
The Rôle of Abstract Interpretation in Formal Methods

Patrick Cousot
École normale supérieure, 45 rue d’Ulm, 75230 Paris cedex 05, France

st n rt . .c oCo fui @eskaP r

Formal methods In computer science and software en-
gineering, formal methods are mathematically-based tech-
niques for the specification, development and verification
of software and hardware systems. They therefore establish
the satisfaction of a specification by a system semantics.
Abstract Interpretation Abstract interpretation [3, 8] is
a theory of sound approximation of mathematical structures,
in particular those involved in the description of the behav-
ior of computer systems. It allows the systematic deriva-
tion of sound methods and algorithms for approximating
undecidable or highly complex problems in various areas of
computer science (semantics, verification and proof, model-
checking, static analysis, program transformation and opti-
mization, typing, software steganography, etc.). Its main
current application is on the safety and security of complex
hardware and software computer systems.
Semantics The semantics SJpK is a formal model of the
execution of these software and hardware systems p ∈ P.
A semantic domain D is a set of such formal models (so
∀p ∈ P : SJpK ∈ D).

An example is an operational semantics of a program
describing all possible program executions as a set of max-
imal traces that is finite or infinite sequences of states in Σ,
two successive states corresponding to an elementary pro-
gram step. In that caseD , ℘(T )1 that is a subset of the set
T ,

⋃+∞
n=1 Σn of all possible traces where Σn , [0, n[7→ Σ

is the set of traces of length n, n = 0, 1, . . . ,+∞.
Properties and Specifications A specification is a re-
quired property of the semantics of the system. The interpre-
tation of a property is therefore a set of semantic models that
satisfy this property so the set of properties is P , ℘(D).
The strongest property of a system p ∈ P is its semantics
{SJpK} (called the collecting semantics CJpK , {SJpK}).
Verification The satisfaction of a specification P ∈ P by
a system p (more precisely by the system semantics SJpK)
is SJpK ∈ P , which can equivalently be defined as the proof
that CJpK ⊆ P .
Abstraction To prove CJpK ⊆ P one can use a sound
over-approximation of the collecting semantics CJpK ⊆

1℘(S) , {S′ | S′ ⊆ S} is the powerset of the set S.

C]JpK and a sound under-approximation of the property
P ] ⊆ P and make the correctness proof in the abstract
C]JpK ⊆ P ].

For automated proofs, C]JpK and P ] must be computer-
representable and are not chosen in the concrete domain 〈P,
⊆〉 but in an abstract domain 〈P], v〉. The correspondence
is given by a concretization function γ ∈ P] 7→ P provid-
ing the meaning γ(P ]) of abstract properties P ] and pre-
serving the abstract implication ∀Q1, Q2 ∈ P] : (Q1 v
Q2) =⇒ (γ(Q1) ⊆ γ(Q2)). Then C]JpK v P ] implies
γ(C]JpK) ⊆ γ(P ]) and by soundness CJpK ⊆ γ(C]JpK)
and γ(P ]) ⊆ P we have proved correctness CJpK ⊆ P .

Best Abstraction If we want to over-approximate a disk
in two dimensions by a polyhedron there is no smallest
one, as shown by Euclid. However if we want to over-
approximate a disk by a rectangular parallelepiped which
sides are parallel to the axes, then there is definitely a
smallest (square) one. In such a case there is an abstrac-
tion function α ∈ P 7→ P] such that for all P ∈ P ,
α(P ) ∈ P] is an abstract over-approximation of P (so
P ⊆ γ(α(P ))) and it is the most precise abstract over-
approximation (so ∀Q ∈ P] : P ⊆ γ(Q) =⇒ α(P ) v Q
whence γ(α(P )) ⊆ γ(Q) by monotony of γ). It follows in
that case of existence of a best abstraction, that the pair 〈α,
γ〉 is a Galois connection [8].

Abstraction is very often implicit, as shown by the fol-
lowing classical examples.

Aggregation Abstraction In the operational trace seman-
tics example D , ℘(T ) so properties are P , ℘(℘(T ))
where T is the set of traces. An example is P01 , {{σ0 |
σ ∈ T }, {σ1 | σ ∈ T }} ∈ P specifying that executions
of the system always terminate with 0 or always terminate
with 1. This cannot be expressed in the traditional view of
program properties as set of traces [1, 21]. This traditional
understanding of a program property is given by the aggre-
gation abstraction α∪ ∈ ℘(℘(T )) 7→ ℘(T ), α∪(P ) ,

⋃
P

with concretization γ∪ ∈ ℘(T ) 7→ ℘(℘(T )), γ∪(Q) ,
℘(Q). An example is α∪(P01) = {{σ0, σ1 | σ ∈ T }}
specifying that execution always terminate, either with 0 or
with 1.



Transition Abstraction The transition abstraction ατ ∈
℘(T ) 7→ ℘(Σ × Σ) collects transitions along traces.
ατ (σ0 . . . σn) , {σi → σi+1 | 0 6 i < n},
ατ (σ0 . . . σi . . .) , {σi → σi+1 | i > 0}, and ατ (T ) ,⋃
{α(σ) | σ ∈ T}. The concretization γτ ∈ ℘(Σ × Σ) 7→

℘(T ) is γτ (τ) ,
⋃+∞
n=1{σ ∈ [0, n[7→ Σ | ∀i < n : 〈σi,

σi+1〉 ∈ τ}. The abstraction may also collect initial states
αι(T ) , {σ0 | σ ∈ T} so αιτ(T ) , 〈αι(T ), ατ (T )〉. We
let γιτ , γι(ι) ∩ γτ(τ) where γι(ι) , {σ ∈ T | σ0 ∈ ι}
(〈αιτ , γιτ〉 is a Galois connection).

This abstraction into a transition system [3] underlies
small-step operational semantics. This is an approximation
since traces can express properties not expressible by a tran-
sition system (like fairness of parallel processes).

Input-Output Abstraction The input-output abstraction
αio ∈ ℘(T ) 7→ ℘(Σ × (Σ ∪ {⊥})) collects initial and
final states of traces (and maybe ⊥ for infinite traces
to track nontermination). αio(σ0 . . . σn) = 〈σ0, σn〉,
αio(σ0 . . . σi . . .) = 〈σ0, ⊥〉, and αio(T ) = {αio(σ) | σ ∈
T}. The input-output abstraction αio underlies denotational
semantics, as well as big-step operational, predicate trans-
former and axiomatic semantics extended to nontermination
[5] and interprocedural static analysis using relational pro-
cedure summaries [3, 7, 12].

Reachability Abstraction and Invariants The reachabil-
ity abstraction αr ∈ ℘(T ) 7→ ℘(Σ) collects states along
traces. αr(T ) , {σi | ∃n ∈ [0,+∞] : σ ∈ Σn ∩ T ∧ i ∈
[0, n[} = {s′ ∈ Σ | ∃s ∈ ι : 〈s, s′〉 ∈ τ?} where
αιτ(T ) = 〈ι, τ〉 is the transition abstraction and τ? is the
reflexive transitive closure of τ . Expressed in logical form,
the reachability abstraction α provides a system invariant
α(CJpK) that is the set of all states that can be reached along
some execution of the system p [3, 6].

Floyd’s method [16] to prove a reachability property
αr(T ) ⊆ P consists in finding an invariant I stronger than
P (i.e. I ⊆ P ) which is inductive (i.e. ι ⊆ I and τ [I] ⊆ I
where τ [I] , {s′ | ∃s ∈ I : 〈s, s′〉 ∈ τ} is the right-image
transformer for the transition system 〈ι, τ〉 = αιτ(T )). This
induction principle has many equivalent variants [9], all un-
derlying different static analysis methods (the equivalence
may not be preserved by abstraction). In particular back-
ward analyzes are based on 〈τ−1, αϕ(T )〉 where τ−1 is the
inverse of τ and αϕ(T ) , {σn−1 | n < +∞∧σ ∈ T ∩Σn}
collects final states.

Soundness and Completeness of Abstractions An ab-
straction is sound if the proof in the abstract C]JpK ⊆ P ]

implies the concrete property CJpK ⊆ P . Abstract interpre-
tation provides an effective theory to design sound abstrac-
tions. An abstraction is complete if the fact that the system
is correct, that is CJpK ⊆ P , can always be proved in the
abstract as C]JpK ⊆ P ]. By refining the abstraction this is
always possible [18], but this refinement is not effective (i.e.

the algorithm does not terminate in general). For example
in model-checking any abstraction of a trace logic may be
incomplete [17].

Verification by Static Analysis Static code analysis is
the analysis of computer system by direct inspection of the
source or object code describing this system with respect to
a semantics of this code (without executing programs as in
dynamic analysis). The static code analysis is performed by
an automated tool, as opposed to program understanding or
program comprehension by humans. The proof CJpK ⊆ P
is done in the abstract C]JpK ⊆ P ], which involves the static
analysis of p that is the effective computation of C]JpK, as
formalized by abstract interpretation [3, 8].

Adequation of Abstractions The reachability abstraction
is sound and complete for invariance/safety proofs. That
means that if S ⊆ Σ is a set of safe states so that γr(S) is
a set of safe traces then the safety proof CJpK ⊆ γr(S) can
always be done as αr(CJpK) ⊆ S. This is the fundamental
remark of Floyd [16] that it is not necessary to reason on
traces to prove invariance properties. This does not mean
that this abstraction is adequate, that is, informally, the most
simple way to do the proof. For example Burstall’s inter-
mittent assertions may be simpler than Floyd’s invariant as-
sertions [10] or, in static analysis trace partitioning may be
more adequate that state-based reachability analysis [19].

Property versus Model-based Abstraction Let 〈ι, τ〉 be
a transition system model of a software or hardware system
p ∈ P (so that SJpK , γιτ(〈ι, τ〉)). A model-based ab-
straction is an abstract transition system 〈ι], τ ]〉which over-
approximates 〈ι, τ〉 (so that, up to concretization, ι ⊆ ι]

and τ ⊆ τ ]). The set of reachable abstract states for 〈ι], τ ]〉
over-approximate the reachable concrete states of 〈ι, τ〉 so
the model-based abstractions yields sound abstractions of
the concrete reachability states. Some abstractions defined
by a Galois connection of sets of (reachable) states may not
be model-based abstractions, in particular when the abstract
domain is not a powerset of states (e.g. [20]).

Program-based versus Language-based Abstraction
Static analysis has to define an abstraction αJpK for all pro-
grams p ∈ P of a language P. This is different from defin-
ing an abstraction specific to a given program. In particu-
lar an abstraction specific to a given program can always
be refined to be complete using a finite abstract domain [4]
whereas this is impossible in general for a language-based
abstraction for which infinite abstract domains have been
shown to always produce better results [11].

False Alarms Static analysis being undecidable, it relies
on incomplete language-based abstractions. This means
that the analyzer will produce false alarms on infinitely
many programs (which can even be generated automati-
cally). A false alarm is a case when a concrete property
holds but this cannot be proved in the abstract for the given



abstraction. An example in reachability analysis is when
no inductive invariant can be expressed in the abstract. The
experience of ASTRÉE (www.astree.ens.fr, [2]) shows
that it is possible to design precise language-based abstrac-
tions which produce no false alarm on a well defined family
of programs2.

Design of Abstractions The design of a sound and pre-
cise language-based abstraction is difficult. First from a
mathematical point of view, one must discover the appro-
priate set of abstract properties that are needed to represent
the necessary inductive invariants. Of course mathematical
completion techniques could be used [18] but because of
undecidability, they do not terminate in general. Second,
from a computer-science point of view, one must find an
appropriate computer representation of abstract properties
and abstract transformers. Universal representations (e.g.
using symbolic terms, automata or BDDs) are in general
inefficient and the discovery of appropriate computer repre-
sentations is far from being automatized.

Local versus Global Abstractions A simple approach to
static analysis is to use the same global abstraction every-
where in the program, which hardly scales up. More sophis-
ticated abstractions, as used in ASTRÉE are not uniform, dif-
ferent local abstractions being in different program regions
[2].

Multiple versus Single Abstractions Because of the
complexity of abstractions, it is simpler to design a precise
abstraction by composing many elementary abstractions
which are simple to understand and implement. ASTRÉE
uses many weakly relational domains (such as octagons
[20], digital filters [14], arithmetico-geometric progressions
[15], etc) that could hardly be encoded efficiently using a
universal representation of program properties as found in
theorem provers, proof assistants or model-checkers.

Abstraction Reduction If several abstractions are used,
the static analyzer must implement their conjunction in the
concrete, that is their reduced product in the abstract [8].
The implementation must be extensible, allowing for the
easy incorporation of new abstractions [13].

Refinement For a single program-based abstraction, re-
finement consists in strengthening the abstract invariant un-
til it is inductive, through a fixpoint computation which
in general does not terminate or explodes combinatorially.
The problem is even harder for language-based abstractions.
The pragmatic approach used in ASTRÉE is to manually de-
sign new abstractions which are incorporated in the reduced
product of all abstractions used by the analyzer thus allow-
ing for the strengthening of the abstract invariants for all
programs until no false alarm is left [13].

2Synchronous, time-triggered, real-time, safety critical, embedded soft-
ware written or automatically generated in the C programming language
for ASTRÉE.

References
[1] B. Alpern and F. Schneider. Defining liveness. Inf. Process.

Lett., 21:181–185, 1985.
[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,

A. Miné, D. Monniaux, and X. Rival. A static analyzer for
large safety-critical software. ACM PLDI, 196–207, 2003.

[3] P. Cousot. Méthodes itératives de construction et d’approxi-
mation de points fixes d’opérateurs monotones sur un treillis,
analyse sémantique de programmes (in French). Thèse d’État
ès sciences mathématiques, Université scientifique et médica-
le de Grenoble, Grenoble, 1978.

[4] P. Cousot. Partial completeness of abstract fixpoint checking.
SARA, LNAI 1864, 1–25. Springer, 2000.

[5] P. Cousot. Constructive design of a hierarchy of semantics of
a transition system by abstract interpretation. Theoret. Com-
put. Sci., 277(1—2):47–103, 2002.

[6] P. Cousot and R. Cousot. Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or
approximation of fixpoints. 4th ACM POPL, 238–252, 1977.

[7] P. Cousot and R. Cousot. Static determination of dynamic
properties of recursive procedures. IFIP Conf. on For-
mal Description of Programming Concepts, 237–277, North-
Holland, 1977.

[8] P. Cousot and R. Cousot. Systematic design of program anal-
ysis frameworks. 6th ACM POPL, 269–282, 1979.

[9] P. Cousot and R. Cousot. Induction principles for proving in-
variance properties of programs. Tools & Notions for Program
Construction, 43–119. Cambridge U. Press, 1982.

[10] P. Cousot and R. Cousot. Sometime = always + recursion
≡ always: on the equivalence of the intermittent and invari-
ant assertions methods for proving inevitability properties of
programs. Acta Informat., 24:1–31, 1987.

[11] P. Cousot and R. Cousot. Comparing the Galois connection
and widening/narrowing approaches to abstract interpretation.
PLILP ’92, LNCS 631, 269–295. Springer, 1992.

[12] P. Cousot and R. Cousot. Modular static program analysis.
11th CC, LNCS 2304, 159–178, Springer, 2002.

[13] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. Combination of abstractions
in the ASTRÉE static analyzer, invited paper. 11th ASIAN,
LNCS, Springer (to appear).

[14] J. Feret. Static analysis of digital filters. 30th ESOP, LNCS
2986, 33–48. Springer, 2004.

[15] J. Feret. The arithmetic-geometric progression abstract do-
main. 6th VMCAI, LNCS 3385, 42–58, Springer, 2005.

[16] R. Floyd. Assigning meaning to programs. Proc. Symp. in
Applied Math., vol. 19, 19–32. AMS, 1967.

[17] R. Giacobazzi and F. Ranzato. Incompleteness of states w.r.t
traces in model checking. Inform. and Comput., 204(3):376–
407, Mar. 2006.

[18] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract
interpretations complete. J. ACM, 47(2):361–416, 2000.

[19] L. Mauborgne and X. Rival. Trace partitioning in abstract
interpretation based static analyzer. 14th ESOP, LNCS 3444,
5–20. Springer, 2005.

[20] A. Miné. The octagon abstract domain. Higher-Order and
Symb. Comp., 19:31–100, 2006.

[21] A. Pnueli. The temporal logic of programs. 18th ACM FOCS,
46–57, 1977.


