no production so that after one iteration we
get a grammar with one production�

X � cons��� cons��� cons��� nil���

One more iteration leads to�

X � cons��� cons��� cons��� nil���
X � cons�a���� cons�b���� cons�c���� nil���

The widening simpli
es this into�

X � cons�A�B�
A� �

A� a���
B� cons��� cons��� nil��
B� cons�b���� cons�c���� nil��

then into�

X � cons�A�B�
A� �

A� a���
B� cons�C�D�

C� �

C� b���
D� cons��� nil�
D� cons�c���� nil�

and then into�

X � cons�A�B�
A� �

A� a���
B� cons�C�D�
C� �

C� b���
D� cons�E�F �
E� �

E� c���
F � nil

Replacing� for presentation simpli
cation� the non�ter�
minals with a single production by the righthand side
of this production� we obtain in more compact form�

X � cons�A� cons�B� cons�C� nil���
A � � j a��� B � � j b��� C � � j c���

��If m � � no widening is necessary since there is still no sign
that the number of productions might increase forever�

The next iteration gives�

X � cons��� cons��� cons��� nil���
X � cons�a�A�� cons�b�B�� cons�c�C�� nil���
X � cons�A� cons�B� cons�C� nil���
A � � j a��� B � � j b��� C � � j c���

so that application of the widening simpli
cation rules
leads to�

X � cons�A�� cons�B�� cons�C�� nil���
A� � � j a��� j a�A�� B� � � j b��� j b�B��
C� � � j c��� j c�C��

and to�

X � cons�A��� cons�B��� cons�C��� nil���
A�� � � j a�A��� B�� � � j b�B���
C�� � � j c�C���

This is the
nal result since the next iterate proves con�
vergence� This widening leads to the approximation of
the language fanbncn � n � �g by a�b�c�� ut

�� Finitary abstract property transformer

Another solution to the convergence problem is to mask
the explicit use of a widening when de
ning a �nitary
grammar transformer F�gr � Dgr �� Dgr satisfying the

soundness condition Ffl � 	gr �� 	gr � F
�

gr� which is com�
putable and satis
es the following convergence condi�
tion

�

�n � � � F�gr
n
��gr� �� F�gr

n�

��gr�� ����

specifying that F�gr
n��gr�� n � � ultimately reaches a

xpoint� De
ning�

Sgr

def
� F�gr

m��gr� where m is the least n

such that F�gr
n��gr� �� F�gr

n�
��gr�

we conclude that the abstract semantics is computable
and sound� Sco � 	fl � 	gr

�
Sgr

�
� Moreover� if F�gr is

monotonic then Sgr � lfpF�gr and this least
xpoint is
computable� This kind of completeness result is often
argued to be preferable to the use of a widening� This
is illusory since lfpF�gr is computable whereas the truly
interesting lfpFgr is not �and may even not exist at all
e�g� when limits are missing�� Moreover a
nitary ab�
stract property transformer can always be de
ned using

a widening� F�gr
def
� �X�X � Fgr�X��

Using a �nitary abstract property transformer� we
have an abstract interpretation with iterative �xpoint
computation such that �a�� �b�� �c� hold while �d� and
�e� are now�

�d
� F�gr satis�es the soundness condition Ffl � 	gr ��
	gr � F

�

gr and is computable�

�e
� The increasing chain F�gr
n��gr�� n � � of iterates

is converging in a �nite number of steps to the least
�xpoint lfpF�gr �so that no widening is necessary�	

��If F�gr is known to be monotone or extensive
 the weaker con�

dition F�gr�F
�
gr
n��gr�� �� F

�
gr
n��gr� is su�cient�

���

���� A meta�language for �nitary grammar transformers

One way of ensuring that F�gr is
nitary in the sense of
���� is to de
ne F�gr as in ���� using a restricted form
of meta�expressions ���� Various forms of restrictions
can be considered� One generic way of enforcing these
restrictions is to require F�gr to be written in a speci
c
meta�language Lgr restricting meta�expressions to the
form�

e ��� X j � j ff�g j ffn�X
� � � � �Xn�g j

fn��

�i��X � j e
 � e�

where �
 i
 n and fn � �� The semantics of the
projection is�

fjfn��

�i��e�jg�
def
� fti � f

n�t
� � � � � tn� � fjejg�g

In abstract form� the system of equations can also be
written using a variant of the �extended grammar� no�
tation of 	���� �

X � rX
X � �

����

where � � I and the righthand sides are
��

r ��� X j � j f
� j f

n�X
� � � � �Xn� j

X �f n��

�i� j r
 j r� ����

It is interpreted as the
xpoint equation�

hT� N� Pi � F�gr�hT� N� Pi�

where F�gr is a
nitary grammar transformer� which
given a grammar hT� N� Pi� returns the grammar with
productions� �

X��

		X � rX ��
�

P
��
�

such that 		X � rX ��
�

P
is inductively de
ned as follows�

If X �� Y then�

		X � Y���
P
� fX � T j Y � T � Pg

while if X � Y then�

		X � Y���
P
� 		X � ����

P
� 	

		X � f
���

�

P
� fX � f

�g

		X � f
n�X
� � � � �Xn���

�

P
�

fX � f
n�X
� � � � �Xn� �

Vn
j�
 LP�Xj� �� 	g

		X � Y�f n��

�i���
�

P
� fX � Ti �

Y � f
n�X
� � � � �Xi� � � � �Xn� � P �

Xi � Ti � P � �j �� i � LP�Xj� �� 	g

		X � r
 j r���
�

P
� 		X � r
��

�

P
� 		X � r���

�

P

Now the iterates converge to the least solution�

�n � � � F�gr
n��gr� �� F�gr

n�
��gr� ��

lfpF�gr
def
� Sgr

����

��This notation ���� and ���� sets up a confusion between gram�
mars and grammar transformers� For example the grammar rule
X � � denotes the grammar transformer �G�G � fX � �g��
This may be confusing since grammars and grammar transform�
ers have then to be formalized in the same way�

The language ���� can be enriched while preserving this
property ���� as in 	�� �
� �
�
��

Example For program ���� we can approximate Fgr de�

ned at ���� by the grammar transformer F�gr as follows�

X � cons��� cons��� cons��� nil���

j cons�a�X��� cons�b�X��� cons�c�X��� nil���

X��X �cons�����

V� �X �cons�����

X��V��cons�����

V� �V��cons�����
X��V��cons�����

The iterative
xpoint computation leads to the approx�
imation of the language fanbncn � n � �g by a�b�c�
��
To see this� let us consider the simpler
xpoint equation�

X � cons�A�N �

A� �

N � nil

X � cons�B�N �

B� a�C�

C�X �cons�����

The iterates are the grammars hTn� Nn� Pni such that�

P� �

P� � fA � ��N � nilg

P� � fX � cons�A�N ��A � ��N � nilg

P� � fX � cons�A�N ��A � ��N � nil� C � �g

P� � fX � cons�A�N ��A � ��N � nil�

X � cons�B�N ��B � a�C�� C � �g

For n � ��
Pn � fX � cons�A�N ��A � ��N � nil�

X � cons�B�N ��B � a�C�� C � �� C � a�C�g

ut

���� Abstraction of an in�nitary formal language trans�

former by a �nitary grammar transformer

We show how to abstract Ffl written using the meta�
language ��� by Fgr � ��gr�Ffl� written using the meta�
language ���� while satisfying the soundness condition
Ffl � 	gr �� 	gr � Fgr� If Ffl is de
ned by the system
of equations ���� then Fgr � ��gr�Ffl� is de
ned by the
grammar with productions�

�gr

�
fX � eX � X � �g

� def
�

�
X��

�E�X � eX �

The abstraction of each equation is a grammar produc�
tion plus possibly auxiliary productions�

�E�X � e�
def
� let he�� Ri � �e�e� in

fX � e�g �R

�e�e� is used to compute the righthand side of a produc�
tion corresponding to an equation X � e� This intro�
duces auxiliary productions R which involve new aux�
iliary set�variables Z� Z
� � � � � Zn and Z� with rules

��For the sake of brevity we do not consider intersection and
restricted negation since the general approach remains exactly
the same in that case�
��Observe that the value of variable X given by a context�

sensitive language must be approximated by a regular language

showing that the assertion that �Set based approximations ig�
nore all information about inter�variable dependencies
 but make
no other approximations
 on page ��� of ���	 is overstated�

���

fZ� � fn�Z�� � � � �Z�� � fn � �g representing the ab�
sence of information� �e�e� is de
ned by induction on
the syntax of e� We start with simple cases� In partic�
ular negation is ignored�

�e�X �
def
� hX � 	i

�e���
def
� h�� 	i

�e���
def
� hZ�� 	i

�e��e�
def
� �e���

We approximate�

�e�fT � � T
 � e
� � � � � Tn � eng�
def
�

�e�
n�
i��

fT � � Ti � eig�

by an intersection� which apart from simple cases� is
also ignored�

�e��
 e��
def
� �e���

�e�e

 ��
def
� �e�e
�

�e�e

 e��
def
� �e�e
�

�e�e

 ��
def
� �e���

�e��
 e��
def
� �e�e��

The de
nition of �e�e

e�� seems arbitrary� but this is
a common practice in program analysis e�g� when tests
are ignored 	���� Grammars are well suited to handle
union exactly�

�e�e
 � e��
def
� �e�e
�� �e�e��

he
� R
i � he�� R�i
def
� he
 j e�� R
 �R�i

We now de
ne �e�fTg� by induction on the syntax of
term T �

�e�fxg�
def
� �e��� �e�ff�g�

def
� f

�

�e�ffn�T
� � � � � Tn�g�
def
�

hf n�Z
� � � � �Zn��
Sn

i��
�E�Zi � Ti�i

We de
ne T 	x �� X � to be the substitution of set�variable
X for the term�variable x within term T � so as to obtain
the righthand side of a grammar production�

x	x �� X �
def
� X y	x �� X �

def
� Z�

f�	x �� X �
def
� f

�

fn�T
� � � � � Tn�	x �� X �
def
�

f
n�T
	x �� X �� � � � � Tn	x �� X ��

After these preliminaries� we de
ne �e�fT � � T � eg� by
induction on the syntax of e and� if necessary on the
syntax of T ��

�e�fT � � T � �g�
def
� �e���

�e�fT � � T � �g�
def
� �e�fT �g�

�e�fT � � x � Xg�
def
� fT �	x �� X �g

�e�fT � � f� � Xg�
def
� �e�fT �g�

�e�fT � � fn�T
� � � � � Tn� � Xg�
def
�

�e�fT � � T
 � fn��

����X �� � � � � Tn � fn��

�n��X �g�

Observe that once again tests f� � X are ignored �but
could be taken into account since this question is de�
cidable for regular tree grammars�� Dependencies be�
tween components of an n�ary constructor are ignored
in �e�fT � � fn�T
� � � � � Tn� � Xg�� Let us de
ne the
notation�

he� Ri �R�
def
� he� R �R�i

The projection can be reduced to the required form Y �
X �fn��

�i� as follows�

�e�fT � � y � fn��

�i��X �� Ti�
 � fn��

�i����X �� � � � �
Tn � fn��

�n��X �g�
def
� �e�fT �	y �� Z� � Ti�
 � fn��

�i����X �� � � � �
Tn � fn��

�n��X �g� � fZ � X �fn��

�i�g

�e�fT � � g� � fn��

�i��X �� Ti�
 � fn��

�i����X ��
� � � � Tn � fn��

�n��X �g�
def
� �e�fT � � Ti�
 � fn��

�i����X �� � � � �
Tn � fn��

�n��X �g�

�e�fT � � gn�T
� � � � � Tn� � fn��

�i��X �� Ti�
 �
fn��

�i����X �� � � � � Tn � fn��

�n��X �g�
def
� �e�fT � � Ti�
 � fn��

�i����X �� � � � �
Tn � fn��

�n��X �g�

Let us
nish the de
nition of �e�fT � � T � eg� by in�
duction on the syntax of e�

�e�fT � � T � fT ��gg�
def
�

�e�fT � � T � Zg� � �E�Z � fT ��g�

�e�fT � � T � fT �� � T ��� � egg�
def
�

�e�fT � �T � Zg� � �E�Z � fT �� �T ��� � eg�

Again union is handled exactly while intersection and
negation are approximated very roughly�

�e�fT � � T � e
 � e�g�
def
�

�e�fT � � T � e
g�� �e�fT � � T � e�g�

�e�fT � � T � �
 e�g�
def
� �e�fT � � T � �g�

�e�fT � � T � e

 �g�
def
� �e�fT � � T � �g�

�e�fT � � T � �
 e�g�
def
� �e�fT � � T � e�g�

�e�fT � � T � e

 �g�
def
� �e�fT � � T � e
g�

�e�fT � � T � e

 e�g�
def
� �e�fT � � T � e
g

�e�fT � � T � �eg�
def
� �e�fT � � T � �g�

Observe that in set�constraint�based analysis� part of
this abstraction process is performed as a simpli
cation
process while solving set�constraints�

���� Finitary Set Constraints Transformer

The
nitary grammar transformer ���� can be rewritten
in a sets of constraints transformer form��

X � cX
X � �

����

where � � I and the righthand sides are�

c ��� X j � j f
� j f

n�X
� � � � �Xn� j X �f n��

�i�

j c
 � c�

For solving this system of inequations iteratively� a cha�
otic iteration with initial empty set of constraints may
be chosen to start with the evaluation of the constraint
transformers of the form X � c
 � c� which introduce
the constraints X � c
� X � c�� This can be under�
stood as conversion in the standard form of 	�
�� When

��	

this is done� these components of the system of inequa�
tions ���� are de
nitely stable whence no longer need to
be considered� Moreover we have seen that this opera�
tion can be done when the system of inequations ����
�or ����� is established� The same way the constraint
transformers like X � f

� and X � f
n�X
� � � � � Xn� can

be evaluated only once� Alternatively� since these con�
straint transformers are written in the same syntax as
the constraints themselves� they can be understood as
initial constraints� Then the chaotic iteration only con�
cerns the projections X � Y�f n��

�i�� These iterates can
then be confused with those of a constraint transformer
algorithm� With this explanation one can always claim
that ���� is not solved iteratively 	�
� ���
� � However
the resolution is isomorphic with the least
xpoint cha�
otic iteration that we have just de
ned�

�� A Program Dependent Finite Grammar Abstract Do�

main

A
nite grammar abstract domain Dgr	P � � Dgr can be
considered for each particular program P
�� This can
be used as an alternative proof of ����� Indeed� observe
that the system of equations ���� de
nes a transformer
F�gr over grammars such that if G is in Greibach nor�
mal form �each production X � rX has a standardized
righthand side of the form f

� or f
n�X
� � � � � Xn�� then so

is F�gr�G�� Since I is
nite� there are
nitely many non�
terminals X � X
� � � � � Xn� For each particular program
there are also
nitely many possible terminals f

�� f
n�

� � � since they must all occur in the program �formally in
the system of equations ������ Moreover the initial nor�
malization of the system of equations ���� into Greibach
normal form introduces
nitely many new non�termi�
nals in I� Let Dgr	P � be the set of grammars in Greibach
normal form that is with non�terminals in I� terminals
appearing in program P and rules with standardized
righthand sides of the form f

� or f
n�X
� � � � � Xn�� For

each P � Dgr	P � is
nite since there are only
nitely
many possible di�erent productions� However Dgr �S

P Dgr	P � is in
nite �since the terminal vocabulary may
be in
nite�� The convergence ���� follows immediately
from the observation that for a particular program P we
need not reason on F�gr � Dgr �� Dgr� Since F

�

gr is de
ned
by ����� we can� by de
nition of 		X � rX ��

�

P
in ��
��

equally well reason on F�gr � Dgr	P � �� Dgr	P �� By re�
stricting the grammar�set�constraint�based analysis of
a given program P to the
nite abstract domain Dgr	P ��
we understand grammar�set�constraint�based program

�����	 states that �The fundamental di�erence between set
based analysis and other approaches in literature �which are based
on abstract interpretation� is that set based analysis does not
employ an iterative least �xpoint computation over a �nitary
domain�

��This was suggested to us by Alain Deutsch�

analysis as a simple
nite abstract interpretation
��
We have an abstract interpretation such that for each

program P �

� The abstract domain Dgr	P � has �nitely many ab�
stract values G representing in�nite concrete sets
	gr	G��X ��

� All abstract values in domain Dgr	P � have a �nite
representation�

� The abstract property transformer Fgr maps an ab�
stract value G � Dgr	P � into an abstract value Fgr�G�
� Dgr	P �

��

� The increasing chain Fgr
n��gr�� n � � of iterates is

�nite whence converges to the least �xpoint lfpFgr	

The choice of a program dependent abstract domain
is a common practice� e�g� when choosing to associate
abstract values to variables occurring in the program�

�� Language independent implementation

It is essential to specify language�independent abstract
interpretations in order to obtain reuseable implemen�
tations or at least to minimize the language�dependent
part�
An implementation of a program analysis by gram�

mar�set�constraint�based approximation of formal lan�
guages would have a programming�language�dependent
part consisting in a compiler for translating a program
into the formal language transformer Ffl written in the
meta�language Lfl �more precisely into a sentence of the
meta�language the semantics of which is Ffl��
The programming�language�independent part of this

implementation would consists of a simpli
er of the for�
mal language transformer Ffl �written using the meta�
language ���� into the
nitary grammar transformer
F�gr �written in the meta�language Lgr� such that Fgr

� ��gr�Ffl�� This is possible since the abstraction ��gr is
computable� Moreover� reusable chaotic
xpoint com�
putation algorithms can be used to evaluate lfpFgr�
Such partly reusable implementations have been de�

signed which are mono�language and multi�analysis �see
e�g� 	����� The proposition here is mono�analysis and
multi�language� Practical experience is necessary as far
as incorporation in real systems is concerned�

�� Combining Grammar and Non�Grammar�Based Abstrac�

tions

Grammar�based abstractions can be combined with non�
grammar�based ones� For example� one can consider

��Therefore the statement on page ��� of ���	 that abstract
interpretation is �limited by the essentially �nite bound on the
number of di�erent states between which the approximate reason�
ing can discriminate
 indeed applies to set�based analysis� That
it does not apply to abstract interpretation was shown in ��	 using
widening�
�	Here the abstract values encoding abstract properties are

grammars�

��

an index I which is partitioned into a set of symbolic
variables Igr and a set of numerical variables Inum� An
example of reduced product 	�� with X �Y � Igr and
A�B � Inum would be��

X � cons�A�X � j nil

Y� cons�B�Y� j nil

A��mod �

B��mod �

which seems an interesting alternative to 	��� where nu�
merical values are handled symbolically �i�e� A � � j
A' � j A � � and B � � j B ' � j B � ��� This can be
generalized to dependence�sensitive numerical abstract
domains 	��� such as��

X � cons�A�X � j nil

Y� cons�B�Y� j nil

�A� 	B��mod �

One particular case of reduced product consists in con�
sidering the product of the concrete and abstract do�
mains� using the abstract domain for de
ning widen�
ings on the concrete one� which is essentially what is
implicitly done in 	����

�� Context�Sensitive Grammar Abstractions

Although the abstractions considered so far are context�
free with respect to indexes� nothing prevents using the
usual abstract interpretation techniques to obtain rela�
tional� i�e� context sensitive or polyvariant analyses�
One such technique� abstract lattice completion 	�� ���

consists in considering an abstract domain made of sets
of formal languages�grammars�sets of constraints D�

df
def
� I �� ����L��� For example� a di�erent formal lan�
guage�grammar�set of constraints can be used for each
function call to obtain a polyvariant analysis� This is
considered as an implementation trick in section �� of
	���� maybe because� for
nite sets� it can be obtained
by copying parts of the program �see also e�g� 	�����
Since in general the size of such sets �or the number of
copies� must be limited� a widening is necessary �e�g�
which na%(vely consists in limiting the size of sets to two
elements as in 	��� �so that the idea of exact approx�
imation of the collecting semantics �Sgr � ��Sco�� is
no longer valid and knowledge of the program analysis
algorithm is required to predict which parts of the pro�
gram will be copied� or may involve more sophisticated
ideas such as dynamic partitioning� as in 	����
Another powerful way of re
ning the grammar anal�

ysis is to consider an abstract domain which consists of a
grammar where a di�erent counter is used for each pro�
duction to count the number of times the production
is used in the derivation of a symbolic value� By an�
alyzing numerical relationships between these counter
values� one can express context�dependent non�uniform
information akin to 	��� ��� ���� For example� approxi�
mating numerical relationships by linear equalities 	����
we would obtain the language fa�b�c� � � � �g for pro�
gram ��� in the form of the following grammar with
counters�

	

�

�

X
i

�� cons�A� cons�B� cons�C� nil���

A
j

�� � B
m
�� b�B�

A
k

�� a�A� C
p

�� �

B
l

�� � C
q

�� c�C�

i � j � l � p � � � k � m � q

����

This also provides a simple way to combine the analysis
of numerical and non�numerical data� For example in
program ���� the initial value n � � of variable n can
be taken into account� Then using the above context�
dependent grammar abstraction with approximation of
numerical relationships by linear inequalities 	���� we
would obtain ���� with the additional constraint k
 n�
which is now a fairly precise invariant for the program
corresponding to the language fa�b�c� � �
 �
 ng�
Observe that the above abstract interpretation is ob�

tained by re
ning Ffl as de
ned by Ffl

def
� ��fl�Fco�� �����

��� and cannot be obtained from F�gr de
ned in �����
���� since all dependencies have already been lost in F�gr�
This shows the limits of set�constraint�based program
analysis� the initial dependence�free approximation is
too coarse thus disallowing later re
nements�

� Conclusion

There has been a long tradition of using grammar�based
and set�constraint based analysis for functional and logic
programming languages� These have been traditionally
seen as fundamentally di�erent from abstract interpre�
tation� On the contrary� we have shown that these for�
mal language�grammar�set�constraints program analy�
ses are abstract interpretations� This point of view has
several advantages�

� The presentation of these analyses is independent of
a particular �imperative� functional� parallel� logic�
etc� style of programming language and of a particu�
lar style of
xpoint speci
cation �
xpoint operator�
system of equations� system of constraints� closure�
condition� rule�based formal system or game�theoretic
form� 	����

� A reusable implementation can be designed by ex�
pressing the abstract property transformers �Ffl� Fgr�
F�gr� in common meta�languages �Lfl� Lgr��

� Combinations with other analyses �e�g� to handle
arithmetic� are possible�

� Extensions to relational analyses allowing for vari�
ous forms of polyvariance are easy �e�g� by lattice
completion� and no longer need to be presented as
implementation tricks�

� Abstract domains can be re
ned �e�g� using coun�
ters� to obtain powerful context sensitive program
analyzes�

� The idea of using grammar codings of in
nite sym�
bolic sets can be generalized� For example� one can

�	�

consider�

� In
nite regular trees� e�g� to handle lazy func�
tional programming languages with in
nite data
structures or PROLOG III�

� Generalizations of formal �string� language the�
ory such as �hyper�graph language theory and
grammars �to describe abstract properties� and
�hyper�graph rewriting techniques �to describe ab�
stract semantic transformers� to handle aliases�
sharing� etc�

Acknowledgments This work was partly supported by Es�

prit BRA
�	� LOMAPS� We thank Nevin Heintze for his
seminar at ENS on Oct� ��� �

� and for the ensuing an�
imated discussions� Christopher Colby� Alain Deutsch and
Arnaud Venet for their remarks on a preliminary version of
this paper and the referees for their kind comments�

References

��� A� Aiken � B� R� Murphy� Implementing regular tree
expressions� Proc� �th FPCA� LNCS ��	� ��������
Springer�Verlag� �

��

��� A� Aiken � B� R� Murphy� Static type inference in
a dynamically typed language� In ��th ACM POPL�
��
��
�� �

��

�	� A� Aiken � E� L� Wimmers� Solving systems of set
constraints �extended abstract�� In Proc� �th IEEE

LICS��	� 	�
�	��� �

��

��� F� Bourdoncle� Abstract interpretation by dynamic par�
titioning� J� Func� Prog�� ����� �

��

��� P� Cousot � R� Cousot� Abstract interpretation� a
uni�ed lattice model for static analysis of programs by
construction or approximation of �xpoints� In
th ACM

POPL� �	
����� �
���

��� P� Cousot � R� Cousot� Systematic design of program
analysis frameworks� In �th ACM POPL� ��
��
��
�
�
�

��� P� Cousot � R� Cousot� Abstract interpretation frame�
works� J� Logic and Comp�� ������������� �

��

�
� P� Cousot � R� Cousot� Comparing the Galois connec�
tion and widening�narrowing approaches to abstract
interpretation� Proc� PLILP��	� LNCS �	�� ��
��
��
Springer�Verlag� �

��

�
� P� Cousot � R� Cousot� Higher�order abstract interpre�
tation �and application to comportment analysis gen�
eralizing strictness� termination� projection and PER
analysis of functional languages�� In Proc� ���
 IEEE

ICCL�
������ �

��

���� P� Cousot � R� Cousot� Compositional and inductive
semantic de�nitions in �xpoint� equational� constraint�
closure�condition� rule�based and game�theoretic form�
In Proc� CAV���� LNCS� Springer�Verlag� to appear�
�

��

���� P� Cousot � N� Halbwachs� Automatic discovery of
linear restraints among variables of a program� In �th

ACM POPL�
��
�� �
�
�

���� A� Deutsch� An operational model of strictness prop�
erties and its abstraction� Proc� ���� Glasgow Univer�

sity Functional Programming Workshop� Workshops in
Comp��
��

� Springer�Verlag� �

��

��	� A� Deutsch� A storeless model of aliasing and its ab�
straction using �nite representations of right�regular
equivalence relations� In Proc� ���	 IEEE ICCL� ��
�	� �

��

���� A� Deutsch� Interprocedural may�alias analysis for
pointers� beyond k�limiting� In Proc� ACM PLDI� �	��
���� �

��

���� P� Granger� Static analysis of linear congruence equali�
ties among variables of a program� Proc� TAPSOFT����
Vol� � �CAAP�
��� LNCS �
	� ��
��
�� Springer�
Verlag� �

��

���� N� Heintze� Practical aspects of set based analysis� In
Proc� Joint Int� Conf� and Symp� on Logic Program�

ming� ������
� MIT Press� �

��

���� N� Heintze� Set Based Program Analysis� PhD�
Carnegie Mellon University� Pittsburgh� Pa�� Oct� �

��

��
� N� Heintze� Set based analysis and arithmetic� In Proc�

ACM Conf� Lisp
 Func� Prog�� 	���	��� �

	�

��
� N� Heintze� Set�based analysis of ML programs �ex�
tended abstract�� In Proc� ACM Conf� Lisp
 Func�

Prog�� �

��

���� N� Heintze � J� Ja�ar� A �nite presentation theorem
for approximating logic programs �extended abstract��
In ��th ACM POPL� �
����
� �

��

���� N� Heintze � J� Ja�ar� An engine for logic program
analysis� In Proc� �th IEEE LICS��	� 	�
�	�
� �

��

���� N� D� Jones� Flow analysis of lazy higher�order func�
tional programs� In S� Abramsky � C� Hankin� eds��
Abstract Interpretation of Declarative Languages� ��	�
���� Ellis Horwood� �

��

��	� N� D� Jones � S� S� Muchnick� Flow analysis and op�
timization of LISP�like structures� In �th ACM POPL�
�������� �
�
�

���� N� D� Jones � S� S� Muchnick� A �exible approach to
interprocedural data �ow analysis and programs with
recursive data structures� In �th ACM POPL� ������
�

��

���� M� Karr� A�ne relationships among variables of a pro�
gram� Acta Inf�� ���		����� �
���

���� B� Le Charlier � P� Van Hentenryck� Experimental
evaluation of a generic abstract interpretation algo�
rithm for Prolog� In Proc� ���	 IEEE ICCL� �	������
�

��

���� P� Mishra � U� Reddy� Declaration�free type checking�
In �	th ACM POPL� ����� �

��

��
� J� Palsberg� Global program analysis in constraint
form� Proc� ��th CAAP��
� LNCS �
�� �����
��
Springer�Verlag� �

��

��
� J� Reynolds� Automatic computation of data set de��
nitions� In Information Processing���� �������� North
Holland� �
�
�

�	�� M� H� S�rensen� A grammar�based data��ow analysis
to stop deforestation� Proc� ��th CAAP��
� LNCS �
��
		��	��� Springer�Verlag� �

��

�	�

