
1

Constructive Design of a Hierarchy of Semantics of a Transition System

by Abstract Interpretation

Patrick Cousota

aDépartement d’Informatique, École Normale Supérieure, 45 rue d’Ulm, 75230 Paris
cedex 05, France, Patrick.Cousot@ens.fr, http://www.di.ens.fr/~cousot

We construct a hierarchy of semantics by successive abstract interpretations. Starting
from the maximal trace semantics of a transition system, we derive the big-step seman-
tics, termination and nontermination semantics, Plotkin’s natural, Smyth’s demoniac
and Hoare’s angelic relational semantics and equivalent nondeterministic denotational se-
mantics (with alternative powerdomains to the Egli-Milner and Smyth constructions),
D. Scott’s deterministic denotational semantics, the generalized and Dijkstra’s conser-
vative/liberal predicate transformer semantics, the generalized/total and Hoare’s partial
correctness axiomatic semantics and the corresponding proof methods. All the semantics
are presented in a uniform fixpoint form and the correspondences between these seman-
tics are established through composable Galois connections, each semantics being formally
calculated by abstract interpretation of a more concrete one using Kleene and/or Tarski
fixpoint approximation transfer theorems.

Contents

1 Introduction 2

2 Abstraction of Fixpoint Semantics 3
2.1 Fixpoint Semantics . 3
2.2 Fixpoint Semantics Approximation . 4
2.3 Fixpoint Semantics Transfer . 5
2.4 Semantics Abstraction . 7
2.5 Fixpoint Semantics Fusion . 8
2.6 Fixpoint Iterates Reordering . 8

3 Transition/Small-Step Operational Semantics 9

4 Finite and Infinite Sequences 9
4.1 Sequences . 9
4.2 Concatenation of Sequences . 10
4.3 Junction of Sequences . 10

5 Maximal Trace Semantics 10

Patrick.Cousot@ens.fr
http://www.di.ens.fr/~cousot

2

5.1 Fixpoint Finite Trace Semantics . 11
5.2 Fixpoint Infinite Trace Semantics . 11
5.3 Fixpoint Maximal Trace Semantics . 12
5.4 Potential Termination Semantics . 13

6 The Maximal Trace Semantics as a Refinement of the Transition Semantics 15

7 Relational Semantics 15
7.1 Finite/Angelic Relational Semantics . 15
7.2 Infinite Relational Semantics . 16
7.3 Inevitable Termination Semantics . 19
7.4 Natural Relational Semantics . 20
7.5 Demoniac Relational Semantics . 23

8 Denotational Semantics 26
8.1 Nondeterministic Denotational Semantics 26

8.1.1 Natural Nondeterministic Denotational Semantics 26
8.1.2 Convex/Plotkin Nondeterministic Denotational Semantics 28
8.1.3 Demoniac Nondeterministic Denotational Semantics 30
8.1.4 Upper/Smyth Nondeterministic Denotational Semantics 32
8.1.5 Minimal Demoniac Nondeterministic Denotational Semantics 33
8.1.6 Angelic/Lower/C.A.R. Hoare Nondeterministic Denotational Semantics 35

8.2 Deterministic Denotational Semantics . 36
8.2.1 Deterministic Denotational Semantics of Nondeterministic Transition Systems 36
8.2.2 D. Scott Deterministic Denotational Semantics of Locally Deterministic Transition

9 Predicate Transformer Semantics 38
9.1 Correspondences Between Denotational and Predicate Transformers Semantics 39
9.2 Generalized Weakest Precondition Semantics 42
9.3 E. Dijkstra Weakest Conservative Precondition Semantics 44
9.4 E. Dijkstra Weakest Liberal Precondition Semantics 46

10 Galois Connections and Tensor Product 47

11 Axiomatic Semantics 50
11.1 R. Floyd/C.A.R. Hoare/P. Naur Partial Correctness Semantics 50
11.2 R. Floyd Total Correctness Semantics . 52

12 Lattice of Semantics 53

13 Conclusion 53

1. Introduction

The main idea of abstract interpretation is that program static analyzers effectively
compute an approximation of the program semantics so that the specification of program
analyzers should be formally derivable from the specification of the semantics [9, 12].

3

The approximation process which is involved in this derivation has been formalized using,
among equivalent formalizations, by Galois connections for static approximation and by
widening narrowing operators for dynamic approximation [13].
The question of choosing which semantics one should start from in this calculation

based development of the analyzer is not obvious: originally developed for small-step
operational and predicate transformer semantics [15], the Galois connection based ab-
stract interpretation theory was later extended to cope in exactly the same way with
denotational semantics [18].
In order to make the theory of abstract interpretation independent of the initial choice

of the semantics we show in this paper that the specifications of these semantics can
themselves be derived from each other by the same Galois connection based calculation
process. It follows, by composition, that the initial choice is no longer a burden, since the
initial semantics can later be refined or abstracted exactly without calling into question
the soundness (and may be the completeness) of the previous semantic abstractions.
The correspondance which is established between the considered semantics provides a

unifying point of view which is also a contribution to the long-dating study of relationships
between semantic descriptions of programming languages (e.g. [3, 34, 44]).

2. Abstraction of Fixpoint Semantics

2.1. Fixpoint Semantics
A fixpoint semantics specification is a pair 〈D, F 〉 where

– the semantic domain 〈D, �,⊥, �〉 is a poset that is a set D equipped with

- a partial order � ⊆ D×D (which is reflexive (∀x ∈ D : x � x), antisymmetric
(∀x, y ∈ D : (x � y ∧ y � x) =⇒ (x = y)) and transitive (∀x, y, z ∈ D : (x �
y ∧ y � z) =⇒ (x � z))),

- an infimum ⊥ (such that ∀x ∈ D : ⊥� x),

- a partially defined least upper bound � (lub), which is an upper bound (∀S ⊆
D : ∀s ∈ S : s � � S) and the least one (∀S ⊆ D : ∀m ∈ D : (∀s ∈ S : s �
m) =⇒ (� S � m));

– the semantic transformer F is a total map from D to D (denoted F ∈ D �−−→ D)
assumed to be

- monotone (denoted F ∈ D
m�−−→ D

∆
= 1 {ϕ ∈ D �−−→ D | ∀x, y ∈ D : (x �

y) =⇒ (ϕ(x) � ϕ(y))})
- iteratable (that is the transfinite iterates of F from ⊥ (defined as F 0 ∆

= ⊥,
F δ+1 ∆

= F (F δ) for successor ordinals δ + 1 and F λ
∆
= �
δ<λ

F δ for limit ordinals

λ) are well-defined).

For example if 〈D, �,⊥, �〉 is a directed-complete partial order or DCPO then monotony
implies iteratability [1].

1 ∆= stands for “is defined as”.

4

The Kleenian fixpoint theorem (see a.o. [14] for a proof) states that by monotony, these
transfinite iterates form an increasing chain, hence reach a fixpoint so that the iteration
order can be defined as the least ordinal ε such that F (F ε) = F ε. This fixpoint is the

�-least one F ε = lfp
�
F .

So the fixpoint semantics S can be specified as the �-least fixpoint S ∆
= lfp

�
F = F ε

of F .
We prefer semantics specifications in fixpoint form which directly leads to proof methods

using D. Park [45] or D. Scott [22] induction and to iterative program analysis algorithms
by fixpoint approximation [13]. Other presentations, in particular in rule-based form, are
equivalent after a suitable generalization as proposed in [19].
For example, by partially defining the meaning of rules

{Pi
Ci

∣∣∣ i ∈ ∆
}

on the semantic domain 〈D, �,⊥, �〉 as:

lfp
�
λX·⊔{Ci | i ∈ ∆ ∧ Pi � X} ,

if it exists, then an equivalent rule-based presentation of the fixpoint semantics is:

{ X

F (X)

∣∣∣ X ∈ D
}
,

with meaning lfp
�
F since λX·�{Ci | i ∈ ∆ ∧ Pi � X} = F 2.

2.2. Fixpoint Semantics Approximation
In abstract interpretation, the concrete semantics Sˇ is approximated by a abstract

semantics Sˆ via an abstraction function α ∈ Dˇ �−−→ Dˆ such that α(S)̌ �ˆ Sˆ 3,4.
The abstraction is exact 5 if α(S)̌ = Sˆ and approximate if α(S)̌ �ˆ S .̂ To derive Sˆ

from Sˇ by abstraction or Sˇ from Sˆ by refinement, we can use the following fixpoint
approximation theorems (as usual, we say that a function f is Scott-continuous, written
f : D

c�−−→ E, if and only if it is monotone and preserves the lub of any directed subset

A of D [1] and ⊥-strict, written f : D
⊥�−−→ E, if and only if f(⊥) = ⊥):

Theorem 1. (Kleenian fixpoint approximation). Let 〈〈D ,̌ � ,̌ ⊥̌ , � 〉̌, F 〉̌ and
〈〈D ,̂ � ,̂ ⊥̂ , � 〉̂, F 〉̂ be concrete and abstract fixpoint semantics specifications.

2Observe that in both the fixpoint and the rule-based presentations of the semantics we make abstrac-
tion of the metalanguage which has to be used for formally defining the semantics of the programming
language. So our approach is model-oriented or “relative” (in the sense for example of relative complete-
ness) since we reason on the mathematical objects which should be defined by the metasemantics of this
metalanguage, not on the way they are or can be formally specified by this metalanguage.
3More generally, we look for an abstract semantics Sˆ such that α(S)̌ �ˆSˆ for the approximation partial
ordering �ˆcorresponding to logical implication which may differ from the computational partial orderings
� used to define least fixpoints [18].
4For program static analysis, the abstract semantics Sˆis computable or can be dynamically approximated
by widening/narrowing [9, 13].
5We use the term exactness in preference to completeness as used in [15, 29] in order to avoid a possible
confusion with (relative) completeness in Hoare logic [11].

5

Assume that the ⊥-strict Scott-continuous abstraction function α ∈ Dˇ ⊥,c�−−→ Dˆ is such
that for all x ∈ Dˇsuch that x �ˇF (̌x) there exists y �ˇx such that α(F (̌x)) �ˆF (̂α(y)).

Then α(lfp
�̌
F)̌ �ˆ lfp�̂

F .̂

Proof. Let Fˇδ and Fˆ
δ
, δ ∈ O be the respective ordinal-termed �-increasing ultimately

stationary chains of transfinite iterates of Fˇ and Fˆ [14]. We have α(Fˇ0) = α(⊥̌) =

⊥̂ = Fˆ
0
by strictness of α and definition of the iterates. Assume α(Fˇδ) �ˆ Fˆδ by

induction hypothesis. We have Fˇδ �ˇF (̌Fˇδ) = Fˇδ+1 so that, by hypothesis, ∃y �ˇFˇδ
such that α(Fˇδ+1) �ˆ F (̂α(y)). By monotony of Fˆ and α, F (̂α(y)) �ˇ F (̂α(Fˇδ))
whence by transitivity, induction hypothesis, monotony of Fˆand definition of the iterates,
α(Fˇδ+1) �ˆF (̂α(Fˇδ)) �ˆ F (̂Fˆ

δ
) = Fˆ

δ+1
. Given a limit ordinal λ, assume α(Fˇδ) �ˆ

Fˆ
δ
for all δ < λ. Then by definition of the iterates, continuity of α, induction hypothesis

and definition of lubs, α(Fˇλ) = α(�ˇ
δ<λ

Fˇδ) = �ˆ
δ<λ

α(Fˇδ) �ˆ �ˆ
δ<λ

Fˆ
δ
= Fˆ

λ
. By transfinite

induction, we conclude ∀δ ∈ O : α(Fˇδ) �ˆFˆδ. Let ε and ε′ be the respective iteration

orders such that Fˇε = lfp
�̌
Fˇ and Fˆ

ε′
= lfp

�̂
F .̂ In particular α(lfp

�̌
F)̌ = α(Fˇε) =

α(Fˇmax{ε,ε′}) �ˆFˆmax{ε,ε′}
= Fˆ

ε′
= lfp

�̂
F .̂ �

A. Tarski’s fixpoint theorem [52] provides the basis for another fixpoint approximation
theorem whenever any abstract post-fixpoint is an upper-approximation of the abstraction
of a concrete post-fixpoint:

Theorem 2. (Tarskian fixpoint approximation). Let 〈D ,̌ F 〉̌ and 〈D ,̂ F 〉̂ be
concrete and abstract fixpoint semantics specifications such that 〈D ,̌ � ,̌ ⊥̌ ,� ,̌ � ,̌ � 〉̌
and 〈D ,̂ � ,̂ ⊥̂ ,� ,̂ � ,̂ � 〉̂ are complete lattices.
Assume that the monotone abstraction function α ∈ Dˇ

m�−−→ Dˆ is such that for all
y ∈ Dˆ such that F (̂y) �ˆy there exists x ∈ Dˇ such that α(x) �ˆy and F (̌x) �ˇx.
Then α(lfp

�̌
F)̌ �ˆ lfp�̂

F .̂

Proof. By the A. Tarski’s fixpoint theorem [52], monotony of α, hypothesis and def-

inition of greatest lower bounds (glb), we have α(lfp
�̌
F)̌ = α(� {̌x | F (̌x) �ˇ x}) �ˆ

� {̂α(x) | F (̌x) �ˇx} �ˆ� {̂y | F (̂y) �ˆy} = lfp
�̂
F .̂ �

2.3. Fixpoint Semantics Transfer
When the abstraction must be exact, that is α(S)̌ = S ,̂ we can use the following

fixpoint transfer theorem, which provides guidelines for designing Sˆ from Sˇ (or dually)
in fixpoint form [15, theorem 7.1.0.4(3)], [21, lemma 4.3], [3, fact 2.3] 6:

Theorem 3. (Kleenian fixpoint transfer). Let 〈D ,̌ F 〉̌ and 〈D ,̂ F 〉̂ be concrete
and abstract fixpoint semantics specifications.

Assume that the⊥-strict Scott-continuous abstraction function α ∈ Dˇ ⊥,c�−−→ Dˆsatisfies
the commutation condition Fˆ ◦ α = α ◦ F .̌
Then

6The composition of relations r1 and r2 is r1 ◦ r2
∆= {〈x, z〉 | ∃y : 〈x, y〉 ∈ r1 ∧ 〈y, z〉 ∈ r2} whence the

composition of functions is f ◦ g(x) ∆= f(g(x)).

6

– the respective iterates Fˇδ and Fˆ
δ
, δ ∈ O of Fˇ and Fˆ from ⊥̌ and ⊥̂ satisfy

∀δ ∈ O: α(Fˇδ) = Fˆ
δ
;

– α(lfp
�̌
F)̌ = lfp

�̂
F ;̂

– the iteration order of Fˆ is less than or equal to that of F .̌

Proof. Let Fˇδ and Fˆ
δ
, δ ∈ O be the respective ordinal-termed �-increasing ultimately

stationary chains of transfinite iterates of Fˇ and F .̂
We have α(Fˇ0) = α(⊥̌) = ⊥̂ = Fˆ

0
by strictness of α and definition of the iterates.

Assume α(Fˇδ) = Fˆ
δ
by induction hypothesis. By definition of the iterates, commutation

condition and induction hypothesis, we have α(Fˇδ+1) = α(F (̌Fˇδ)) = F (̂α(Fˇδ)) =

F (̂Fˆ
δ
) = Fˆ

δ+1
. Given a limit ordinal λ, assume α(Fˇδ) = Fˆ

δ
for all δ < λ. Then by

definition of the iterates, continuity of α and induction hypothesis, α(Fˇλ) = α(�ˇ
δ<λ

Fˇδ)

= �ˆ
δ<λ

α(Fˇδ) = �ˆ
δ<λ

Fˆ
δ
= Fˆ

λ
. By transfinite induction, we conclude ∀δ ∈ O : α(Fˇδ)

= Fˆ
δ
. In particular α(lfp

�̌
F)̌ = α(Fˇε) = α(Fˇmax{ε,ε′}) = Fˆ

max{ε,ε′}
= Fˆ

ε′
= lfp

�̂
Fˆ

where ε and ε′ are the respective iteration orders.
Fˇε is a fixpoint of Fˇ so that by the correspondence between iterates and the com-

mutation condition, we have F (̂Fˆ
ε
) = F (̂α(Fˇε)) = α(F (̌Fˇε)) = α(Fˇε) = Fˆ

ε
proving

that ε′ ≤ ε. �

Observe that in theorem 3 (as well as in theorem 1), Scott-continuity of the abstraction
function α is a too strong hypothesis since in the proof we only use the fact that α
preserves the lub of the iterates of Fˇ starting from ⊥̌ .
When this is not the case, but α preserves glbs, we can rely on A. Tarski’s fixpoint

theorem [52], the commutation inequality (Fˆ ◦ α �ˆ α ◦ F)̌ and the post-fixpoint
correspondence (each abstract post-fixpoint of Fˆis the abstraction by α of some concrete
post-fixpoint of F)̌:

Theorem 4. (Tarskian fixpoint transfer). Let 〈D ,̌ F 〉̌ and 〈D ,̂ F 〉̂ be concrete
and abstract fixpoint semantics specifications such that 〈D ,̌ � ,̌ ⊥̌ ,� ,̌ � ,̌ � 〉̌ and 〈D ,̂
� ,̂ ⊥̂ ,� ,̂ � ,̂ � 〉̂ are complete lattices.
Assume that the abstraction function α ∈ Dˇ

��−−→ Dˆ is a complete �-morphism sat-
isfying the commutation inequality Fˆ ◦ α �ˆα ◦ Fˇ and the post-fixpoint correspondence
∀y ∈ Dˆ: F (̂y) �ˆy =⇒ ∃x ∈ Dˇ: α(x) = y ∧ F (̌x) �ˇx.
Then α(lfp

�̌
F)̌ = lfp

�̂
F .̂

Proof. If F (̌x) �ˇx then α ◦ F (̌x) �ˆα(x) since α is monotone whence Fˆ ◦ α(x) �ˆ
α(x) by the commutation inequality. Together with the post-fixpoint correspondence, this
implies {α(x) | F (̌x) �ˇx} = {y | F (̂y) �ˆy}. By the A. Tarski’s fixpoint theorem [52]

and meet preservation, it follows that α(lfp
�̌
F)̌ = α(� {̌x | F (̌x) �ˇ x}) = � {̂α(x) |

F (̌x) �ˇx} = � {̂y | F (̂y) �ˆy} = lfp
�̂
F .̂ �

7

2.4. Semantics Abstraction
An important particular case of abstraction function α ∈ Dˇ �−−→ Dˆ is when α

preserves existing lubs α(�ˇ
i∈∆

xi) = �ˆ
i∈∆

α(xi). In this case there exists a unique map

γ ∈ Dˆ �−−→ Dˇ (so-called the concretization function [13]) such that the pair 〈α, γ 〉 is
a Galois connection, written:

〈D ,̌ � 〉̌ −−−→←−−−α
γ

〈D ,̂ � 〉̂ ,

which means that

– 〈D ,̌ � 〉̌ and 〈D ,̂ � 〉̂ are posets;

– α ∈ Dˇ �−−→ D ;̂

– γ ∈ Dˆ �−−→ D ;̌

– ∀x ∈ Dˇ: ∀y ∈ Dˆ : α(x) �ˆy ⇐⇒ x �ˇγ(y).

If α is surjective (resp. injective, bijective) then we have a Galois insertion written −−−→−→←−−−−
α

γ

(resp. embedding7 written −−−−→←←−−−−
α

γ
, isomorphism written −−−→−→←←−−−−

α

γ
). The use of Galois con-

nections in abstract interpretation was motivated by the fact that α(x) is the best possible
approximation of x ∈ Dˇwithin Dˆ [13, 15].

Example 5. (Subset abstraction). IfDˇis a set andDˆ⊆ Dˇthen 〈℘(D)̌,⊆〉 −−−→−→←−−−−
α

γ

〈℘(D)̂, ⊆〉 where α(X)
∆
= X ∩Dˆand γ(Y) ∆

= Y ∪¬Dˆ (where the complement of E ⊆ D
is ¬E ∆

= {x ∈ D | x �∈ E}). �

Example 6. (Elementwise set abstraction). If @ ∈ Dˇ �−−→ D ,̂ the abstraction

function α ∈ ℘(D)̌ �−−→ ℘(D)̂ is defined by α(X)
∆
= {@(x) | x ∈ X} and the concretiza-

tion function γ ∈ ℘(D)̂ �−−→ ℘(D)̌ is defined by γ(Y)
∆
= {x | @(x) ∈ Y } then 〈℘(D)̌,

⊆〉 −−−→←−−−α
γ

〈℘(D)̂, ⊆〉. Moreover, if @ is surjective then so is α. Classical examples are the

rule of signs [15] (where ∀z < 0 : @(z) = −1, @(0) = 0 and ∀z > 0 : @(z) = +1) and
abstract model checking [20, Section 14]. �

Example 7. (Supremus abstraction). If 〈D ,̂ �,⊥,�, �, �〉 is a complete lattice

and @ ∈ Dˇ �−−→ Dˆ then 〈℘(D)̌, ⊆〉 −−−→←−−−α
γ

〈D ,̂ �〉 with α(X)
∆
= �{@(x) | x ∈ X} and

γ(Y)
∆
= {x | @(x) � Y }. �

We often use the fact that Galois connections compose8. If 〈D ,̆ � 〉̆ −−−→←−−−
α1

γ1 〈D ,̌ � 〉̌ and
〈D ,̌ � 〉̌ −−−→←−−−

α2

γ2 〈D ,̂ � 〉̂ then 〈D ,̆ � 〉̆ −−−−−→←−−−−−
α2◦α1

γ1◦γ2 〈D ,̂ � 〉̂.
7If α and γ are Scott-continuous then this is an embedding-projection pair.
8contrary to Galois’s original definition corresponding to the semi-dual 〈D ,̌ � 〉̌ −−−→←−−−

α

γ
〈D ,̂ 〉̂.

8

Example 8. (Elementwise subset abstraction). If S ⊆ Dˇ and @ ∈ S �−−→ Dˆ

then by composition of examples 5 and 6, we get 〈℘(D)̌, ⊆〉 −−−→←−−−α
γ

〈℘(D)̌, ⊆〉 where
α(X)

∆
= {@(x) | x ∈ X ∩ S} and γ

∆
= {x | @(x) ∈ Y } ∪ ¬S. �

Finally, to reason by duality, observe that the dual of 〈D ,̌ � 〉̌ −−−→←−−−α
γ

〈D ,̂ � 〉̂ is 〈D ,̂

 〉̂ −−−→←−−−γ
α 〈D ,̌ 〉̌.

2.5. Fixpoint Semantics Fusion
Fixpoint semantics can often be defined by parts (e.g. corresponding respectively to

finite behaviors and infinite behaviors) which can be then fused into a single fixpoint
semantics (e.g. corresponding to all possible finite or infinite behaviors). The fusion of
two disjoint powerset fixpoint semantics can be expressed in fixpoint form, trivially as
follows:

Theorem 9. (Fixpoint fusion). Let {D+, Dω} be a partition of D∞ and 〈〈℘(D+),
�+〉, F+〉 and 〈〈℘(Dω), �ω〉, F ω〉 be fixpoint semantics specifications. Partially define:

X+ ∆
= X ∩D+,

Xω ∆
= X ∩Dω,

F∞(X)
∆
= F+(X+) ∪ F ω(Xω),

X �∞ Y
∆
= X+ �+ Y + ∧Xω �ω Y ω,

⊥∞ ∆
= ⊥+ ∪ ⊥ω,

�∞ ∆
= �+ ∪�ω,

�∞

i∈∆
Xi

∆
= �+

i∈∆
X+ ∪ �ω

i∈∆
Xi
ω,

�∞

i∈∆
Xi

∆
= �+

i∈∆
X+ ∪ �ω

i∈∆
Xi
ω .

Then

– if 〈℘(D+), �+〉 and 〈℘(Dω), �ω 〉 are posets (respectively DCPOs, complete lattices)
then so is 〈℘(D∞), �∞〉;

– if F+ and F ω are monotone (resp. Scott-continuous, complete �-morphisms) then
so is F∞;

– in all cases, lfp
�∞

F∞ = lfp
�+

F+ ∪ lfp
�ω

F ω whenever these fixpoints are well-
defined.

Proof. These results are known for the cartesian product ℘(D+) × ℘(Dω) with com-
ponentwise ordering �+ × �ω whence follow by the correspondance 〈℘(D+) × ℘(Dω),

�+ × �ω〉 −−−→−→←←−−−−
α

γ
〈℘(D∞), �∞〉 where α(〈X, Y 〉) = X ∪Y and γ(X) = 〈X+, Xω 〉 which

is a Galois isomorphism since {D+, Dω} is assumed to be a partition of D∞. �

2.6. Fixpoint Iterates Reordering

For some fixpoint semantics specifications 〈D, F 〉 the fixpoint semantics S
∆
= lfp

�
F =

lfp
�
F can be characterized using several different orderings �, �, etc. on the semantic

domain D, in which case the iterates are the same but just equally ordered by different
orderings:

Theorem 10. (Fixpoint iterates reordering). Let 〈〈D, �,⊥, �〉, F 〉 be a fixpoint
semantics specification (the iterates of F , i.e. F 0 ∆

= ⊥, F δ+1 ∆
= F (F δ) for successor

ordinals δ + 1 and F λ
∆
= �
δ<λ

F δ for limit ordinals λ, being well-defined). Let E be a set

and � be a binary relation on E, such that:

9

1. � is a pre-order on E;

2. all iterates F δ, δ ∈ O of F belong to E;

3. ⊥ is the �-infimum of E;

4. the restriction F |E of F to E is �-monotone;

5. for all x ∈ E, if λ is a limit ordinal and ∀δ < λ : F δ � x then
⊔
δ<λ

F δ � x.

Then lfp
�

⊥
F = lfp

�

⊥
F |E ∈ E.

Proof. Let ε be the order of the iterates of F . By (2), F ε ∈ E whence F |E(F ε) =
F (F ε) = F ε is a fixpoint of F |E .
Let x ∈ E be another fixpoint of F |E . By (2) and (3), F 0 = ⊥ � x. If F δ � x

by induction hypothesis then by (2) and (4), F δ+1 = F (F δ) = F |E(F δ) � F |E(x) = x.
By induction hypothesis and (5), F λ � x for limit ordinals λ. By transfinite induction,

∀δ ∈ O : F δ � x so lfp
�

⊥
F = F ε � x. �

3. Transition/Small-Step Operational Semantics

The transition/small-step operational semantics of a programming language associates
a discrete transition system to each program of the language that is a pair 〈Σ, τ 〉 where

– Σ is a (nonempty) set of states9;

– τ ⊆ Σ ×Σ is the binary transition relation between a state and its possible succes-
sors.

We write s τ s′ or τ (s, s′) for 〈s, s′〉 ∈ τ using the isomorphism ℘(Σ×Σ) " (Σ×Σ) �−−→ B

where B
∆
= {tt,ff} is the set of booleans and

τ̌
∆
= {s ∈ Σ | ∀s′ ∈ Σ : ¬(s τ s′)}

is the set of final/blocking states.

4. Finite and Infinite Sequences

Computations are modeled using traces that is maximal finite or infinite sequences of
states such that two consecutive states in a sequence are in the transition relation.

4.1. Sequences
Let A be a nonempty alphabet.

– A�0 ∆
= {�ε } where �ε is the empty sequence.

– When n > 0, A�n ∆
= [0, n− 1] �−−→ A is the set of finite sequences σ = σ0 . . . σn−1 of

length |σ| ∆
= n ∈ N over the alphabet A.

9We could also consider actions as in [33] or in process algebra [40].

10

– A�+
∆
= ∪
n>0

A�n is the set of nonempty finite sequences over A.

– The finite sequences are A�∗ ∆
= A�+ ∪ A�0.

– The infinite sequences σ = σ0 . . . σn . . . are A
�ω ∆
= N �−−→ A.

– The length of an infinite sequence σ ∈ A�ω is |σ| ∆
= ω.

– The sequences are A�∝
∆
= A�∗ ∪A�ω.

– The nonempty sequences are A �∞
∆
= A�+ ∪A�ω.

4.2. Concatenation of Sequences
The concatenation σ = η · ξ of sequences η, ξ ∈ A�∝ has length |σ| = |η| ⊕ |ξ| (where

#1 ⊕ #2 = #1 + #2 when #1, #2 ∈ N, ω ⊕ # = #⊕ ω = ω when # ∈ N ∪ {ω}) and is such that
σ� = η� when # < |η| while σ� = ξ�−|η| if |η| ≤ # < |σ|.
Thus if η, ξ ∈ A�∗, η · ξ is the ordinary concatenation. For all η ∈ A�ω, ξ ∈ A�∝, one has

η · ξ = η. For all η ∈ A�∝, �ε · η = η · �ε = η.
The concatenation extends to sets of sequences A and B ∈ ℘(A�∝) by A · B ∆

= {η · ξ |
η ∈ A ∧ ξ ∈ B}.

4.3. Junction of Sequences
Nonempty finite sequences η ∈ A�� and ξ ∈ A�m are joinable, written η ?

� ξ, iff η�−1 = ξ0.

Their join is then σ = η � ξ ∈ A
−−→
�+m−1 such that σn = ηn when 0 ≤ n < # and σ�−1+n =

ξn when 0 ≤ n ≤ m− 1.
Nonempty infinitary sequences η ∈ A �∞ of length |η| = # and ξ ∈ A �∞ of length |ξ| = m

(#,m ∈ N ∪ {ω}) are joinable, written η ?
� ξ, iff # = ω or # ∈ N, in which case η�−1 = ξ0.

The length of their join σ = η � ξ ∈ A �∞ is then |σ| = #⊕m$ 1 (where #1 $ #2 = #1 − #2
when #1, #2 ∈ N and ω − 1 = ω). Their join σ = η � ξ satisfies σn = ηn when 0 ≤ n < #
while σ�−1+n = ξn when # < ω ∧ 0 ≤ n < m$ 1. In particular, η � ξ = η when η ∈ A�ω is
infinite.
The junction of sets A and B ∈ ℘(A �∞) of nonempty sequences is A � B

∆
= {η � ξ | η ∈

A ∧ ξ ∈ B ∧ η ?
� ξ}.

Observe thatA�(∪
i∈∆

Bi) = ∪
i∈∆

(A�Bi) and (∪
i∈∆

Ai)
�B = ∪

i∈∆
(Ai

�B) but set of sequences

junction is not Scott-co-continuous on ℘(A �∞). A counter example on the alphabet A =
{a} uses X = {aω} and the ⊆-decreasing chain Yn = {a� | # ∈ N ∧ # > n}, n ∈ N such
that X � (∩

n∈N
Yn) = ∅ and (∩

n∈N
X � Yn) = {aω}.

5. Maximal Trace Semantics

Trace (or path) semantics model program computations by a set of finite or infinite
sequences of states (which can also be understood as representing a tree which nodes are
states). They have been used to specify the semantics both of programming languages [
33] and of modal logics [37].
Given a transition system 〈Σ, τ 〉, Σ�n is the set of finite sequences of length n over the

alphabet Σ and Σ�ω is set of infinite sequences over Σ, as defined in Section 4.1. The
maximal trace semantics τ �∞ of this transition system 〈Σ, τ 〉 is defined as follows:

11

– τ �̇n ∆
= {σ ∈ Σ�n | ∀i < n−1 : σi τ σi+1} is the set of partial execution traces of length

n > 0;

– τ �n ∆
= {σ ∈ τ �̇n | σn−1 ∈ τ̌ } is the set of maximal/complete execution traces of length

n > 0 terminating with a final/blocking state;

– τ �+ ∆
= ∪
n>0

τ �n is the maximal finite trace semantics ;

– τ �ω ∆
= {σ ∈ Σ�ω | ∀i ∈ N : σi τ σi+1} is the infinite trace semantics;

– Their join τ �∞ ∆
= τ �+ ∪ τ �ω is the maximal trace semantics.

5.1. Fixpoint Finite Trace Semantics
The finite trace semantics τ �+ can be presented in a unique fixpoint form as follows [

17, example 17] (lfp
�

a
F is the �-least fixpoint of F greater than or equal to a, if it exists

and dually, gfp
�

a
F

∆
= lfp

a
F is the �-greatest fixpoint of F less than or equal to a, if it

exists):

Theorem 11. (Fixpoint finite trace semantics). τ �+ = lfp
⊆

∅
F �+ = gfp

⊆

Σ�+
F �+ where

F �+ ∈ ℘(Σ�+)
∪�−−→ ℘(Σ�+) defined as F �+(X)

∆
= τ �1 ∪ (τ �̇2 � X) is a complete ∪- and ∩-

morphism on the complete lattice 〈℘(Σ�+), ⊆, ∅, Σ�+, ∪, ∩〉.

Proof. The first iterates of F �+ for lfp
⊆

∅
F �+ are X0 = ∅, X1 = F �+(X0) = τ �1 ∪ (τ �̇2 � ∅) =

τ �1, X2 = F �+(X1) = τ �1 ∪ (τ �̇2 � τ �1) = τ �1 ∪ τ �2, etc. By recurrence, the n-th iterate of F �+ is

Xn=
n
∪
i=1

τ�i since Xn+1 = F �+(Xn) = τ �1 ∪ (τ �̇2 � (
n
∪
i=1

τ�i)) = τ �1 ∪
n
∪
i=1

(τ �̇2 � τ�i) = τ �1 ∪
n
∪
i=1

τ
−→
i+1

= τ �1 ∪
n+1
∪
j=2

τ �j =
n+1
∪
i=1

τ�i. F �+ is a complete ∪-morphism so that by the Kleenian fixpoint

theorem, lfp
⊆

∅
F �+ = ∪

n∈N
Xn = ∪

n∈N

n
∪
i=1

τ�i = ∪
i>0

τ �i = τ �+.

The first iterates of F �+ for gfp
⊆

Σ
�+
F �+ are Y 0 = Σ�+, Y 1 = F �+(Y 0) = τ �1 ∪ (τ �̇2 � Σ�+),

etc. By recurrence, the n-th iterate of F �+ is Y n= (
n
∪
i=1

τ�i) ∪ (τ
−̇→n+1 � Σ�+) since Y n+1 =

F �+(Y n) = τ �1 ∪ (τ �̇2 � ((
n
∪
i=1

τ�i) ∪ (τ
−̇→n+1 � Σ�+))) = τ �1 ∪ (τ �̇2 � (

n
∪
i=1

τ�i)) ∪ (τ �̇2 � τ
−̇→n+1 � Σ�+)

= (
n+1
∪
i=1

τ�i) ∪ (τ
−̇→n+2 � Σ�+). F �+ is a complete ∩-morphism so that by the Kleenian dual

fixpoint theorem, gfp
⊆

Σ
�+
F �+ =

⋂
n∈N

Y n =
⋂
n∈N

((
n
∪
i=1

τ�i) ∪ (τ
−̇→n+1 � Σ�+)) = ∪

i>0
τ�i = τ �+ because

∀i, n ∈ N : τ�i ⊆ Y n and for all successive states 〈σi, σi+1〉 of a finite trace σ in
⋂
n∈N

Y n, we

have σi τ σi+1 since otherwise σ �∈ Y i+2. �

5.2. Fixpoint Infinite Trace Semantics
The infinite trace semantics τ �ω can be presented in ⊆-greatest fixpoint form as follows

[17, example 20]:

12

Theorem 12. (Fixpoint infinite trace semantics). τ �ω = gfp
⊆

Σ�ω
F �ω where F �ω ∈

℘(Σ�ω)
∩�−−→ ℘(Σ�ω) defined as F �ω(X)

∆
= τ �̇2 �X is a complete ∩-morphism on the complete

lattice 〈℘(Σ�ω), ⊇, Σ�ω, ∅, ∩, ∪〉. lfp⊆

∅
F �ω = ∅.

Proof. The first iterates of F �ω for gfp
⊆

Σ�ω
F �ω are X0 = Σ�ω = τ �̇1 � Σ�ω, X1 = F �ω(X0) =

τ �̇2 �τ �̇1 �Σ�ω = τ �̇2 �Σ�ω, etc. By recurrence ∀n ∈ N : Xn = τ
−̇→n+1 �Σ�ω since Xn+1 = F �ω(Xn)

= τ �̇2 � Xn = τ �̇2 � τ
−̇→n+1 � Σ�ω = τ

−̇→n+2 � Σ�ω. F �ω = λX· τ �̇2 � X is a complete ∩-morphism

on ℘(Σ�ω) so by the dual Kleenian fixpoint theorem, gfp
⊆

Σ�ω
F �ω =

⋂
n∈N

Xn =
⋂
n∈N

τ
−̇→n+1 � Σ�ω

=
⋂
n>0

τ �̇n � Σ�ω = τ �ω because ∀n ∈ N : τ �ω ⊆ Xn and for all successive states 〈σi, σi+1〉 of

an infinite trace σ in
⋂
n∈N

Xn, we have σi τ σi+1 since otherwise σ �∈ X i. �

5.3. Fixpoint Maximal Trace Semantics
By the fixpoint fusion theorem 9 and fixpoint theorems 11 and 12, the maximal trace se-

mantics τ �∞ can now be presented in two different fixpoint forms, as follows [17, examples
21 & 28]:

Theorem 13. (Fixpoint maximal trace semantics). τ �∞ = gfp
⊆

Σ �∞
F �∞ = lfp

� �∞

⊥�∞
F �∞

where F �∞ ∈ ℘(Σ �∞)
� �∞

�−−→ ℘(Σ �∞) defined as F �∞(X)
∆
= τ �1 ∪ τ �̇2 � X is a complete � �∞-

morphism on the complete lattice 〈℘(Σ �∞), � �∞,⊥�∞,� �∞, � �∞, � �∞〉 with

– X � �∞ Y
∆
= X �+ ⊆ Y �+ ∧X�ω ⊇ Y �ω,

– X �+ ∆
= X ∩ � �∞,

– � �∞ = Σ�+,

– X�ω ∆
= X ∩⊥�∞ and

– ⊥�∞ = Σ�ω.

Proof. We have τ �∞ ∆
= τ �+ ∪ τ �ω = lfp

⊆

∅
F �+ ∪ lfp

⊇

Σ�ω
F �ω = lfp

� �∞

Σ�ω
F �∞ by theorems 11, 12

and 9, where F �∞(X)
∆
= F �+(X �+)∪F �ω(X�ω) = τ �1∪τ �̇2 �X �+∪τ �̇2 �X�ω = τ �1∪τ �̇2 �(X �+∪X�ω)

= τ �1 ∪ τ �̇2 � X.
Moreover,

⊔
i

�∞ F �∞(Xi) =
⊔
i

�∞ τ �1 ∪ τ �̇2 �Xi = ∪
i
(τ �1 ∪ τ �̇2 �X

�+
i)∪

⋂
i

(τ �̇2 �X�ω
i) = τ �1 ∪ τ �̇2 �

(∪
i
X
�+
i ∪

⋂
i

X�ω
i) = F �∞(

⊔
i

�∞Xi).

By theorems 11, 12 and the dual of theorem 9, we also have: τ �∞ ∆
= τ �+ ∪ τ �ω = gfp

⊆

Σ
�+
F �+

∪ gfp
⊆

Σ�ω
F �ω = gfp

⊆

Σ �∞
F �∞. �

The nondeterminism of the transition system 〈Σ, τ 〉may be unbounded. Observe that this
does not imply absence of Scott-continuity of the transformer F �∞ of the fixpoint semantics

τ �∞ = lfp
� �∞

⊥�∞
F �∞, as already observed by [5] using program execution trees. This is not

13

in contradiction with [3, theorem 3.4] proving that there is no fully abstract continuous
compositional least fixpoint semantics that has a continuous full abstraction function.
This result is proved for a specific operational semantic domain only and does not apply
to all semantic domains. For example, unbounded nondeterminism is equivalent10 to weak
fairness and the description of fair executions can be refined into maximal execution traces
for a transition relation including an explicit universal scheduler.
We characterize the iterates of the various semantics that we consider in order to be able

to reorder them as described in section 2.6. This will show that besides the classical partial
orderings which are traditionally considered in fixpoint semantics, there exist alternative
orderings which coincide on the iterates but may differ elsewhere hence may be more
simple and/or expressive.

Corollary 14. (Arrangement of the iterates of F �∞). Let F �∞δ, δ ∈ O be the
iterates of F �∞ from ⊥�∞. Their order is ω and τ �∞ = F �∞ω = � �∞

n<ω
F �∞n. We have ∀n < ω :

F �∞n = (
n
∪
i=1

τ�i) ∪ (τ
−̇→n+1 � Σ�ω).

Proof. Let F �+
δ
(resp. F �ω

δ
), δ ∈ O be the iterates of F �+ (resp. F �ω) from ⊥�+ (resp. ⊥�ω).

Both have order ω. By transfinite induction, ∀δ ∈ O : F �∞δ = F �+
δ ∪ F �ωδ where for all

n < ω, F �+
n
=

n
∪
i=1

τ�i and F �ω
n
= τ

−̇→n+1 � Σ�ω as shown by the respective proofs of theorems

11 and 12. �

One may wonder why, following [17], we have characterized the trace semantics as τ �∞

= lfp
� �∞

⊥�∞
F �∞ while τ �∞ = gfp

⊆

Σ �∞
F �∞ is both more frequently used in the literature (e.g. [4])

and apparently simpler. This is because τ �∞ = lfp
� �∞

⊥�∞
F �∞ may lift to further abstractions

while τ �∞ = gfp
⊆

Σ �∞
F �∞ does not. For an example, let us consider potential termination.

This also illustrates the fundamental idea in abstract interpretation that the abstraction
specifies the observable properties on program behavior which can be specified in fixpoint
form by Kleenian or Tarskian fixpoint transfer (and fixpoint fusion).

5.4. Potential Termination Semantics
The potential termination abstraction α�? is the elementwise finite trace subset abstrac-

tion (example 8, that is the composition of examples 5 and 6) where an element, that is
a trace, is abstracted by its first state:

α
�+(X)

∆
= X ∩ Σ

�+ ,

α↓0(X)
∆
= {@↓0(x) | x ∈ X} where @↓0(σ)

∆
= σ0 ,

α�?(X)
∆
= α↓0 ◦ α

�+ = {σ0 | σ ∈ X ∩ Σ
�+} .

By defining the concretization

γ�?(Y)
∆
= γ

�+ ◦ γ↓0(Y) = {σ ∈ Σ
�+ | σ0 ∈ Y } ∪ Σ�ω ,

this is a Galois insertion:
10informally, in the sense that unbounded nondeterminism can be used to simulate weak fairness and
reciprocally.

14

Lemma 15. 〈℘(Σ �∞), � �∞〉 −−−−→−→←−−−−−
α�?

γ�?

〈℘(Σ), ⊆〉.

Proof. We have α�?(X) ⊆ Y ⇐⇒ ∀σ ∈ X �+ : σ0 ∈ Y ⇐⇒ X �+ ⊆ ({σ ∈ Σ�+ | σ0 ∈
Y } ∪ Σ�ω) ∩ Σ�+ ⇐⇒ X �+ ⊆ (γ�?(Y))

�+ ∧X�ω ⊇ ∅ ⇐⇒ X �+ ⊆ (γ�?(Y))
�+ ∧X�ω ⊇ (γ�?(Y))�ω

⇐⇒ X � �∞ γ�?(Y) so that 〈℘(Σ �∞), � �∞〉 −−−−→−→←−−−−−
α�?

γ�?

〈℘(Σ), ⊆〉. �

The potential termination semantics τ�? of a transition system 〈Σ, τ 〉 provides the set of
states starting an execution which may terminate, that is

τ�? ∆
= α�?(τ �∞) .

We define the left image of a state s ∈ Σ by a transition relation τ ⊆ Σ × Σ as

τJ·(s) ∆
= {s′ | s′ τ s} ,

while for a set S ⊆ Σ of states, it is

τ J(S)
∆
= ∪

s∈S
τJ·(s) = {s′ | ∃s ∈ S : s′ τ s} .

The fixpoint form of τ�? = α�?(τ �∞) = lfp
⊆

∅
F
? is derived from that of τ �∞ = lfp

� �∞

⊥�∞
F �∞

(theorem 13) by Kleenian fixpoint transfer. In the proof, the commutation condition
α�? ◦ F �∞ = F
? ◦ α�? leads to the calculational design of F
? starting from the definition
F
?.

Theorem 16. (Fixpoint potential termination semantics). τ�? = lfp
⊆

∅
F
? where

F
? ∈ ℘(Σ)
∪�−−→ ℘(Σ) defined as F
?(X)

∆
= τ̌ ∪ τ J(X) is a complete ∪-morphism on the

complete lattice 〈℘(Σ), ⊆, ∅, Σ, ∪, ∩〉.

Proof. We have α�?(⊥�∞) = α�?(Σ�ω) = ∅ so that by lemma 15 and the Kleenian fixpoint

transfer theorem 3 and 13, we have τ�? = α�?(τ �∞) = α�?(lfp
� �∞

⊥�∞
F �∞) = lfp

⊆

∅
F
? where the

commutation condition leads to the design of the transformer F
? as follows: α�? ◦ F �∞(X)
= α�?(τ �1 ∪ τ �̇2 � X) = α�?(τ �1) ∪ α�?(τ �̇2 � X) = {σ0 | σ ∈ τ �1} ∪ {σ0 | σ ∈ (τ �̇2 � X) ∩Σ�+} =
τ̌ ∪ {s | ∃s′ ∈ α�?(X) : s τ s′} = F
?(α�?(X)) by defining F
?(X)

∆
= τ̌ ∪ τ J(X). �

For example if Σ
∆
= {a, b} and τ ∆

= {〈a, a〉, 〈a, b〉} then τ�? = {a, b} since any execution
starting in state b immediately terminates while any execution starting in state a may
always potentially terminate by choosing the 〈a, b〉 transition (although it is possible to
never terminate by always choosing the 〈a, a〉 transition).
In general τ�? �= gfp

⊆

Σ
F
? (so that α�? is not co-continuous). A counter-example is given

by Σ
∆
= {a}, τ ∆

= {〈a, a〉} so that τ̌ = ∅ and τ�? = ∅ while gfp
⊆

Σ
F
? = {a}. Hence α�?

transfers lfp
� �∞

⊥�∞
F �∞ but not gfp

⊆

Σ �∞
F �∞.

15

6. The Maximal Trace Semantics as a Refinement of the Transition Semantics

The trace semantics is a refinement of the transition/small-step operational semantics
by the Galois insertion:

〈℘(Σ �∞), ⊆〉 −−−→−→←−−−−
ατ

γτ

〈℘(Σ × Σ), ⊆〉

where the abstraction collects possible transitions:

ατ(T)
∆
= {〈s, s′〉 | ∃σ ∈ Σ�� : ∃σ′ ∈ Σ�∝ : σ · ss′ · σ′ ∈ T} ,

while the concretization builds maximal execution traces:

γτ(t)
∆
= t �∞ .

In general T � γτ(ατ(T)) as shown by the set of fair traces T = {anb | n ∈ N} for which
ατ(T) = {〈a, a〉, 〈a, b〉} and γτ(ατ(T)) = {anb | n ∈ N} ∪ {aω} is unfair for b.

7. Relational Semantics

The relational semantics associates an input-output relation to a program [41], possibly
using D. Scott’s bottom ⊥ �∈ Σ to denote nontermination [38]. It is an abstraction of the
maximal trace semantics where intermediate computation states are ignored.

7.1. Finite/Angelic Relational Semantics
The finite/angelic relational semantics (first named big-step operational semantics by

G. Plotkin [48] and later natural semantics by G. Kahn [36], relational semantics by
R. Milner & M. Tofte [41] and evaluation semantics by A. Pitts [47]) is

τ+ ∆
= α+(τ

�+)

where the Galois insertion:

〈℘(Σ�+), ⊆〉 −−−→−→←−−−−−
α+

γ+

〈℘(Σ × Σ), ⊆〉

is defined by:

α+(X)
∆
= {@+(σ) | σ ∈ X} and

γ+(Y)
∆
= {σ | @+(σ) ∈ Y }

where:

@+ ∈ Σ
�+ �−−→ (Σ × Σ) ,

@+(σ)
∆
= 〈σ0, σn−1〉 ,

for all σ ∈ Σ�n and n ∈ N.
Defining the set

τ̄
∆
= {〈s, s〉 | s ∈ τ̌ }

of final/blocking state pairs and using the Kleenian fixpoint transfer 3 and the theorem
11, we can express τ+ in fixpoint form:

16

Theorem 17. (Fixpoint finite/angelic relational semantics). τ+ = lfp
⊆

∅
F+ where

F+ ∈ ℘(Σ×Σ)
∪�−−→ ℘(Σ×Σ) defined as F+(X)

∆
= τ̄ ∪(τ ◦ X) is a complete ∪-morphism

on the complete lattice 〈℘(Σ × Σ), ⊆, ∅, Σ × Σ, ∪, ∩〉.

Proof. By the Kleenian fixpoint transfer theorem 3, using the Galois insertion of exam-
ple 6 and α+ ◦ F �+(X) = {@+(x) | x ∈ τ �1 ∪ (τ �̇2 �X)} = {〈s, s〉 | ∀s′ ∈ Σ : ¬(s τ s′)}∪{〈s,
σn−1〉 | n > 0 ∧ σ ∈ Σ�n ∧ s τ σ0 ∧ σ ∈ X} = τ̄ ∪ (τ ◦ α+(X)) = F+ ◦ α+(X) by defining

F+(X)
∆
= τ̄ ∪ (τ ◦ X). �

Observe that the Tarskian fixpoint transfer theorem 4 is not applicable since α+ is a ∩-
morphism but not co-continuous hence not a complete ∩-morphism. A counter example
is given by the ⊆-decreasing chain Xk ∆

= {anb | n ≥ k}, k > 0 such that ∩
k>0

α+(Xk) =

∩
k>0
{〈a, b〉} = {〈a, b〉} while ∩

k>0
Xk = ∅ since anb ∈ ∩

k>0
Xk for n > 0 is in contradiction

with anb �∈ Xn+1 so that α+(∩
k>0

Xk) = α+(∅) = ∅.
In order to place the potential termination semantics τ�? in the hierarchy of semantics,

we will use the following:

Theorem 18. τ�? = αDmn(τ+) where the domain abstraction:

〈℘(Σ × Σ), ⊆〉 −−−−−→−→←−−−−−−
αDmn

γDmn

〈℘(Σ), ⊆〉

is defined by:

αDmn(R)
∆
= {s | ∃s′ ∈ Σ : 〈s, s′〉 ∈ R} and

γDmn(D)
∆
= {〈s, s′〉 | s ∈ D ∧ s′ ∈ Σ} .

Proof. By definition of τ+, τ �+, τ �∞, αDmn, α+, α�? and τ�?, we have:
αDmn(τ+) = αDmn(α+(τ �+)) = αDmn(α+(τ �∞ ∩Σ�+)) = {s | ∃s′ ∈ Σ : 〈s, s′〉 ∈ α+(τ �∞ ∩Σ�+)}
= {σ0 | σ ∈ τ �∞ ∩Σ�+} = α�?(τ �∞) = τ�?. �

7.2. Infinite Relational Semantics
The infinite relational semantics is

τω ∆
= αω(τ �ω)

where the Galois insertion:

〈℘(Σ�ω), ⊆〉 −−−→−→←−−−−
αω

γω

〈℘(Σ × {⊥}), ⊆〉

is defined by

αω(X)
∆
= {@ω(σ) | σ ∈ X} and

γω(Y)
∆
= {σ | @ω(σ) ∈ Y }

where:

@ω ∈ Σ�ω �−−→ (Σ × {⊥}) is

@ω(σ)
∆
= 〈σ0, ⊥〉 .

17

By the Galois connection, αω is a complete ∪-morphism. It is a ∩-morphism but not
a complete ∩-morphism since indeed it is not co-continuous. A counter-example is given
by the ⊆-decreasing chain Xk ∆

= {anbω | n ≥ k}, k > 0 such that ∩
k>0

αω(Xk) = ∩
k>0
{〈a,

⊥〉} = {〈a, ⊥〉} while ∩
k>0

Xk = ∅ since anbω ∈ ∩
k>0

Xk for n > 0 is in contradiction with

anbω �∈ Xn+1 whence αω(∩
k>0

Xk) = αω(∅) = ∅.
Using the Tarskian fixpoint transfer theorem 4 and theorem 12, we get:

Theorem 19. (Fixpoint infinite relational semantics). τω = gfp
⊆

Σ×{⊥}
F ω where

F ω ∈ ℘(Σ × {⊥}) m�−−→ ℘(Σ × {⊥}) defined as F ω(X)
∆
= τ ◦ X is a ⊆-monotone map on

the complete lattice 〈℘(Σ × {⊥}), ⊆, ∅, Σ × {⊥}, ∪, ∩〉.

Proof. By the Galois connection, αω is a complete ∪-morphism. To design F ω, we
have αω ◦ F �ω(X) = αω(τ �̇2 � X) = {@ω(η � ξ) | η ∈ τ �̇2 ∧ ξ ∈ X ∧ η ?

� ξ} = {〈η0,
⊥〉 | η0 τ ξ0 ∧ ξ ∈ X} = {〈s, ⊥〉 | ∃s′ : s τ s′ ∧ 〈s′, ⊥〉 ∈ αω(X)} = τ ◦ αω(X) =

F ω ◦ αω(X) by defining F ω(X)
∆
= τ ◦ X.

We have to prove that ∀Y ∈ ℘(Σ × {⊥}) : F ω(Y) ⊇ Y =⇒ ∃X ∈ Σ�ω : αω(X) =

Y ∧ F �ω(X) ⊇ X. We let X
∆
= {σ ∈ τ �ω | ∀i ∈ N : 〈σi, ⊥〉 ∈ Y }.

To prove that Y ⊆ αω(X), observe (a) that Y ⊆ F ω(Y) = τ ◦ Y = {〈s, ⊥〉 | ∃s′ : s τ
s′ ∧ 〈s′, ⊥〉 ∈ Y }. Hence if σ0 . . . σn is such that σi τ σi+1, i < n and 〈σi, ⊥〉 ∈ Y , i ≤ n
then 〈σn, ⊥〉 ∈ Y and (a) imply ∃σn+1: σn τ σn+1 ∧ 〈σn+1, ⊥〉 ∈ Y . So, by induction, we
can build σ ∈ τ �ω such that ∀i ∈ N: 〈σi, ⊥〉 ∈ Y . We have σ ∈ X and 〈σ0, ⊥〉 ∈ αω(X)
proving that Y ⊆ αω(X). Moreover αω(X) ⊆ Y is obvious since σ ∈ X implies 〈σ0,
⊥〉 ∈ Y proving that αω(X) = Y by antisymmetry.
To prove that F ω(X) ⊇ X observe that F ω(X) ⊇ X ⇐⇒ X ⊆ τ �̇2 � X ⇐⇒ ∀σ ∈ X :

σ0 τ σ1 ∧ σ≥1 ∈ X where the suffix σ≥1 is η such that ∀i ∈ N : ηi = σi+1. σ0 τ σ1 holds
since X ⊆ τ �ω. η ∈ τ �ω and ∀i ∈ N : 〈ηi, ⊥〉 = 〈σi, ⊥〉 ∈ Y proving that η = σ≥1 ∈ X.
We conclude by the dual of the Tarskian fixpoint transfer theorem 4. �

We say that the nondeterminism of τ is bounded by n ∈ N if and only if ∀s ∈ Σ : |{s′ |
τ (s, s′)}| < n where |S| is the cardinal of class S.

Lemma 20. If Xδ, δ < η is a ⊆-decreasing chain of subsets of Σ × Σ and the nonde-
terminism of τ is bounded by n then for all s, s′ ∈ Σ:

∀δ < η : ∃s′′ : τ (s, s′′) ∧ 〈s′′, s′〉 ∈ Xδ
⇐⇒ ∃s′′ : τ (s, s′′) ∧ ∀δ < η : 〈s′′, s′〉 ∈ Xδ .

Proof. The proof of ⇐= is obvious. For =⇒, we reason by reductio ad absurdum,
assuming that:

∀δ < η : ∃s′′ : τ (s, s′′) ∧ 〈s′′, s′〉 ∈ Xδ (1)

∧ ∀s′′ : τ (s, s′′) =⇒ ∃δ < η : 〈s′′, s′〉 �∈ Xδ . (2)

18

If η is a successor ordinal, then (1) implies that there exists s′′ such that τ (s, s′′)∧ 〈s′′,
s′〉 ∈ Xη−1 so by (2) there exists δ ≤ η − 1 such that 〈s′′, s′〉 �∈ Xδ, in contradiction with
the decreasing chain hypothesis implying that Xδ ⊇ Xη−1.
If η is a limit ordinal, let us show that we can construct infinite sequences s0, s1, s2,

. . . and δ0 ≤ δ1 ≤ δ2 ≤ . . . < η such that for all k ∈ N:

τ (s, sk) ∧ 〈sk, s′〉 ∈ Xδk ∧ 〈sk, s′〉 �∈ Xδk+1
. (3)

We let δ0 = 0 so that by (1) there exists s0 such that τ (s, s0)∧〈s0, s
′〉 ∈ Xδ0 hence by (2)

there exists δ0 = 0 ≤ δ1 < η such that 〈s0, s
′〉 �∈ Xδ1 . Assuming that we have constructed

s0, . . . , si and δ0 ≤ . . . ≤ δi ≤ δi+1 < η satisfying (3) for all 0 ≤ k ≤ i. By (1) there exists
si+1 such that τ (s, si+1)∧〈si+1, s

′〉 ∈ Xδi+1
hence by (2) there exists δ < η such that 〈si+1,

s′〉 �∈ Xδ. We define δi+2
∆
= max(δ, δi+1) so that δ ≤ δi+2 whence, by the ⊆-decreasing

chain hypothesis, Xδ ⊇ Xδi+2
proving that 〈si+1, s

′〉 �∈ Xδi+2
. So we have constructed s0,

. . . , si+1 and δ0 ≤ . . . ≤ δi+1 ≤ δi+2 < η satisfying (3) for all 0 ≤ k ≤ i+1. The sequences
can be extended to infinite ones by recurrence. Observe that in s0, . . . , si, . . . if i < j
then si must be distinct from sj since otherwise 〈si, s′〉 ∈ Xδi and 〈si, s′〉 ∈ Xδi+1

⊇ Xδj so
〈si, s′〉 �∈ Xδi in contradiction with 〈sj , s′〉 ∈ Xδj and sj = si. So in the infinite sequence
s0, . . . , si, . . . the states are distinct two by two proving that |{s0, . . . , sk, . . . }| = ω.
Moreover (3) implies that {s0, . . . , si, . . . } ⊆ {s′ | τ (s, s′)} so |{s′ | τ (s, s′)}| ≥ ω in
contradiction with the bounded nondeterminism hypothesis |{s′ | τ (s, s′)}| ≤ n ∈ N. �

Lemma 21. If the nondeterminism of τ is bounded then F ω is co-continuous.

Proof. If Xδ, δ < η is a ⊆-decreasing chain of subsets of Σ×Σ then by definition of F ω

and lemma 20, we have F ω(
⋂
δ<ηXδ) = τ ◦ (

⋂
δ<η Xδ) = {〈s, s′〉 | ∃s′′ : τ (s, s′′) ∧ ∀δ <

η : 〈s′′, s′〉 ∈ Xδ} = {〈s, s′〉 | ∀δ < η : ∃s′′ : τ (s, s′′) ∧ 〈s′′, s′〉 ∈ Xδ} =
⋂
δ<η(τ ◦ Xδ) =⋂

δ<η F
ω(Xδ). �

Observe that, in general, F ω is not co-continuous, as shown by the following example

where the iterates for gfp
⊆

Σ×{⊥}
F ω do not stabilize at ω.

Example 22. (Unbounded nondeterminism). Let us consider the transition sys-
tem 〈Σ, τ 〉 of figure 1 such that Σ = {s}∪{sij | i, j ∈ N∧0 ≤ j ≤ i} (where s �= sij �= sk�
whenever i �= k or j �= #) and τ = {〈s, si0〉 | i ∈ N} ∪ {〈sij , si(j+1)〉 | 0 ≤ j < i} [53].
The iterates of F ω(X) = τ ◦ X are X0 = {〈s, ⊥〉} ∪ {〈sij , ⊥〉 | 0 ≤ j ≤ i}, X1 =

F ω(X0) = {〈s, ⊥〉} ∪ {〈sij , ⊥〉 | 1 ≤ j ≤ i} so that by recurrence Xn = {〈s, ⊥〉} ∪ {〈sij ,
⊥〉 | n ≤ j ≤ i} whence Xω = ∩

n∈N
Xn = {〈s, ⊥〉}. Now Xω+1 = F ω(Xω) = ∅ =

gfp
⊆

Σ×{⊥}
F ω = τω. �

It follows that the Kleenian fixpoint transfer theorem 3 is not applicable to prove theorem
19 since otherwise the convergence of the iterates of F ω would be as fast as those of F �ω,
hence would be stable at ω.

19

s33

s32s22

s31s21s11

s30s20s10s00

s

�
�

��✠
✉

✉

✁
✁

✁✁☛

✁
✁

✁✁☛
✉ . . .

❅
❅

❅❘

✉

❆
❆
❆❆

✉

❆
❆
❆❆

✉

❆
❆
❆❆

❆
❆
❆❆

✉

✉
❄

✉❄

❄
✉

✉

Figure 1. Transition system with unbounded nondeterminism

7.3. Inevitable Termination Semantics
The possibly nonterminating executions could alternatively have been characterized

using the isomorphic inevitable termination semantics providing the set of states starting
an execution which must terminate, that is

τ�! ∆
= α�!(τω)

where the Galois isomorphism:

〈℘(Σ × {⊥}), ⊆〉 −−−→−→←←−−−−
α�!

γ�!

〈℘(Σ), ⊇〉

is defined by

α�!(X)
∆
= {s | 〈s, ⊥〉 �∈ X} and

γ�!(Y)
∆
= {〈s, ⊥〉 | s �∈ Y } .

Given a relation τ ⊆ Σ × Σ′, a state s ∈ Σ and a set of states P ⊆ Σ:

– The right image of s by τ is τ·I(s) ∆
= {s′ | s τ s′} (in particular if f ∈ Σ �−−→ Σ′

then f·I(s) = {f(s)}).
– The right image of P by τ is τ I(P) = {s′ | ∃s ∈ P : s τ s′} (in particular, fI(P) =
{f(s) | s ∈ P}).

– The inverse of τ is τ −1 ∆
= {〈s′, s〉 | s τ s′} so that τJ· ∆

= (τ −1)·I and τ J
∆
= (τ −1)I.

– The dual of a map F ∈ ℘(Σ) �−−→ ℘(Σ′) is F̃
∆
= λP·¬F (¬P).

– Finally, τ̃ −1I(P) = {s′ | ∀s : s′ τ s =⇒ s ∈ P}.

20

Applying the semi-dual the Kleenian fixpoint transfer theorem 3 to the fixpoint char-
acterization 19 of the infinite relational semantics τω, we get the

Theorem 23. (Fixpoint inevitable termination semantics). τ�! = lfp
⊆

∅
F
! where

F
! ∈ ℘(Σ)
∪�−−→ ℘(Σ) defined as F
!(X)

∆
= τ̃ −1I(X) = τ̌ ∪ τ̃ −1I(X) is a complete ∪-

morphism on the complete lattice 〈℘(Σ), ⊆, ∅, Σ, ∪, ∩〉.

Proof. α�! is bottom strict since α�!(〈Σ, {⊥}〉) = ∅. α�! is continuous by 〈℘(Σ × {⊥}),
⊆〉 −−−→−→←←−−−−

α�!

γ�!

〈℘(Σ), ⊇〉. Finally, we have α�! ◦ F ω(X) = {s | 〈s, ⊥〉 �∈ τ ◦ X} = {s | 〈s,
⊥〉 �∈ {〈s, s′′〉 | ∃s′ : 〈s, s′〉 ∈ τ ∧〈s′, s′′〉 ∈ X}} = {s | ∀s′ : s τ s′ =⇒ ¬〈s′, ⊥〉 ∈ X}
= {s | ∀s′ : s τ s′ =⇒ s′ ∈ α�!(X)} = F
! ◦ α�!(X) by defining F
!(X)

∆
= τ̃ −1I(X) =

τ̌ ∪ τ̃ −1I(X). �

7.4. Natural Relational Semantics
We now mix together the descriptions of the finite and infinite executions of a transition

system 〈Σ, τ 〉. The natural relational semantics

τ∞ ∆
= τ+ ∪ τω

is the fusion of the finite relational semantics τ+ and the infinite relational semantics τω.
It is more traditional [7, 46] to consider the cartesian product of the finite relational

semantics τ+ and the inevitable termination semantics τ�! (the interpretation being that
any execution starting from a state s ∈ τ�! must terminate in a state s′ such that 〈s,
s′〉 ∈ τ+). The reason for preferring the infinite relational semantics to the inevitable
termination semantics 23 is that the fixpoint characterizations 17 of τ+ and 19 of τω fuse
naturally by the fixpoint fusion theorem 9. This leads to a simple fixpoint characterization
of the natural relational semantics using the mixed ordering �∞ first introduced in [17,
proposition 25]:

Theorem 24. (Fixpoint natural relational semantics). τ∞ = lfp
�∞

⊥∞
F∞ where F∞

∈ ℘(Σ × Σ⊥)
m�−−→ ℘(Σ × Σ⊥) defined as F∞(X)

∆
= τ̄ ∪ (τ ◦ X) is a �∞-monotone map

on the complete lattice 〈℘(Σ × Σ⊥), �∞,⊥∞,�∞, �∞, �∞〉 with

– Σ⊥
∆
= Σ ∪ {⊥},

– X �∞ Y
∆
= X+ ⊆ Y + ∧Xω ⊇ Y ω,

– X+ ∆
= X ∩ �∞,

– �∞ = Σ × Σ,

– Xω ∆
= X ∩⊥∞ and

– ⊥∞ = Σ × {⊥}.

Proof. τ∞ = τ+ ∪ τω = lfp
⊆

∅
F+ ∪ lfp⊇

Σ×{⊥}
F ω = lfp

�∞

⊥∞
F∞. �

21

By defining α∞(X)
∆
= α+(X �+) ∪ α�ω(Xω), we have τ∞ = α∞(τ �∞). Neither the Kleenian

fixpoint transfer theorem 3 nor the Tarskian fixpoint transfer theorem 4 is directly appli-

cable to derive that τ∞ = α∞(lfp
� �∞

⊥�∞
F �∞) = lfp

�∞

⊥∞
F∞. Observe however that we proceeded

by fusion of independent parts, using α+ to transfer the finitary part τ �+ by the Kleenian
fixpoint transfer theorem 3 (but the Tarskian’s one was not applicable) and the infini-
tary part τ �ω by the Tarskian fixpoint transfer theorem 4 (but the Kleenian’s one was not
applicable).
To prove that the iterates of F∞ are ordered according to Egli-Milner ordering in

corollary 37, we will use the following characterization of the iterates of F∞. Intuitively if
a new finite behavior does appear in the iterates, nontermination cannot yet be excluded.

Lemma 25. (Arrangement of the iterates of F∞). Let F∞δ, δ ∈ O be the iterates
of F∞ = λX· τ̄ ∪ (τ ◦ X) from ⊥∞. For all η < ξ ∈ O, s, s′ ∈ Σ, if 〈s, s′〉 ∈ F∞ξ and 〈s,
s′〉 �∈ F∞η then 〈s, ⊥〉 ∈ F∞η.

Proof. By transfinite induction on ξ > 0.
The lemma is true for ξ = 1 since for η = 0 we have F∞0 = ⊥∞ = Σ × {⊥}.
We have F∞1 = τ̄ ∪ (τ ◦ F∞0), F∞δ, δ ∈ O is a �∞-increasing chain so that (F∞δ)

+
,

δ ∈ O is a⊆-increasing chain and ∀δ ∈ O: (F∞δ)
+ ⊆ F∞δ proving that ∀δ ∈ O : τ̄ ⊆ F∞δ.

Assume that the lemma holds for all ξ′ < ξ and ξ is a limit ordinal. Assume η < ξ, 〈s,
s′〉 ∈ F∞ξ and 〈s, s′〉 �∈ F∞η. We have F∞ξ = �∞

ξ′<ξ
F∞ξ′ hence (F∞ξ)

+
= ∪
ξ′<ξ

(F∞ξ′)
+
so

that 〈s, s′〉 ∈ F∞ξ implies the existence of ξ′ < ξ such that 〈s, s′〉 ∈ (F∞ξ′)
+ ⊆ F∞ξ′.

But (F∞δ)
+
, δ ∈ O is a ⊆-increasing chain, so that 〈s, s′〉 �∈ F∞η implies η < ξ′. It

follows by induction hypothesis that 〈s, ⊥〉 ∈ F∞η.
Assume now that ξ = ξ′ + 1 is a successor ordinal, η ≤ ξ′, 〈s, s′〉 ∈ F∞ξ and 〈s,

s′〉 �∈ F∞η.
I. If 〈s, ⊥〉 ∈ F∞ξ′ then (F∞δ)

ω
, δ ∈ O is a ⊆-decreasing chain so that η ≤ ξ′ implies

〈s, ⊥〉 ∈ F∞η.
II. If 〈s, ⊥〉 �∈ F∞ξ′ then F∞ξ = F∞ξ′+1 = F∞(F∞ξ′) = τ̄ ∪ τ ◦ F∞ξ′ so that 〈s,

s′〉 ∈ τ ◦ F∞ξ′ since τ̄ ⊆ F∞η which implies the existence of s′′ ∈ Σ such that s τ s′′ and
〈s′′, s′〉 ∈ F∞ξ′.
II.1. If 〈s′′, s′〉 �∈ F∞η then by induction hypothesis 〈s′′, ⊥〉 ∈ F∞η so that 〈s, ⊥〉 ∈

F∞η+1 proving 〈s, ⊥〉 ∈ F∞η since F∞δ, δ ∈ O is �∞-increasing whence (F∞δ)
ω
, δ ∈ O

is ⊆-decreasing.
II.2. If 〈s′′, s′〉 ∈ F∞η then 〈s, s′〉 ∈ F∞η+1.
II.2.A. If η < ξ′, η + 1 < ξ so that, by induction hypothesis, 〈s, s′〉 ∈ F∞η+1 and 〈s,

s′〉 �∈ F∞η imply 〈s, ⊥〉 ∈ F∞η.
II.2.B. Otherwise η = ξ′.
II.2.B.a. If η = ξ′ is a successor ordinal with predecessor ξ′ − 1 then we have 〈s′′,

s′〉 �∈ F∞ξ′−1 since otherwise s τ s′′ and 〈s′′, s′〉 ∈ F∞ξ′−1 would imply 〈s, s′〉 ∈ F∞ξ′,
in contradiction with 〈s, s′〉 �∈ F∞η and η = ξ′. But 〈s′′, s′〉 ∈ F∞η = F∞ξ′ so 〈s′′,
s′〉 �∈ F∞ξ′−1 and ξ′ < ξ imply, by induction hypothesis, that 〈s′′, ⊥〉 ∈ F∞ξ′ hence 〈s′′,
⊥〉 ∈ F∞ξ′−1. Then s τ s′′ implies 〈s, ⊥〉 ∈ F∞ξ′ = F∞η.

22

II.2.B.b. If η = ξ′ is a limit ordinal then we have 〈s′′, s′〉 �∈ F∞ζ for all ζ < η = ξ′ since
otherwise s τ s′′ and 〈s′′, s′〉 ∈ F∞ζ would imply 〈s, s′〉 ∈ F∞ζ+1 so 〈s, s′〉 ∈ F∞ξ′, in
contradiction with 〈s, s′〉 �∈ F∞η and η = ξ′. But 〈s′′, s′〉 ∈ F∞η = F∞ξ′, 〈s′′, s′〉 �∈ F∞ζ

and ζ < ξ′ < ξ imply, by induction hypothesis that 〈s′′, ⊥〉 ∈ F∞ζ so 〈s, ⊥〉 ∈ F∞ζ+1

hence 〈s, ⊥〉 ∈ F∞ζ and therefore 〈s, ⊥〉 ∈ F∞ξ′ = F∞η since F∞ξ′ = �∞

ζ<ξ′
F∞ζ . �

The totality of the iterates expresses that an initial state must lead to at least one termi-
nating or nonterminating behavior.

Lemma 26. (Totality of the iterates of F∞). Let F∞δ, δ ∈ O be the iterates of
F∞ = λX· τ̄ ∪ (τ ◦ X) from ⊥∞. ∀δ ∈ O : ∀s ∈ Σ : ∃s′ ∈ Σ⊥ : 〈s, s′〉 ∈ F∞δ.

Proof. By transfinite induction on δ ∈ O.
For δ = 0, ∀s ∈ Σ : 〈s, ⊥〉 ∈ F∞0 = ⊥∞ = Σ × Σ⊥.
Assume that the lemma is true for δ ∈ O. F∞δ+1 = τ̄ ∪ (τ ◦ F∞δ). If s ∈ τ̄ then 〈s,

s〉 ∈ F∞δ+1 or ∃s′ ∈ Σ : s τ s′ so that, by induction hypothesis, ∃s′′ ∈ Σ⊥ : 〈s′, s′′〉 ∈ F∞δ

proving that 〈s, s′′〉 ∈ τ ◦ (F∞δ)
+ ⊆ (F∞δ+1)

+ ⊆ F∞δ+1.
If λ is a limit ordinal and the lemma is true for all δ < λ then either ∀δ < λ : 〈s,

⊥〉 ∈ F∞δ in which case 〈s,⊥〉 ∈ F∞λ since (F∞λ)
ω
=

⋂
δ<λ

(F∞δ)
ω
. Otherwise, ∃δ < λ : 〈s,

⊥〉 �∈ F∞δ, in which case, by induction hypothesis, ∃s′ ∈ Σ : 〈s, s′〉 ∈ F∞δ so that 〈s,
s′〉 ∈ F∞λ since (F∞δ)

+ ⊆ (F∞λ)
+
. �

Finally all final states of the iterates cannot be simultaneously terminating and nonter-
minating states.

Lemma 27. (Final states of the iterates of F∞). Let F∞δ, δ ∈ O be the iterates
of F∞ = λX· τ̄ ∪ (τ ◦ X) from ⊥∞. ∀δ ∈ O : ∀s, s′ ∈ Σ : 〈s, s′〉 ∈ F∞δ =⇒ (s′ ∈
τ̌) ∧ (∀s′′ ∈ Σ⊥ : 〈s′, s′′〉 ∈ F∞δ =⇒ s′′ = s′).

Proof. By transfinite induction on δ ∈ O.
The lemma vacuously holds for δ = 0 since ∀s, s′ ∈ Σ : 〈s, s′〉 �∈ F∞0 = Σ × {⊥}.
Assume that the lemma holds for δ ∈ O and 〈s, s′〉 ∈ F∞δ+1 = τ̄ ∪ (τ ◦ F∞δ). If

〈s, s′〉 ∈ τ̄ then s′ = s ∈ τ̌ hence ∀s′′ ∈ Σ⊥ : 〈s′, s′′〉 ∈ F∞δ+1 =⇒ (s = s′ ∧ 〈s,
s′′〉 ∈ τ̄) =⇒ (s = s′ = s′′). Otherwise, ∃s′′ ∈ Σ : s τ s′′ and 〈s′′, s′〉 ∈ F∞δ in which
case, by induction hypothesis, s′ ∈ τ̌ . Moreover ∀s′′ ∈ Σ⊥ : 〈s′, s′′〉 ∈ F∞δ+1 =⇒ 〈s′,
s′′〉 ∈ τ̄ ∪ (τ ◦ F∞δ). But s′ ∈ τ̌ so 〈s′, s′′〉 ∈ τ̄ which implies s′′ = s′.
Let λ be a limit ordinal such that the lemma holds for all δ < λ. If 〈s, s′〉 ∈ F∞λ

then (F∞λ)
+
= ∪
δ<λ

(F∞δ)
+
implies ∃δ < λ : 〈s, s′〉 ∈ F∞δ whence s′ ∈ τ̌ by induction

hypothesis. Moreover, ∀s′′ ∈ Σ⊥ : 〈s′, s′′〉 ∈ F∞δ =⇒ ∃η < λ : 〈s′, s′′〉 ∈ F∞η. Let
ξ = max(δ, η) < λ. We have 〈s, s′〉 ∈ F∞ξ and 〈s′, s′′〉 ∈ F∞ξ since F∞δ, δ ∈ O is �∞-

increasing whence (F∞δ)
+
, δ ∈ O is ⊆-increasing. By induction hypothesis, s′′ = s′ �

23

7.5. Demoniac Relational Semantics
The demoniac11 relational semantics is derived from the natural relational semantics

by approximating nontermination by chaos:

τ ∂ ∆
= α∂ (τ∞)

where:

α∂ (X)
∆
= X ∪ {〈s, s′〉 | 〈s, ⊥〉 ∈ X ∧ s′ ∈ Σ} and

γ∂ (Y)
∆
= Y

so that:

〈℘(Σ × Σ⊥), ⊆〉 −−−→−→←−−−−−
α∂

γ∂

〈D∂ , ⊆〉

where:

D∂
∆
= {Y ∈ ℘(Σ × Σ⊥) | ∀s ∈ Σ : 〈s, ⊥〉 ∈ Y =⇒ (∀s ∈ Σ : 〈s, s′〉 ∈ Y)} .

By definition of τ ∂ , fixpoint characterization of the natural relational semantics 24 and
the Kleenian fixpoint transfer theorem 3, we derive:

Theorem 28. (Fixpoint demoniac relational semantics). τ ∂ = lfp
�∂

⊥∂
F ∂ where

F ∂ ∈ D∂
m�−−→ D∂ defined as F ∂ (X)

∆
= τ̄ ∪ (τ ◦ X) is a �∂ -monotone map on the

complete lattice 〈D∂ , �∂ ,⊥∂ ,�∂ , �∂ , �∂ 〉 with

– X �∂ Y = ∀s ∈ Σ : 〈s, ⊥〉 ∈ X ∨ (〈s, ⊥〉 �∈ Y ∧X ∩ ({s} × Σ) ⊆ Y ∩ ({s} × Σ)),

– ⊥∂ ∆
= Σ × Σ⊥,

– �∂ ∆
= Σ × Σ,

– �∂

i∈∆
Xi

∆
= {〈s, s′〉 | (∀i ∈ ∆ : 〈s, ⊥〉 ∈ Xi ∧ s′ ∈ Σ⊥) ∨ (∃i ∈ ∆ : 〈s, ⊥〉 �∈ Xi ∧ 〈s,

s′〉 ∈ Xi)} and

– �∂

i∈∆
Xi

∆
= {〈s, s′〉 | (∃i ∈ ∆ : 〈s, ⊥〉 ∈ Xi ∧ s′ ∈ Σ⊥) ∨ (∀i ∈ ∆ : 〈s, ⊥〉 �∈ Xi ∧ 〈s,

s′〉 ∈ Xi)}.

Moreover X �∂ Y
∆
= γg(X) �∞ γg(Y) where γg(X)

∆
= {〈s, ⊥〉 | 〈s, ⊥〉 ∈ X}∪{〈s, s′〉 | 〈s,

⊥〉 �∈ X ∧ 〈s, s′〉 ∈ X} so that 〈℘(Σ × Σ⊥), ∞〉 −−−→−→←−−−−−
α∂

γg

〈D∂ , ∂ 〉.

Proof. For the Galois insertion 〈℘(Σ×Σ⊥), ⊆〉 −−−→−→←−−−−−
α∂

γ∂

〈D∂ , ⊆〉 observe that α∂ (X) ⊆
Y implies X ∪ {〈s, s′〉 | 〈s, ⊥〉 ∈ X ∧ s′ ∈ Σ} ⊆ Y hence X ⊆ γ∂ (Y) and, reciprocally,
X ⊆ γ∂ (Y) implies X ∪ {〈s, s′〉 | 〈s, ⊥〉 ∈ X ∧ s′ ∈ Σ} ⊆ Y ∪ {〈s, s′〉 | 〈s, ⊥〉 ∈ X ∧ s′ ∈
Σ} = Y by definition of D∂ hence α∂ (X) ⊆ Y . This implies that α∂ is ∪-preserving.
Moreover D∂ ⊆ ℘(Σ × Σ⊥) and ∀X ∈ D∂ : α∂ (X) = X proving that α∂ is surjective.

11alternatively demoniacal or demonic.

24

Assume that γg(X) = γg(Y). For all s ∈ Σ, we have 〈s, ⊥〉 ∈ X iff 〈s, ⊥〉 ∈ γg(X) iff
〈s, ⊥〉 ∈ γg(Y) iff 〈s, ⊥〉 ∈ Y . So if 〈s, ⊥〉 ∈ X then 〈s, ⊥〉 ∈ Y whence by definition of
D∂ , 〈s, s′〉 ∈ X and 〈s, s′〉 ∈ Y for all s′ ∈ Σ⊥. Moreover if 〈s, ⊥〉 �∈ X then 〈s, ⊥〉 �∈ Y
so that γg(X) = γg(Y) implies {〈s, s′〉 | 〈s, s′〉 ∈ X} = {〈s, s′〉 | 〈s, s′〉 ∈ Y }. It follows
that X = Y proving that γg is injective.
It follows that the relation defined by X �∂ Y

∆
= γg(X) �∞ γg(Y) on D∂ is a partial

order. We have γg(X) �∞ γg(Y) = (γg(X) ∩ (Σ × Σ) ⊆ γg(Y) ∩ (Σ × Σ)) ∧ (γg(X) ∩
(Σ × {⊥}) ⊇ γg(Y) ∩ (Σ × {⊥})) = ({〈s, s′〉 | 〈s, ⊥〉 �∈ X ∧ 〈s, s′〉 ∈ X} ⊆ {〈s, s′〉 | 〈s,
⊥〉 �∈ Y ∧ 〈s, s′〉 ∈ Y }) ∧ ({〈s, ⊥〉 | 〈s, ⊥〉 ∈ X} ⊇ {〈s, ⊥〉 | 〈s, ⊥〉 ∈ Y }) = ∀s ∈ Σ : 〈s,
⊥〉 ∈ X ∨ (〈s, ⊥〉 �∈ Y ∧X ∩ ({s} × Σ) ⊆ Y ∩ ({s} × Σ)).
By definition, γg is monotone.
We have γg ◦ α∂ (X) = γg(X ∪ {〈s, s′〉 | 〈s, ⊥〉 ∈ X ∧ s′ ∈ Σ}) = {〈s, ⊥〉 | 〈s,

⊥〉 ∈ X ∪ {〈s, s′〉 | 〈s, ⊥〉 ∈ X ∧ s′ ∈ Σ}} ∪ {〈s, s′〉 | 〈s, ⊥〉 �∈ X ∪ {〈s, s′〉 | 〈s,
⊥〉 ∈ X ∧ s′ ∈ Σ} ∧ 〈s, s′〉 ∈ X ∪ {〈s, s′〉 | 〈s, ⊥〉 ∈ X ∧ s′ ∈ Σ}} = {〈s, ⊥〉 | 〈s,
⊥〉 ∈ X} ∪ {〈s, s′〉 | 〈s, ⊥〉 �∈ X ∧ 〈s, s′〉 ∈ X}.
It follows that X ∩ (Σ × Σ) ⊇ γg ◦ α∂ (X) ∩ (Σ × Σ) and X ∩ (Σ × {⊥}) = γg ◦

α∂ (X) ∩ (Σ × {⊥}) proving that γg ◦ α∂ (X) �∞ X.
If X �∞ Y then X ∩ (Σ × Σ) ⊆ Y ∩ (Σ × Σ) and X ∩ (Σ × {⊥}) ⊇ Y ∩ (Σ × {⊥})

so that for all s ∈ Σ, we have {〈s, ⊥〉 | 〈s, ⊥〉 ∈ X} ⊇ {〈s, ⊥〉 | 〈s, ⊥〉 ∈ Y }. Moreover
〈s, ⊥〉 �∈ X =⇒ 〈s, ⊥〉 �∈ Y whence {〈s, s′〉 | 〈s, ⊥〉 �∈ X ∧ 〈s, s′〉 ∈ X} ⊆ {〈s, s′〉 | 〈s,
⊥〉 �∈ Y ∧ 〈s, s′〉 ∈ Y } proving that γg ◦ α∂ (X) �∞ γg ◦ α∂ (Y) whence α∂ (X) �∂ α∂ (Y).
This shows that α∂ is monotone.
α∂ ◦ γg(X) = α∂ ({〈s, ⊥〉 | 〈s, ⊥〉 ∈ X}∪{〈s, s′〉 | 〈s, ⊥〉 �∈ X ∧〈s, s′〉 ∈ X}) = α∂ ({〈s,

⊥〉 | 〈s, ⊥〉 ∈ X}) ∪ α∂ ({〈s, s′〉 | 〈s, ⊥〉 �∈ X ∧ 〈s, s′〉 ∈ X}) since α∂ is ∪-preserving.
This is equal to {〈s, s′〉 | 〈s, ⊥〉 ∈ X ∧s′ ∈ Σ⊥}∪{〈s, s′〉 | 〈s, s′〉 ∈ X} = X by definition
of D∂ .

We have 〈℘(Σ × Σ⊥), ∞〉 −−−→−→←−−−−−
α∂

γg

〈D∂ , ∂ 〉 since α∂ and γg are monotone, α∂ ◦ γg

is the identity on D∂ and γg ◦ α∂ is ∂ -extensive, a characteristic property of Galois
insertions. Since 〈℘(Σ × Σ⊥), �∞,⊥∞,�∞, �∞, �∞〉 is a complete lattice, it follows that
〈D∂ , �∂ ,⊥∂ ,�∂ , �∂ , �∂ 〉 is also a complete lattice.
The infimum is α∂ (⊥∞) = α∂ (Σ × {⊥}) = Σ × Σ⊥.
The supremum is α∂ (�∞) = α∂ (Σ × Σ) = Σ × Σ.
The join is �∂

i∈∆
Xi = α∂ (�∞

i∈∆
γg(Xi)) = α∂ ((∪

i∈∆
γg(Xi) ∩ �∞) ∪ (∩

i∈∆
γg(Xi) ∩ ⊥∞)) =

(∪
i∈∆

α∂ (γg(Xi)∩(Σ×Σ)))∪(α∂ (∩
i∈∆

γg(Xi)∩(Σ×{⊥}))) by definition of �∞ and since α∂

is ∪-preserving. This is equal to ∪
i∈∆

(α∂ ({〈s, s′〉 | 〈s,⊥〉 �∈ Xi∧〈s, s′〉 ∈ Xi}))∪(α∂ (∩
i∈∆
{〈s,

⊥〉 | 〈s, ⊥〉 ∈ Xi})) = ∪
i∈∆
{〈s, s′〉 | 〈s, ⊥〉 �∈ Xi ∧ 〈s, s′〉 ∈ Xi} ∪ {〈s, s′〉 | ∀i ∈ ∆ : 〈s,

⊥〉 ∈ Xi ∧ s′ ∈ Σ⊥} by definition of α∂ .
The same way, the meet is �∂

i∈∆
Xi = α∂ (�∞

i∈∆
γg(Xi)) = {〈s, s′〉 | (∀i ∈ ∆ : 〈s,⊥〉 �∈ Xi∧〈s,

s′〉 ∈ Xi) ∨ (∃i ∈ ∆ : 〈s, ⊥〉 ∈ Xi ∧ s′ ∈ Σ⊥)}.
α∂ is not �∞-preserving. A counter example for Σ = {a, b} is α∂ ({〈a, a〉} �∞{〈a, b〉, 〈a,

⊥〉}) = α∂ ({〈a, a〉, 〈a, b〉}) = {〈a, a〉, 〈a, b〉} whereas α∂ ({〈a, a〉})�∂ α∂ ({〈a, b〉, 〈a, ⊥〉})
= {〈a, a〉} �∂ {〈a, a〉, 〈a, b〉, 〈a, ⊥〉} = {〈a, a〉}.
However α∂ is Scott-continuous. To prove this, let Xi, i < δ be a �∞-increasing

25

chain. By definition of �∞, α∂ is ∪-preserving and definition of α∂ , we have α∂ (�∞

i<δ
Xi) =

α∂ (∪
i<δ

Xi∩ (Σ×Σ)∪ ∩
i<δ

Xi∩ (Σ×{⊥})) = ∪
i<δ

α∂ (Xi∩ (Σ×Σ))∪α∂ (∩
i<δ

Xi∩ (Σ×{⊥}) =
A∪B where A = {〈s, s′〉 | ∃i < δ : 〈s, s′〉 ∈ Xi ∩ (Σ×Σ)} and B = {〈s, s′〉 | ∀i < δ : 〈s,
⊥〉 ∈ Xi ∧ s′ ∈ Σ⊥}. Let A′ = {〈s, s′〉 | ∃i < δ : 〈s, ⊥〉 �∈ Xi ∧ 〈s, s′〉 ∈ Xi} so that
A′ ⊆ A whence A′ ∪ B ⊆ A ∪ B. Reciprocally, if 〈s, s′〉 ∈ A then there exists i < δ
such that 〈s, s′〉 ∈ Xi ∩ (Σ × Σ). Either ∀j < δ : 〈s, ⊥〉 ∈ Xj in which case 〈s, s′〉 ∈ B
or ∃j < δ : 〈s, ⊥〉 �∈ Xj. Xk, k < δ is a �∞-increasing chain so that if i ≤ j then 〈s,
s′〉 ∈ Xj since Xk ∩ (Σ × Σ), k < δ is ⊆-increasing so that 〈s, s′〉 ∈ A′. Otherwise j < i,
in which case Xk ∩ (Σ × {⊥}), k < δ is ⊆-decreasing so that 〈s, ⊥〉 �∈ Xi which again
implies 〈s, s′〉 ∈ A′. By antisymmetry, we have A ∪ B = A′ ∪ B = {〈s, s′〉 | ∃i < δ : 〈s,
⊥〉 �∈ α∂ (Xi) ∧ 〈s, s′〉 ∈ α∂ (Xi)} ∪ {〈s, s′〉 | ∀i < δ : 〈s, ⊥〉 �∈ α∂ (Xi) ∧ s′ ∈ Σ⊥} since
〈s, ⊥〉 ∈ Xi ⇐⇒ 〈s, ⊥〉 ∈ α∂ (Xi) and 〈s, s′〉 ∈ Xi ⇐⇒ 〈s, s′〉 ∈ α∂ (Xi) whenever 〈s,
⊥〉 �∈ Xi. This is equal to �∂

i<δ
α∂ (Xi) proving Scott-continuity.

By definition of F∞, α∂ , τ̄ and ◦, we have α∂ ◦ F∞(X) = α∂ (τ̄∪τ ◦ X) = τ̄∪τ ◦ X∪{〈s,
s′〉 | 〈s, ⊥〉 ∈ τ̄ ∪ τ ◦ X ∧ s′ ∈ Σ} = τ̄ ∪ τ ◦ X ∪ {〈s, s′〉 | 〈s, ⊥〉 ∈ τ ◦ X ∧ s′ ∈ Σ}
= τ̄ ∪ τ ◦ X ∪ τ ◦ {〈s′′, s′〉 | 〈s′′, ⊥〉 ∈ X ∧ s′ ∈ Σ} = τ̄ ∪ τ ◦ (X ∪ {〈s′′, s′〉 | 〈s′′,
⊥〉 ∈ X ∧ s′ ∈ Σ}) = τ̄ ∪ τ ◦ α∂ (X) = F ∂ ◦ α∂ (X) by defining F ∂ (X)

∆
= τ̄ ∪ τ ◦ X.

If X �∂ Y then ∀s ∈ Σ : 〈s, ⊥〉 ∈ X ∨ (〈s, ⊥〉 �∈ Y ∧X ∩ ({s} × Σ) ⊆ Y ∩ ({s} × Σ))
which implies ∀s′ ∈ Σ : 〈s′, ⊥〉 ∈ τ̄ ∪τ ◦ X∨(〈s′, ⊥〉 �∈ τ̄ ∪τ ◦ Y ∧(τ̄ ∪τ ◦ X)∩({s′}×Σ) ⊆
(τ̄ ∪ τ ◦ Y) ∩ ({s′} × Σ)) that is F ∂ (X) �∂ F ∂ (Y) so that F ∂ is monotone.
By definition of τ ∂ , fixpoint characterization of the natural relational semantics 24 and

the Kleenian fixpoint transfer theorem 3, we conclude that τ ∂ ∆
= α∂ (τ∞) = α∂ (lfp

�∞

⊥∞
F∞)

= lfp
�∂

⊥∂
F ∂ . �

Lemma 29. (Arrangement of the iterates of F ∂). Let F ∂
β
, β ∈ O be the iterates

of F ∂ from ⊥∂ . For all η < ξ, s, s′ ∈ Σ, if 〈s, s′〉 ∈ F ∂
ξ
and 〈s, s′〉 �∈ F ∂

η
then

∀s′ ∈ Σ⊥ : 〈s, s′〉 ∈ F ∂ η.

Proof. Follows from lemma 25 and the proof of theorem 28, showing by the Kleenian

fixpoint transfer theorem 3 that ∀β ∈ O : F ∂
β
= α∂ (F∞β). �

Lemma 30. (Totality of the iterates of F ∂). Let F ∂
β
, β ∈ O be the iterates of

F ∂ from ⊥∂ . ∀β ∈ O : ∀s ∈ Σ : ∃s′ ∈ Σ⊥ : 〈s, s′〉 ∈ F ∂ δ.

Proof. Follows from lemma 26 and the proof of theorem 28, showing by the Kleenian

fixpoint transfer theorem 3 that ∀β ∈ O : F ∂
β
= α∂ (F∞β). �

Lemma 31. (Final states of the iterates of F ∂). Let F ∂
β
, β ∈ O be the iterates

of F ∂ from ⊥∂ . ∀β ∈ O : ∀s, s′ ∈ Σ : (〈s, s′〉 ∈ F ∂ β ∧〈s, ⊥〉 �∈ F ∂ β) =⇒ (s′ ∈ τ̌)∧ (∀s′′ ∈
Σ⊥ : 〈s′, s′′〉 ∈ F ∂ δ =⇒ s′′ = s′).

Proof. The proof of theorem 28 shows, by the Kleenian fixpoint transfer theorem 3,

that ∀β ∈ O : F ∂
β
= α∂ (F∞β). So if 〈s, ⊥〉 �∈ F ∂

β
then 〈s, s′〉 ∈ F ∂

β
implies 〈s,

26

s′〉 ∈ F∞β by definition of α∂ whence s′ ∈ τ̌ by lemma 27. We have 〈s′, ⊥〉 �∈ F ∂ β since
otherwise 〈s′, ⊥〉 ∈ F∞β which is impossible by lemma 27 since s′ �= ⊥. So if s′′ ∈ Σ⊥

then 〈s′, s′′〉 ∈ F ∂ β implies 〈s′, s′′〉 ∈ F∞β since 〈s′, ⊥〉 �∈ F∞β so that s′′ = s′ by lemma
27. �

In order to place the demoniac relational semantics τ ∂ in the hierarchy of semantics, we
will use the following:

Theorem 32. τω = α∂ ω(τ ∂) where α∂ ω(X)
∆
= X ∩ (Σ × {⊥}).

Proof. By definition of α∂ ω, τ ∂ , τ∞, α∂ , τ+ ⊆ Σ × Σ, ⊥ �∈ Σ and τω ⊆ Σ × {⊥},
we have α∂ ω(τ ∂) = τ ∂ ∩ (Σ × {⊥}) = α∂ (τ∞) ∩ (Σ × {⊥}) = (τ+ ∪ τω ∪{〈s, s′〉 | 〈s,
⊥〉 ∈ τ+ ∪ τω ∧s′ ∈ Σ}) ∩ (Σ × {⊥}) = τω ∪{〈s, ⊥〉 | 〈s, ⊥〉 ∈ τω} = τω. �

8. Denotational Semantics

In contrast to operational semantics, denotational semantics abstracts away from the
history of computations by considering input-output functions [49]. For that purpose,
given any partial order � on ℘(D × E), we use the right-image isomorphism:

〈℘(D × E), �〉 −−−−→−→←←−−−−−
αI

γI

〈D �−−→ ℘(E), �̇〉

where:

αI(R)
∆
= RI = λx·{y | 〈x, y〉 ∈ R} ,

γI(f)
∆
= {〈x, y〉 | y ∈ f(x)} and

f �̇ g
∆
= γI(f) � γI(g) .

8.1. Nondeterministic Denotational Semantics
Our initial goal was to derive the nondeterministic denotational semantics of [3] by

abstract interpretation of the trace semantics (in a succinct form, using transition systems
instead of imperative iterative programs). Surprisingly enough, we obtain new fixpoint
characterizations using different partial orderings. So there exist (infinitely many) alter-
native powersets to the Egli-Milner and Smyth constructions. The Egli-Milner ordering
is minimal while Smyth ordering is not since intuitively it is possible to find a strict
subordering for computing fixpoints without changing the semantics of any program.

8.1.1. Natural Nondeterministic Denotational Semantics
The natural nondeterministic denotational semantics is defined as the right-image ab-

straction

τ � ∆
= αI(τ∞)

of the natural relational semantics τ∞. We let:

˙̌τ
∆
= λs·{s | ∀s′ ∈ Σ : ¬(s τ s′)} .

By the fixpoint characterization 24 of τ∞ and the Kleenian fixpoint transfer theorem 3,
we derive a fixpoint characterization of the fixpoint natural nondeterministic denotational

27

semantics. We write Ȯ for the pointwise extension of operator O. For example the
pointwise extension of ∪ ∈ (℘(Σ⊥)×℘(Σ⊥)) �−−→ ℘(Σ⊥) is ∪̇ ∈ ((Σ �−−→ ℘(Σ⊥))×(Σ �−−→
℘(Σ⊥))) �−−→ (Σ �−−→ ℘(Σ⊥)) defined as F ∪̇G ∆

= λs·F (s) ∪G(s).
Theorem 33. (Fixpoint natural nondeterministic denotational semantics). τ �

= lfp
�̇�

⊥̇�
F � where Ḋ�

∆
= Σ �−−→ ℘(Σ⊥), F

� ∈ Ḋ�
m�−−→ Ḋ� defined as:

F �(f)
∆
= ˙̌τ ∪̇

⋃̇
fI ◦ τ·I

= λf·λs·{s | ∀s′ ∈ Σ : ¬(s τ s′)} ∪ {s′′ | ∃s′ ∈ Σ : s τ s′ ∧ s′′ ∈ f(s′)}

is a �̇�
-monotone map on the complete lattice 〈Ḋ�, �̇�

, ⊥̇�, �̇�, �̇�
, �̇�〉 which is the point-

wise extension of the complete lattice 〈D�, ��,⊥�,��, ��, ��〉 with:

– D�
∆
= ℘(Σ⊥), X �� Y

∆
= X+ ⊆ Y + ∧Xω ⊇ Y ω,

– X+ ∆
= X ∩ ��,

– �� ∆
= Σ,

– Xω ∆
= X ∩⊥� and

– ⊥� ∆
= {⊥}.

Proof. The order structure of Σ �−−→ ℘(Σ⊥) is chosen to be 〈αI, γI〉-isomorphic to the
complete lattice 〈℘(Σ × Σ⊥), �∞,⊥∞,�∞, �∞, �∞〉 of theorem 24. Therefore we have a

complete lattice 〈Σ �−−→ ℘(Σ⊥), �̇
�
, ⊥̇�, �̇�, �̇�

, �̇�〉 such that the infimum is ⊥̇� ∆
= αI(⊥∞)

= αI(Σ × {⊥}) = λs·⊥� where ⊥� ∆
= {⊥}. The supremum is �̇� ∆

= αI(�∞) = αI(Σ ×Σ)

= λs·�� where �� ∆
= Σ.

The partial order is f �̇�
g

∆
= γI(f) �∞ γI(g) = {〈s, s′〉 | s′ ∈ f(s) ∩ Σ} ⊆ {〈s,

s′〉 | s′ ∈ g(s) ∩ Σ} ∧ {〈s, s′〉 | s′ ∈ f(s) ∩ {⊥}} ⊇ {〈s, s′〉 | s′ ∈ g(s) ∩ {⊥}} =
∀s ∈ Σ : f(s) ∩ Σ ⊆ g(s) ∩ Σ ∧ f(s) ∩ {⊥} ⊇ g(s) ∩ {⊥} = ∀s ∈ Σ : f(s) �� g(s) by

defining X �� Y
∆
= X+ ⊆ Y + ∧Xω ⊇ Y ω, X+ ∆

= X ∩ �� and Xω ∆
= X ∩⊥�.

For the lub, we have αI(∪
i
Xi) = ∪̇

i
αI(Xi), α

I(∩
i
Xi) = ∩̇

i
αI(Xi), α

I(X+) =X ∩̇ �̇� and

αI(Xω) = X ∩̇ ⊥̇� whence αI(�∞

i
Xi) = αI(∪

i
Xi

+∪∩
i
Xi
ω) = ∪̇

i
(αI(Xi))

+ ∪̇ ∩̇
i
(αI(Xi))

ω)

= �̇�

i
αI(Xi) pointwise, by defining ��

i
Xi

∆
= ∪

i
Xi

+ ∪ ∩
i
Xi
ω.

We design the semantic transformer F �, using the commutation requirement: αI ◦

F∞(X) = αI(τ̄ ∪ τ ◦ X) = αI(τ̄) ∪̇αI(τ ◦ X) = λs·{s′ | 〈s, s′〉 ∈ τ̄} ∪̇λs·{s′′ | 〈s,
s′′〉 ∈ τ ◦ X} = λs·{s | ∀s′ : ¬(s τ s′)} ∪ {s′′ | ∃s′ ∈ Σ : s τ s” ∧ 〈s′, s′′〉 ∈ X} =
λs·{s | ∀s′ : ¬(s τ s′)} ∪ {s′′ | ∃s′ ∈ Σ : s τ s” ∧ s′′ ∈ αI(X)(s′)} = F � ◦ αI(X) by

defining F �(f)
∆
= λs·{s | ∀s′ ∈ Σ : ¬(s τ s′)} ∪ {s′′ | ∃s′ ∈ Σ : s τ s′ ∧ s′′ ∈ f(s′)} =

˙̌τ ∪̇ λs·⋃{f(s′) | s τ s′} = ˙̌τ ∪̇
⋃̇
λs·{f(s′) | s′ ∈ τ·I(s)} = ˙̌τ ∪̇

⋃̇
fI ◦ τ·I.

If f �̇�
g then ∀s ∈ Σ : f(s) �� g(s) that is ∀s ∈ Σ : f(s)∩Σ ⊆ g(s)∩Σ∧f(s)∩{⊥} ⊇

g(s) ∩ {⊥}. By definition of F �, we have F �(f)s ∩ Σ = {s | ∀s′ ∈ Σ : ¬(s τ s′)} ∪ {s′′ |
∃s′ ∈ Σ : s τ s′ ∧ s′′ ∈ f(s′) ∩Σ} ⊆ {s | ∀s′ ∈ Σ : ¬(s τ s′)} ∪ {s′′ | ∃s′ ∈ Σ : s τ s′ ∧ s′′ ∈

28

✏✏✏✏✏
�����

{a, b}

{a, b,⊥}

∅

{⊥}

{b,⊥}{a,⊥}

{a} {b}

✏✏✏✏✏✏

✏✏✏✏✏✏

✏✏✏✏✏✏

������

������

������

Mixed ordering ��

������
✏✏✏✏✏✏

{b}{a}

{a,⊥} {b,⊥}

{⊥}

{a, b,⊥}

{a, b}

�����
✏✏✏✏✏

Egli-Milner ordering �EM

Figure 2.

g(s′) ∩ Σ} = F �(g)s ∩ Σ and F �(f)s ∩ {⊥} = {⊥ | ∃s′ ∈ Σ : s τ s′ ∧ ⊥ ∈ f(s′) ∩ {⊥}} ⊇
{⊥ | ∃s′ ∈ Σ : s τ s′∧⊥∈ g(s′)∩{⊥}} = F �(g)s∩{⊥} so that ∀s ∈ Σ : F �(f)s �� F �(g)s
proving F �(f) �̇�

F �(g) hence that F � is monotone. �

Lemma 34. (Arrangement of the iterates of F �). Let F �
δ
, δ ∈ O be the iterates

of F � from ⊥�. For all η < ξ, s, s′ ∈ Σ, if s′ ∈ F �ξ(s) and s′ �∈ F �η(s) then ⊥∈ F �η(s).

Proof. Follows from lemma 25 and the proof of theorem 33, showing by the Kleenian

fixpoint transfer theorem 3 that ∀δ ∈ O : F �
δ
= αI(F∞δ). �

Lemma 35. (Totality of the iterates of F �). Let F �
δ
, δ ∈ O be the iterates of F �

from ⊥�. ∀δ ∈ O : ∀s ∈ Σ : F �
δ
(s) �= ∅.

Proof. Follows from lemma 26 and the proof of theorem 33, showing the Kleenian

fixpoint transfer theorem 3 that ∀δ ∈ O : F �
δ
= αI(F∞δ). �

Lemma 36. (Final states of the iterates of F �). Let F �
δ
, δ ∈ O be the iterates of

F � from⊥�. ∀δ ∈ O : ∀s, s′ ∈ Σ : (s′ ∈ F �δ(s)∧⊥ �∈ F �δ(s)) =⇒ (s′ ∈ τ̌∧F �δ(s′) = {s′}).

Proof. Follows from lemma 27 and the proof of theorem 33, showing by the Kleenian

fixpoint transfer theorem 3 that ∀δ ∈ O : F �
δ
= αI(F∞δ). �

8.1.2. Convex/Plotkin Nondeterministic Denotational Semantics
Unexpectedly, the natural semantic domain D� = ℘(Σ⊥) with the mixed ordering ��

differs from the usual convex/Plotkin powerdomain with Egli-Milner ordering �EM [30]
(see figure 2). Apart from the presence of ∅ (which can be easily eliminated), the difference
is that �EM � �� which can be useful, e.g. to define the semantics of the parallel or as
[[f or g]]

∆
= λρ· [[f]] ρ�� [[g]] ρ12.

12Observe that �� is monotonic for �� which is not in contradiction with [8] since by lemma 35 failure
is excluded i.e. would have to be explicitly denoted by Ω �∈ Σ.

29

We let ((c1 ? v1 || c2 ? v2 || . . . ¿ w)) be v1 if condition c1 holds else v2 if condition c2
holds, etc. and w otherwise.
Let us recall [3, fact 2.4] that G. Plotkin convex powerdomain 〈DEM, �EM,⊥EM, �EM〉

is the DCPO {A ⊆ Σ⊥ | A �= ∅} with Egli-Milner ordering:

A �EM B
∆
= ∀a ∈ A : ∃b ∈ B : a �D b ∧ ∀b ∈ B : ∃a ∈ A : a �D b

based upon D. Scott flat ordering ∀x ∈ Σ⊥ : ⊥�D x �D x such that

A �EM B ⇐⇒ ((⊥∈ A ? A \ {⊥} ⊆ B ¿ A = B)) ,

with infimum ⊥EM ∆
= {⊥} and lub of increasing chains �EM

i∈∆
Xi

∆
= (∪

i∈∆
Xi \ {⊥}) ∪ {⊥ |

∀i ∈ ∆ : ⊥∈ Xi}.
Applying the fixpoint iterates reordering theorem 10 to theorem 33, we get [3]:

Corollary 37. (G. Plotkin fixpoint nondeterministic denotational semantics).

τ � = lfp
�̇EM

⊥̇EM
F � where F � (defined in theorem 33) is a �̇EM

-monotone map on the pointwise

extension 〈ḊEM, �̇EM
, ⊥̇EM, �̇EM〉 of G. Plotkin convex powerdomain 〈DEM, �EM,⊥EM,

�EM〉.

Proof. We apply theorem 10 with E = ḊEM = Σ �−−→ ℘(Σ⊥) \ {λs· ∅}.
�̇EM

is a preorder on ḊEM.

By lemma 35, no iterate F �
δ
, δ ∈ O of F � from ⊥̇� is λs· ∅ .

⊥̇� = λs·{⊥} is the infimum of 〈ḊEM, �̇EM〉.
If f �̇EM

g then ∀s ∈ Σ : ((⊥ ∈ F (s) ? f(s) \ {⊥} ⊆ g(s) ¿ f(s) = g(s))) so that we
must show that ∀s ∈ Σ : F �(f)s �EM F �(g)s ⇐⇒ ∀s ∈ Σ : ˙̌τ (s) ∪

⋃
fI ◦ τ·I(s) �EM

˙̌τ (s) ∪
⋃
gI ◦ τ·I(s) ⇐⇒ ∀s ∈ Σ : ((⊥ ∈

⋃
{f(s′) | s τ s′} ?

⋃
{f(s′) | s τ s′} \ {⊥} ⊆⋃

{g(s′) | s τ s′} ¿
⋃
{f(s′) | s τ s′} =

⋃
{g(s′) | s τ s′})). Let us consider any s′ ∈ Σ

such that s τ s′. If ⊥ ∈ f(s′) then f(s′) \ {⊥} ⊆ g(s′) else f(s′) = g(s′) so that in both
cases f(s′) \ {⊥} ⊆ g(s′). It follows that

⋃
{f(s′) | s τ s′} \ {⊥} ⊆

⋃
{g(s′) | s τ s′}

proving F �(f)s �EM F �(g)s in case ⊥∈
⋃
{f(s′) | s τ s′}. Otherwise, ∀s′ ∈ Σ : s τ s′ =⇒

⊥ �∈ f(s′) hence f(s′) = g(s′) so that
⋃
{f(s′) | s τ s′} =

⋃
{g(s′) | s τ s′} and again

F �(f)s �EM F �(g)s. It follows that F � hence F �|ḊEM is �̇EM
-monotonic.

In order to prove that for all g ∈ ḊEM, if λ is a limit ordinal and ∀δ < λ : F �
δ �̇EM

g

then �̇�

δ<λ
F �
δ �̇EM

g, let us assume that ∀s ∈ Σ : ∀δ < λ : F �
δ
(s) �EM g(s) that is

((⊥ ∈ F �
δ
(s) ? F �

δ
(s) \ {⊥} ⊆ g(s) ¿ F �

δ
(s) = g(s))). We have ��

δ<λ
F �
δ
(s) = (∪

δ<λ
F �
δ
(s) ∩

Σ) ∪ (∩
δ<λ

F �
δ
(s) ∩ {⊥})

A. If ⊥∈ ��

δ<λ
F �
δ
(s) then ∀δ < λ : ⊥∈ F �δ(s) which implies ∀δ < λ : F �

δ
(s)\{⊥} ⊆ g(s)

since F �
δ
(s) �EM g(s). Therefore (∪

δ<λ
F �
δ
(s))\{⊥} ⊆ g(s) hence (��

δ<λ
F �
δ
(s))\{⊥} ⊆ g(s)

proving ��

δ<λ
F �
δ
(s) �� g(s).

B. If ⊥ �∈ ��

δ<λ
F �
δ
(s) then there exists η′ < λ : ⊥ �∈ F �

η′
(s). Moreover F �

η′
(s) = g(s)

since F �
η′
(s) �� g(s). Let η > 0 be the least such η′ (η �= 0 since F �

0
(s) = {⊥}). For all

30

δ ≤ η, we have F �
δ∩Σ ⊆ F �

η
(s)∩Σ = g(s) so that ∪

δ≤η
F �
δ
(s)∩Σ = g(s). Now if η ≤ δ < λ

then g(s) = F �
η
(s) ∩Σ ⊆ F �

δ
(s) ∩Σ so that by reductio ad absurdum F �

δ
(s) ∩Σ �= g(s)

would imply ∃s′ ∈ Σ : s′ ∈ F �δ(s)∩Σ∧s′ �∈ F �η(s)∩Σ so ∃s′ ∈ Σ : s′ ∈ F �δ(s)∧s′ �∈ F �η(s)
and δ �= η, whence η < δ proving, by the lemma 25 that ⊥∈ F �η(s), a contradiction. For

all δ such that η ≤ δ < λ, we have F �
δ
(s)∩Σ = g(s) so that ∪

δ<λ
F �
δ
(s)∩Σ = g(s) whence

�
δ<λ

F �
δ
(s) �EM g(s).

By theorems 33 and 10, we conclude that τ � = lfp
�̇�

⊥̇�
F � = lfp

�̇EM

⊥̇EM
F �. �

8.1.3. Demoniac Nondeterministic Denotational Semantics
The demoniac nondeterministic denotational semantics is the right-image abstraction

τ � ∆
= αI(τ ∂)

of the demoniac relational semantics τ ∂ .
In order to place the demoniac nondeterministic denotational semantics τ � in the hier-

archy of semantics, we will use the following abstraction

α�(f)
∆
= λs· f(s) ∪ {s′ ∈ Σ | ⊥ ∈ f(s)} ,

γ�(g)
∆
= g

satisfying

〈Σ �−−→ ℘(Σ⊥), ⊆̇〉 −−−→−→←−−−−
α�

γ�

〈Σ �−−→ (℘(Σ) ∪ {Σ⊥}), ⊆̇〉 .

Proof. α�(f) ⊆̇ g ⇐⇒ ∀s ∈ Σ : f(s) ∪ {s′ ∈ Σ | ⊥ ∈ f(s)} ⊆ g(s) =⇒ ∀s ∈ Σ :
f(s) ⊆ g(s) ⇐⇒ f ⊆̇ γ�(g). Reciprocally, if ∀s ∈ Σ : f(s) ⊆ g(s) then either ⊥ ∈ g(s)
so g(s) = Σ⊥ hence α�(f)s ⊆̇ g(s) or ⊥ �∈ g(s) hence ⊥ �∈ f(s) and again α�(f)s ⊆̇ g(s)

proving α�(f) ⊆̇ g. We conclude that 〈Σ �−−→ ℘(Σ⊥), ⊆̇〉 −−−→−→←−−−−
α�

γ�

〈Σ �−−→ (℘(Σ)∪{Σ⊥}),
⊆̇〉. �

The demoniac abstraction α� introduces any potential finite behavior for all initial states
for which nontermination is possible (so that it it impossible to conclude anything on the
finite behaviors when nontermination is possible).

Theorem 38. (Denotational demoniac abstraction). τ � = α�(τ �).

Proof. We have αI ◦ α∂ = λX·λs·{s′ | (〈s, s′〉 ∈ X) ∨ (〈s, ⊥〉 ∈ X ∧ s′ ∈ Σ)} =

λX· λs·{s′ | (s′ ∈ αI(X)s) ∨ (⊥ ∈ αI(X)s ∧ s′ ∈ Σ)} = α� ◦ αI. It follows that τ � ∆
=

αI(τ ∂) = αI ◦ α∂ (τ∞) = α� ◦ αI(τ∞) = α�(τ �). �

Let us recall the properties of lifting:

Lemma 39. (Lifting). Given a complete lattice 〈D, �,⊥,�, �, �〉 (respectively a
poset 〈D, �, �〉, a DCPO 〈D, �,⊥, �〉), the lift of D by ⊥ �∈ D is the complete lattice
(resp. poset, DCPO) 〈D⊥, �,⊥,�,

∐
,
∏
〉 with:

31

– D⊥
∆
= D ∪ {⊥},

– partial order x � y
∆
= (x = ⊥) ∨ (y ∈ D ∧ x � y),

– infimum ⊥,

– supremum �,

– join
∐
i∈∆

Xi
∆
= ((∀i ∈ ∆ : Xi = ⊥ ? ⊥ ¿ �{Xi | i ∈ ∆ ∧Xi �= ⊥}))

– and meet
∏
i∈∆

Xi
∆
= ((∃i ∈ ∆ : Xi = ⊥ ? ⊥ ¿ �{Xi | i ∈ ∆ ∧Xi �= ⊥})).

By the fixpoint characterization 28 of τ ∂ and the Kleenian fixpoint transfer theorem 3,
we get:

Theorem 40. (Fixpoint demoniac nondeterministic denotational semantics).

τ � = lfp
�̇�

⊥̇�
F � where F �(f)

∆
= ˙̌τ ∪̇

⋃̇
fI ◦ τ·I is a �̇�

-monotone map on the pointwise

extension 〈Ḋ�, �̇�
, ⊥̇�, �̇�, �̇�

, �̇�〉 of the lift 〈D�, ��,⊥�,��, ��, ��〉 of the complete lattice
〈℘(Σ), ⊆, ∅, Σ, ∪, ∩〉 by the infimum Σ⊥.

Proof. The order structure of Ḋ� is chosen to be 〈αI, γI〉-isomorphic to the complete
lattice 〈D∂ , �∂ ,⊥∂ ,�∂ , �∂ , �∂ 〉 of theorem 28. Therefore we have a complete lattice

〈Ḋ�, �̇�
, ⊥̇�, �̇�, �̇�

, �̇�〉 such that the partial order is f �̇�
g

∆
= γI(f) �∂ γI(g) = ∀s ∈

Σ : 〈s, ⊥〉 ∈ γI(f) ∨ (〈s, ⊥〉 �∈ γI(g) ∧ γI(f) ∩ ({s} × Σ) ⊆ γI(g) ∩ ({s} × Σ)) =
∀s ∈ Σ : ⊥∈ f(s)∨ (⊥ �∈ g(s)∧ f(s) ⊆ g(s)) = ∀s ∈ Σ : f(s) �� g(s) by defining X �� Y
∆
= ⊥∈ X ∨ (⊥ �∈ Y ∧X ⊆ Y), pointwise.
Consequently, by lemma 39, 〈D�, ��,⊥�,��, ��, ��〉 is the lift of the complete lattice

〈℘(Σ), ⊆, ∅, Σ, ∪, ∩〉 by the infimum Σ⊥.

It follows that the infimum is ⊥̇� ∆
= λs·⊥� where ⊥� ∆

= Σ⊥ and the supremum is �̇� ∆
=

λs·�� where �� ∆
= Σ.

The lub ��

i∈∆
Xi = ((∀i ∈ ∆ : Xi = Σ⊥ ? Σ⊥ ¿ ∪{Xi | i ∈ ∆ : ∧Xi �= Σ⊥})) satisfies

αI(�∂

i∈∆
Xi) = �̇�

i∈∆
αI(Xi).

The same way , by lemma 39, the glb is ��

i∈∆
Xi

∆
= ((∃i ∈ ∆ : Xi = Σ⊥ ? Σ⊥ ¿ ∩{Xi | i ∈

∆ : ∧Xi �= Σ⊥})).
The design of the semantic transformer F � is identical to that of F � in the proof of

theorem 33.
Monotony directly follows from that of F ∂ using the 〈αI, γI〉-isomorphism. �

Lemma 41. (Arrangement of the iterates of F �). Let F �
δ
, δ ∈ O be the iterates

of F � from ⊥̇�. For all η < ξ, s, s′ ∈ Σ, if s′ ∈ F �ξ(s) and s′ �∈ F �η(s) then F �η(s) = Σ⊥.

Proof. Follows from lemma 29 and the proof of theorem 40, showing by the Kleenian

fixpoint transfer theorem 3 that ∀β ∈ O : F �
β
= αI(F ∂

β
). �

32

{a} {b}

∅

{a, b,⊥}

{a, b}

❅
❅❅�

��

❅
❅❅�

��

�
��❅

❅❅

�
��❅

❅❅

{a, b}

{a, b,⊥}

{b}{a}
{a} {b}

{a, b}

{a, b,⊥}

❅
❅❅�

��

❆
❆

❆
❆
❆

✁
✁
✁
✁
✁

{a, b,⊥}

{a, b} {b}{a}

Demoniac
ordering ��

Demoniac
ordering ��

Smyth
ordering �S

Flat
ordering �P

Figure 3.

Lemma 42. (Totality of the iterates of F �). Let F �
δ
, δ ∈ O be the iterates of F �

from ⊥̇�. ∀δ ∈ O : ∀s ∈ Σ : F �
δ
(s) �= ∅.

Proof. Follows from lemma 30 and the proof of theorem 40, showing by the Kleenian

fixpoint transfer theorem 3 that ∀β ∈ O : F �
β
= αI(F ∂

β
). �

Lemma 43. (Final states of the iterates of F �). Let F �
δ
, δ ∈ O be the iterates of

F � from ⊥̇�. ∀δ ∈ O : ∀s, s′ ∈ Σ : (s′ ∈ F �δ(s)∧⊥ �∈ F �δ(s)) =⇒ (s′ ∈ τ̌∧F �δ(s′) = {s′}).

Proof. Follows from lemma 31 and the proof of theorem 40, showing by the Kleenian

fixpoint transfer theorem 3 that ∀β ∈ O : F �
β
= αI(F ∂

β
). �

From theorem 40, lemma 42 and the fixpoint iterates reordering theorem 10, we deduce
another fixpoint characterization of F �(f) with a different partial ordering:

Corollary 44. (Reordered fixpoint demoniac nondeterministic denotational

semantics). τ � = lfp
�̇�

⊥̇�
F � where F �(f)

∆
= ˙̌τ ∪̇

⋃̇
fI ◦ τ·I is a �̇�

-monotone map on the

pointwise extension 〈Ḋ�, �̇�, ⊥̇�, �̇�, �̇�, �̇�〉 of the complete lattice 〈D�, ��,⊥�,��, ��,
��〉 where D� ∆

= (℘(Σ) \ {∅}) ∪ {⊥�}, ⊥� ∆
= Σ⊥ and X �� Y

∆
= (X = ⊥�) ∨ (X ⊆ Y).

8.1.4. Upper/Smyth Nondeterministic Denotational Semantics
Unforeseenly, the demoniac semantic domain D� with the demoniac ordering �� differs

from the usual upper powerdomain with M. Smyth ordering [30] �S (see figure 3).
Let us recall [3, fact 2.7] that M. Smyth upper powerdomain 〈DS, �S,⊥S , �S, �S 〉 is

DS ∆
= {A ⊆ Σ | A �= ∅} ∪ {Σ⊥} ordered by the superset ordering A �S B

∆
= A ⊇ B which

is a poset with infimum ⊥S ∆
= Σ⊥, the glb of nonempty families Xi, i ∈ ∆ always exist

being given by �S

i∈∆
Xi

∆
= ∪
i∈∆

Xi and if Xi, i ∈ ∆ has an upper bound, its lub exists and is

�S

i∈∆
Xi

∆
= ∩
i∈∆

Xi.

By applying the fixpoint iterates reordering theorem 10 to the fixpoint definition of τ �

provided by theorem 40, we get [3]:

33

Corollary 45. (M. Smyth fixpoint nondeterministic denotational semantics).

τ � = lfp
�̇S

⊥̇S
F � where F � is a �̇S

-monotone map on the pointwise extension 〈ḊS, �̇S
, ⊥̇S,

�̇S
, �̇S 〉 of M. Smyth upper powerdomain 〈DS, �S,⊥S, �S, �S 〉.

Proof. �̇S
is a partial order on ḊS.

By lemma 42, all iterates F �
δ
, δ ∈ O of F � from ⊥̇� belong to DS = D� \ {λs· ∅}.

If f �̇S
g then ∀s ∈ Σ : f(s) �S g(s) so that ∀s ∈ Σ : f(s) ⊇ g(s) which implies ∀s ∈

Σ : ˙̌τ (s) ∪
⋃
{f(s′) | s τ s′} ⊇ ˙̌τ (s) ∪

⋃
{g(s′) | s τ s′} that is ∀s ∈ Σ : F �(f)s ⊇ F �(g)s

whence F �(f) �̇S
F �(g) proving that F � hence F �|ḊS is �̇S

-monotone.

Assume that f ∈ ḊS, λ is a limit ordinal and ∀δ < λ : F �
δ �̇S

f , that is ∀δ < λ : ∀s ∈
Σ : F �

δ
(s) ⊇ f(s). It follows that ∩

δ<λ
F �
δ
(s) ⊇ f(s) proving that ((∀δ < λ : F �

δ
(s) = Σ⊥ ?

Σ⊥ ¿ ∩
δ<λ

F �
δ
(s))) ⊇ f(s) that is �̇�

δ<λ
F �
δ �̇S

f .

By theorems 40 and 10, we conclude that τ � = lfp
�̇�

⊥̇�
F � = lfp

�̇S

⊥̇S
F �. �

8.1.5. Minimal Demoniac Nondeterministic Denotational Semantics
M. Smyth ordering �̇S

is not minimal since, for example on figure 3, {a} and {a, b}
need not be comparable by lemma 29. Intuitively the minimal ordering is designed to
compare only elements of the powerdomain which can appear along the fixpoint iterates
for some program as described by the arrangement of the iterates specified in lemma 29.
This minimal ordering called the flat ordering leads to the same fixpoints as shown by
the fixpoint iterates reordering considered in section 2.6.

Theorem 46. (Flat powerdomain fixpoint nondeterministic denotational se-

mantics). τ � = lfp
�̇P

⊥̇P
F � where F � is a �̇P

-monotone map on the DCPO 〈ḊP, �̇P

, ⊥̇P,
�̇P〉 which is the restriction of the pointwise extension of the flat DCPO 〈DP, �P,⊥P,
�P〉. with DP ∆

= (℘(Σ) \ {∅}) ∪ {⊥P} and infimum ⊥P ∆
= Σ⊥ to ḊP ∆

= {f ∈ Σ �−−→ DP |
∀s, s′ ∈ Σ : (s′ ∈ f(s) ∧ f(s) �= ⊥P) =⇒ (s′ ∈ τ̌ ∧ f(s′) = {s′}).

Proof. f �̇P

g ⇐⇒ ∀s ∈ Σ : f(s) �P g(s) and �P is the flat partial ordering with
infimum ⊥P, so that �̇P

is a partial order on ḊP.
To prove that 〈ḊP, �̇P〉 is a DCPO, let λ be a limit ordinal, f δ, δ < λ be a �̇P-

increasing chain. Its lub in the pointwise extension of 〈DP, �P〉 is fλ ∆
= �̇P

δ<λ
fλ. Let

us show that fλ ∈ ḊP which implies that fλ is the lub in ḊP. To prove this, we have
∀s ∈ Σ : fλ(s) = �P

δ<λ
f δ(s) so that either ∀δ < λ : f δ(s) = ⊥P in which case fλ(s) = ⊥P

or, by definition of the flat ordering, ∃η < λ : fλ(s) = �P
δ<λ

f δ(s) = f η(s) so that f η ∈ ḊP

implies ∀s, s′ ∈ Σ : (s′ ∈ fλ(s) ∧ fλ(s) �= ⊥P) =⇒ s′ ∈ (s′ ∈ τ̌ ∧ f(s′) = {s′}) hence
fλ ∈ ḊP.

All iterates F �
δ
, δ ∈ O of F �(f)

∆
= ˙̌τ ∪̇

⋃̇
fI ◦ τ·I from ⊥̇S = λs·Σ⊥ = ⊥̇P satisfy

F �
δ �= λs· ∅ by lemma 42 and ∀s, s′ ∈ Σ : (s′ ∈ F �

δ
(s) ∧ F �δ(s) �= ⊥P) =⇒ s′ ∈ (s′ ∈

τ̌ ∧ f(s′) = {s′}) by lemma 43, hence belong to ḊP.
⊥̇P is the �̇P-infimum of ḊP.

34

If f �̇P

g then ∀s ∈ Σ : (f(s) = Σ⊥)∨ (f(s) = g(s)) so that ∀s ∈ Σ : (˙̌τ (s) ∪
⋃
{f(s′) |

s τ s′} = Σ⊥) ∨ (˙̌τ (s) ∪
⋃
{f(s′) | s τ s′} = ˙̌τ (s) ∪

⋃
{g(s′) | s τ s′}) whence

F �(f) �̇P

F �(g) proving that F � hence F �|ḊP is �̇P

-monotone.

Assume that f ∈ ḊP, λ is a limit ordinal and ∀δ < λ : F �
δ �̇P f , that is ∀δ < λ :

∀s ∈ Σ : (F �
δ
(s) = Σ⊥) ∨ (F �

δ
(s) = f(s)). It follows that either ∩

δ<λ
F �
δ
(s) = Σ⊥ or

∩
δ<λ

F �
δ
(s) = f(s) proving that �̇S

δ<λ
F �
δ �̇P f .

By theorems 45 and 10, we conclude that τ � = lfp
�̇S

⊥̇S
F � = lfp

�̇P

⊥̇P
F �. �

The poset 〈ḊP, �̇P〉 is minimal for the fixpoint nondeterministic denotational semantics,
in that:

Theorem 47. (Minimality of 〈ḊP, �̇P〉). Let 〈E, �〉 be any poset such that ⊥̇P is

the �-infimum of E, F �[[τ]]
∆
= λf· ˙̌τ ∪̇ ⋃̇

fI ◦ τ·I ∈ E m�−−→ E is �-monotone and ∀τ : τ �

= lfp
4

⊥̇P
F �[[τ]] then ḊP ⊆ E and �̇P ⊆ �.

Proof. Assume, by reductio ad absurdum, that ∃f ∈ ḊP : f �∈ E. We write F �[[τ]]
to explicitate which transition system 〈Σ, τ 〉 the transformer F � depends upon. Let us

define the particular transition relation τ
∆
= {〈s, s′〉 | (s = s′ ∧⊥∈ f(s)) ∨ (s �= s′ ∧ ⊥ �∈

f(s) ∧ s′ ∈ f(s))}.
We have ˙̌τ (s)

∆
= {s | ∀s′ ∈ Σ : ¬(s τ s′)} = {s | ∀s′ ∈ Σ : ¬(s = s′ ∧⊥∈ f(s)) ∧ ¬(s �=

s′ ∧ ⊥ �∈ f(s) ∧ s′ ∈ f(s))} = {s | (∀s′ ∈ Σ : s �= s′ ∨ ⊥ �∈ f(s)) ∧ (∀s′ ∈ Σ : s = s′ ∨ ⊥ ∈
f(s) ∨ s′ �∈ f(s))} = {s | ⊥ �∈ f(s) ∧ ∀s′ �= s : s′ �∈ f(s))} = {s | f(s) = {s}} since
f(s) �= ∅.
We have ∃s′ : s τ s′ = (∃s′ : s = s′ ∧ ⊥ ∈ f(s)) ∨ (∃s′ : s �= s′ ∧ ⊥ �∈ f(s) ∧ s′ ∈ f(s))

= (⊥ ∈ f(s)) ∨ (∃s′ �= s : s′ ∈ f(s)) = (⊥ ∈ f(s)) ∨ (f(s) �= {s}) since f(s) �= ∅ so that
(∃s′ �= s : s′ ∈ f(s))⇐⇒ f(s) �= {s}.
The iterates F �

δ
, δ ∈ O of F �[[τ]] are as follows:

F �
0
= λs·Σ⊥.

F �
1
= F �[[τ]](F �

0
) = λs· ˙̌τ (s) ∪ ⋃

{F �0(s′) | s τ s′} = λs·{s | f(s) = {s}} ∪ ((⊥ ∈
f(s)∨ (f(s) �= {s}) ? Σ⊥ ¿ ∅)) = λs·{s | f(s) = {s}} ∪ ((⊥∈ f(s) ? Σ⊥ ¿ ∅)) ∪ (((f(s) �=
{s}) ? Σ⊥ ¿ ∅)).
F �

2
= F �[[τ]](F �

1
) = λs·{s | f(s) = {s}} ∪ A ∪B where:

A =
⋃
{{s | f(s) = {s}} ∪ ((⊥∈ f(s) ? Σ⊥ ¿ ∅)) ∪ ((f(s) �= {s} ? Σ⊥ ¿ ∅)) | ⊥ ∈ f(s)}

= ((⊥∈ f(s) ? Σ⊥ ¿ ∅)) = ((⊥∈ f(s) ? f(s) ¿ ∅)).
B =

⋃
{{s′ | f(s′) = {s′}} ∪ ((⊥∈ f(s′) ? Σ⊥ ¿ ∅)) ∪ (((f(s′) �= {s′}) ? Σ⊥ ¿ ∅)) | s �=

s′ ∧ ⊥ �∈ f(s) ∧ s′ ∈ f(s)}. Since s′ ∈ f(s) and ⊥ �∈ f(s) hence f(s) �= Σ⊥ = ⊥P, we have
s′ ∈ τ̌ hence s′ ∈ ˙̌τ (s′) so that, as shown above, f(s′) = {s′} and ⊥ �∈ f(s′). Therefore B =⋃
{{s′ | f(s′) = {s′}} | s �= s′∧⊥ �∈ f(s)∧s′ ∈ f(s)} = {s′ | s �= s′∧⊥ �∈ f(s)∧s′ ∈ f(s)}.
It follows that F �

2
= λs·{s | f(s) = {s}}∪A∪B = λs·{s | f(s) = {s}}∪ ((⊥∈ f(s) ?

f(s) ¿ ∅))∪{s′ | s �= s′∧⊥ �∈ f(s)∧ s′ ∈ f(s)}. If ⊥∈ f(s) then F �2(s) = f(s). Otherwise

⊥ �∈ f(s) hence f(s) �= ⊥P in which case F �
2
(s) = {s | f(s) = {s}} ∪ {s′ | s �= s′ ∧ s′ ∈

f(s)}. But s ∈ f(s) ∧ f(s) �= ⊥P ∧ f ∈ ḊP implies f(s) = {s} so F �2(s) = f(s).

We have shown that F �
2
= f .

35

This is in contradiction with f �∈ E so that ḊP ⊆ E.
For all f ∈ ḊP, we have shown that there exists τ such that f is one of the iterates of

F �[[τ]] from ⊥̇P. Since the iterates are �-increasing, we must have ⊥̇P � f proving that
�̇P ⊆ �. �

Reciprocally, we have:

Theorem 48. (General fixpoint demoniac nondeterministic denotational se-
mantics). Let 〈E, �〉 be a poset such that ḊP ⊆ E, �̇P ⊆ �, ⊥̇P is the �-

infimum of E, the �-lub of �̇P-increasing chains f δ, δ ∈ λ in ḊP is �̇P
δ<λ

f δ and F �
∆
=

λf· ˙̌τ ∪̇ ⋃̇
fI ◦ τ·I ∈ E m�−−→ E is �-monotonic. Then τ � = lfp

4

⊥̇P
F �.

Proof. By the proof of theorem 46, we know that all iterates F �
δ
, δ ∈ O of F � are in

ḊP. Let ε be the iteration order so that F �
ε
= lfp

�̇P

⊥̇P
F �. Let f ∈ E be any fixpoint of F �.

We have F �
0
= ⊥̇P � f since ⊥̇P is the �-infimum of E. If F �

δ � f then F �
δ+1

= F �(F �
δ
)

� F �(f) = f since F � is �-monotonic. If λ is a limit ordinal then F �
δ
, δ < λ is a �̇P-

increasing chain so that its �-lub is �̇P
δ<λ

F �
δ
= F �

λ
whence F �

λ � f since ∀δ < λ : F �
δ � f

by induction hypothesis. By transfinite induction, ∀δ ∈ O : F �
δ � f proving that F �

ε
=

lfp
4

⊥̇P
F �. By theorem 46, τ � = lfp

�̇P

⊥̇P
F � = lfp

4

⊥̇P
F �. �

8.1.6. Angelic/Lower/C.A.R. Hoare Nondeterministic Denotational Seman-
tics

The angelic nondeterministic denotational semantics is the right-image abstraction

τ � ∆
= αI(τ+)

of the finite/angelic relational semantics τ+. We also have τ � = αΣ(τ �) where αΣ(f) =
λs· f(s) ∩ Σ.
By theorem 17 and the Kleenian fixpoint transfer theorem 3, we get:

Corollary 49. (C.A.R. Hoare fixpoint nondeterministic denotational seman-

tics). τ � = lfp
⊆̇

∅̇
F � where F � = λf· ˙̌τ ∪̇ ⋃̇

fI ◦ τ·I is a complete ∪̇-morphism on the

complete lattice 〈Σ �−−→ ℘(Σ), ⊆̇, ∅̇, λs·Σ, ∪̇, ∩̇〉 which is the pointwise extension of the
powerset 〈℘(Σ), ⊆〉.

Proof. The order structure of Σ �−−→ ℘(Σ) is chosen to be 〈αI, γI〉-isomorphic to
the complete lattice 〈℘(Σ × Σ), �, ∅, Σ × Σ, ∪, ∩〉 of theorem 17 that is the pointwise
extension of the powerset 〈℘(Σ), ⊆〉.
We have αI(∪̇

i∈∆
Xi) = λs·{s′ | 〈s, s′〉 ∈ ∪

i∈∆
Xi)} = ∪̇

i∈∆
λs·{s′ | 〈s, s′〉 ∈ Xi)} =

∪̇
i∈∆

αI(Xi) so that αI is ∅-strict and Scott-continuous.

The commutation condition leads to the definition of F � as in the proof of theorem 33.
F � is a complete join-morphism since (∪̇ (∪̇

i∈∆
fi)

I

)(X) = ∪{(∪̇
i∈∆

fi)(s) | s ∈ X} =

∪{ ∪
i∈∆

fi(s) | s ∈ X} = ∪
i∈∆
{fi(s) | s ∈ X} = ∪

i∈∆
fi
I(X) so that we have F �(∪̇

i∈∆
fi) =

˙̌τ ∪̇
⋃̇
(∪̇
i∈∆

fi)
I ◦ τ·I = ˙̌τ ∪̇

⋃̇
∪̇
i∈∆

fi
I ◦ τ·I = ∪̇

i∈∆
(˙̌τ ∪̇

⋃̇
fi
I ◦ τ·I) = ∪̇

i∈∆
F �(fi).

36

a

b

c

✻
����

✟✟✟✟✯

✉

✉

✉ a

b

c�
����

✟✟✟✟✯

✉

✉

✉ a

b

c
����

✟✟✟✟✯

✉

✉

✉

τ �(a) = {b}
τ�(a) = b
τ�(b) = b
τ�(c) = b

τ �(a) = {b,⊥}
τ�(a) = b
τ�(b) = b
τ�(c) = ⊥

τ �(a) = {b, c}
τ�(a) = �
τ�(b) = b
τ�(c) = c

Figure 4. Natural τ � and deterministic τ� denotational semantics of nondeterministic
transition systems τ

Finally τ � ∆
= αI(τ+) = αI(lfp

⊆

∅
F+) = lfp

⊆̇

∅̇
F �. �

Observe that the angelic semantic domain 〈Σ �−−→ ℘(Σ), ⊆̇〉 is exactly the pointwise
extension of the usual lower/C.A.R. Hoare powerdomain [30].

8.2. Deterministic Denotational Semantics
In the deterministic denotational semantics the nondeterministic behaviors are ignored.

8.2.1. Deterministic Denotational Semantics of Nondeterministic Transition
Systems

For nondeterministic transition systems, the nondeterministic behaviors are abstracted
to chaos �. We let:

– α�(∅) ∆
= α�({⊥}) ∆

= ⊥,

– ∀s ∈ Σ : α�({s}) ∆
= α�({s,⊥}) ∆

= s and

– α�(X)
∆
= � when X ⊆ Σ⊥ has a cardinality such that |X \ {⊥}| > 1.

Observe that α� ignores inevitable nontermination in the abstraction of nondeterminism
(see figure 4). By letting:

– ∀ζ ∈ Σ⊥ : γ�(ζ)
∆
= {ζ,⊥} and

– γ�(�) ∆
= Σ⊥,

we get the Galois insertion

〈℘(Σ⊥), ⊆〉 −−−−→−→←−−−−−
α�

γ�

〈Σ�
⊥ , �� 〉

where �� is given by ⊥�� ζ �� ζ �� � for ζ ∈ Σ�
⊥

∆
= Σ ∪ {⊥,�}.

We define α̇� ∆
= λs·α�(f(s)) pointwise so that:

τ� ∆
= α̇�(τ �) .

By theorem 33 and the Kleenian fixpoint transfer theorem 3, we get:

37

Theorem 50. (D. Scott fixpoint deterministic denotational semantics (com-

plete lattices and continuous functions)). τ� = lfp
�̇�

⊥̇
F� where F� ∈ (Σ �−−→

Σ�
⊥) �−−→ (Σ �−−→ Σ�

⊥) defined as F�(f)
∆
= λs·((∀s′ ∈ Σ : ¬(s τ s′) ? s ¿ ��{f(s′) | s τ

s′})) is a complete �̇�
-morphism on the complete lattice 〈Σ �−−→ Σ�

⊥ , �̇
�
, ⊥̇, �̇, �̇�

, �̇� 〉
which is the pointwise extension of the complete lattice 〈Σ�

⊥ , ��,⊥,�, ��, �� 〉 with ��

such that ∀ζ ∈ Σ�
⊥ : ⊥�� ζ �� ζ �� �.

Proof. α�(X) �� ζ ⇐⇒ X ⊆ γ�(ζ) is easily proved by case analysis. Either ζ = ⊥ and
X can only be ∅ or {⊥}, or ζ = s and X ⊆ {s,⊥}, otherwise ζ = � and this is obvious.

We get 〈Σ �−−→ ℘(Σ⊥), ⊆̇〉 −−−−→−→←−−−−−
α̇�

γ̇�

〈Σ �−−→ Σ�
⊥ , �̇

� 〉, pointwise.
The abstraction function α̇� is strict since α�({⊥}) = ⊥. If ∀i ∈ ∆ : Xi ∈ ℘(Σ⊥) then

either ∀i ∈ ∆ : Xi ⊆ {⊥} and then α�(��

i∈∆
Xi) = ��

i∈∆
α�(Xi) = ⊥ or ∃s ∈ Σ : ∀i ∈ ∆ :

Xi ⊆ {s,⊥} ∧ ∃k ∈ ∆ : s ∈ Xk, in which case α�(��

i∈∆
Xi) = ��

i∈∆
α�(Xi) = s, otherwise

∃s, s′ ∈ ∆ : s �= s′ ∧ ∃i ∈ ∆ : {s, s′} ⊆ Xi, in which case α�(��

i∈∆
Xi) = ��

i∈∆
α�(Xi) = �

proving α̇�(�̇�

i∈∆
fi) = �̇�

i∈∆
α̇�(fi), pointwise.

The commutation condition is used to design F� . α̇� ◦ F �(f) = α̇�(˙̌τ ∪̇
⋃̇
fI ◦ τ·I) =

λs·α�(˙̌τ (s) ∪
⋃
fI ◦ τ·I(s)) = λs·α�({s | ∀s′ ∈ Σ : ¬(s τ s′)} ∪

⋃
{f(s′) | s τ s′}) =

λs·((∀s′ ∈ Σ : ¬(s τ s′) ? α�({s}) ¿ α�(
⋃
{f(s′) | s τ s′}))) = λs·((∀s′ ∈ Σ : ¬(s τ s′) ?

s ¿ ��{α�(f(s′)) | s τ s′})) = λs·((∀s′ ∈ Σ : ¬(s τ s′) ? s ¿ ��{α̇�(f)(s′) | s τ s′})) =
λs·F� ◦ α̇�(f) by definition of α̇� and α� which is a complete ��-complete morphism

and by defining F� ∆
= λf·λs·((∀s′ ∈ Σ : ¬(s τ s′) ? s ¿ ��{f(s′) | s τ s′})).

If ∀i ∈ ∆ : fi ∈ Σ �−−→ ℘(Σ⊥) and s ∈ Σ then F�(�̇�

i∈∆
fi)(s) = ((∀s′ ∈ Σ : ¬(s τ s′) ?

s ¿ ��{(�̇�

i∈∆
fi)(s

′) | s τ s′})) = ((∀s′ ∈ Σ : ¬(s τ s′) ? s ¿ ��{��

i∈∆
fi(s

′) | s τ s′})) = ((∀s′ ∈
Σ : ¬(s τ s′) ? s ¿ ��

i∈∆
{fi(s′) | s τ s′})) = ��

i∈∆
((∀s′ ∈ Σ : ¬(s τ s′) ? s ¿ {fi(s′) | s τ s′})) =

��

i∈∆
F� fi(s), proving F

�(�̇�

i∈∆
fi) = �̇�

i∈∆
F�(fi), pointwise.

We conclude τ� ∆
= α�(τ �) = α�(lfp

�̇�

⊥̇�
F �) = lfp

�̇�

⊥̇�
F� where ⊥̇� ∆

= λs·⊥. �

Observe that we have got a complete lattice as in the original work of D. Scott [50] by
giving the top element � the obvious meaning of abstraction of nondeterminism by chaos
(so as to restrict to functions).

8.2.2. D. Scott Deterministic Denotational Semantics of Locally Deterministic
Transition Systems

For locally deterministic transition systems 〈Σ, τ 〉 (i.e. ∀s, s′, s′′ ∈ Σ : s τ s′ ∧ s τ
s′′ =⇒ s′ = s′′) the top element � can be withdrawn from the semantic domain:

Lemma 51. (Iterates of F� for deterministic transition systems). For locally
deterministic transition systems 〈Σ, τ 〉, ∀s ∈ Σ : τ�(s) �= �.

Proof. Let ε be the order of the �̇�
-increasing chain of iterates F�δ, δ ∈ O of F� from

⊥̇� . We show that ∀s ∈ Σ : ∀δ ∈ O : F�δ(s) �= �.

38

We have ∀s ∈ Σ : F�0
(s) = ⊥ �= �.

If this is true for δ ∈ O then for all s ∈ Σ, F�δ+1
(s) = F�(F�δ)(s) = ((∀s′ ∈ Σ :

¬(s τ s′) ? s ¿ ��{F�δ(s′) | s τ s′})). If ∀s′ ∈ Σ : ¬(s τ s′) then s �= �. Otherwise

their is a unique s′ ∈ Σ such that s τ s′ and F�δ(s′) �= � by induction hypothesis so

��{F�δ(s′) | s τ s′} �= �.
Let λ be a limit ordinal such that ∀δ < λ : ∀s ∈ Σ : F�δ(s) �= �. Since the iterates

form an increasing chain, we have either ∀δ < λ : F�δ(s) = ⊥ in which case ��

δ<λ
F�δ(s) =

⊥ �= � or ∃ζ ∈ Σ : ∀δ < λ : F�δ(s) �� ζ , in which case ��

δ<λ
F�δ(s) = ζ �= �.

By transfinite induction ∀s ∈ Σ : ∀δ ∈ O : F�δ(s) �= � thus proving that τ�(s) =

(lfp
�̇�

⊥̇�
F�)(s) = F�ε(s) �= �. �

It follows that we can define τD = τ� ∩(Σ �−−→ Σ⊥). By the fixpoint iterates reordering
theorem 10 and theorem 50, we infer:

Theorem 52. (D. Scott fixpoint deterministic denotational semantics (CPOs

and continuous functions)). τD = lfp
�̇D

⊥̇
FD where FD ∈ (Σ �−−→ Σ⊥) �−−→ (Σ �−−→

Σ⊥) defined as FD(f)
∆
= λs·((s τ s′ ? f(s′) ¿ s)) is a Scott-continuous map on the DCPO

〈Σ �−−→ Σ⊥, �̇
D
, ⊥̇, �̇D〉 which is the pointwise extension of DCPO 〈Σ⊥, �D,⊥, �D〉 where

the Scott-ordering �D is such that ∀ζ ∈ Σ⊥ : ⊥�D ζ �D ζ .

Proof. �̇D
is a partial order on Σ �−−→ Σ⊥ with infimum ⊥̇� = λs·⊥.

By lemma 51, all iterates of F� belong to Σ⊥.
We have F�|Σ �−−→Σ⊥

= λf ∈ Σ �−−→ Σ⊥· λs·F�(f)s = λf ∈ Σ �−−→ Σ⊥·λs·((∀s′ ∈
Σ : ¬(s τ s′) ? s ¿ ��{f(s′) | s τ s′})) = λf ∈ Σ �−−→ Σ⊥·λs ∈ Σ⊥·((s τ s′ ? f(s′) ¿ s)) ∆

=
FD since τ is locally deterministic so that s′ is unique.
Moreover FD is Scott-continuous since if f δ, δ < λ is a �̇D

increasing chain and s ∈ Σ
then FD(�

δ<λ
f δ)(s) = ((s τ s′ ? (�̇

δ<λ
f δ))(s′) ¿ s)) = ((s τ s′ ? �

δ<λ
f δ)(s′) ¿ s)) = �

δ<λ
((s τ s′ ?

f δ(s′) ¿ s)) = �
δ<λ

FD(f δ)(s) = (�̇
δ<λ

FD(f δ))(s).

In conclusion τD = τ� ∩(Σ �−−→ Σ⊥) = lfp
�̇�

⊥̇
F� = lfp

�̇�

⊥̇
F�|Σ �−−→Σ⊥

= lfp
�̇D

⊥̇
FD. �

9. Predicate Transformer Semantics

A predicate is a set of states that may be augmented by ⊥ to denote nontermination. A
predicate transformer maps predicates to predicates. So a predicate transformer is a map-
ping Φ of the form Φ ∈ ℘(D) �−−→ ℘(E). Predicate transformer semantics [24, 25, 26, 31]
usually define the semantics of programs as a backward predicate transformers mapping a
predicate called the postcondition to a predicate called the precondition. Symmetrically,
this is formally equivalent to forward predicate transformers mapping a precondition to
a postcondition. The fixpoint characterization of predicate transformer semantics is de-
rived from that of the denotational semantics considered in section 8 by establishing Ga-
lois connection based correspondences between denotational and predicate transformers
semantics. These Galois connection based correspondences imply the usual healthiness

39

conditions postulated on predicate transformers [24, 25, 26, 31] (that is conjunctivitis
and excluded miracle).

9.1. Correspondences Between Denotational and Predicate Transformers Se-
mantics

Following [16], various correspondences between denotational and predicate trans-
former semantics can be established using the following maps which, being Galois isomor-
phisms, are intuitively understood thanks to their given functionality (D, E are sets):

– Inversion: 〈D �−−→ ℘(E), ⊆̇〉 −−−−−→−→←←−−−−−−
α−1

γ−1

〈E �−−→ ℘(D), ⊆̇〉 where

α−1 ∆
= λf·λs′·{s | s′ ∈ f(s)},

γ−1 ∆
= λf·λs·{s′ | s ∈ f(s′)} .

Proof. We have α−1 ◦ γ−1(Φ) = λs′·{s | s′ ∈ {s′ | s ∈ Φ(s′)}} = Φ. The same way,
γ−1 ◦ α−1(Ψ) = λs·{s′ | s ∈ {s | s′ ∈ Ψ(s)}} = Ψ.
We have α−1(Φ) ⊆̇ Ψ if and only if ∀s′ : α−1(Φ)(s′) ⊆ Ψ(s′) that is ∀s′ : {s | s′ ∈ Φ(s)} ⊆

Ψ(s′) or equivalently ∀s : Φ(s) ⊆ {s′ | s ∈ Ψ(s′)} if and only if ∀s : Φ(s) ⊆ γ−1(Ψ)(s)

hence Φ ⊆̇ γ−1(Ψ). We conclude that 〈D �−−→ ℘(E), ⊆̇〉 −−−−→−→←←−−−−−
α−1

γ−1

〈E �−−→ ℘(D), ⊆̇〉. �

– Existential postimage: 〈D �−−→ ℘(E), ⊆̇〉 −−−→−→←←−−−−
α�

γ�

〈℘(D)
∪�−−→ ℘(E), ⊆̇〉 where

α� ∆
= λf·λP·{s′ | ∃s ∈ P : s′ ∈ f(s)},

γ� ∆
= λΨ·λs·Ψ({s}) .

Proof. If f ∈ D �−−→ ℘(E) then α�[f](∪
i∈∆

Pi) = {s′ | ∃s ∈ ∪
i∈∆

Pi : s
′ ∈ f(s)} =

∪
i∈∆
{s′ | ∃s ∈ Pi : s′ ∈ f(s)} = ∪

i∈∆
α�[f](Pi) so that α�[f] ∈ ℘(D)

∪�−−→ ℘(E).

α�[f] ⊆̇ Ψ if and only ∀P ⊆ D : ∀s′ ∈ E : ∀s ∈ P : s′ ∈ f(s) =⇒ s′ ∈ Ψ(P)
that is ∀P ⊆ D : ∀s′ ∈ E : ∀s ∈ D : s′ ∈ f(s) =⇒ (s ∈ P =⇒ s′ ∈ Ψ(P)) whence
∀P ⊆ D : f ⊆̇ λs·{s′ | s ∈ P =⇒ s′ ∈ Ψ(P)}. It follows for P = {s} that f ⊆̇
λs·{s′ | s′ ∈ Ψ({s})} i.e. f ⊆̇ γ�(Ψ). Reciprocally, ∀s′ ∈ f(s) : s′ ∈ Ψ({s}) implies
∀P ⊆ D : s′ ∈ f(s) =⇒ (s ∈ P =⇒ s′ ∈ Ψ({s})) but s ∈ P that is {s} ⊆ P implies
Ψ({s}) ⊆ Ψ(P) by monotony of Ψ ∈ ℘(D)

∪�−−→ ℘(E), whence ∀P ⊆ D : ∀s ∈ D : ∀s′ ∈
E : s′ ∈ f(s) =⇒ (s ∈ P =⇒ s′ ∈ Ψ(P)) thus proving α�[f] ⊆̇ Ψ.
If f �= f ′ there exists s′ ∈ f(s) such that s′ �∈ f ′(s) or vice-versa. Therefore α�[f]({s}) =

{s′ | s′ ∈ f(s)} �= {s′ | s′ ∈ f ′(s)} = α�[f ′]({s}) so that α� is injective.
If Ψ �= Ψ′ then there is P ⊆ D such that Ψ(P) �= Ψ′(P). This implies that there

is a state s ∈ P such that Ψ({s}) �= Ψ′({s}) since otherwise Ψ(P) = Ψ(∪
s∈P
{s}) =

∪
s∈P

Ψ({s}) = ∪
s∈P

Ψ′({s}) = Ψ′(P). It follows that ∃s′ ∈ Ψ({s}) : s′ �∈ Ψ({s}) or vice-
versa. Since s′ ∈ γ�(Ψ)s but s′ �∈ γ�(Ψ′)s, we have γ�(Ψ) �= γ�(Ψ′) proving that γ� is
injective.

We conclude that 〈D �−−→ ℘(E), ⊆̇〉 −−−→−→←←−−−−
α�

γ�

〈℘(D)
∪�−−→ ℘(E), ⊆̇〉. �

40

– Join preserving map inversion: 〈℘(D)
∪�−−→ ℘(E), ⊆̇〉 −−−→−→←←−−−−

α∪

γ∪

〈℘(E) ∪�−−→ ℘(D), ⊆̇〉
where

α∪ ∆
= λΨ·λQ·{s | Ψ({s}) ∩Q �= ∅},

γ∪ ∆
= λΨ·λP·{s′ | Ψ({s′}) ∩ P �= ∅} .

Proof. We have α∪ ∆
= α� ◦ α−1 ◦ γ� = λΨ·λQ·{s | ∃s′ ∈ Q : s ∈ α−1 ◦ γ�(Ψ)s′}

= λΨ· λQ·{s | ∃s′ ∈ Q : s′ ∈ γ�(Ψ)s} = λΨ· λQ·{s | ∃s′ ∈ Q : s′ ∈ Ψ({s})} =
λΨ· λQ·{s | Ψ({s}) ∩ Q �= ∅}. Similarly γ∪ = λΨ·λP·{s′ | Ψ({s′}) ∩ R �= ∅}. By

composition 〈℘(D)
∪�−−→ ℘(E), ⊆̇〉 −−−→−→←←−−−−

α∪

γ∪

〈℘(E) ∪�−−→ ℘(D), ⊆̇〉. �

– Dual: 〈℘(D)
∪�−−→ ℘(E), ⊆̇〉 −−−→−→←←−−−−

α∼

γ∼

〈℘(D)
∩�−−→ ℘(E), ⊇̇〉 where

α∼ ∆
= λΨ·λP·¬(Ψ(¬P)),

γ∼ ∆
= λΨ·λP·¬(Ψ(¬P)) .

Proof. By definition of α∼ and ¬, we have α∼[Ψ](∩
i∈∆

Pi) = ¬Ψ(¬ ∩
i∈∆

Pi) = ¬Ψ(∪
i∈∆
¬Pi)

= ¬ ∪
i∈∆

Ψ(¬Pi) = ∩
i∈∆
¬Ψ(¬Pi) = ∩

i∈∆
α∼[Ψ](Pi).

Dually, γ∼[Φ](∪
i∈∆

Pi) = ∩
i∈∆

γ∼[Ψ](Pi).

We have α∼(Ψ) ⊆̇ Φ ⇐⇒ ∀P : ¬Ψ(¬P) ⊆ Φ(P) ⇐⇒ ∀P : ¬Φ(P) ⊆ Ψ(¬P) ⇐⇒
∀Q : ¬Φ(¬Q) ⊆ Ψ(Q) ⇐⇒ Ψ ⊇̇ γ∼(Φ) where Q = ¬P .
Obviously α∼(γ∼(Φ)) = λP·¬γ∼(Φ)(¬P) = λP·¬¬Φ(¬¬P) = Φ and γ∼(α∼(Ψ)) = Ψ.

We conclude that 〈℘(D)
∪�−−→ ℘(E), ⊆̇〉 −−−→−→←←−−−−

α∼

γ∼

〈℘(D)
∩�−−→ ℘(E), ⊇̇〉. �

– Meet preserving map inversion:

α∩ ∈ (℘(D)
∩�−−→ ℘(E)) �−−→ (℘(E)

∩�−−→ ℘(D))
∆
= λΦ· λQ·{s | Φ(¬{s}) ∪Q = E},

γ∩ ∈ (℘(E)
∩�−−→ ℘(D)) �−−→ (℘(D)

∩�−−→ ℘(E))
∆
= λΦ· λP·{s′ | Φ(¬{s′}) ∪ P = D} .

Proof. α∩ = α∼ ◦ α∪ ◦ γ∼ = λΦ·α∼(λQ·α∪(γ∼(Φ))(Q)) = λΦ· λQ·¬α∪(γ∼(Φ))(¬Q) =
λΦ· λQ·¬{s | γ�(Φ)({s})∩¬Q �= ∅} = λΦ· λQ·{s | ¬Φ(¬{s})∩¬Q = ∅} = λΦ· λQ·{s |
¬(¬Φ(¬{s}) ∩ ¬)Q = ¬(∅)} = λΦ·λQ·{s | Φ(¬{s}) ∪ Q = E}. The same way γ∩

= λΦ· λP·{s′ | Φ(¬{s′}) ∪ P = D}. By composition 〈℘(D)
∩�−−→ ℘(E), ⊇̇〉 −−−→−→←←−−−−

α∩

γ∩

〈℘(E) ∩�−−→ ℘(D), ⊇̇〉. �

These correspondences between denotational and predicate transformers semantics can
be organized in a commutative diagram, as follows:

41

Theorem 53. (Denotational to predicate transformer Galois connection com-
mutative diagram).

〈D �→ ℘(E), ⊆̇〉 −−−−→−→←←−−−−−
α�

γ�

〈℘(D) ∪�−−→ ℘(E), ⊆̇〉 −−−−→−→←←−−−−−
α∼

γ∼

〈℘(D) ∩�−−→ ℘(E), ⊇̇〉

α−1

↓↓

↑↑

γ−1 α∪

↓↓

↑↑

γ∪ α∩

↓↓

↑↑

γ∩

〈E �→ ℘(D), ⊆̇〉 −−−−→−→←←−−−−−
α�

γ�

〈℘(E) ∪�−−→ ℘(D), ⊆̇〉 −−−−→−→←←−−−−−
α∼

γ∼

〈℘(E) ∩�−−→ ℘(D), ⊇̇〉

The various predicate transformers introduced in [35] can be derived from the denota-
tional semantics, using the following isomorphic abstractions (f ∈ D �−−→ ℘(E)):

– Existential postimage:

gsp[[f]]
∆
= α�[f] ∈ ℘(D)

∪�−−→ ℘(E)

= λP ∈ ℘(D)·{s′ ∈ E | ∃s ∈ P : s′ ∈ f(s)}
– Universal postimage:

gspa[[f]]
∆
= α∼ ◦ α�[f] ∈ ℘(D)

∩�−−→ ℘(E)

= λP ∈ ℘(D)·{s′ ∈ E | ∀s ∈ D : s′ ∈ f(s) =⇒ s ∈ P}
– Universal preimage:

gwp[[f]] ∆
= α∼ ◦ α� ◦ α−1[f] ∈ ℘(E)

∩�−−→ ℘(D)

= λQ ∈ ℘(E)·{s ∈ D | ∀s′ ∈ E : s′ ∈ f(s) =⇒ s′ ∈ Q}
– Existential preimage:

gwpa[[f]]
∆
= α� ◦ α−1[f] ∈ ℘(E)

∪�−−→ ℘(D)

= λQ ∈ ℘(E)·{s ∈ D | ∃s′ ∈ Q : s′ ∈ f(s)}
Combined with the natural τ �, angelic τ � and demoniac τ � denotational semantics, we get
twelve predicate transformer semantics, some of which such as E. Dijkstra [24, 25, 26, 31]
weakest precondition13:

wp(τ �∞, Q)
∆
= gwp[[τ �]]Q

and weakest liberal precondition:

wlp(τ �∞, Q)
∆
= gwp[[τ �]]Q

of postcondition Q ⊆ Σ are well-known. E. Dijkstra postulated healthiness conditions
of predicate transformers [24, 25, 26, 31] indeed follow from gwp[[τ �]] ∈ ℘(Σ)

∩�−−→ ℘(Σ)
(Conjunctivitis) and gwp[[τ �]] ∅ = ∅ since τ � is total by theorem 33 and lemma 35 (Excluded
Miracle).
In order to establish the equivalence of forward and backward predicate transformers

and proof methods, we observe [10, 26] that gsp[[f]]P ⊆ Q if and only if ∀s′ ∈ E : (∃s ∈
P : s′ ∈ f(s)) =⇒ s′ ∈ Q hence ∀s ∈ P : (∀s′ ∈ E : s′ ∈ f(s) =⇒ s′ ∈ Q) that is
P ⊆ gwp[[f]]Q, and reciprocally, proving for all f ∈ D �−−→ ℘(E) that:
13E. Dijkstra’s notation is wp(C, Q) where C is a command and Q is a postcondition so that we use τ �∞

which should be understood as the maximal trace semantics of the command C.

42

Lemma 54. (Correspondence between pre- and postcondition semantics). If

f ∈ D �−−→ ℘(E) then 〈℘(D), ⊆〉 −−−−−−→←−−−−−−
gsp[[f]]

gwp[[f]]
〈℘(E), ⊆〉.

9.2. Generalized Weakest Precondition Semantics
The generalized weakest precondition semantics is:

τ gwp ∆
= gwp[[τ �]] .

This definition is preferred to the classical alternative τwp ∆
= gwp[[τ �]] because the above

generalized weakest precondition semantics τ gwp combines the expressive power of both
the conservative weakest precondition for total correctness and the liberal weakest pre-
condition for partial correctness. Indeed given a predicate Q ⊆ Σ, we have τ gwp[[Q]] =
wp(τ �∞, Q) and τ gwp[[Q ∪ {⊥}]] = wlp(τ �∞, Q). It follows that a single weakest precondition
semantics τ gwp can handle both total correctness and partial correctness. Moreover the
conservative weakest precondition semantics τ gwp[[Q]] = wp(τ �∞, Q) and the liberal weakest
precondition semantics τ gwp[[Q ∪ {⊥}]] = wlp(τ �∞, Q) are further abstractions of the gen-
eralized weakest precondition semantics τ gwp (as respectively shown in sections 9.3 and
9.4).
Applying the Kleenian fixpoint transfer theorem 3 to the fixpoint natural nondetermin-

istic denotational semantics 33 with the correspondence 〈αgwp, γgwp〉 where:

αgwp ∆
= gwp = α∼ ◦ α� ◦ α−1 and

γgwp ∆
= γ−1 ◦ γ� ◦ γ∼

which, according to theorem 53, is a Galois isomorphism, we derive14:

Theorem 55. (Fixpoint generalized weakest precondition semantics). τ gwp =

lfp
�gwp

⊥gwp F
gwp where F gwp ∈ Dgwp m�−−→ Dgwp defined as F gwp(Φ)

∆
= λQ·(¬τ̌ ∪Q) ∩̇ gwp[[τ·I]] ◦

Φ = λQ·(Q ∩ τ̌) ∪̇wp[[τ·I]] ◦ Φ where wp[[f]]Q
∆
= {s ∈ Σ | ∃s′ ∈ Σ : s′ ∈ f(s) ∧ ∀s′ ∈

f(s) : s′ ∈ Q} is a �gwp-monotone map on the complete lattice 〈Dgwp, �gwp,⊥gwp,�gwp,
�gwp, �gwp〉 with:

– Dgwp ∆
= ℘(Σ⊥)

∩�−−→ ℘(Σ),

– Φ �gwp Ψ
∆
= ∀Q ⊆ Σ : Ψ(Q ∪ {⊥}) ⊆ Φ(Q ∪ {⊥}) ∧ Φ(Σ) ⊆ Ψ(Σ),

– ⊥gwp = λQ·((⊥∈ Q ? Σ ¿ ∅)) and

– �gwp

i∈∆
Ψi

∆
= λQ· ∩

i∈∆
Ψi(Q ∪ {⊥}) ∩ ((⊥ �∈ Q ? ∪

i∈∆
Ψi(Σ) ¿ Σ)).

Proof. By the Galois isomorphism 〈Σ �−−→ ℘(Σ⊥), ⊆̇〉 −−−−−→−→←−−−−−−
αgwp

γgwp

〈℘(Σ⊥
∪�−−→ ℘(Σ), ⊇̇〉

〈Dgwp, �gwp,⊥gwp,�gwp, �gwp, �gwp〉 is a complete lattice where Φ �gwp Ψ
∆
= γgwp(Φ) �̇�

14Observe that �gwp coincides with the partial ordering � of [43] except that the explicit use of ⊥ to
denote nontermination dispenses with the handling of two formulae to express τgwp in terms of τwp and
τwlp.

43

γgwp(Ψ), ⊥gwp ∆
= αgwp(⊥�) (so that αgwp is bottom-strict) and �gwp

i∈∆
Φi

∆
= αgwp(�̇�

i∈∆
γgwp(Φi))

(so that αgwp is Scott-continuous).

We get ⊥gwp ∆
= gwp(⊥�) = λQ ∈ ℘(Σ⊥)·{s ∈ Σ | ∀s′ ∈ Σ : s′ ∈ {⊥} =⇒ s′ ∈ Q} =

λQ ∈ ℘(Σ⊥)·{s ∈ Σ | ⊥ ∈ Q} = λQ ∈ ℘(Σ⊥)·((⊥ ∈ Q ? Σ ¿ ∅)). The same way, �gwp ∆
=

gwp(��) = λQ ∈ ℘(Σ⊥)·{s ∈ Σ | ∀s′ ∈ Σ⊥ : s′ ∈ Σ =⇒ s′ ∈ Q} = λQ ∈ ℘(Σ⊥)·{s ∈ Σ |
∀s′ ∈ Σ : s′ ∈ Q} = λQ ∈ ℘(Σ⊥)·{s ∈ Σ | Σ ⊆ Q} = λQ ∈ ℘(Σ⊥)·((Σ ⊆ Q ? Σ ¿ ∅)).
We have γgwp(Φ)

∆
= γ−1 ◦ γ� ◦ γ∼(Φ) = λs·{s′ ∈ Σ⊥ | s ∈ γ� ◦ γ∼(Φ)(s′)} = λs·{s′ ∈

Σ⊥ | s ∈ γ∼(Φ)({s′})} = λs·{s′ ∈ Σ⊥ | s �∈ Φ(¬{s′})}.
It follows that Φ �gwp Ψ

∆
= γgwp(Φ) �̇�

γgwp(Ψ) = ∀s ∈ Σ : {s′ | s �∈ Φ(¬{s′})} ∩ Σ ⊆
{s′ | s �∈ Ψ(¬{s′})} ∩ Σ ∧ {s′ | s �∈ Φ(¬{s′})} ∩ {⊥} ⊇ {s′ | s �∈ Ψ(¬{s′})} ∩ {⊥} =
∀s′ ∈ Σ : Ψ(¬{s′}) ⊆ Φ(¬{s′}) ∧Ψ(Σ) ⊇ Φ(Σ).
Assume that ∀s′ ∈ Σ : Ψ(¬{s′}) ⊆ Φ(¬{s′}) and P ⊆ Σ. Then Ψ(¬P) = Ψ(∩

s′∈P
¬{s′})

= ∩
s′∈P

Ψ(¬{s′}) and the same way for Φ ∈ Dgwp. So Ψ(¬P) ⊆ Φ(¬P) whence ∀Q ⊆ Σ :

Ψ(Q∪{⊥}) ⊆ Φ(Q∪{⊥}) where Q∪{⊥} = ¬P in Σ⊥ whence Q = ¬P in Σ. Reciprocally,
if ∀Q ⊆ Σ : Ψ(Q ∪ {⊥}) ⊆ Φ(Q ∪ {⊥}) then for all s′ ∈ Σ and Q = Σ \ {s′} we have
Q ∪ {⊥} = Σ⊥ \ {s′} = ¬{s′} whence Ψ(¬{s′}) ⊆ Φ(¬{s′}).
We conclude that Φ �gwp Ψ = ∀Q ⊆ Σ : Ψ(Q ∪ {⊥}) ⊆ Φ(Q ∪ {⊥}) ∧ Φ(Σ) ⊆ Ψ(Σ).

We have ��

i∈∆
γgwp(Ψi)(s) = ��

i∈∆
{s′ ∈ Σ⊥ | s �∈ Ψi(¬{s′})} = ∪

i∈∆
{s′ ∈ Σ | s �∈ Ψi(¬{s′})}∪

∩
i∈∆
{s′ ∈ {⊥} | s �∈ Ψi(¬{s′})} = ∪

i∈∆
{s′ ∈ Σ | s �∈ Ψi(¬{s′})} ∪ ∩

i∈∆
{⊥ | s �∈ Ψi(Σ)}.

It follows that �gwp

i∈∆
Ψi

∆
= gwp(λs· ��

i∈∆
γgwp(Ψi)(s)) = λQ ∈ ℘(Σ⊥)·{s ∈ Σ | ∀s′ ∈

Σ⊥ : s′ ∈ (∪
i∈∆
{s′ ∈ Σ | s ∈ ¬Ψi(¬{s′})} ∪ ∩

i∈∆
{⊥ | s ∈ ¬Ψi(Σ)}) =⇒ s′ ∈ Q}

= λQ ∈ ℘(Σ⊥)·{s ∈ Σ | ∀s′ ∈ Σ : ((s ∈ ∪
i∈∆
¬Ψi(¬{s′})) =⇒ s′ ∈ Q) ∧ ((s ∈

∩
i∈∆
¬Ψi(Σ)) =⇒ ⊥∈ Q)} = λQ ∈ ℘(Σ⊥)·{s ∈ Σ | ∀s′ ∈ Σ : ((s �∈ ∩

i∈∆
Ψi(¬{s′})) =⇒ s′ ∈

Q) ∧ ((s �∈ ∪
i∈∆

Ψi(Σ)) =⇒ ⊥ ∈ Q)} = λQ ∈ ℘(Σ⊥)·{s ∈ Σ | ∀s′ ∈ Σ : (s′ �∈ Q =⇒ (s ∈
∩
i∈∆

Ψi(¬{s′}))) ∧ (⊥ �∈ Q =⇒ (s ∈ ∪
i∈∆

Ψi(Σ)))} = λQ ∈ ℘(Σ⊥)·{s ∈ Σ | ∀s′ ∈ Σ ∩ ¬Q :

s ∈ ∩
i∈∆

Ψi(¬{s′})} ∩ ((⊥ �∈ Q ? ∪
i∈∆

Ψi(Σ) ¿ Σ)).

We have {s ∈ Σ | ∀s′ ∈ Σ ∩ ¬Q : s ∈ ∩
i∈∆

Ψi(¬{s′})} = ∩
s′∈Σ∩¬Q

∩
i∈∆

Ψi(¬{s′}) =

∩
i∈∆

Ψi(∩
s′∈Σ∩¬Q

¬{s′}) = ∩
i∈∆

Ψi(¬ ∪
s′∈Σ∩¬Q

{s′}) = ∩
i∈∆

Ψi(¬(Σ ∩ ¬Q)) = ∩
i∈∆

Ψi({⊥} ∪Q).
We conclude that �gwp

i∈∆
Ψi = λQ· ∩

i∈∆
Ψi({⊥} ∪Q) ∩ ((⊥ �∈ Q ? ∪

i∈∆
Ψi(Σ) ¿ Σ)).

Finally we design F gwp by the commutation condition. If Q ∈ ℘(Σ⊥) then α
gwp(F �(f))Q

= {s ∈ Σ | ∀s′ : s′ ∈ (˙̌τ (s) ∪
⋃
fI ◦ τ·I(s)) =⇒ s′ ∈ Q} = {s ∈ Σ | (∀s′′ : ¬(s τ s′′)) =⇒

s ∈ Q} ∩ {s ∈ Σ | ∀s′ : (∃s′′ : s τ s′′ ∧ s′ ∈ f(s′′)) =⇒ s′ ∈ Q} = {s ∈ Σ | τ·I(s) = ∅ ∨ s ∈
Q} ∩ {s ∈ Σ | ∀s′′ : s τ s′′ =⇒ (∀s′ : s′ ∈ f(s′′) =⇒ s′ ∈ Q)} = (¬τ̌ ∪ Q) ∩ gwp[[τ·I]] ◦

gwp[[f]](Q) = F gwp(αgwp(f))(Q), by defining F gwp ∆
= λf·λQ·(¬τ̌ ∪Q) ∩̇ gwp[[τ·I]] ◦ f . But

λQ·(¬τ̌ ∪ Q) ∩ gwp[[τ·I]] ◦ f(Q) = λQ·(¬τ̌ ∪ (τ̌ ∩ Q)) ∩ gwp[[τ·I]] ◦ f(Q) = λQ·(¬τ̌ ∩
gwp[[τ·I]] ◦ f(Q)) ∪ (τ̌ ∩ Q ∩ gwp[[τ·I]] ◦ f(Q)) = λQ·{s | ∃s′ : s τ s′ ∧ ∀s′ ∈ τ·I(s) : s′ ∈
f(Q)}∪(Q∩{s | ∀s′ : ¬(s τ s′)∧∀s′ ∈ τ·I(s) : s′ ∈ f(Q)}) = λQ·wp[[τ·I]] ◦ f(Q)∪(Q∩ τ̌).
By the commutation condition αgwp ◦ F � = F gwp ◦ αgwp so that αgwp ◦ F � ◦ γgwp =

44

F gwp ◦ αgwp ◦ γgwp = F gwp. It follows that f �gwp g implies γgwp(f) �� γgwp(g) that is
F �(γgwp(f)) �� F �(γgwp(g)) by theorem 24 whence γgwp ◦ αgwp ◦ F � ◦ γgwp(f) �� γgwp ◦

αgwp ◦ F � ◦ γgwp(g). Therefore γgwp(F gwp(f)) �� γgwp(F gwp(g)) hence F gwp(f) �gwp F gwp(g)
proving that F gwp is �gwp-monotone. �

Lemma 56. (Arrangement of the iterates of F gwp). Let F gwp
δ

, δ ∈ O be the
iterates of F gwp from ⊥gwp. For all η < ξ and Q ⊆ Σ⊥, we have F gwp

η

(Q \ {⊥}) ⊆
F gwp

ξ

(Q \ {⊥}).

Proof. The proof of theorem 55 shows, by the Kleenian fixpoint transfer theorem 3,
that ∀δ ∈ O : F gwp

δ

= gwp[[F gwp
δ

]]. By reductio ad absurdum, if there exists Q ⊆ Σ

such that F gwp
η

(Q) �⊆ F gwp
ξ

(Q) then ∃s ∈ gwp[[F �
η

]]Q : s �∈ gwp[[F �
ξ

]]Q which implies

∃s : ∀s′′ ∈ Σ⊥ : s′′ ∈ F �
η

(s) =⇒ s′′ ∈ Q ∧ ∃s′ ∈ Σ⊥ : s′ ∈ F �
ξ

(s) ∧ s′ �∈ Q hence

∃s, s′ : ⊥ �∈ F �
η

(s) ∧ s′ ∈ F �
ξ

(s) ∧ s′ �∈ F �
η

(s) in contradiction with lemma 34. �

Lemma 57. (Strictness of the iterates of F gwp). Let F gwp
δ

, δ ∈ O be the iterates

of F gwp from ⊥gwp. ∀δ ∈ O : F gwp
δ

(∅) = ∅.

Proof. The proof of theorem 55 shows, by the Kleenian fixpoint transfer theorem 3, that

∀δ ∈ O : F gwp
δ

= gwp[[F gwp
δ

]]. So F gwp
δ

(∅) = {s ∈ Σ | ∀s′ ∈ Σ⊥ : s′ ∈ F �
δ

(s) =⇒ s′ ∈ ∅}
= {s ∈ Σ | ∀s′ ∈ Σ⊥ : s′ �∈ F �

δ

(s)} = {s ∈ Σ | F �
δ

(s) = ∅} = ∅ by lemma 35. �

Lemma 58. (Final states of the iterates of F gwp). Let F gwp
δ

, δ ∈ O be the iterates

of F gwp from ⊥gwp. ∀δ ∈ O : ∀Q ⊆ Σ⊥ : F gwp
δ

(Q \ {⊥}) ⊆ F gwp
δ

(τ̌).

Proof. The proof of theorem 55 shows, by the Kleenian fixpoint transfer theorem 3,

that ∀δ ∈ O : F gwp
δ

= gwp[[F �
δ

]]. So if s ∈ F gwp
δ

(Q \ {⊥}) then ∀s′ ∈ Σ⊥ : s′ ∈ F �
δ

(s) =⇒
s′ ∈ Q \ {⊥} so ⊥ �∈ F �

δ

(s) hence, by lemma 36, ∀s′ ∈ Σ⊥ : s′ ∈ F �
δ

(s) =⇒ s′ ∈ τ̌ proving

that s ∈ F gwp
δ

(τ̌). �

Total correctness is the conjunction of partial correctness and termination in that ∀Q ⊆
Σ : τ gwp[[Q]] = τ gwp[[Q ∪ {⊥}]]∩ τ gwp[[Σ]] since τ gwp is a complete ∩-morphism. We have
τ̌ ⊆ Σ so τ gwp[[τ̌]] ⊆ τ gwp[[Σ]] by monotony and τ gwp[[Σ]] ⊆ τ gwp[[τ̌]] by lemma 58 and
theorem 55 so that by antisymmetry: ∀Q ⊆ Σ : τ gwp[[Q]] = τ gwp[[Q ∪ {⊥}]]∩ τ gwp[[τ̌]].

9.3. E. Dijkstra Weakest Conservative Precondition Semantics
E. Dijkstra’s weakest conservative precondition semantics [24, 25, 26, 31] is

τwp ∆
= αwp(τ gwp)

(traditionally written λQ ∈ ℘(Σ)·wp(τ �∞, Q)) where the abstraction 15:

αwp ∆
= λΦ·Φ|℘(Σ)

satisfies:

15Recall that f|X is the restriction of function f to the domain X .

45

Lemma 59. (Weakest conservative precondition abstraction). 〈Dgwp, ⊇̇〉 −−−−→−→←−−−−−
αwp

γwp

〈Dwp, ⊇̇〉 where Dwp ∆
= ℘(Σ)

∩�−−→ ℘(Σ) and γwp(Ψ)
∆
= λQ·((⊥ �∈ Q ? Ψ(Q) ¿ ∅)).

Proof. αwp(Φ) ⊇̇ Ψ ⇐⇒ ∀Q ⊆ Σ : Φ|℘(Σ)(Q) ⊇ Ψ(Q) ⇐⇒ ∀Q ⊆ Σ⊥ : Φ(Q) ⊇ ((⊥ �∈
Q ? Ψ(Q) ¿ ∅)) ⇐⇒ ∀Q ⊆ Σ⊥ : Φ(Q) ⊇ γwp(Ψ)(Q) ⇐⇒ Φ ⊇̇ γwp(Ψ). �

Dijkstra’s weakest conservative precondition semantics τwp is an abstraction of the demo-
niac denotational semantics [3]:

Lemma 60. (Abstraction of the demoniac nondeterministic denotational se-
mantics). τwp = αwp(gwp[[τ �]]).

Proof. We have τwp ∆
= αwp(τ gwp) = αwp(gwp[[τ �]]) = λQ ∈ ℘(Σ)·{s ∈ Σ | ∀s′ ∈ Σ⊥ : s′ ∈

τ �(s) =⇒ s′ ∈ Q} = λQ ∈ ℘(Σ)·{s ∈ Σ | ⊥ �∈ τ �(s) ∧ ∀s′ ∈ Σ⊥ : s′ ∈ τ �(s) =⇒ s′ ∈ Q}
since ⊥ �∈ Q. This is λQ ∈ ℘(Σ)·{s ∈ Σ | ∀s′ ∈ Σ⊥ : (⊥ ∈ τ �(s) =⇒ s′ ∈ Q) ∧ (⊥ �∈
τ �(s) ∧ s′ ∈ τ �(s) =⇒ s′ ∈ Q)} = λQ ∈ ℘(Σ)·{s ∈ Σ | ∀s′ ∈ Σ⊥ : (s′ ∈ τ �(s) ∪ {s′′ ∈ Σ |
⊥ ∈ τ �(s)}) =⇒ s′ ∈ Q} = λQ ∈ ℘(Σ)·{s ∈ Σ | ∀s′ ∈ Σ⊥ : s′ ∈ α�(τ �)(s) =⇒ s′ ∈ Q} =
αwp(gwp[[α�(τ �)]]) = αwp(gwp[[τ �]]) by lemma 38. �

Theorem 55 characterizes a predicate transformer τ gwp as the least fixpoint lfp
�gwp

⊥gwp F
gwp of

a predicate transformer transformer F gwp whereas [26, 27] only use fixpoints of predicate
transformers by reasoning on a given postcondition. Reasoning on a given postcondition
Q ⊆ Σ is indeed an abstraction αQ(Φ)

∆
= Φ(Q) which can be used to derive E. Dijkstra’s

fixpoint characterization [24, 25, 26, 31] of the conservative precondition semantics τwp

from theorem 46:

Lemma 61. If Q ⊆ E then 〈℘(E) ∩�−−→ ℘(D), ⊇̇〉 −−−→−→←−−−−−
αQ

γQ

〈℘(D), ⊇〉 where αQ(Φ)
∆
=

Φ(Q) and γQ(P)
∆
= λR·((Q ⊆ R ? P ¿ ∅)).

Proof. If Q ⊆ ∩
i∈∆

Pi then ∀i ∈ ∆ : Q ⊆ Pi whence γ
Q(∩
i∈∆

Pi) = ∩
i∈∆

γQ(Pi) = P else

Q �⊆ ∩
i∈∆

Pi in which case ∃j ∈ ∆ : Q �⊆ Pj whence γ
Q(∩
i∈∆

Pi) = γQ(Pj) = ∅ = γQ(∩
i∈∆

Pi)

proving that γQ ∈ ℘(D) �−−→ (℘(E)
∩�−−→ ℘(D)).

Moreover αQ(Φ) ⊇ P ⇐⇒ Φ(Q) ⊇ P ⇐⇒ ∀R : Φ(R) ⊇ ((Q = R ? P ¿ ∅)) ⇐⇒
Φ ⊇̇ γQ(P) since Φ is monotone. �

By composition of lemmata 61, 60 and theorem 53, we get:

Corollary 62. (Demoniac to weakest conservative precondition abstraction).

For all Q ⊆ Σ, 〈Σ �−−→ ℘(Σ⊥), ⊆̇〉 −−−−−−−−−−−→−→←−−−−−−−−−−−−
γgwp ◦ γwp ◦ γQ

αQ ◦αwp ◦αgwp

〈℘(Σ), ⊇〉 where αQ ◦ αwp ◦ αgwp =

λf· gwp[[f]]Q.
By definition of τ � and the Kleenian fixpoint transfer theorem 3 applied to the fixpoint
characterization of the nondeterministic demoniac semantics semantics 46 with the ab-
straction λf· gwp[[f]]Q for a given Q ⊆ Σ considered in corollary 62, we now obtain [
26, 27]:

46

Theorem 63. (E. Dijkstra’s fixpoint weakest conservative precondition seman-

tics). τwp = λQ· lfp⊆

∅
F wp[[Q]] where F wp ∈ ℘(Σ) �−−→ ℘(Σ)

m�−−→ ℘(Σ) defined by

F wp[[Q]]
∆
= λP·(Q∩ τ̌)∪wp[[τ·I]]P = λP·(¬τ̌ ∪Q)∩ gwp[[τ·I]]P is a ⊆-monotone map on

the complete lattice 〈℘(Σ), ⊆, ∅, Σ, ∪, ∩〉.

Proof. The abstraction λf· gwp[[f]]Q for a given Q ⊆ Σ is strict since gwp[[⊥̇P]]Q =
{s | ⊥̇P(s) ⊆ Q} = {s | Σ⊥ ⊆ Q} = ∅.
Let f δ, δ ∈ O be a �̇P

-increasing chain. We have gwp[[�̇P
δ∈O

f δ]]Q = {s | �P
δ∈O

f δ(s) ⊆ Q}.
f δ(s), δ ∈ O is a �P-increasing chain so that by definition of the flat DCPO DP we have
either ∀δ ∈ O : f δ(s) = ⊥P = Σ⊥ in which case {s | �P

δ∈O
f δ(s) ⊆ Q} is {s | Σ⊥ ⊆ Q} = ∅

= ∪
δ∈O

gwp[[f δ]]Q or there exists β ∈ O and P ∈ ℘(Σ) \ {∅} such that f δ(s) = ⊥P for all

δ < β and f δ(s) = P for all δ ≥ β. In this that case {s | �P
δ∈O

f δ(s) ⊆ Q} is {s | P ⊆ Q}
= ∪
δ<β
∅ ∪ ∪

δ≥β
{s | P ⊆ Q} = ∪

δ<β
{s | f δ(s) ⊆ Q} ∪ ∪

δ≥β
{s | f δ(s) ⊆ Q} = ∪

δ∈O
gwp[[f δ]]Q,

proving Scott-continuity.

By theorems 40 and 33, we have αQ ◦ αwp ◦ αgwp ◦ F �(f) = αQ ◦ αwp ◦ αgwp ◦ F �(f)
= αQ ◦ αwp ◦ F gwp ◦ αgwp(f) as shown in the proof of theorem 55. By definition of αQ

and αwp, this is F gwp(αgwp(f))Q = (Q ∩ τ̌) ∪ wp[[τ·I]](αgwp(f)(Q)) by theorem 55. Since
Q ⊆ Σ, this is (Q ∩ τ̌) ∪ wp[[τ·I]](αQ ◦ αwp ◦ αgwp(f)) = F wp[[Q]] ◦ αQ ◦ αwp ◦ αgwp(f)

by defining F wp[[Q]]
∆
= λP·(Q ∩ τ̌) ∪ wp[[τ·I]]P thus proving the commutation property

λf· gwp[[f]]Q ◦ F � = F wp[[Q]] ◦ λf· gwp[[f]]Q. Moreover F wp[[Q]] = λP·(Q∩ τ̌)∪wp[[τ·I]]P
=λP·(Q∩ {s | ∀s′ : ¬(s τ s′)∧∀s′ ∈ τ·I : s′ ∈ P)∪ {s | ∃s′ : s τ s′ ∧∀s′ ∈ τ·I : s′ ∈ P} =
(Q∩τ̌∩gwp[[τ·I]]P)∪(¬τ̌∩gwp[[τ·I]]P) = (¬τ̌∪(Q∩τ̌))∩gwp[[τ·I]]P = (¬τ̌∪Q)∩gwp[[τ·I]]P .
In conclusion, E. Dijkstra’s fixpoint characterization of the weakest conservative pre-

condition semantics is

τwp ∆
= αwp(gwp[[τ∞]]) = λQ ∈ ℘(Σ)· gwp[[lfp�̇P

⊥̇P
F �]]Q = λQ ∈ ℘(Σ)· lfp⊆

∅
F wp[[Q]]. �

9.4. E. Dijkstra Weakest Liberal Precondition Semantics
E. Dijkstra’s weakest liberal precondition semantics [24, 25, 26, 31] λQ ∈ ℘(Σ)·wlp(τ �∞, Q)

is

τwlp ∆
= αwlp(τ gwp)

where the abstraction αwlp satisfies:

Lemma 64. (Weakest liberal precondition abstraction). If Dwlp ∆
= ℘(Σ)

∩�−−→
℘(Σ), αwlp ∆

= λΦ· λQ·Φ(Q ∪ {⊥}) and γwlp(Ψ)
∆
= λQ·((⊥ ∈ Q ? Ψ(Q) ¿ ∅)) then 〈Dgwp,

⊇̇〉 −−−−→−→←−−−−−
αwlp

γwlp

〈Dwlp, ⊇̇〉.

Proof. αwlp(Φ) ⊇̇ Ψ ⇐⇒ ∀Q ⊆ Σ : Φ(Q ∪ {⊥}) ⊇ Ψ(Q) ⇐⇒ ∀Q ⊆ Σ⊥ : Φ(Q) ⊇ ((⊥ ∈
Q ? Ψ(Q) ¿ ∅)) ⇐⇒ Φ ⊇̇ γwlp(Ψ). �

Dijkstra’s weakest liberal semantics τwlp is an abstraction of the angelic denotational
semantics [3]:

47

Lemma 65. (Abstraction of the angelic nondeterministic denotational seman-
tics). τwlp = gwp[[τ �]].

Proof. We have τwlp ∆
= αwlp(τ gwp) = αwlp(gwp[[τ �]]) = λQ ∈ ℘(Σ)·{s ∈ Σ | ∀s′ ∈ Σ⊥ :

s′ ∈ τ �(s) =⇒ s′ ∈ Q∪{⊥}} = λQ ∈ ℘(Σ)·{s ∈ Σ | ∀s′ ∈ Σ : s′ ∈ τ �(s)∩Σ =⇒ s′ ∈ Q} =
λQ ∈ ℘(Σ)·{s ∈ Σ | ∀s′ ∈ Σ : s′ ∈ αΣ(τ �)(s) =⇒ s′ ∈ Q} = λQ ∈ ℘(Σ)·{s ∈ Σ | τ � ⊆ Q}
= gwp[[τ �]]. �

By lemma 65, theorem 49 and the Kleenian fixpoint transfer theorem, we deduce [26]:

Theorem 66. (E. Dijkstra’s fixpoint weakest liberal precondition semantics).

τwlp = λQ· gfp⊆

Σ
F wp[[Q]].

Proof. Given Q ⊆ Σ, we consider the abstraction λf· gwp[[f]]Q. We have gwp[[λs· ∅]]Q
= {s ∈ Σ | ∀s′ ∈ Σ : s′ ∈ ∅ =⇒ s′ ∈ Q} = Σ, proving strictness. gwp[[∪̇

i∈∆
fi]]Q = {s ∈ Σ |

∀s′ ∈ Σ : s′ ∈ ∪
i∈∆

fi(s) =⇒ s′ ∈ Q} = {s ∈ Σ | ∀i ∈ ∆ : ∀s′ ∈ Σ : s′ ∈ fi(s) =⇒ s′ ∈ Q}
= ∩

i∈∆
gwp[[fi]]Q, which implies Scott-continuity. The semantic transformer is designed

using the commutation condition F � ◦ λf· gwp[[f]]Q = λf· gwp[[f]]Q ◦ F wp[[Q]] as in the
proof of theorem 63 since F � = F �. F wp[[Q]] is ⊆-monotone. We conclude that τwlp(Q) =

gwp[[τ �]]Q = gwp[[lfp
⊆̇

∅̇
F �]]Q = lfp

⊇

Σ
F wp = gfp

⊆

Σ
F wp. �

10. Galois Connections and Tensor Product

The set of Galois connections between posets (respectively DCPOs, complete lattices)
〈D ,̌ � 〉̌ and 〈D ,̂ � 〉̂ is denoted

〈D ,̌ � 〉̌ −−→←−− 〈D ,̂ � 〉̂ ∆
= {〈α, γ 〉 | 〈D ,̌ � 〉̌ −−−→←−−−α

γ
〈D ,̂ � 〉̂} .

It is a poset (resp. DCPOs, complete lattices) 〈〈D ,̌ � 〉̌ −−→←−− 〈D ,̂ � 〉̂, �̇ˆ× �̇ 〉̌ for the
pairwise pointwise ordering 〈α, γ 〉 �̇ˆ× �̇ˇ 〈α′, γ ′〉 ∆

= (α �̇ˆα′) ∧ (γ �̇ˇγ ′) where f �̇ g
∆
= ∀x : f(x) � g(x).
The set of complete join morphisms is:

Dˇ
��−−→ Dˆ

∆
= {α ∈ Dˇ �−−→ Dˆ | ∀X ⊆ Dˇ: α(�ˇX) = �ˆα(X)} .

(also written 〈D ,̌ � 〉̌ ��−−→ 〈D ,̂ � 〉̂ when the considered partial orderings are not un-
derstood). Dually, the set of complete meet morphisms is:

Dˆ
��−−→ Dˇ

∆
= {γ ∈ Dˆ �−−→ Dˇ | ∀Y ⊆ Dˆ : γ(�ˆY) = �ˇγ(Y)} .

The tensor product ⊗ [51] 16 is:

Definition 67. (Tensor product). 〈D ,̌ � 〉̌ ⊗ 〈D ,̂ � 〉̂ ∆
= {H ∈ ℘(Dˇ×D)̂ | (1) ∧

(2) ∧ (3)} where the conditions are:
16This is the semi-dual version, so that Z. Shmuely original definition corresponds to 〈D ,̌ � 〉̌⊗〈D ,̂ 〉̂.

48

1. (X �ˇX ′ ∧ 〈X ′, Y ′〉 ∈ H ∧ Y ′ �ˆY) =⇒ (〈X, Y 〉 ∈ H);

2. (∀i ∈ ∆ : 〈Xi, Y 〉 ∈ H) =⇒ (〈 �ˇ
i∈∆

Xi, Y 〉 ∈ H);

3. (∀i ∈ ∆ : 〈X, Yi〉 ∈ H) =⇒ (〈X, �ˇ
i∈∆

Yi〉 ∈ H).

We now define correspondences between Galois connections, complete join/meet mor-
phisms and tensor products. The projection for pairs:

1(〈α, γ 〉) ∆
= α,

2(〈α, γ 〉) ∆
= γ .

provides the correspondance between Galois connections and complete join morphisms
(abstractions) as well as complete join/meet morphisms (concretization). In a Galois
connection, the adjunct of a map is unique and provided by:

AC(γ)
∆
= λx·� {̂y | x �ˇγ(y)},

CA(α)
∆
= λy·� {̌x | α(x) �ˆy} .

We have the following Galois isomorphisms:

Lemma 68. (Galois isomorphism between Galois connections and complete
join/meet morphisms).

〈〈D ,̂ � 〉̂ ��−−→ 〈D ,̌ � 〉̌, ̇ 〉̂ −−−−−−−−−−→−→←←−−−−−−−−−−−
2

λγ·〈AC(γ), γ 〉
〈〈D ,̌ � 〉̌ −−→←−− 〈D ,̂ � 〉̂, �̇ˆ× ̇ 〉̌

−−−−−−−−−−−→−→←←−−−−−−−−−−−−
1

λα·〈α,CA(α)〉
〈〈D ,̌ � 〉̌ ��−−→ 〈D ,̂ � 〉̌, �̇ 〉̂ .

Proof. In a Galois connection 〈α, γ 〉, α is a complete join morphism so that 1 ∈ (Dˇ−−→←−−
D)̂ �−−→ (Dˇ

��−−→ D)̂ and γ is a complete meet morphism so that 2 ∈ (Dˇ−−→←−− D)̂ �−−→
(Dˆ

��−−→ D)̌.

To each α ∈ Dˇ ��−−→ D ,̂ there corresponds a unique γ such that Dˇ−−−→←−−−α
γ

Dˆ given by

γ = CA(α)
∆
= λy·� {̌x | α(x) �ˆ y}. So λα·〈α, CA(α)〉 ∈ (Dˇ

��−−→ D)̂ �−−→ (Dˇ−−→←−−
D)̂. Dually, λγ·〈AC(γ), γ 〉 ∈ (Dˆ

��−−→ D)̌ �−−→ (Dˇ−−→←−− D)̂.
To prove isomorphism, we assume 〈α, γ 〉 ∈ Dˇ−−→←−− D ,̂ α ∈ Dˇ ��−−→ Dˆwith pointwise

ordering α �̇ˆα′ ∆
= ∀x ∈ Dˇ : α(x) �ˆα′(x) and γ ∈ Dˆ ��−−→ Dˇwith pointwise ordering

γ ̇ˇγ ′ ∆
= ∀y ∈ Dˆ : γ(y) ˇγ ′(y).

We have 2 ◦ λγ·〈AC(γ), γ 〉(γ) = γ and λγ·〈AC(γ), γ 〉 ◦ 2(〈α, γ 〉) = 〈AC(γ), γ 〉 = 〈α,
γ 〉.
1 ◦ λα·〈α, CA(α)〉(α) = α, λα·〈α, CA(α)〉 ◦ 1(〈α, γ 〉) = 〈α, CA(α)〉 = γ .
Since all maps are monotone, it follows that we have Galois connections. �

By composition of Galois isomorphisms, we get 〈〈D ,̂� 〉̂ ��−−→ 〈D ,̌� 〉̌, ̇ 〉̂ −−−−→−→←←−−−−−
AC

CA 〈〈D ,̌

� 〉̌ ��−−→ 〈D ,̂ � 〉̌, �̇ 〉̂.

49

The correspondance between join/meet morphisms and tensor products is provided by:

HA(α)
∆
= {〈x, y〉 ∈ Dˇ×Dˆ | α(x) �ˆy},

HC(γ)
∆
= {〈x, y〉 ∈ Dˇ×Dˆ | x �ˇγ(y)} ;

The correspondance between tensor products and the adjuncts of Galois connections is:

AH(H)
∆
= λx·� {̂y | 〈x, y〉 ∈ H},

CH(H)
∆
= λy·� {̌x | 〈x, y〉 ∈ H} .

These correspondances are Galois isomorphisms:

Lemma 69. (Galois isomorphism between tensor products and complete join/
meet morphisms).

〈〈D ,̂ � 〉̂ ��−−→ 〈D ,̌ � 〉̌, ̇ 〉̂ −−−−→−→←←−−−−−
HC

CH 〈〈D ,̌ � 〉̌ ⊗ 〈D ,̂ � 〉̂, ⊇〉 −−−−→−→←←−−−−−
AH

HA

〈〈D ,̌ � 〉̌ ��−−→ 〈D ,̂ � 〉̌, �̇ 〉̂

Proof. We have HA ∈ (Dˇ
��−−→ D)̂ �−−→ (Dˇ⊗ D)̂ since (1) if x �ˇ x′ ∧ α(x′) �ˆ

y′ ∧ y′ � y then α(x) �ˆ α(x′) by monotony so that α(x) �ˆ y by transitivity; (2) if
∀i ∈ ∆ : α(xi) �ˆ y then �ˆ

i∈∆
α(xi) �ˆ y by definition of lubs so that α(�ˇ

i∈∆
xi) �ˆ y since

α is a complete join morphism and (3) if ∀i ∈ ∆ : α(x) �ˆ yi then α(x) �ˆ �ˆ
i∈∆

yi by

definition of glbs. Dually, we have HC ∈ (Dˆ
��−−→ D)̌ �−−→ (Dˇ⊗D)̂.

If H ∈ 〈D ,̌ � 〉̌ ⊗ 〈D ,̂ � 〉̂ then 〈x, y〉 ∈ H implies � {̂y′ | 〈x, y′〉 ∈ H} �ˆ y by
definition of glbs. Reciprocally 〈x, � {̂y′ | 〈x, y′〉 ∈ H}〉 ∈ H by (3) so that if � {̂y′ | 〈x,
y′〉 ∈ H} �ˆ y then 〈x, y〉 ∈ H by (1). So 〈x, y〉 ∈ H if and only if � {̂y′ | 〈x,
y′〉 ∈ H} �ˆy. Dually 〈x, y〉 ∈ H if and only if x �ˇ� {̌x′ | 〈x′, y〉 ∈ H}. It follows that
for all H ∈ Dˇ⊗D ,̂ we have AH(H)x �ˆy ⇐⇒ � {̂y′ | 〈x, y′〉 ∈ H} �ˆy ⇐⇒ 〈x, y〉 ∈ H
⇐⇒ x �ˇ� {̌x′ | 〈x′, y〉 ∈ H} ⇐⇒ x �ˇCH(H)y proving that 〈D ,̌ � 〉̌ −−−−−−→←−−−−−−

AH(H)

CH(H)
〈D ,̂ � 〉̂

whence AH × CH ∈ (Dˇ⊗D)̂ �−−→ (Dˇ−−→←−− D)̂. It follows that AH = 1 ◦ (AH × CH) ∈
(Dˇ⊗D)̂ �−−→ (Dˇ

��−−→ D)̂ and CH = 2 ◦ (AH× CH) ∈ (Dˇ⊗D)̂ �−−→ (Dˆ
��−−→ D)̌.

To prove isomorphism, we assume 〈α, γ 〉 ∈ Dˇ−−→←−− D ,̂ α ∈ Dˇ ��−−→ Dˆwith pointwise

ordering α �̇ˆ α′ ∆
= ∀x ∈ Dˇ : α(x) �ˆ α′(x), γ ∈ Dˆ

��−−→ Dˇ with pointwise ordering

γ ̇ˇγ ′ ∆
= ∀y ∈ Dˆ : γ(y) ˇγ ′(y) and H ∈ Dˇ⊗Dˆwith superset ordering ⊇.

HC ◦ CH(H) = {〈x, y〉 | x �ˇ � {̌x′ | 〈x′, y〉 ∈ H}} = {〈x, y〉 | 〈x, y〉 ∈ H} = H
since we have shown that 〈x, y〉 ∈ H if and only if x �ˇ � {̌x′ | 〈x′, y〉 ∈ H}. Dually,
HA ◦ AH(H) = H .

CH ◦ HC(γ) = λy·� {̌x | 〈x, y〉 ∈ HC(γ)} = λy·� {̌x | x �ˇ γ(y)} = γ . Dually,
AH ◦ HA(α) = α.
Since all maps are monotone, we have Galois connections. �

By composition of Galois isomorphisms, we get 〈〈D ,̂� 〉̂ ��−−→ 〈D ,̌� 〉̌, ̇ 〉̂ −−−−−−−−−−→−→←←−−−−−−−−−−−
HC◦2=HA◦1

AH×CH

〈〈D ,̌ � 〉̌ ⊗ 〈D ,̂ � 〉̂, ⊇〉.
The above Galois isomorphisms can be organized into the following commutative dia-

gram:

50

Theorem 70. (Galois connections/tensor product commutative diagram).

〈〈D ,̌ � 〉̌ −−→←−− 〈D ,̂ � 〉̂, �̇ˆ× ̇ 〉̌ −−−−−−−−−−−−→−→←←−−−−−−−−−−−−−
1

λα·〈α,CA(α)〉
〈〈D ,̌ � 〉̌ ��−−→ 〈D ,̂ � 〉̌, �̇ 〉̂

2

↓↓

↑↑

λγ·〈AC(γ), γ 〉 HA

↓↓

↑↑

AH

�
�

�
�

�
�

�
�

�
��

↙↙ ↘↘

↖↖ ↗↗

�
�

�
�

�
�

�
�

�
��

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅❅

CA AC

AH×CHHC◦2

= HA◦1

〈〈D ,̂ � 〉̂ ��−−→ 〈D ,̌ � 〉̌, ̇ 〉̂ −−−−−−−−−−−−−−−→−→←←−−−−−−−−−−−−−−−−
HC

CH 〈〈D ,̌ � 〉̌ ⊗ 〈D ,̂ � 〉̂, ⊇〉

Proof. We check the commutation property of the diagram. We have shown that AH =
AC ◦ CH so AH ◦ HC = AC ◦ CH ◦ HC = AC. Dually CH ◦ HA = CA.
λγ·〈AC(γ), γ 〉 ◦ CH(H) = 〈AC(CH(H)),CH(H)〉= 〈AH(H),CH(H)〉 ∆

= (AH×CH)(H).
Similarly, λα·〈α, CA(α)〉 ◦ AH = AH×CH.
Finally, 1 ◦ λγ·〈AC(γ), γ 〉 = AC and 2 ◦ λα·〈α, CA(α)〉 = CA. �

11. Axiomatic Semantics

Using theorems 54 and 70, we can define the generalized axiomatic semantics τ gH of
a transition system 〈Σ, τ 〉 as the element HC(τ gwp) of the tensor product ℘(Σ)⊗ ℘(Σ⊥)
corresponding to the weakest precondition semantics τ gwp, or equivalently as HA(τ gsp)
corresponding to the strongest postcondition semantics τ gsp.
Writing 〈P 〉τ 〈Q〉 for 〈P, Q〉 ∈ τ gH, we have 〈P 〉τ 〈Q〉 if and only if P �gwp τ gwp(Q) if

and only if τ gsp(P) �gwp Q.
Condition (1) of definition 67 is the consequence rule of C.A.R. Hoare logic [32].

Conditions (2) and (3) are also valid for the classical presentation of C.A.R. Hoare logic
[32] but have to be derived from the deduction rules by structural induction on the
syntactic structure of programs.

11.1. R. Floyd/C.A.R. Hoare/P. Naur Partial Correctness Semantics
R. Floyd [28], C.A.R. Hoare [32] & P. Naur [42] partial correctness semantics is

τ pH ∆
= HC(τwlp) .

We get R. Floyd & P. Naur’s partial correctness verification conditions [28, 42] using
E. Dijkstra’s fixpoint characterization 66 of the weakest liberal precondition semantics
τwlp and D. Park fixpoint induction [45]:

Lemma 71. (D. Park fixpoint induction). If 〈D, �,⊥,�, �, �〉 is a complete

lattice, F ∈ D
m�−−→ D is �-monotone and P ∈ D then lfp

�

⊥
F � P ⇐⇒ (∃I : F (I) �

I ∧ I � P).

51

Proof. For soundness (⇐=), lfp�

⊥
F = �{X | F (X) � X} � I � P by Tarski’s fixpoint

theorem [52] and definition of glbs.

For completeness (=⇒), I = lfp
�

⊥
F � P satisfies F (I) = I by definition. �

Theorem 72. (R. Floyd & P. Naur partial correctness semantics). τ pH = {〈P,
Q〉 ∈ ℘(Σ)⊗ ℘(Σ) | ∃I ∈ ℘(Σ) : P ⊆ I ∧ I ⊆ gwp[[τ·I]] I ∧ (I ∩ τ̌) ⊆ Q}.

The condition I ⊆ gwp[[τ·I]] I is given by C.A.R. Hoare [32] while R. Floyd & P. Naur par-
tial correctness verification condition [28, 42] corresponds more precisely to gsp[[τ·I]] I ⊆ I
which, by lemma 54, is equivalent.

Proof. τ pH ∆
= HC(τwlp) = HC(λQ· gfp⊆

Σ
F wp[[Q]]) = {〈P,Q〉 ∈ ℘(Σ)⊗℘(Σ) | lfp⊇

Σ
F wp[[Q]] ⊇

P} by theorem 66 and definition of HC. By D. Park induction 71, we derive {〈P,
Q〉 ∈ ℘(Σ) ⊗ ℘(Σ) | ∃I ∈ ℘(Σ) : F wp[[Q]](I) ⊇ I ∧ I ⊇ P} which, by definition of F wp in
theorem 63, is {〈P, Q〉 ∈ ℘(Σ)⊗℘(Σ) | ∃I ∈ ℘(Σ) : I ⊆ (¬τ̌ ∪Q)∩ gwp[[τ·I]](I)∧P ⊆ I}
= {〈P, Q〉 ∈ ℘(Σ)⊗ ℘(Σ) | ∃I ∈ ℘(Σ) : (I ∩ τ̌) ⊆ Q ∧ I ⊆ gwp[[τ·I]](I) ∧ P ⊆ I}. �

Using C.A.R. Hoare triples:

{P}τ �∞{Q} ∆
= 〈P, Q〉 ∈ τ pH,

{P}τ{Q} ∆
= P ⊆ gwp[[τ·I]]Q

and a rule-based presentation of τ pH, we get a set theoretic model of C.A.R. Hoare logic:

Corollary 73. (C.A.R. Hoare partial correctness axiomatic semantics). {P}τ �∞{Q}
if and only if it derives from the axiom:

{gwp[[τ·I]]Q}τ {Q} (τ)

and the following inference rules:

P ⊆ P ′, {P ′}τ �∞{Q′}, Q′ ⊆ Q

{P}τ �∞{Q}
(⇒)

{Pi}τ �∞{Q}, i ∈ ∆

{ ∪
i∈∆

Pi}τ �∞{Q}
(∨)

{P}τ �∞{Qi}, i ∈ ∆

{P}τ �∞{ ∩
i∈∆

Qi}
(∧)

{I}τ{I}
{I}τ �∞{I ∩ τ̌ }

(τ �∞)

Proof. For soundness, rules (⇒), (∧) and (∨) follow from the definition of ℘(Σ)⊗ ℘(Σ).
The tautology gwp[[τ·I]]Q ⊆ gwp[[τ·I]]Q implies the axiom (τ). Rule (τ �∞) follows from
theorem 72 where P = I and Q = (I ∩ τ̌).
For relative completeness, if 〈P, Q〉 ∈ τ pH, then by theorem 72, there exists an invariant

I ∈ ℘(Σ) such that P ⊆ I, I ⊆ gwp[[τ·I]] I and (I∩τ̌) ⊆ Q. The formal proof of {P}τ �∞{Q}
is therefore as follows: “I ⊆ gwp[[τ·I]] I, {gwp[[τ·I]] I}τ {I} by the axiom (τ) and I ⊆ I
imply {I}τ{I} by the consequence rule (⇒). Then we derive {I}τ �∞{I ∩ τ̌} by rule (τ �∞).
So from P ⊆ I, {I}τ �∞{I ∩ τ̌ } and (I ∩ τ̌) ⊆ Q, we infer {P}τ �∞{Q} by the consequence
rule (⇒), Q.E.D.”. �

52

11.2. R. Floyd Total Correctness Semantics
R. Floyd [28] total correctness semantics is

τ tH ∆
= HC(τwp) .

We get R. Floyd’s verification conditions using E. Dijkstra’s fixpoint characterization 63
of τwp and the following induction principle:

Lemma 74. (Lower fixpoint induction). If 〈D, �,⊥,�〉 is a DCPO, F ∈ D m�−−→ D

is �-monotone, ⊥ ∈ D satisfies ⊥ � F (⊥) and P ∈ D then P � lfp
�

⊥
F ⇐⇒ (∃ε ∈ O :

∃I ∈ (ε+ 1) �−−→ D : I0 � ⊥∧ ∀δ : 0 < δ ≤ ε =⇒ Iδ � F (�
ζ<δ

Iζ) ∧ P � Iε).

Proof. For soundness (⇐=), let F δ, δ ∈ O be the increasing sequence of iterates of F
from ⊥, which can be defined as F 0 = ⊥ and F δ = F (�

ζ<δ
F ζ) for all δ > 0 [14]. We

have I0 � ⊥ = F 0. If, by induction hypothesis, ∀ζ < δ: Iζ � F ζ then �
ζ<δ

Iζ � �
ζ<δ

F ζ by

definition of lubs so F (�
ζ<δ

Iζ) � F (�
ζ<δ

F ζ) by monotony proving Iδ � F δ by hypothesis

and definition of the iterates. By transfinite induction, ∀δ ≤ ε : Iδ � F δ, so that in

particular P � Iε � F ε � lfp
�

⊥
F .

For completeness (=⇒), we can always choose Iδ = F δ for all δ > 0 so that I0 = ⊥
and Iδ = F (�

ζ<δ
Iζ) for all δ ∈ O. We have P � lfp

�

⊥
F = Iε where ε is the order of the

iterates. �

Theorem 75. (R. Floyd total correctness semantics). τ tH = {〈P, Q〉 ∈ ℘(Σ) ⊗
℘(Σ) | ∃ε ∈ O : ∃I ∈ (ε+ 1) �−−→ ℘(Σ) : ∀δ ≤ ε : Iδ ⊆ (¬τ̌ ∪Q) ∩ gwp[[τ·I]](∪

β<δ
Iβ) ∧ P ⊆

Iε}.

The verification condition is better recognized as R. Floyd’s verification condition in the
equivalent form:

∀s ∈ Iδ : ∀s′ : ¬(s τ s′) ∧ s ∈ Q∨
∃s′ : s τ s′ ∧ ∀s′ : s τ s′ =⇒ (∃β < δ : s′ ∈ Iβ)

where the ordinal δ encodes the value of R. Floyd’s variant function [27].

Proof. Follows directly from lemma 74, theorem 63 and the definition τ tH = HC(τwp) =

{〈P, Q〉 ∈ ℘(Σ)⊗ ℘(Σ) | P ⊆ lfp
⊆

∅
F wp[[Q]]} where I0 ⊆ Q ∩ τ̌ = F [[τ·I]] ∅ = ⊥. �

Using Z. Manna/A. Pnueli triples:

[P]τ �∞[Q]
∆
= 〈P, Q〉 ∈ τ tH,

[P]τ [Q]
∆
= P ⊆ gwp[[τ·I]]Q

and a rule-based presentation of τ tH, we get a set theoretic model of Z. Manna/A. Pnueli
logic [39]:

53

Corollary 76. (Z. Manna/A. Pnueli total correctness axiomatic semantics).
[P]τ �∞[Q] if and only if it derives from the axiom (τ), the inference rules (⇒), (∧), (∨) and
the following:

I0 ⊆ Q ∩ τ̌ ,
ε
∧
δ=1

Iδ ⊆ ¬τ̌ ∪Q,
ε
∧
δ=1

[Iδ]τ [∪
β<δ

Iβ]

[Iε]τ �∞[Q]
(τ �∞)

Proof. For soundness, rules (⇒), (∧) and (∨) follow from the definition of ℘(Σ)⊗ ℘(Σ)
while the axiom (τ) follows from the tautology gwp[[τ·I]]Q ⊆ gwp[[τ·I]]Q. Rule (τ �∞)
follows from theorem 75 where P = Iε, I0 ⊆ (¬τ̌ ∪ Q) ∩ gwp[[τ·I]] ∅ = τ̌ ∩ Q and for
0 < δ ≤ ε, Iδ ⊆ (¬τ̌ ∪Q) and Iδ ⊆ gwp[[τ·I]](∪

β<δ
Iβ) whence [Iδ]τ [∪

β<δ
Iβ].

For relative completeness, if 〈P, Q〉 ∈ τ tH, then there exists an ordinal ε and an invariant
I ∈ (ε + 1) �−−→ ℘(Σ) satisfying the conditions of theorem 75. So the formal proof is
as follows: “For all δ ∈ O with δ ≤ ε, we have Iδ ⊆ (¬τ̌ ∪ Q) ∩ gwp[[τ·I]](∪

β<δ
Iβ) and

P ⊆ Iε. For δ = 0 this implies I0 ⊆ Q ∩ τ̌ . For δ > 1, we have Iδ ⊆ (¬τ̌ ∪Q). Moreover
Iδ ⊆ gwp[[τ·I]](∪

β<δ
Iβ), the axiom [gwp[[τ·I]](∪

β<δ
Iβ)]τ [∪

β<δ
Iβ] and ∪

β<δ
Iβ ⊆ ∪

β<δ
Iβ together

with the consequence rule (⇒) allows to derive [Iδ]τ [∪
β<δ

Iβ]. Then by rule (τ �∞) we derive

[Iε]τ �∞[Q] whence [P]τ �∞[Q] by the consequence rule (⇒), Q.E.D.”. �

12. Lattice of Semantics

A preorder can be defined on semantics τˇ∈ Dˇ and τˆ∈ Dˆwhen τˆ= α (̂τ)̌ and 〈D ,̌

≤〉 −−−→←−−−
α̂

γˆ
〈D ,̂ �〉. The quotient poset is isomorphic to M. Ward lattice [54] of upper

closure operators γˆ ◦ αˆ on 〈D �∞, ⊆〉, so that we get a lattice of semantics which is part
of the lattice of abstract interpretations of [13, sec. 8], a subset of which is illustrated in
figure 5.

13. Conclusion

We have shown that the classical semantics of programs, modeled as transition systems,
can be derived from one another by Galois connection based abstract interpretations. All
classical semantics of programming languages have been presented in a uniform frame-
work which makes them easily comparable and better explains the striking similarities
and correspondences between semantic models. Moreover the construction leads to new
reorderings of the fixpoint semantics. Our presentation uses abstraction which proceeds
by omitting some aspects of program execution but the inverse operation of semantic
refinement (traditionally called concretization) is equally important17. This suggests con-
sidering hierarchies of semantics which can describe program properties, that is program

17For example, the maximal trace semantics τ �∞ can be refined into transfinite traces so that e.g. while
true do skip; X:=1 would have semantics {sωs′s′[X ← 1] | s, s′ ∈ Σ} thus allowing the program slice
with respect to variable X to be X:=1 with semantics {s′s′[X ← 1] | s′ ∈ Σ}. Slicing would not be
consistent when considering the trace {sω | s ∈ Σ} or denotational semantics λs·⊥ of the program.

54

Hoare
logics

weakest
precondition
semantics

denotational
semantics

relational
semantics

trace
semantics

equivalence
abstraction✲

restriction
infinite

demoniac
deterministic

naturalangelic

τ�!

τ ∂

τ EM

τD

τPτS τ�τ �τ �

τ�

τwp

τ tHτ pH

τwlp

τ �+

τ+ τω

τ �ω

τ gH

τ gwp

τ�?

τ �

τ∞

τ �∞

τ

✟✟✟✯
✉

✘✘✘✘✘✘✘✘✘✘✘✿ ✉

✉

✉

✡
✡
✡
✡✣

✉

✉ ✉ ✉

✉

✻

✻ ✻✏✏✏✶

✉

✉

✉

✉✟✟✟✟✟✯

✟✟✟✟✟✯

✟✟✟✟✟✯

❍❍❍❍❍

❍❍❍❍❍

❍❍❍❍❍

❍❍❍❍❍

✉❍❍❍❍❍ ✉

✉

✉

✉

✉

✉✉

✉

✉

✉

✉

✏✏✏✏✏✏✏✏

✏✏✏✏✏✏✏✏✶

✏✏✏✏✏✶

Figure 5. The hierarchy of semantics

55

executions, at various levels of abstraction or refinement in a uniform framework 18 .
Then for program analysis of a given class of properties there should be a natural choice
of semantics in the hierarchy [12].
Obviously, extension of this point of view for higher-order functional languages and to

realistic programming languages is more difficult. The task would also be more difficult
when considering other program properties involving interleaved combinations of fixpoints.

Acknowledgement
We thank the anonymous referees for the proposed clarifications.

REFERENCES

1. S. Abramsky and A. Jung. Domain theory. In S. Abramsky, Dov M. Gabbay, and
T.S.E. Maibaum, editors, Semantic Structures, vol. 3 of Handbook of Logic in Com-
puter Science, chapter 1, pages 1–168. Clarendon Press, Oxford, UK, 1994. 3, 4

2. S. Abramsky and G. McCusker. Game semantics. In H. Schwichtenberg and U.
Berger, editors, Computational Logic, vol. 165, pages 1–55. NATO Science Series,
Series F: Computer and Systems Sciences. Springer-Verlag, Berlin, Germany, 1999.
55

3. K.R. Apt and G.D. Plotkin. Countable nondeterminism and random assignment.
Journal of the Association for Computing Machinary, 33(4):724–767, October 1986.
3, 5, 13, 26, 29, 32, 45, 46

4. A. Arnold and M. Nivat. Formal computations of non deterministic recursive program
schemes. Math. Systems Theory, 13:219–236, 1980. 13

5. R.J.R. Back. A continuous semantics for unbounded nondeterminism. Theoretical
Computer Science, 23:187–210, 1983. 12

6. C. Baier and M.E. Majster-Cederbaum. Metric semantics from partial order seman-
tics. Acta Informatica, 34(9):701–735, 1997. 55

7. M. Broy, R. Gnatz, and M. Wirsing. Semantics of nondeterministic and noncontinuous
constructs. In F.L. Bauer and M. Broy, editors, Program Construction. Lecture Notes
of the International Summer School on Program Construction, Marktoberdorf 1978,
vol. 69 of Lecture Notes in Computer Science, pages 553–592. Springer-Verlag, Berlin,
Germany, 1979. 20

8. M. Broy and G. Nelson. Can fair choice be added to Dijkstra’s calculus. ACM
Transactions on Programming Languages and Systems, 16(3):924–938, March 1994.
28

9. P. Cousot. Méthodes itératives de construction et d’approximation de points fixes
d’opérateurs monotones sur un treillis, analyse sémantique de programmes. Thèse
d’État ès sciences mathématiques, Université scientifique et médicale de Grenoble,
Grenoble, France, 21 March 1978. 2, 4

10. P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick and N.D.

18The correspondance between metric semantics [23] and domain theoretic denotational semantics in
this hierarchy has been established by [6]. The correspondance with game semantics [2] is not immedi-
ate because of our language-independent presentation without any hypothesis on states and transitions
whereas game semantics requires at least to make a distinction between transitions performed by the
player and those performed by the opponent.

56

Jones, editors, Program Flow Analysis: Theory and Applications, chapter 10, pages
303–342. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981. 41

11. P. Cousot. Methods and logics for proving programs. In J. van Leeuwen, editor,
Formal Models and Semantics, vol. B of Handbook of Theoretical Computer Science,
chapter 15, pages 843–993. Elsevier Science Publishers B.V., Amsterdam, The Nether-
lands, 1990. 4

12. P. Cousot. Abstract interpretation. Symposium on Models of Programming Languages
and Computation, ACM Computing Surveys, 28(2):324–328, 1996. 2, 55

13. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238–252, Los Angeles, California, 1977. ACM Press,
New York. 3, 4, 7, 53

14. P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems.
Pacific Journal of Mathematics, 82(1):43–57, 1979. 4, 5, 52

15. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Con-
ference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 269–282, San Antonio, Texas, 1979. ACM
Press, New York. 3, 4, 5, 7

16. P. Cousot and R. Cousot. Induction principles for proving invariance properties of
programs. In D. Néel, editor, Tools & Notions for Program Construction, pages 43–
119. Cambridge University Press, Cambridge, United Kindom, 1982. 39

17. P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpre-
tation. In Conference Record of the Ninthteenth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 83–94, Albuquerque, New
Mexico, 1992. ACM Press, New York, New York, United States. 11, 12, 13, 20

18. P. Cousot and R. Cousot. Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and PER anal-
ysis of functional languages), invited paper. In Proceedings of the 1994 International
Conference on Computer Languages, pages 95–112, Toulouse, France, 16–19 May 1994.
IEEE Computer Society Press, Los Alamitos, California. 3, 4

19. P. Cousot and R. Cousot. Compositional and inductive semantic definitions in fix-
point, equational, constraint, closure-condition, rule-based and game-theoretic form,
invited paper. In P. Wolper, editor, Proceedings of the SeventhInternational Confer-
ence on Computer Aided Verification, CAV ’95, Liège, Belgium, vol. 939 of Lecture
Notes in Computer Science, pages 293–308. Springer-Verlag, Berlin, Germany, 3–5
July 1995. 4

20. P. Cousot and R. Cousot. Temporal abstract interpretation. In Conference Record
of the Twentyseventh Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Boston, Massachusetts, January 2000. ACM Press, New
York. 7

21. J.W. de Bakker, J.-J.Ch. Meyer, and J.I. Zucker. On infinite computations in de-
notational semantics. Theoretical Computer Science, 26:53–82, 1983. (Corrigendum:
Theoretical Computer Science 29:229–230, 1984). 5

22. J.W. de Bakker and D. Scott. A theory of programs. Unpublished notes, 1969. 4

57

23. J.W. de Bakker and E. de Vink. Control Flow Semantics. Foundations of Computing
Series. MIT Press, Cambridge, Mass., 1996. 55

24. E.W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communications of the Association for Computing Machinary, 18(8):453–457,
August 1975. 38, 39, 41, 44, 45, 46

25. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1976. 38, 39, 41, 44, 45, 46

26. E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics.
Springer-Verlag, Berlin, Germany, 1990. 38, 39, 41, 44, 45, 46, 47

27. E.W. Dijkstra and A.J.M. van Gasteren. A simple fixpoint argument without the
restriction to continuity. Acta Informatica, 23:1–7, 1986. 45, 52

28. R.W. Floyd. Assigning meaning to programs. In J.T. Schwartz, editor, Proceedings of
the Symposium in Applied Mathematics, vol. 19, pages 19–32. American Mathematical
Society, Providence, Rhode Island, 1967. 50, 51, 52

29. R. Giacobazzi and F. Ranzato. Completeness in abstract interpretation: A domain
perspective. In M. Johnson, editor, Proceedings of the SixthInternational Confer-
ence on Algebraic Methodology and Software Technology, AMAST ’97, Sydney, Aus-
tralia, vol. 1349 of Lecture Notes in Computer Science, pages 231–245. Springer-Verlag,
Berlin, Germany, 13–18 December 1997. 4

30. C.A. Gunter and D.S. Scott. Semantic domains. In J. van Leeuwen, editor, Formal
Models and Semantics, vol. B of Handbook of Theoretical Computer Science, chap-
ter 12, pages 633–674. Elsevier Science Publishers B.V., Amsterdam, The Netherlands,
1990. 28, 32, 36

31. W.H. Hesselink. Programs, Recursion and Unbound Choice, predicate transformation
semantics and transformation rules. Oxford University Press, Oxford, UK, 1992. 38,
39, 41, 44, 45, 46

32. C.A.R. Hoare. An axiomatic basis for computer programming. Communications of
the Association for Computing Machinary, 12(10):576–580, October 1969. 50, 51

33. C.A.R. Hoare. Some properties of predicate transformers. Journal of the Association
for Computing Machinary, 25(3):461–480, July 1978. 9, 10

34. C.A.R. Hoare and P.E. Lauer. Consistent and complementary formal theories of the
semantics of programming languages. Acta Informatica, 3(2):135–153, 1974. 3

35. D. Jacobs and D. Gries. General correctness: A unification of partial and total
correctness. Acta Informatica, 22:67–83, 1985. 41

36. G. Kahn. Natural semantics. In K. Fuchi and M. Nivat, editors, Programming of
Future Generation Computers, pages 237–258. Elsevier Science Publishers B.V., Am-
sterdam, The Netherlands, 1988. 15

37. S. Kripke. A semantical analysis of modal logic I: normal modal propositional calculi.
Z. Math. Logik Grundlagen Math., 9:67–96, 1963. 10

38. M.E. Majster-Cederbaum. A simple relation between relational and predicate trans-
former semantics for nondeterministic programs. Information Processing Letters,
11(4, 5):190–192, 12 December 1980. 15

39. Z. Manna and A. Pnueli. Axiomatic approach to total correctness. Acta Informatica,
3:253–263, 1974. 52

40. R. Milner. Operational and algebraic semantics of concurrent processes. In J. van

58

Leeuwen, editor, Formal Models and Semantics, vol. B of Handbook of Theoretical
Computer Science, chapter 19, pages 1201–1242. Elsevier Science Publishers B.V.,
Amsterdam, The Netherlands, 1990. 9

41. R. Milner and M. Tofte. Co-induction in relational semantics. Theoretical Computer
Science, 87:209–220, 1991. 15

42. P. Naur. Proofs of algorithms by general snapshots. BIT, 6:310–316, 1966. 50, 51
43. G. Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on Program-

ming Languages and Systems, 11(4):517–561, April 1989. 42
44. C.-H. L. Ong. Correspondence between operational and denotational semantics: the

full abstraction problem for pcf. In S. Abramsky, D.M. Gabbay, and T.S.E. Maibaum,
editors, Semantic Modelling, vol. 4 of Handbook of Logic in Computer Science, chap-
ter 3, pages 269–356. Clarendon Press, Oxford, UK, 1995. 3

45. D. Park. Fixpoint, induction and proofs of program properties. In B. Meltzer and
D. Michie, editors, Machine Intelligence, vol. 5, pages 59–78. Edinburgh University
Press, Edinburg, Scotland, 1969. 4, 50

46. D. Park. On the semantics of fair parallelism. In D. Bjørner, editor, Proceedings of
the of the Winter School on Abstract Software Specifications, vol. 86 of Lecture Notes
in Computer Science, pages 504–526. Springer-Verlag, Berlin, Germany, 1980. 20

47. A.M. Pitts. Operational semantics for program equivalence. In-
vited address, MFPS XIII, CMU, Pittsburgh, 23–26 March 1997.
http://www.cl.cam.ac.uk/users/ap/talks. 15

48. G.D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, Denmark, september 1981. 15

49. D. Scott. Outline of a mathematical theory of computation. Technical Monograph
PRG-2, Oxford University Computing Laboratory, Programming Research Group,
Oxford, UK, November 1970. 26

50. D. Scott. The lattice of flow diagrams. In E. Engeler, editor, Semantics of Algorithmic
Languages, vol. 188 of Lecture Notes in Mathematics, pages 311–366. Springer-Verlag,
Berlin, Germany, 1971. 37

51. Z. Shmuely. The structure of Galois connections. Pacific Journal of Mathematics,
54(2):209–225, 1974. 47

52. A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific Journal
of Mathematics, 5:285–310, 1955. 5, 6, 51

53. R.J. van Glabbeek. The linear time – branching time spectrum (extended abstract).
In J.C.M. Baeten and J.W. Klop, editors, Proceedings of CONCUR’90, Theories of
Concurrency: Unification and Extension, Amsterdam, August 1990, vol. 458 of Lec-
ture Notes in Computer Science, pages 278–297. Springer-Verlag, Berlin, Germany,
1990. 18

54. M. Ward. The closure operators of a lattice. Annals of Mathematics, 43:191–196,
1942. 53

http://www.cl.cam.ac.uk/users/ap/talks

	Introduction
	Abstraction of Fixpoint Semantics
	Fixpoint Semantics
	Fixpoint Semantics Approximation
	Fixpoint Semantics Transfer
	Semantics Abstraction
	Fixpoint Semantics Fusion
	Fixpoint Iterates Reordering

	Transition/Small-Step Operational Semantics
	Finite and Infinite Sequences
	Sequences
	Concatenation of Sequences
	Junction of Sequences

	Maximal Trace Semantics
	Fixpoint Finite Trace Semantics
	Fixpoint Infinite Trace Semantics
	Fixpoint Maximal Trace Semantics
	Potential Termination Semantics

	The Maximal Trace Semantics as a Refinement of the Transition Semantics
	Relational Semantics
	Finite/Angelic Relational Semantics
	Infinite Relational Semantics
	Inevitable Termination Semantics
	Natural Relational Semantics
	Demoniac Relational Semantics

	Denotational Semantics
	Nondeterministic Denotational Semantics
	Natural Nondeterministic Denotational Semantics
	Convex/Plotkin Nondeterministic Denotational Semantics
	Demoniac Nondeterministic Denotational Semantics
	Upper/Smyth Nondeterministic Denotational Semantics
	Minimal Demoniac Nondeterministic Denotational Semantics
	Angelic/Lower/C.A.R. Hoare Nondeterministic Denotational Semantics

	Deterministic Denotational Semantics
	Deterministic Denotational Semantics of Nondeterministic Transition Systems
	D. Scott Deterministic Denotational Semantics of Locally Deterministic Transition Systems

	Predicate Transformer Semantics
	Correspondences Between Denotational and Predicate Transformers Semantics
	Generalized Weakest Precondition Semantics
	E. Dijkstra Weakest Conservative Precondition Semantics
	E. Dijkstra Weakest Liberal Precondition Semantics

	Galois Connections and Tensor Product
	Axiomatic Semantics
	R. Floyd/C.A.R. Hoare/P. Naur Partial Correctness Semantics
	R. Floyd Total Correctness Semantics

	Lattice of Semantics
	Conclusion

