Formal Language, Grammar and Set-Constraint-Based

Program Analysis by Abstract Interpretation

Patrick COUSOT

LIENS, Ecole Normale Supérieure
75230 Paris cedex 05, France

cousgot@dmi.ens.fr

Abstract

Grammar-based program analysis a la Jones and Much-
nick and set-constraint-based program analysis a la Ai-
ken and Heintze are static analysis techniques that have
traditionally been seen as quite different from abstract-
interpretation-based analyses, in particular because of
their apparent non-iterative nature. For example, on
page 18 of [17], it is alleged that “The finitary nature
of abstract interpretation implies that there is a funda-
mental limitation on the accuracy of this approach to
program analysis. There are decidable kinds of analysis
that cannot be computed using abstract interpretation
(even with widening and narrowing). The set-based
analysis considered in this thesis is one example”.

On the contrary, we show that grammar and set-
constraint-based program analyses are similar abstract
interpretations with iterative fixpoint computation us-
ing either a widening or a finitary grammar/set-con-
straints transformer or even a finite domain for each
particular program.

The understanding of grammar-based and set-con-
straint-based program analysis as a particular instance
of abstract interpretation of a semantics has several ad-
vantages. First, the approximation process is formal-
ized and not only explained using examples. Second,
a domain of abstract properties is exhibited which is
of general scope. Third, these analyses can be eas-
ily combined with other abstract-interpretation-based
analyses, in particular for the analysis of numerical val-
ues. Fourth, they can be generalized to very power-
ful attribute-dependent and context-dependent analy-
ses. Finally, a few misunderstandings may be removed.

Permission to make digital/hard copies of all or parts of this material with-
out fee is granted provided that the copies are not made or distributed

for profit or commercial advantage, the ACM copyright/server

notice, the title of the publication and its date appear, and notice is given
that copyright is by permission of the Association for Computing Machinery,
Inc. (ACM). To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires specific permission and/or fee.

FPCA 95, La Jolla, CA USA © ACM 0-89791-7/95/0006. . . $3.50

Conference Record of FPCA 95 SIGPLAN-SIGARCH-WG2.8 Con-
ference on Functional Programming Languages and Computer Archi-
tecture, La Jolla, California, 25-28 June 1995 ACM Press, New York,
U.S.A., pp. 170-181.

Radhia COUSOT

LIX, CNRS & Ecole Polytechnique
91140 Palaiseau cedex, France

rcousot@lix.polytechnique.fr

1. Introduction

We construct program analyses by abstract interpre-
tation of a collecting semantics where abstract prop-
erties are coded using tuples of formal languages. A
further approximation is to approximate such formal
languages by different kinds of formal systems such as
grammars or systems of set-constraints. The idea of us-
ing regular tree grammars for program analysis, is due
to Jones and Muchnick [22, 23, 24] following Reynolds
[29]. Tt was further developed by Aiken, Mishra, Mur-
phy, Reddy and Sgrensen [2, 27, 30], implemented by
Aiken and Murphy [1] and reformulated by Heintze and
Jaffar [16, 17, 19, 20] as sel-constrainl-based program
analysis. We show that in such formal-language-based
program analyses, the abstract semantics specifying the
strongest abstract program property is defined as the
least fixpoint of an abstract property transformer. This
abstract semantics can be also presented as a system
of constraints. For program analysis by resolution of
such systems of set-constraints, no iteration is apparent.
Therefore we are interested in understanding whether or
not this least fixpoint is computed iteratively or approx-
imated by non-iterative methods (e.g. by elimination).
We show that actually this least fixpoint is computed
by a chaotic iteration. Convergence can be enforced us-
ing either a widening, or a finitary abstract property
transformer or else by choosing for each particular pro-
gram an abstract domain which satisfies the ascending
chain condition (and even is finite). This new point
of view on grammar and set-constraint-based analysis
allows us to easily combine these dependence-free anal-
yses with existing non-grammar or non-set-constraint-
based abstract interpretations and to generalize them to
obtain very powerful infinitary context-dependent pro-
gram analyses.

2. Standard Semantics

A standard semantics associates a behavior S,[P] €
B, to each program P of the language. This behav-
ior i1s a specification of the possible program execu-

tions. Elements of the behavior domain B.; can be
higher-dimensional automata, execution traces, judg-

ments, functions, sets of states, etc.

Example The standard semantics f,, of the following
functional program f:
() =
if (N <= 0) then
cons(0, cons(0, cons(0, nil)))
else let X = f(-1) in
cons(athd(X)), cons(bChd(t1(X))),
cons (c(hd(t1(+1(X)))), nil)));

(where hd(cons(H, T)) = H and t1(cons(H, T))
T) can be chosen as the function computed by this pro-
gram, that is simply:
f.a = An-if n <0 then
cons(0, cons(0, cons(0,nil)))
else
cons(a”(0), cons(b™(0), cons(c™(0),nil)))

where we use the abbreviation:

ai(O) a(- -
——

(1)

def

a(0) ..)

7 times
In this example, we have B, = Z — (LU {L}) where
IL is the set of lists and L denotes non-termination. 0O

We assume that B,, involves symbolic semantic values

(in L) associated to indexes (in I). These symbolic se-

mantic values are assumed to be described by sentences

of a formal language L such that:

— the ranked alphabet A contains function symbols
f* € X of fixed arity n > 0;

— the language L is the set of ground terms ¢ on A
(written in prefix parenthesized notation):

tou= U t);
(L can be understood isomorphically as the algebra Tx
of trees on the signature X).

Example For the program (1), the ranked alphabet is
A ={0%ni1% al b, ¢! cons?}. The language I is the
set of ground terms ¢ defined by the grammar:

t = 0 | a(t) |b(t) | c(t) |ni1 | cons(tl,tz)

Integers are simply (arbitrarily) ignored. a

The set I of indexes is assumed to be finite. The preci-
sion of the analysis depends upon the choice of this set
I of indexes which can be program points, variables, ex-
pression labels, store locations, auxiliary variables (e.g.
to denote intersections [27]), etc.

Example For the program (1), the set of indexes can
be chosen to be I = {&'}. This (arbitrary) choice is
made to compute a single global program invariant (as-
sociated to the index X'!). A more refined choice would
consist of program points so as to compute local invari-
ants (associated to these program points). a

1The name X is certainly not meaningful because it is associ-
ated with £. X has been preferred to other choices (such as F)
because it will later correspond to an unknown.

171

3. Collecting Semantics

A collecting semantics associates a strongest property
S.AP[€ D., to each program P of the language: S..{ P}
= {S.,[P]}; Here a property is understood as the set of
behaviors satisfying this property. The concrete seman-
tic domain D, = p(B,4) is a complete boolean lattice
(De, C, 0, By, U, N,). We are interested in answer-
ing questions of the form S, C P., where P, € D_, is
a semantic property.

We assume that the collecting semantics S % can
be expressed as the least fixpoint S, B Ifp F., of a
(-strict complete U-morphism concrete property trans-
former F., € D., — D..3. Usually F., is defined by
induction on the syntax of the program, an aspect that
we neglect here for simplicity.

D., usually formalizes program properties as the set
of elements having this property. Many choices are pos-
sible. A few simple examples of collecting semantics for
formal-language program analysis of functional, imper-
ative, parallel and logic programs are considered below.

Example The collecting semantics £., for the func-
tional program (1) can be chosen as the set of possible
functions computed by this program ignoring possible
non-termination, that is simply:
f.o = {An+if n <0 then

cons(0, cons(0, cons(0,nil)))

else

cons(a"(0), cons(b™(0), cons(c”(0),nil)))}
In this example, we have D, = p(Z — 1.). A program
property is therefore chosen to be an invariant I € D.,.
The collecting semantics of a program P is the strongest
property of P, that is the singleton set £., = {f,.} €
D..*. This allows us to formalize “P has property I” as
£, C I that is equivalently f,, € I. ad

Example The collecting semantics of the following im-
perative program:
{1} X := cons(0, cons(0, cons(0, nil)));
{2} while N > 0 do begin
{3} X := cons(athd(X)), cons(bhd(t1(X))),
cons (c(hd(+1(+1(X)))), nil))); (2)
{4} N :=N-1;
{5} end;
{6}

associates to each program point p the set p_.[p] of pairs
(n, x) of possible values of variables N and X:

peol1]

?In what follows we write S., for S.,{P]} thus leaving the
involved program P implicit.

3The general situation in abstract interpretation is more com-
plicated since the approzimation ordering (for comparing pro-
gram properties by implication) and the computational ordering
(for computing fixpoints) do not coincide (see [9]). This situation
does not appear for the invariance properties considered here.

*For more details on collecting semantics, see e.g. [9].

{n,) :neZANxel}

pol2] = {{n, x) :n €Z Az = cons(0,cons(0,

cons(0,nil)))}

Po[3] = {{n, z):n>0Az € {cons(a’(0),
cons(bi(O) cons(c (),nil))) : 4> 0}}
ol = {{n, z) :n>0Az € {cons(a (0)
cons(b (0), cons(c (),nil))) : 4> 0}}
pold] = {{n,z):n>0Az € {cons(a (0)
cons(bZ(O) cons(c (),nil))) : 4> 0}}
o6l = {{n,2) n<0AxE€ {cons(a (0),
cons(b (0), cons(c (),nil))) : 4> 0}}

In this example, we have B,; = P x Z x 1L where P
= {1,...,6} is the set of program points. D, is P —
9(Z x 1) which is isomorphic to (P x Z x IL). O

Example The standard semantics P,, of the following
¢ML-like parallel program P(c, n):
P(c0, 0) =
transmit (c0, cons(0, cons(0, cons(0, nil))))
P(csn, s(n)) =
let val cn = channel()
in spawn[P(cn, n)]; (3)
let r = receive cn
in transmit(csn,
cons(athd(r)), cons(b(hd(t1l(r))),
cons(chd(t1(t1(r)))), nil))));
maps the channel ¢ and natural number n parameters
to a list of possible values transmitted on that channel
c and the returned value (here the unit ()). If there
1s no transmission, this list 1s empty. In case of non
termination, it can be infinite. We have B, = (C x
N) — (IL*° x LL). P, = {P.4} is:
P, = {x\(C, n)+ {[cons(a”(0), cons(b™(0),
cons(c”(0),ni1)))], O)}
which belongs to D., = p(B.4). O

Example The ground bottom-up collecting semantics
B, of the following logic program:
P(0, cons(0, cons(0, cons(0, nil)))) :- ; (4)
P(s(N), cons(a(X), cons(b(Y), cons(c(Z), nil))))
:— P(N, cons(X, cons(Y, cons(Z, nil))));
is the set of successful ground goals:
B., = {P(s"(0),cons(a”(0),cons(b™(0),
cons(c™(0),nil)))) : n > 0}
In this example, B,, is the set of ground atoms and D,

= p(B.). ad
4. Formal-Language-Based Abstraction

As an intermediate conceptual step, we consider the
abstraction of program properties as formal languages
(not necessarily finitely presentable). This, coupled with
a notion of formal-language transformers, provides the
basis for grammar-based abstract semantics, and a di-
rect connection to set-constraints.

4.1 Formal-Language-Based Abstract Semantics

Given that behaviors in B,,, hence the collecting se-
mantics S,,, involve semantic values described by sen-
tences of L associated to indexes in I, we assume that
the formal language abstract domain is Dy = I'— p(L).
For the pointwise subset ordermg C, this is a complete
boolean lattice: (Dy, c, J_ﬂ, Tﬂ, U, N, ©) where 1, =
Nie® and T, & Xi- [

Let us recall that a Galois connection is a pair {&, ¥)
of maps « € L — P and v € P — L between posets
(L, <) and (P, <) such that for all z € L and all y € P,
a(z) <X y if and only if # < y(y). This is denoted
(L, <) % (P, =<). Following [6], the approximation
of program semantic properties P., € D_, by abstract
properties ay(P.,) € Dy is assumed to be formalized by

a Galols connection:

(D, C) == (Da,€)

co) a1

This formal language abstraction (g, v4) is language
and application dependent. It is built compositionally
using typical dependence-free abstractions for cartesian
products, functions (with domain A C I) and lists such
as:

a. € p(Lx L) — (p(L) x p(L))
ac(H) = <{l‘ : <l‘, y> € H}a {y : <l‘, y> € H}>
a, € p(A— L) — (A p(L))
a (@) = AX{p(X) : p € B}

@ € p(L7) — p(L)
a(A)={X:A€eAniedomA}

The abstraction (o, 74) is lifted to higher-order [9]
with & € (Do, — D.,) — (Dy — Dy) defined by &y (F)
= ag o Flo Ta and 7ﬂ (Dﬂ = Dﬂ) = (Dco = Dco)
defined by 74(F*) = 74 0 F* o arg such that:
.9 .
(Do = D..),C) == ((Da— D), <)

The resulting formal language semantics is Sy = Ifp Fy
where the formal language transformer Fy, € D, — Dy
is F, & O_Zﬂ(F).

For a given programming language, the abstraction

ayn must be defined by induction on the syntax of pro-
grams. We consider simple examples (1), (2), (3) and
(4).
Example For the functional program (1), we can ap-
proximate the collecting semantics £, of the function £
by F., which maps a set NV of values n for the argument
N to the set of corresponding results {£(n) :n € N}:

F., = AN-{cons(a"(0), cons(v"(0),
cons(c”(0),nil))):n € N An > 0}
U {cons(0, cons(0, cons(0,nil))) :
n€eNAn<O0}

Here, the abstraction F,, = ol (£.,) approximates a set

of functions in p(7Z — IL) by a set transformer in p(Z) —
p(IL). Formally:

ag € p(Z— L) (p(Z) — (L)
ol (F)y & AX{f(x): fEFAzEX)}

def ¢
F.., = aﬂ(fco)

Furthermore, the set transformer F., can be approxi-
mated by its codomain:

ay € (p(Z) = p(L)) — p(L)
ap(F) = P X € p(2))
det ag(Fco)
For the program (1), we have:

an(f.)(d) CACHEIN) (5)

The collecting semantics £, of the function £ is approx-
imated by the set of the possible results when applied
to all possible arguments N. This set is associated to
the index X' corresponding to function £ in (1). This is
an approximation of the collecting semantics in that 1t
is no longer possible to know the specific result corre-
sponding to a given argument. O

fﬂ

For the imperative program (2), we define:

' U afl(pco[i]) (6)
an({{n;, zj) : j € A}(X) {wj 7 e}

thus ignoring program points and numerical values.

Example

afl(pco)

ad

For the parallel program (3), we can define:

{v:3P P, neN, ocel* (7)

€™ : Ple,n)={o-[v] s, r}
so that the collecting semantics P, is approximated by
the set X of values v which can be transmitted on chan-
nel ¢ for some possible value n of the argument n and
some possible behavior P of the program P(c, n). O

Example

aa(Pe,) ()

For the logic program (4), we can define:
(B,) () {z:P(n,z) € B..} (8)

This abstraction consists in recording only the set of
possible values of the second argument of predicate P,
which is associated to index X' O

Example

4.2 Specification of formal-language transformers

In order to specify the formal language semantics Sy =
Ifp Fyy at a greater level of details without considering
a particular abstraction for a particular programming
language we design a meta-language £, which can be
used to specify formal language transformers Fj.

Non-ground terms 7" in £, denote sets of ground
terms built to some pattern:

T x| fO1 (T, ..

,Tn)

173

(any term-variable # € v is free in the term T'). Meta-
expressions e in L, denote set-of-ground-terms trans-
formers (thus generalizing the mathematical notation

FX) = {f(x) sw € D)
X|{T/ZT1€61,..

| e Ues | —e

e = STh Eent
(9)
(set-variables X € Vinclude indexes 7 C V). In {7" :
T, € ey,..., T, € ey}, term variables in T, Ty, ..., T,
are local while the set-variables in ey, ..., ¢, are free.
Example In the meta-expression:
{cons(0, cons(0, cons(0,nil)))}
U {cons(a(z), cons(b(y), cons(c(z),nil))) :
cons(z, cons(y, cons(z,nil))) € X'}
the local term-variables are x, y and z while A" 1s a free
O
LT €
{e}, L= =T and ¢ Neg =

set-varlable.

We use the abbreviation {7"} for {7 : T} € ey, ..

en} whenn =0, T =

{e:zE€ep,x eyl
The term semantics [T of non-ground term 7' is the

map [T] € (v— L) — L inductively defined as:

[x]~ ACO R Vi R
(. Tl = (k- []k)
The semantics {le} of a meta-expression e is the map

e} € (Vi p(L)) — p(L) inductively defined as:

Xk = px)
HT" Ty €er,..., T €Eentlp
{1k : 5 € v LANL, [Tx € {eibo)
{erUeslp = {erhpU{ealtp
frebp = L—{elp
The use of negation within an expression e is assumed

to be restricted to positive terms so that {le]} is C-
monotonic.

def

def

def

The formal language transformer Fj; can now be
specified using the meta-language £, as the fixpoint
equation: p = Fy(p) where p € Dy = I — p(L). This
can be detailed as the system of equations below:

{ P(X) Fﬂ(P)(X)
XeA

where A C V and, by convention, undefined variables
are assumed to correspond to empty sets, that is Vp :
Fa(p)(X) = 0 whenever X € V— A. We will assume
that this system of equations can be written using the
meta-language Ly as follows:

X

1

{7ea (0
where all free variables in ey belong to A, Fy(p)(X)

= {ex[tp and set variables are indexes so that V = L.
If necessary, we can assume that trivial equations like

€x

X = X have been eliminated. The semantics of the
system of equations (10) is:

{p(?f) {exle p(X) = 0
XeA Xel-A

By Tarski’s fixpoint theorem, Ifp Fiy = N{X : Fy(X) C
X'} so that the fixpoint equation (10) has the same least
solution as the system of constraints:

6XgX
X eA

Moreover constraints such as ey Ues C X can be simpli-
fied to ey C X and e3 C X. The constraint {7 : Ty €
€1,...,Tn € ey} C X is equivalent to (77 € e A... A
Th €en) =T €eXor ({Th} Cer Ao A{Th} Cen)
= {7’} C X. Using such simple set theoretic algebraic
identities, program analysis methods formulated as a
fixpoint resolution problem (10) can be reformulated as
the problem of solving a system of constraints (see e.g.
[25)).

Example Considering the formal language abstrac-
tions (g, v4) respectively defined by (5), (6), (7) and
(8) for programs (1), (2), (3) and (4), we get, in all

cases, the same fixpoint equation:

X

= {cons(0, cons(0, cons(0,nil)))}
U {cons(a(z), cons(b(y), cons(c(z),nil))) :

cons(z, cons(y, cons(z,nil))) € X'}

(11)

This can also be presented in system of constraints form:
e {cons(0, cons(0, cons(0,nil)))} C X
o {cons(z,cons(y,cons(z,nil)))} C X =
{cons(a(z), cons(b(y), cons(c(z),nil)))} C X
In all cases, the least solution is:
X = {cons(a"(0), cons(b"(0), cons(c™(0),nil))) : n > 0}

:n > 0}, a lan-
O

This least solution encodes {a™b"c"
guage which is not context-free.

5. Grammar-Based Abstraction

In general, elements of D, are not computer-representa-
ble. A further abstraction consists in considering sub-
sets of L that are representable by computer-implemen-
table grammars®. A context-free grammar G € D,, is
a triple (T, N, P) where T C A is the set of terminals,
N C Vs the set of non-terminals A and productions
in P are of the form X = o where ¢ € (AU V)*. The

5The use of a finite grammar abstract domain seems in contra-
diction with the claim “No use is made of abstract domains (such
as those commonly employed in abstract-interpretation styles of
program analysis [5]). We remark that the results of the analysis
are typically infinite sets of values and that we make no a prior:
requirement that these sets be finitely presentable” at the end of
section 3 of [19]. We nevertheless imagine no way of circumvent-
ing the a priori requirement that finite computer representations
are to be found in the implementation of set-based program anal-
ysis [16].

174

language L5(X') generated by the grammar for non-ter-
minal X is £(X) = {w € A% : X 2, w}.

Grammar-based analysis and its equivalent set-con-
straint-based presentation are restricted to regular tree
grammars [23, 20] (describing finite trees or terms of a
Herbrand universe). In this case the productions can
be normalized in Greibach normal form: X = f° or
X = f(X,...,&,) where f° f* € ¥ are function
symbols and A7, ..., A, are non-terminals. The gram-
mar abstract domain is defined as:

D

sT

def

{G : G is a regular tree grammar}

The concretization function v,, € D,, — Dy is the
language generated by the grammar for each non-ter-
minal 7, = AG- AX+ Lo(X).
by inclusion of the generated languages G; C G
VX € Vi L6 (X) C Ls,(X). Grammar equivalence
G1 = G5 is defined as Gy € Gy A G5 C (1. Equivalent
grammars can be identified by reasoning on the quotient
poset (D,,/=,C), later simply written (D,,, C).

Some questions about infinite sets of values defined
by a regular tree grammar G can be answered algo-
rithmically [1] such as Lo(X) = 0, ¢ € Lo(X) and
It . Ls(X) = {t} where X is a non-terminal and ¢
a term. In particular abstract questions of the form
L, (X) C L&, (X) are decidable.

Besides regular tree grammars, many other different
isomorphic formalisms can be used to describe regular
tree languages such as p-expressions, systems of fixpoint
equations, systems of constraints, etc. By Ginsburg &
Rice, Schiitzenberger’s theorem, the languages gener-
ated by a grammar G = (T, N, P) for each non-ter-
minal X € N is the C-least solution to the system of
fixpoint equations®:

Lo(X) = {f°|x = ffeP}u
{ff(t1, .. ta) | X = f"(Xh,..., X)) EP
/\Vi:l,...,n:tie,ﬁg()ﬂ)}

Grammars are ordered
def

XeNnN

which representing the language Ls(X') by the set-var-
iable X itself leads to:
X = U 1a = fferpu
U@, tn) s Yi=1,... n t; € X}
| X = f"(X1,...,X,) € P}
XYenN

def

so that, by defining f° = {f°} and (L1, ..., L,)
{f"(t, .. ta) [Vi=1,...,n:t; € L;}, we obtain the
system of fixpoint equations:

X =Uif’|xr=repriu

UL (...,) |
X = fn(Xl,. ..

xyery 12

XeN

6Observe that we have two different fixpoints, one for the
grammar transformer Fy; defining a grammar G and one for the
grammar G defining the language generated by G'.

By Tarski’s fixpoint theorem, (12) has the same least
solution as the system of inequations:

X2 Uf’|lx=fepPiu

U (A, &)

X = (X, X,) € P}

XYenN

or equivalently as the collection of set-constraints:
{fo cax, f"a,...) C X
X=feP X= [(X,. X)€EP

Reciprocally, given a collection of set-constraints:

{f? C X, (A, X)) C X

1,j €=

the grammar:

{X = fP

1, €
generates the same least solution. This isomorphism
seems to have been first suspected in [20] where [23,
29] is mentioned as “earlier related work”. Tt is more
apparent in [16, 17] where regular tree grammars are
used as an “explicit representation” of set-constraints.
Set constraints transformation algorithms equivalent to
those on regular tree grammars [1, 2] are also given by

[3].

X o= A, A)

6.

Grammar Abstract Semantics

We now study how to approximate the language trans-
former Fj so as to define a computable abstract seman-
tics of programs using grammars (or equivalently, sets of
constraints). The restriction to regular tree grammars
does not directly solve the program analysis problem
since (D,,,C), which is not a complete partial order,
contains infinite strictly increasing chains of grammars
without limits (least upper bound).
Example The grammar transformer [, for program
(1) is the grammar abstraction of the formal language
transformer Fy defined by equation (11). For example
it can be defined as”:
F..({T, N, P)) (Tu{0,a,b,c,cons,nil}, NU{X},
{X = cons(0, cons(0, cons(0,nil)))} U
{X = cons(a(z), cons(b(y), cons(c(z),nil))) :
X = cons(z, cons(y, cons(z,nil))) € P})
The iterates F,,"(L,.), where L, = (0§, 0, 0), corre-
spond to the strictly increasing chain of grammars G”,
n > 0 with productions:
X = cons (ai(O), cons(bi(O),

cons (ci(O), nil)))

1=0,...,n

which is both infinite and without limit. ad

7 Another grammar abstraction leading to a different grammar
transformer Fg; will be proposed in forthcoming Sec. 6.2.2.

175

The situation has been considered e.g. in [7] and is sim-
ilar to [11] where there exist infinite chains of infinite
sets (polyhedra) with finite representations (set of in-
equalities or system of generators) without limits (e.g.
polyhedra inscribed in a circle). Three standard ways
to cope with the problem consist of using either:
— a widening,
— or a finitary abstract property transformer,
— or else a (program-dependent) abstract domain sat-
isfying the ascending chain condition (or even fi-
nite).

6.1

A widening V € D, x D, — D,, is such that for all R,

S € D,, we have v,, (R) g Ver (R \V4 S) and 'ygr(S) g

'ygr(R \ S) and for all increasing chains S* k > 0, the

chain RY = §°, ... RFt1 = RF ¥V S* . .is not strictly

increasing for C. The widening V can be used to upper-
approximate possibly non-existent least upper-bounds

and to enforce convergence [5]. Now, the iterates R’

1, and R**1 = R* V F,(R") ultimately stabilize, so

that we can define:

Ser R™, nis (the least®) k such
that F,(R") C R*

in which case, we conclude that the abstract semantics

1s sound S, C 74 0 'ygr(Sgr).

We have an abstract interpretation with iteration
such that:

(a) The abstract domain D, has infinitely many ab-
stract values G representing infinite concrete sets
Ver (G) (X),

(b) All abstract values in domain D, have a finite com-
puter representation;

(¢) The abstract domain (D, g) has infinite strictly in-
creasing chains for C without limits in D, (which,
consequently is not a complete partial order);

Widening

def

(13)

(d) F,, satisfies the soundness condition Fyy o g C Y o
F,, and s computable;

(¢) The increasing chain F,"(L,),n > 0 of iterates
15 not converging in a finite number of steps to an
approzimation Sg, of Sy = lfp Fy (so that a widening
is necessary).

Widenings for regular tree grammars have been de-
fined implicitly in [1, 30]°. A similar widening is ob-
tained by enforcing the iterates to deterministic regular
tree grammars (i.e. without two different productions of
the form X = f*(T1,...,Ty) and X = f(T7,...,T})).
Such a widening GGy V (G5 can be defined as the re-
peated application to G U G2 defined as (Ty U Ta, Ny

& Alternatively, by removing the requirement that n be the
least rank of a postfixpoint, we can account for approximate (but
more efficient) inclusion tests <I, where R < S implies R C S but
not reciprocally, as e.g. in [1]

9 Although no widening is mentioned explicitly, it is used in
section 5.4 and lemma 5.3 of [1] and section 6 of [30].

U Na, P; U P3) of the transformation which consists in
replacing all m > 1 productions!'? of the form:

X = (T8 T
1=1,...,m
by:
X = (20, Z)
Zk:>T]§
1=1,...,m
k=1,...,n
where:
1.{Zy : k = 1,...,n} is a set of non-terminals not

used in any production of G or Ga;

2. If some T,i is a non-terminal then all its occurrences
in the productions are replaced by Z;;

3. Useless productions are eliminated (e.g. X = & or
productions X = T whose lefthand side A" never
appears in a production necessary to define an index
corresponding to a program object).

With this widening relational information is lost. Many
variants can be considered. A simple example consists
in performing the grammar transformation only if m 1s
strictly greater than some given threshold { > 1 (which
can be determined statically or may vary dynamically
so as to decrease in order to control the time/space
consumption of the iterative computation (13)).
Example When applied to (11), we start with a gram-
mar with no production so that after one iteration we
get a grammar with one production:
X = cons(0, cons(0, cons(0,nil)))

One more iteration leads to:

X = cons(0, cons(0, cons(0,nil)))

X = cons(a(0), cons(b(0), cons(c(0),nil)))
The widening simplifies this into:

X = cons(A, B)

A=0 B = cons(0, cons(0,nil))
A= a(0) B = cons(b(0), cons(c(0),nil))
then into:
X = cons(A, B) C=0
A=0 C'=1b(0)
A= a(0) D = cons(0,nil)

B = cons(C, D)

and then into:

D = cons(c(0),nil)

X = cons(A, B) C'=1(0)

A=0 D= cons(E, F)
A= a(0) E=o0

B = cons(C, D) E=c(0)

C=0 F=nil

Replacing, for presentation simplification, the non-ter-
minals with a single production by the righthand side
of this production, we obtain in more compact form:

X = cons(A, cons(B, cons(C,nil)))
A=0]a(0) B = 0]|b0) C = 0]c(0)

10Tf m = 1 no widening is necessary since there is still no sign
that the number of productions might increase forever.

176

The next iteration gives:

X = cons(0, cons(0, cons(0,nil)))

X = cons(a(A), cons(b(B), cons(c(C),nil)))

X = cons(A, cons(B, cons(C,nil)))

A= 0]a0) B=0]|b0) C = 0]c(0)
so that application of the widening simplification rules
leads to:

X = cons(A’, cons(B’, cons(C’,nil)))
A" = 0]a(0)]a(4’) B = 0]|b(0)]|b(B")
C' = 0]c(0)]c(CH
and to:
X = cons(A”, cons(B", cons(C",nil)))
A" = 0|a(A”) B" = 0|b(B")
C" = 0|c(C™
This is the final result since the next iterate proves con-

vergence. This widening leads to the approximation of
the language {a”b"¢™ : n > 0} by a*b~c¢*. O

6.2 Finitary abstract property transformer

Another solution to the convergence problem is to mask
the explicit use of a widening when defining a finitary
grammar transformer FY € Dy, — D, satisfying the
soundness condition Fy o v, - Ve 0 £, which is com-
putable and satisfies the following convergence condi-

tion'!:

In>0:FI" (L) = FT (L), (14)

specifying that F'7"(L,),n > 0 ultimately reaches a
fixpoint. Defining:

S F97 (L,

such that F7"(L,,)

def

) where m is the least n
FE (L)

gr

sT

we conclude that the abstract semantics is computable
and sound: S, C 74 o 'ygr(Sgr). Moreover, if F7 18
monotonic then S, = lfp 'Y, and this least fixpoint is
computable. This kind of completeness result is often
argued to be preferable to the use of a widening. This
is illusory since lfp F' is computable whereas the truly
interesting Ifp F, is not (and may even not exist at all
e.g. when limits are missing). Moreover a finitary ab-
stract property transformer can always be defined using
a widening: FY, ZAX-X V F (X).

Using a finitary abstract property transformer, we
have an abstract interpretation with iterative fixpoint
computation such that (a), (b), (c) hold while (d) and
(e) are now:

(d°) FY, satisfies the soundness condition Fy o 7 -

Yo o P and 1s computable;

(¢’) The increasing chain FY"(L,),n > 0 of iterates

15 converging in a finite number of steps to the least

fizpount lfp IS, (s0 that no widening is necessary).

11f FY, is known to be monotone or extensive, the weaker con-

dition FY(FT"(Lg)) C FT" (L) is sufficient.

6.2.1 A meta-language for finitary grammar transformers

One way of ensuring that FY is finitary in the sense of
(14) is to define F'Y as in (10) using a restricted form
of meta-expressions (9). Various forms of restrictions
can be considered. One generic way of enforcing these
restrictions is to require FY to be written in a specific
meta-language L., restricting meta-expressions to the
form:

X|L|{f0}|{fn(X1,,Xn)}|

n-1

(,)(
where 1 < ¢ < n and f? € X. The semantics of the
projection 1s:
{raele = {1t) € {elp}
In abstract form, the system of equations can also be
written using a variant of the “extended grammar” no-
X = ry

tation of [23]:
{vea

where A C I and the righthand sides are'?:
X L7,) |
X.f”'(j) | T |7y
It is interpreted as the fixpoint equation:

(T, N, P) FY({T, N, P))

where F'Y is a finitary grammar transformer, which
given a grammar (T, N, P), returns the grammar with
productions:

c =

)|61U62

(15)

ron=

(16)

U v = b

XeAa

(17)

such that [X = rx]% is inductively defined as follows.
If X £ Y then:

[¥x=V], = {X=T|Y=TeP
while if X = Y then:
X =M = ¥ =1], = 0
[=T, = {¥ =%

¥ = (,...)] =
{X¥ =" (A,..., A): /\?Ilﬁp(/'\,’j) + 0}
[Y=Yi"00, = {¥=T::
Y= (X, X X)) € PA

[[X =71 | Tz]]np = [[X = Tl]]np U [[X = Tz]]np
Now the iterates converge to the least solution:

In>0: FY(L,,) (Ly)
def

lip F'7, = S,

Fvn+1

sT

(18)

12This notation (15) and (16) sets up a confusion between gram-
mars and grammar transformers. For example the grammar rule
X = o denotes the grammar transformer A\G-G U {X¥ = o}).
This may be confusing since grammars and grammar transform-
ers have then to be formalized in the same way.

177

The language (16) can be enriched while preserving this
property (18) as in [2, 17, 27]'3.

Example For program (1), we can approximate Fi, de-
fined at (11) by the grammar transformer F'Y, as follows:

X = cons(0, cons(0, cons(0,nil)))
| cons(a(X1), cons(b(Az), cons(c(As),nil)))
X = X.cons'(}) Vo =Wy .cons(},
Vi = X.cons'(;) X = Vz.cons'(})
X2 = Vi.consyy,
The iterative fixpoint computation leads to the approx-
imation of the language {a™b"¢™ : n > 0} by a*b*c*14.
To see this, let us consider the simpler fixpoint equation:
X = cons(A,N) X = cons(B,N)
A=0 B=a(C)

N =nil C=> X.cons'(})

The iterates are the grammars (77, N* P") such that:
P =9
Pt={A4= 0,N = nil}
P? = {X = cons(A4A,N), A = 0, N = nil}
P’ ={X = cons(A,N), A= 0,V = nil, = 0}
Pt ={X = cons(A4A,N), A = 0, N = nil,

X = cons(B,N),B = a(C),C = 0}
For n > 5:
P" ={X¥ = cons(4,N), A = 0, = nil,

X = cons(B,N),B = a((),C = 0,C = a(C)}

a

6.2.2 Abstraction of an infinitary formal language trans-
former by a finitary grammar transformer

We show how to abstract Fy written using the meta-
language (9) by F,, = &,(Fy) written using the meta-
language (16) while satisfying the soundness condition
Fa o Yer - Yer © P If Fy is defined by the system
of equations (10) then F, = &.(Fy) is defined by the

grammar with productions:
({X —ey:X € A}) = U OzE(X :6)()
xea

The abstraction of each equation is a grammar produc-
tion plus possibly auxiliary productions:

ap(X =e) = et (¢!, RY = a.(e) in
{X:>e’}UR

ae(e) is used to compute the righthand side of a produc-
tion corresponding to an equation X' = e. This intro-
duces auxiliary productions R which involve new aux-
iliary set-variables Z, Zy, ..., Z, and Zt with rules

13For the sake of brevity we do not consider intersection and
restricted negation since the general approach remains exactly
the same in that case.

14Observe that the value of variable X given by a context-
sensitive language must be approximated by a regular language,
showing that the assertion that “Set based approximations ig-
nore all information about inter-variable dependencies, but make
no other approximations” on page 133 of [17] is overstated.

{27 = f"(Z7,...,2Z7) : " € I} representing the ab-
sence of information. a.(e) is defined by induction on
the syntax of e. We start with simple cases. In partic-
ular negation is ignored:

Q) E (X 0) a(T) E (2, 0)
(L) (L) aue) E an(T)
We approximate:
a({T" Ty €er,....Th €Een}) =
ao(({T': Ti € ei})

i=1
by an intersection, which apart from simple cases, is
also ignored:

def

ae(L Neq) d:f ae(Ll) aclesnl) d:f (L)
ac(e1NT) = acler) ac(TNey) = acler)
ae(e1 Nes) = ae(er)

The definition of a.(e; Nes) seems arbitrary, but this is
a common practice in program analysis e.g. when tests
are ignored [19]. Grammars are well suited to handle
union exactly:

ae(e1 Ues) = ae(er) ® ae(eq)
(e1, Ri) @ (€2, Ry) (e1 le2, 1 U Rs)

We now define a.({7T'}) by induction on the syntax of
term 1™

ae({z}) F au(T) ac({fh = f°
ae({fn(Tla s aTn)}) =
("(Z1. ..), UL, an(Z = 1)
We define Tz := X] to be the substitution of set-variable
X for the term-variable x within term 7T, so as to obtain
the righthand side of a grammar production:

=X = X Yo =] = 27
f0[$ —] det €0
Ty, T =] =

"(Tix = &), Thle = X))

After these preliminaries, we define a.({7" : T € e}) by
induction on the syntax of e and, if necessary on the
syntax of T":

a({T" T e1}) = al(l)
a({T":TeTH = a({I"})
a({T" 2 e X)) = {T[c:=]}
o({T": fe X)) = a({17})

o ({T (T, T e X)) =
Oze({T/ : T1 € ”-(})(X),,Tn c n(i)(X)})

Observe that once again tests f* € X are ignored (but
could be taken into account since this question is de-
cidable for regular tree grammars). Dependencies be-
tween components of an n-ary constructor are ignored
in ac({77 : fM(T1,...,T) € X}). Let us define the
notation:

(e, RYW R’

d_ef<

e, RUR')

178

The projection can be reduced to the required form Y =
X[, as follows:

ac({T" 1y € FP(X), Tigr € (),
T, € 70, (X)})

Z] T € fn-(:+1)(X)a R
Ty e fro,(MHwi{zZ =0}

ae ({17 9" € f"'(:)(X),TZ'+1 € fn-(:+1)(X)a
ST € ()}

def

a({T"[y :

def

= ae({T E+1 € fn-(:+1)(X)’ B
Ty € [0, (X))
aé({T/:gn(Tla"'a)Efn () Z-I-lE
”<3+1>(/"~’) T € [0, (A))
= o, ({T": Ty € f”'(j+1)(/’l,’),...,
Tn € [0 (X)})

Let us finish the definition of «,({7" : T € e}) by in-
duction on the syntax of e:

ac({T - Te{T"}}) =
a({T":T ez} Wap(Z ={T"})
({T/ = {T// o A= 6}}) det
ac({T":TEeEZNWag(Z={T":T" ce})
Again union is handled exactly while intersection and

negation are approximated very roughly:

a({T':T €€ Ues}) &

w{T i Teer) @ T : T € es))
a({T":T € Lnes)) Ea.({T": T e 1})
a({T":TEerN L)) Ta({T":Te L}
ac({T T E€TNex}) = a.({T": T € es})
a({T:TEerNTH Z a.({T": T Eer})
ac({T" : T € e; Nea}) = ac({T" : T € ey}

a{T:TE=e}) Ea. (T TETY

Observe that in set-constraint-based analysis, part of
this abstraction process i1s performed as a simplification
process while solving set-constraints.

6.2.3 Finitary Set Constraints Transformer

The finitary grammar transformer (15) can be rewritten
in a sets of constraints transformer form:

Lre.

X eA
where A C I and the righthand sides are:
R NI S B T2 VIR A I o A

|61U62

Cx

(19)

C

For solving this system of inequations iteratively, a cha-
otic iteration with initial empty set of constraints may
be chosen to start with the evaluation of the constraint
transformers of the form A D ¢; U ¢o which introduce
the constraints X D ¢1, X D ¢3. This can be under-
stood as conversion in the standard form of [17]. When

this is done, these components of the system of inequa-
tions (19) are definitely stable whence no longer need to
be considered. Moreover we have seen that this opera-
tion can be done when the system of inequations (19)
(or (15)) is established. The same way the constraint
transformers like X D f® and X' D (A, ..., Xy) can
be evaluated only once. Alternatively, since these con-
straint transformers are written in the same syntax as
the constraints themselves, they can be understood as
initial constraints. Then the chaotic iteration only con-
cerns the projections X D y.f”'(f). These iterates can
then be confused with those of a constraint transformer
algorithm. With this explanation one can always claim
that (19) is not solved iteratively [17, 16]'5 . However
the resolution is isomorphic with the least fixpoint cha-
otic 1teration that we have just defined.

6.3 A Program Dependent Finite Grammar Abstract Do-
main

A finite grammar abstract domain D_,[P] C D,, can be
considered for each particular program P'®. This can
be used as an alternative proof of (18). Indeed, observe
that the system of equations (15) defines a transformer
FY over grammars such that if ¢ is in Greibach nor-
mal form (each production X' = ry has a standardized
righthand side of the form f° or f"(;, ..., &,)) then so
is F'Y(G). Since [is finite, there are finitely many non-
terminals X', A7, ..., A},. For each particular program
there are also finitely many possible terminals %, ™,
...since they must all occur in the program (formally in
the system of equations (15)). Moreover the initial nor-
malization of the system of equations (15) into Greibach
normal form introduces finitely many new non-termi-
nalsin I. Let D[P] be the set of grammars in Greibach
normal form that 1s with non-terminals in I, terminals
appearing in program P and rules with standardized
righthand sides of the form f° or (X, ..., &,). For
each P, D_[P] is finite since there are only finitely
many possible different productions. However D,, =
Up Dg.[P] is infinite (since the terminal vocabulary may
be infinite). The convergence (18) follows immediately
from the observation that for a particular program P we
need not reason on FY € Dy, Dy,. Since Fy 1s defined
by (15), we can, by definition of [X = rx]% in (17),
equally well reason on FY, € D, [P] — Dg[P]. By re-
stricting the grammar/set-constraint-based analysis of
a given program P to the finite abstract domain D [P],
we understand grammar/set-constraint-based program

15[16] states that “The fundamental difference between set
based analysis and other approaches in literature (which are based
on abstract interpretation) is that set based analysis does not
employ an iterative least fixpoint computation over a finitary
domain.”

16 This was suggested to us by Alain Deutsch.

179

analysis as a simple finite abstract interpretation®”.

We have an abstract interpretation such that for each

program P:

— The abstract domain D [P] has finitely many ab-
stract values G representing infinite concrete sets
Vel G1(X);

— All abstract values in domain D,[P] have a finite
representation;

— The abstract property transformer F,, maps an ab-
stract value G € D[P] into an abstract value F(G)
c DgI[P]lg,'

— The increasing chain F," (L), n > 0 of iterates is
finite whence converges to the least fixzpoint fp F,.
The choice of a program dependent abstract domain

is a common practice, e.g. when choosing to associate

abstract values to variables occurring in the program.

6.4 Language independent implementation

It is essential to specify language-independent abstract
interpretations in order to obtain reuseable implemen-
tations or at least to minimize the language-dependent
part.

An implementation of a program analysis by gram-
mar /set-constraint-based approximation of formal lan-
guages would have a programming-language-dependent
part consisting in a compiler for translating a program
into the formal language transformer Fj written in the
meta-language £, (more precisely into a sentence of the
meta-language the semantics of which is Fy).

The programming-language-independent part of this
implementation would consists of a simplifier of the for-
mal language transformer Fy (written using the meta-
language (9)) into the finitary grammar transformer
F'Y (written in the meta-language L) such that Fi,
= &, (Fy). This is possible since the abstraction &,, is
computable. Moreover, reusable chaotic fixpoint com-
putation algorithms can be used to evaluate lfp F,,.

Such partly reusable implementations have been de-
signed which are mono-language and multi-analysis (see
e.g. [26]). The proposition here is mono-analysis and
multi-language. Practical experience is necessary as far
as incorporation in real systems is concerned.

7. Combining Grammar and Non-Grammar-Based Abstrac-
tions

Grammar-based abstractions can be combined with non-
grammar-based ones. For example, one can consider

17 Therefore the statement on page 198 of [20] that abstract
interpretation is “limited by the essentially finite bound on the
number of different states between which the approximate reason-
ing can discriminate” indeed applies to set-based analysis. That
it does not apply to abstract interpretation was shown in [8] using
widening.

18Here the abstract values encoding abstract properties are
grammars.

an index I which is partitioned into a set of symbolic
variables I, and a set of numerical variables [,... An

example of reduced product [6] with X', € I, and
A, B € I,.., would be:

X = cons(A, X)|nil
Y = cons(B,Y) |nil

which seems an interesting alternative to [18] where nu-
merical values are handled symbolically (i.e. A = 0 |
A+2|A—-2and B=1|B+2]|B—2). This can be
generalized to dependence-sensitive numerical abstract
domains [15] such as:

X = cons(A, X)|nil
Y = cons(B,Y) |nil

One particular case of reduced product consists in con-
sidering the product of the concrete and abstract do-
mains, using the abstract domain for defining widen-
ings on the concrete one, which is essentially what is
implicitly done in [21].

A=0mod 2
B=1mod2

2A4 +3B=0mod 2

8. Context-Sensitive Grammar Abstractions

Although the abstractions considered so far are context-
free with respect to indexes, nothing prevents using the
usual abstract interpretation techniques to obtain rela-
tional, i.e. context sensitive or polyvariant analyses.
One such technique, abstract latlice completion [6, 9],
consists in considering an abstract domain made of sets

of formal languages/grammars/sets of constraints D,
def

= I — p(p(L)). For example, a different formal lan-
guage/grammar /set of constraints can be used for each
function call to obtain a polyvariant analysis. This is
considered as an implementation trick in section 10 of
[19], maybe because, for finite sets, it can be obtained
by copying parts of the program (see also e.g. [30]).
Since in general the size of such sets (or the number of
copies) must be limited, a widening is necessary (e.g.
which naively consists in limiting the size of sets to two
elements as in [19] (so that the idea of exact approx-
imation of the collecting semantics (S, = «(S.,)) is
no longer valid and knowledge of the program analysis
algorithm is required to predict which parts of the pro-
gram will be copied) or may involve more sophisticated
ideas such as dynamic partitioning, as in [4]).

Another powerful way of refining the grammar anal-
ysis is to consider an abstract domain which consists of a
grammar where a different counter is used for each pro-
duction to count the number of times the production
1s used in the derivation of a symbolic value. By an-
alyzing numerical relationships between these counter
values, one can express context-dependent non-uniform
information akin to [12, 13, 14]. For example, approxi-
mating numerical relationships by linear equalities [25],
we would obtain the language {a‘ct : ¢ > 0} for pro-
gram (1) in the form of the following grammar with
counters:

180

X == cons(A, cons(B, cons(C,nil)))

A= 0 B = b(B)
A =5 a(A) ¢ =L o (20)
B == 0 C = c(C)

1t=3=Il=p=1A"Ak=m=gyg

This also provides a simple way to combine the analysis
of numerical and non-numerical data. For example in
program (1), the initial value n > 0 of variable n can
be taken into account. Then using the above context-
dependent grammar abstraction with approximation of
numerical relationships by linear inequalities [11], we
would obtain (20) with the additional constraint k& < n,
which is now a fairly precise invariant for the program
corresponding to the language {a‘b’c’ : 0 < ¢ < n}.

Observe that the above abstract interpretation is ob-
tained by refining F, as defined by F, = aa(F..), (10),
(9) and cannot be obtained from F, defined in (15),
(16) since all dependencies have already been lost in /Y.
This shows the limits of set-constraint-based program
analysis: the initial dependence-free approximation is
too coarse thus disallowing later refinements.

9. Conclusion

There has been a long tradition of using grammar-based
and set-constraint based analysis for functional and logic
programming languages. These have been traditionally
seen as fundamentally different from abstract interpre-
tation. On the contrary, we have shown that these for-
mal language/grammar /set-constraints program analy-
ses are abstract interpretations. This point of view has
several advantages:
— The presentation of these analyses is independent of
a particular (imperative, functional, parallel; logic,
ete) style of programming language and of a particu-
lar style of fixpoint specification (fixpoint operator,
system of equations, system of constraints, closure-
condition, rule-based formal system or game-theoretic
form) [10];
A reusable implementation can be designed by ex-
pressing the abstract property transformers (Fy, F,,
F¥) in common meta-languages (Lq, Ly,);
Combinations with other analyses (e.g. to handle
arithmetic) are possible;
Extensions to relational analyses allowing for vari-
ous forms of polyvariance are easy (e.g. by lattice
completion) and no longer need to be presented as
implementation tricks;
Abstract domains can be refined (e.g. using coun-
ters) to obtain powerful context sensitive program
analyzes.
— The idea of using grammar codings of infinite sym-
bolic sets can be generalized. For example, one can

Acknowledgments

conslder:

— Infinite regular trees, e.g. to handle lazy func-
tional programming languages with infinite data
structures or PROLOG III;

Generalizations of formal (string) language the-
ory such as (hyper)graph language theory and
grammars (to describe abstract properties) and
(hyper)graph rewriting techniques (to describe ab-
stract semantic transformers) to handle aliases,
sharing, etc.

This work was partly supported by Es-

PRIT BRA 8130 LOMAPS. We thank Nevin Heintze for his
seminar at ENS on Oct. 21, 1994 and for the ensuing an-
imated discussions, Christopher Colby, Alain Deutsch and
Arnaud Venet for their remarks on a preliminary version of
this paper and the referees for their kind comments.

References

(1]

(2]

[10]

[11]

A. Aiken & B. R. Murphy. Implementing regular tree
expressions. Proc. 5t FPCA, LNCS 523, 427-447.
Springer-Verlag, 1991.

A. Aiken & B. R. Murphy. Static type inference in
a dynamically typed language. In 18" AcM POPL,
279-290, 1991.

A. Aiken & E. L. Wimmers.
constraints (extended abstract).
LICS’92, 329-340, 1992.

F. Bourdoncle. Abstract interpretation by dynamic par-
titioning. J. Func. Prog., 2(4), 1992.

P. Cousot & R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In 4th ACM
POPL, 238252, 1977.

P. Cousot & R. Cousot. Systematic design of program
analysis frameworks. In 6 AcMm POPL, 269-282,
1979.

P. Cousot & R. Cousot. Abstract interpretation frame-
works. J. Logic and Comp., 2(4):511-547, 1992.

P. Cousot & R. Cousot. Comparing the Galois connec-
tion and widening/narrowing approaches to abstract
interpretation. Proc. PLILP’92, LNCS 631, 269-295.
Springer-Verlag, 1992.

Solving systems of set

In Proc. 7" IEEE

P. Cousot & R. Cousot. Higher-order abstract interpre-
tation (and application to comportment analysis gen-
eralizing strictness, termination, projection and PER
analysis of functional languages). In Proc. 1994 IEEE
ICCL, 95-112, 1994.

P. Cousot & R. Cousot. Compositional and inductive
semantic definitions in fixpoint, equational, constraint,
closure-condition, rule-based and game-theoretic form.
In Proc. CAV’95 LNCS, Springer-Verlag, to appear,
1995.

P. Cousot & N. Halbwachs.
linear restraints among variables of a program. In 5th

ACM POPIL, 84-97, 1978.

Automatic discovery of

181

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

A. Deutsch. An operational model of strictness prop-
erties and its abstraction. Proc. 1991 Glasgow Univer-
sity Functional Programming Workshop, Workshops in
Comp., 82-99. Springer-Verlag, 1991.

A. Deutsch. A storeless model of aliasing and its ab-
straction using finite representations of right-regular
equivalence relations. In Proc. 1992 IEEF ICCL, 2—
13, 1992.

A. Deutsch. Interprocedural may-alias analysis for
pointers: beyond k-limiting. In Proc. ACM PLDI 230—
241, 1994.

P. Granger. Static analysis of linear congruence equali-
ties among variables of a program. Proc. TAPSOFT’91,
Vol. 1 (CAAP’91), LNCS 493, 169-192. Springer-
Verlag, 1991.

N. Heintze. Practical aspects of set based analysis. In
Proc. Joint Int. Conf. and Symp. on Logic Program-
ming, 765-779. MIT Press, 1992.

N. Heintze. Set Based Program Analysis. PhD,
Carnegie Mellon University, Pittsburgh, Pa., Oct. 1992.
N. Heintze. Set based analysis and arithmetic. In Proc.
ACM Conf. Lisp & Func. Prog., 306-317, 1993.

N. Heintze. Set-based analysis of ML programs (ex-
tended abstract). In Proc. ACM Conf. Lisp & Func.
Prog., 1994.

N. Heintze & J. Jaffar. A finite presentation theorem
for approximating logic programs (extended abstract).
In 17" ACM POPL, 197-209, 1990.

N. Heintze & J. Jaffar. An engine for logic program
analysis. In Proc. 7" IEEE LICS5°92, 318-328, 1992.
N. D. Jones. Flow analysis of lazy higher-order func-
tional programs. In S. Abramsky & C. Hankin, eds.,
Abstract Interpretation of Declarative Languages, 103—
122. Ellis Horwood, 1987.

N. D. Jones & S. S. Muchnick. Flow analysis and op-
timization of LISP-like structures. In 6% ACM POPL,
244-256, 1979.

N. D. Jones & S. S. Muchnick. A flexible approach to
interprocedural data flow analysis and programs with
recursive data structures. In 9" ACM POPL, 66-74,
1982.

M. Karr. Affine relationships among variables of a pro-
gram. Acta Inf., 6:133-151, 1976.

B. Le Charlier & P. Van Hentenryck. Experimental
evaluation of a generic abstract interpretation algo-
rithm for Prolog. In Proc. 1992 IEFE ICCL, 137-146,
1992.

P. Mishra & U. Reddy. Declaration-free type checking.
In 12" ACM POPL, 7-21, 1985.

J. Palsberg. Global program analysis in constraint
Proc. 19" CAAP’94, LNCS 787, 276-290.
Springer-Verlag, 1994.

form.

J. Reynolds. Automatic computation of data set defi-
nitions. In Information Processing’68, 456-461. North
Holland, 1969.

M. H. Sgrensen. A grammar-based data-flow analysis
to stop deforestation. Proc. 19t CAAP’94, LNCS 787,
335-351. Springer-Verlag, 1994.

