
Methods and Logics for Proving
Programs 1

Patrick COUSOT

École Polytechnique, LIX
91128 Palaiseau Cedex (France)

Contents

1 . Introduction 2
1.1 A brief review of HOARE [1969] 2
1.2 Further work by C. A. R. Hoare on Hoare logic 3
1.3 Further work by C. A. R. Hoare on methods of reasoning about programs 4
1.4 Surveys on Hoare logic 6
1.5 Summary 6
1.6 Hints for reading this survey 9

2 . Logical, set and order theoretic notations 1 1

3 . Syntax and semantics of the programming language 1 4
3.1 Syntax 14
3.2 Operational semantics 18
3.3 Relational semantics 22

4 . Partial correctness of a command 2 5

5 . Floyd-Naur partial correctness proof method and some equivalent variants 2 6

1 Cousot, P.
Methods and Logics for Proving Program
In ``Handbook of Theoretical Computer Science’’, J. van Leeuwen (Ed.), vol. B `` Formal Models and Semantics’’,
Ch. 15, pp. 843--993, Elsevier, 1990.

5.1 An example of partial correctness proof by Floyd-Naur method 26
5.2 The stepwise Floyd-Naur partial correctness proof method 28

5.2.1 Stepwise induction principle 28
5.2.2 Representing a global invariant on configurations by local invariants on states attached

to program points 30
5.2.3 Construction of the verification conditions for local invariants 31
5.2.4 Semantical soundness and completeness of the stepwise Floyd-Naur partial correctness

proof method 35
5.3 The compositional Floyd-Naur partial correctness proof method 36

5.3.1 Preconditions and postconditions of commands 36
5.3.2 Compositional verification conditions 38
5.3.3 Semantical soundness and completeness of the compositional Floyd-Naur partial

correctness proof method 39
5.4 Equivalence of stepwise and compositional Floyd-Naur partial correctness proofs 40

5.4.1 The compositional presentation of a stepwise Floyd-Naur partial correctness proof 41
5.4.2 The stepwise presentation of a compositional Floyd-Naur partial correctness proof 42

5.5 Variants of Floyd-Naur partial correctness proof method 44

6 . Liveness proof methods 4 6
6.1 Execution traces 46
6.2 Total correctness 47
6.3 Well founded relations, well orderings and ordinals 48
6.4 Termination proofs by Floyd's well-founded set method 49
6.5 Liveness 51
6.6 Generalization Floyd's total correctness proof method to liveness 52
6.7 Burstall total correctness proof method and its generalization 53

7 . Hoare logic 5 5
7.1 Hoare logic considered from a semantical point of view 55

7.1.1 General theorems for proof construction 55
7.1.2 Semantical soundness and completeness 57
7.1.3 Proof outlines 58

7.2 Hoare logic considered from a syntactical point of view 60
7.2.1 Syntax of predicates and correctness formulae 61
7.2.2 Deductive systems and formal proofs 63

7.2.3 Hoare's proof system H 64

7.2.4 Hoare's proof system H' for proof outlines 67

7.2.5 Syntactical rules of substitution 68
7.2.5.1 Variables appearing in a term, predicate, command or correctness formula 68
7.2.5.2 Bound and free variables appearing in a term, predicate, command or correctness

formula 69
7.2.5.3 Formal definition of substitution of a term for a variable in a term or predicate 70

7.3 The semantics of Hoare logic 71
7.3.1 Semantics of predicates and correctness formulae 71
7.3.2 Semantics of substitution 74

7.4 The link between syntax and semantics: soundness and completeness issues in Hoare logic 76
7.4.1 Soundness of Hoare logic 76
7.4.2 Relative completeness of Hoare logic 77

7.4.2.1 Completeness and incompleteness issues for Hoare logic 77
7.4.2.2 Abacus arithmetic 80

7.4.2.2.1 Inexpressibility of addition in abacus arithmetic 80
7.4.2.2.2 Decidability of abacus arithmetic 83
7.4.2.2.3 Nonstandard interpretations of abacus arithmetic 84

7.4.2.3 Incompleteness results for Hoare logic 85
7.4.2.3.1 Unspecifiable partially correct programs 85
7.4.2.3.2 Unprovable partially correct programs 86

7.4.2.3.2.1 Incompleteness of Hoare logic for an interpretation with decidable first-
order theory 86

7.4.2.3.2.2 Incompleteness of Hoare logic for an interpretation with undecidable
first-order theory 87

7.4.2.3.2.2.1 The set of provable Hoare formulae is recursively enumerable 87
7.4.2.3.2.2.2 The non-halting problem is not semi-decidable for Peano

arithmetic 89
7.4.2.3.2.2.3 The set of valid Hoare formulae for Peano arithmetic is not

recursively enumerable 90
7.4.2.3.2.2.4 Incompleteness of Hoare logic for Peano arithmetic 91

7.4.2.3.3 Unprovable valid predicates, mechanical proofs 92
7.4.2.4 Cook's relative completeness of Hoare logic 93

7.4.2.4.1 Expressiveness à la Clarke 93
7.4.2.4.2 Relative completeness of Hoare logic 95
7.4.2.4.3 Expressiveness à la Cook and its equivalence with Clarke's notion of

expressiveness 97
7.4.2.4.4 Relative completeness of Hoare logic for arithmetical while-programs and

nonstandard interpretations 99
7.4.2.4.5 On the unnecessity of expressiveness 101

7.4.2.5 Clarke's characterization problem 102
7.4.2.5.1 Languages with a relatively complete and sound Hoare logic have a decidable

halting problem for finite interpretations 103
7.4.2.5.2 The halting problem for finite interpretations is undecidable for Clarke's

languages 103
7.4.2.5.3 Languages with no sound and relatively complete Hoare logic 109

7.4.2.6 Nonstandard semantics and logical completeness 110

8 . Complements on Hoare logic 1 1 1
8.1 Data structures 111
8.2 Procedures 113

8.2.1 Recursive parameterless procedures 113
8.2.1.1 Syntax and relational semantics of a parameterless procedural language 113
8.2.1.2 The recursion rule based upon computational induction 115
8.2.1.3 The rule of adaptation based upon fixpoint induction 118
8.2.1.4 Hoare-like deductive systems with context-dependent conditions 124

8.2.2 Value-result parameters 126
8.2.3 Complements on variable parameters and procedures as parameters 130

8.3 Undefinedness 133
8.4 Aliasing and side effects 133
8.5 Block structured local variables 133
8.6 Goto statements 134
8.7 Functions and expressions (with side effects) 135
8.8 Coroutines 135
8.9 Parallel programs 137

8.9.1 Operational semantics of parallel programs with shared variables 137
8.9.2 À la Floyd proof methods for parallel programs with shared variables 140

8.9.2.1 Using a single global invariant 142
8.9.2.2 Using an invariant on memory states for each control state 143
8.9.2.3 Using an invariant on memory states for each program point 144
8.9.2.4 Using an invariant on memory and control states for each program point 146

8.9.2.4.1 The strengthened Lamport and Owicki & Gries method 148
8.9.2.4.2 Newton's method 150
8.9.2.4.3 The lattice of proof methods including Lamport's method 151

8.9.2.5 Using an invariant on memory states with auxiliary variables for each program
point 152

8.9.2.5.1 A stepwise presentation of Owicki & Gries method 152
8.9.2.5.2 On the use of auxiliary variables 154

8.9.2.5.3 A syntax-directed presentation of Owicki & Gries method 156
8.9.3 Hoare logics for parallel programs with shared variables 156

8.9.3.1 Owicki & Gries logic 156
8.9.3.2 Stirling compositional logic 157

8.9.4 Hoare logics for communicating sequential processes 161
8.10 Total correctness 164

8.10.1 Finitely bounded nondeterminism and arithmetical completeness 164
8.10.2 Unbounded nondeterminism 165
8.10.3 Total correctness of fair parallel programs 167

8.10.3.1 Fairness hypotheses and unbounded nondeterminism 167
8.10.3.2 Failure of Floyd liveness proof method 167
8.10.3.3 The transformational approach 168
8.10.3.4 The intermittent well-foundedness approach 169

8.10.4 Dijkstra's weakest preconditions calculus 170
8.11 Examples of program verification 172
8.12 Other logics extending first-order logic with programs 172

9 . References 1 7 4

1 . Introduction

Formalizing ideas of FLOYD [1967a] and NAUR [1966] which, in essence, were already

present in GOLDSTINE & VON NEUMANN [1947] and TURING [1949] (as recalled in

MORRIS & JONES [1984]), C. A. R. Hoare introduced in October 1969 an axiomatic method

for proving that a program is partially correct with respect to a specification (HOARE [1969],

see the genesis and reprint of this paper in HOARE & JONES [1989, pp. 45-58]). This paper

introduced or revealed a number of ideas which originated an evolution of programming

from arts and crafts to a science. Hoare logic had a very significant impact on program

verification and design methods. It was an essential step in the emergence of “structured

programming” in the 1970's. It is also an important contribution to the development of

formal semantics of programming languages. Understanding that programs can be a subject

of mathematical investigations was also crucial in the development of a theory of

programming. This is reflected in the fact that HOARE [1969] is one of the most widely cited

papers in computing science (see the bibliography of more than 350 references).

1 .1 A brief review of HOARE [1969]

The “introduction” of HOARE [1969] claims that “computer programming is an exact

science” and calls for the development of a formal system for reasoning about programs.

The first part of HOARE [1969] is an attempt to axiomatize “computer arithmetic” in two

stages : first axioms are given for arithmetic operations on natural numbers which are valid

independently of their computer representation (such as “x + y = y + x”, “x + 0 = x”, etc)

and then choices of supplementary axioms are proposed for characterizing various possible

implementations. For example a finite representation of natural numbers (“∀ x. 0 ≤ x ≤
maxint”) can lead to various possible interpretations of overflow such as “¬ ∃ x. (x =

maxint + 1)” i.e. program execution should be stopped, “maxint + 1 = maxint” i.e. the

result of an overflowing operation should be taken as the maximum value represented or

“maxint + 1 = 0” i.e. arithmetic operations should be computed modulo this maximum

value “maxint”.

The second part of HOARE [1969] introduces an axiomatic definition of “program

execution”. It defines Hoare correctness formulae “{P} C {Q}” where C is a program and

the precondition P and postcondition Q are logical formulae describing properties of data

manipulated by program C. Such a formula “{P} C {Q}” means that if execution of C is

started in any memory state satisfying precondition P and if this execution does terminate

then postcondition Q will be true upon completion (Hoare correctness formulae were

originally written “P {C} Q” but are now written as “{P} C {Q}” to emphasize the rôle

of assertions P and Q as comments). The main contribution of HOARE [1969] is the

elucidation of a set of axioms and rules of inference which can be used in correctness

proofs (termed “partial” since termination is not involved). For example if X is a variable

identifier, E is an expression, P[X ← E] is obtained from P by substituting E for all

occurrences of X then “{P[X ← E]} X := E {P}” is an axiom for the assignment

command “X := E”. Intuitively, it simply states that what is true of expression E before

the assignment is true of X after assignment of E to X. Another example is the sequential

composition “C1; C2” of commands C1 and C2. From “{P} C1 {Q}” and

“{Q} C2 {R}”, one can infer “{P} C1; C2 {R}”. Intuitively this rule of inference states

that if Q is true after execution of C1 starting with P true and if R is true after execution of

C2 starting with Q true then R is true after the sequential execution of C1 and C2 starting

with P true. This second part of HOARE [1969] ends with the formal partial correctness proof

of a program for computing the Euclidian division of nonnegative integers by successive

subtractions.

The third part of HOARE [1969] is on “general reservations” about this paper. First side-

effects are excluded. Then, and most importantly, termination is not considered. Finally a

number of languages features (such as procedures and parallelism) are omitted.

Then HOARE [1969] discusses “proofs of program correctness”. An axiomatic approach

is indispensable for achieving program reliability. The practicability of program proving is

advocated in view of the cost of programming errors and program testing. It is also useful

for program documentation and modification and to achieve portability (machine dependent

part being clearly identified by the use of implementation dependent axioms). The

difficulties such as unreliable specifications or proof complexity are also foreseen:

“program proving, certainly at present, will be difficult even for programmers of high

calibre; and may be applicable only to quite simple program designs”.

Finally HOARE [1969] discusses “formal language definition”. The axioms and rules of

inference can be understood as “the ultimate definitive specification of the meaning of the

language”. The approach is simple. It can cope with the problem of machine dependence by

leaving certain aspects of the language undefined and serve as a guide for language design.

HOARE [1969] last words in the “acknowledgements” anticipated the enormous work on

Hoare logic: "The formal material presented here has only an expository status and

represents only a minute proportion of what remains to be done. It is hoped that many of

the fascinating problems involved will be taken up by others”.

1 .2 Further work by C. A. R. Hoare on Hoare
logic

A number of these problems were treated by C. A. R. Hoare himself. A famous and

non trivial proof, that of the program “Find” (HOARE [1961]), was later given in HOARE

[1971a]. This paper shows a significant move in the use of Hoare logic from a program

verification method (i.e. an a posteriori proof of a complete program) to a program design

method: “A systematic technique is described for constructing the program proof during the

process of coding it”. The use of data abstractions to handle complex data structures was

introduced in HOARE [1972a] and exemplified in HOARE [1972b]. Other programming language

features were covered later: procedures and parameters (HOARE [1971b]), including recursion

(FOLEY & HOARE [1971]), jumps and functions (CLINT & HOARE [1972], ASHCROFT,

CLINT & HOARE [1976]), parallel programs (HOARE [1972c], HOARE [1975]). Hoare logic had an

important influence over the design of modern programming languages, Pascal notably

(WIRTH [1971], HOARE & WIRTH [1973]). However progresses were sometimes slower than

anticipated by HOARE [1969]. In the case of parallelism for example, synchronization (HOARE

[1974]) and communication primitives (HOARE [1978b], HOARE [1985b]) had to be better

understood before introducing formal proof methods (HOARE [1981] ,

ZHOU CHAO CHEN & HOARE [1981]).

1 .3 Further work by C. A. R. Hoare on methods of
reasoning about programs

With regard to program proofs, HOARE [1969] suffers from a number of weaknesses,

some of which were corrected later (HOARE & HE JIFENG [1986] [1987], HOARE, HE

JIFENG & SANDERS [1987], HOARE, HAYES, HE JIFENG, MORGAN, ROSCOE, SANDERS, SORENSEN &

SUFRIN [1987]). First of all, termination is not involved. For example “{true} while true do

skip {Q}” holds for all assertions Q. This can be considered as a regrettable omission (see

the “Envoi” to HOARE & JONES [1989, p. 391]) or as an historically fruitful simplification

(since, for example, total correctness was not that simple to understand in the presence of

nondeterminism, HOARE [1978a]). Later work by C. A. R. Hoare insists upon total

correctness (HOARE [1981]). Second, the postcondition Q in Hoare correctness formulae

“{P} C {Q}” is a predicate of the final states alone. Adopting postconditions which are

predicates of initial and final states makes it easier to specify relations (as latter in HOARE &

HE, JIFENG [1986] [1987], HOARE, HE JIFENG & SANDERS [1987], HOARE, HAYES, HE JIFENG, MORGAN,

ROSCOE, SANDERS, SORENSEN & SUFRIN [1987]). To achieve the same effect in Hoare logic, one

has to use so-called logical auxiliary variables such as x in “{X = x} C {X = x}” to

express that execution of C leaves the value of the programming variable X unchanged

(assuming that x does not appear in C). Third, Hoare correctness formulae “{P} C {Q}”

do not describe the course of computation of the program C, a flaw in the presence of

parallelism. For example “{X = x} C {X = x}” does not mean that X is not modified

during execution of C so that we do not know whether “{X = x}[C || X := 1]{X = 1}”

holds or not when command C is executed in parallel with assignment “X := 1”. Sequences

of intermediate states (more precisely messages) were latter used in HOARE [1984]. Fourth

Hoare logic imposes a standard form of reasoning about programs which, for example,

lacks the flexibility of choosing between positive or contrapositive arguments or of

choosing the most adequate form of induction (the only one allowed being structural

induction upon the syntactical structure of programs). Fifth, the logical treatment of Hoare

correctness formulae “{P} C {Q}”, predicates P, Q and programs C are quite separated.

For example predicates can be conjuncted but not Hoare correctness formulae. The use of

names for designating objects obeys quite different conventions in predicates and

programs. Finally Hoare logic was a very important step in the understanding that

“computers are mathematical machines”, “computer programs are mathematical

expressions”, that “a programming language is a mathematical theory” and that

“programming is a mathematical activity” (HOARE [1985a]). However, the main emphasis of

HOARE [1969] is on the logical and formal aspects of this mathematical activity. It obliterates

the informal and often more elegant mathematical proofs which should also have had their

useful counterparts in programming. This point of view is similar to that of a mathematician

adhering to rigorous and well-understood proof methods without using exclusively formal

mathematical logic.

With regard to program semantics, HOARE [1969] was somewhat optimistic: the

axiomatic semantics can no longer be considered as universal but as one of the

complementary definitions of programming languages (HOARE & LAUER [1974]).

1 .4 Surveys on Hoare logic

Over the past twenty years, Hoare logic has been considerably studied. Most results

have been reported in numerous surveys (LANGMAACK & OLDEROG [1980], APT [1981a], OLDEROG

[1983b], APT [1984], CLARKE [1984], BARRINGER [1985], DE ROEVER [1985a], APT [1988], HOOMAN

& DE ROEVER [1989]) and books (MANNA [1971], DE BAKKER [1980], LŒCKX & SIEBER [1984]), to

cite a few. This chapter is an elementary but rigorous introduction to Hoare logic. We just

assume some elementary familiarity with naïve logical and set theoretic notations and some

very rudimentary practice of the so-called intermediate assertions method of Floyd but

nevertheless do the necessary recalls. We hope that this survey will be useful to readers

willing to understand the abundant and often very technical literature on Hoare logic.

Numerous references are suggested for further study. We apologize to all those researchers

who have been misunderstood or not referenced.

1 .5 Summary

In paragraph § 2 we fix up the logical, set and order theoretic notations which are

used subsequently.

In paragraph § 3 we define the syntax of while-programs, their operational semantics

(that is a set of finite or infinite sequences of configurations representing successive

observable states of an abstract machine executing the program for each possible input data)

and their relational semantics (directly defining the relationship between initial and final

configurations of terminating program executions).

In paragraph § 4 we define the partial correctness “{ p }C{ q }” of a command C

with respect to a precondition p and postcondition q to mean that any terminating execution

of C starting from an initial state s satisfying p must end in some final state s' satisfying q.

Paragraph § 5 is a presentation of Floyd-Naur partial correctness proof method. After

giving a simple introductory example, we formally derive Floyd-Naur's method from the

operational semantics using an elementary stepwise induction principle and predicates

attached to program points to express invariant properties of programs. This systematic

construction of the verification conditions ensures that the method is semantically sound

(i.e. correct) and complete (i.e. always applicable). Then we explain a compositional

presentation of Floyd-Naur's method inspired by Hoare logic where proofs are given by

induction on the syntactical structure of programs. These two approaches are shown to be

equivalent in the strong sense that, up to a difference of presentation, they require to verify

exactly the same conditions. Few other partial correctness proof methods are shortly

reviewed and shown also to be variants of the basic Floyd-Naur's method.

In paragraph § 6, we study total correctness (that is the conjunction of partial

correctness, absence of runtime errors, deadlock freedom and termination) and more

generally liveness proof methods. After giving a short mathematical recall on well founded

relations, well orderings and ordinals, we review Floyd's well-founded set method and

Burstall's intermittent assertion method.

Paragraph § 7 is devoted to Hoare logic for while-programs.

In paragraph 7.1, we first start from a semantical point of view (mathematicians

would say a naïve set-theoretic approach) relative to a fixed interpretation specified by the

operational semantics. Hoare logic is therefore understood as a set of general theorems for

proving partial correctness by structural induction on the syntax of commands. This

approach is sound (correct) and complete (always usable) with respect to the operational

semantics. In practice, proofs can be presented informally using Owicki's proof outlines

(that is by attaching comments to program points) which is equivalent to Floyd's method.

In paragraph 7.2, we study Hoare logic from a syntactical point of view

(mathematicians would call it a logical approach) where predicates are required to be

machine representable and proofs to be machine checkable (but not necessarily machine

derivable). Therefore predicates P, Q and correctness formulae “{P} C {Q}” are now

considered as strings of symbols written according to a precise syntax with no fixed

meaning. Provability is formalized by rewriting rules for deriving valid theorems by

successive transformations of given axioms. More precisely, we first define the syntax of

first-order predicates P, Q (allowing only to quantify over elements, but not over subsets or

functions) and correctness formulae “{P} C {Q}”. Then we introduce Hilbert-like

deductive systems (consisting of axioms such as “{P[X ← E]} X := E {P}” and rules

of inference such as “from {P} C1 {Q} and {Q} C2 {R} infer {P} C1; C2 {Q}”) and

define formal proofs (i.e. finite sequences of formulae, each of which is either an axiom or

else follows from earlier formulae by a rule of inference). This leads to Hoare's classical

proof system H and to Hoare's proof system H' for proof outlines. Finally we define free

and bound variables in predicates so as to precisely specify the syntactical rules of

substitution P[X ← E].

Paragraph § 7.3 makes the link between the semantical point of view (i.e. the usual

mathematical reasoning about truth with respect to the interpretation of programs specified

by the operational semantics) and the syntactical point of view (where provability is

understood as correctness formulae manipulations according to the formal rules of Hoare

deductive system H). For that purpose we define the semantics of predicates P, Q and

correctness formulae “{P} C {Q}” in accordance with the relational semantics but

parametrized by the meaning of basic symbols +, *, <,… which can be left unspecified.

Paragraph § 7.4 studies the link between truth (the semantical point of view) and

provability (the syntactical point of view). Kurt Gödel showed that truth and provability do

not necessarily coincide: provable implies true, refutable implies false but some formulae

may be undecidable that is neither provable nor refutable (using proofs that can be checked

mechanically) although they are either true or false. Therefore the question is whether

Hoare's formal proof system captures the true partial correctness formulae, only these

(soundness) and ideally all of these (completeness).

Soundness is proved in paragraph § 7.4.1.

Completeness and incompleteness issues for Hoare logic are discussed in paragraph §

7.4.2. It is shown that the formalism of while-programs is more powerful than the

formalism of first-order predicates in the sense that, for example, the reflexive transitive

closure of a given basic relation is easily defined by a program whereas it is not (in general)

first-order definable (except when full arithmetic on natural numbers is available).

Incompleteness results for Hoare logic follows since intermediate assertions needed in the

correctness proofs of while loops cannot in general be expressed. The consequence is that

although the logical language might be simple enough so that all true facts about data

expressible in this language are machine derivable, some programs using the same basic

symbols might be either unspecifiable or unprovable within this restricted language. It

follows that the logical language must be enriched up to the point where arithmetic is

included. Hence the logical language can be used to describe its own deductive system but

then, as shown by Kurt Gödel, the deductive system is not powerful enough to prove all

true facts expressible in the logical language. It follows that we can only prove Cook's

relative completeness of Hoare logic assuming that the logical language is expressive

enough to specify the intermediate assertions and that all needed mathematical facts about

the data of the program are given. (The alternative which consists in using richer second-

order logical systems is not considered since proofs would then not even be machine

checkable). Expressiveness can be defined à la Clarke (using Dijkstra's weakest liberal

preconditions) or à la Cook (using strongest liberal postconditions), both notions of

expressiveness being equivalent. Examples of inexpressive (abacus arithmetic) and

expressive (Peano arithmetic) first-order languages are given. It is shown that

expressiveness is sufficient to obtain relative completeness but it is not necessary. Finally

we study Clarke's characterization problem which consists in characterizing which

programming languages have a sound and relatively complete Hoare logic. This is not the

case of Algol-like or Pascal-like languages (since soundness and relative completeness of

Hoare logic would imply the decidability of the halting problem for finite interpretations

where variables can only take a finite number of values). The intuitive reason is again that

first-order logical languages are less powerful than Algol or Pascal-like languages which

can manipulate a potentially infinite run-time stack.

In paragraph § 8, we briefly consider complements on Hoare logic: data structures

(§ 8.1), undefinedness due to runtime errors (§ 8.3), aliasing and side effects (§ 8.4),

block structured local variables (§ 8.5), goto statements (§ 8.6), functions and

expressions with side effects (§ 8.7), coroutines (§ 8.8) and a guide to the literature on

examples of program verification (§ 8.11) and other logics extending first-order logic with

programs (§ 8.12). Three topics are treated more extensively:

In paragraph § 8.2 we consider procedures. First we define the syntax and relational

semantics of recursive parameterless procedures. Then we consider partial correctness

proofs based upon computation induction (a generalization of Scott induction) which leads

to Hoare's recursion rule. Since this only rule is not complete, we consider Park's fixpoint

induction, which, using auxiliary variables, can be indirectly transcribed into Hoare's rule

of adaptation. Then these rules are generalized for value-result parameters and numerous

examples of application are provided. References to the literature are given for variable

parameters and procedures as parameters.

Parallel programs are handled in paragraph § 8.9. First we define the syntax and

operational semantics of parallel programs with shared variables and await commands. We

review a number of à la Floyd proof methods for such parallel programs using the unifying

point of view of paragraph § 5 where proof methods are shown to derive from a single

induction principle and only differ by the way of decomposing the global invariant on

memory states and control states (or auxiliary variables) into local invariants. In particular

we study in detail the Lamport and Owicki & Gries method as well as various strengthened

or weakened versions, its stepwise (à la Floyd) and syntax-directed (à la Hoare)

presentations. This proof method is formalized by Owicki & Gries logic and a

compositional version is given as introduced by Stirling following Jones. We end by a

guide to the literature on Hoare logics for communicating sequential processes.

In paragraph § 8.10 we consider proof systems for total correctness. Such proof

systems cannot be of pure first-order logical character and must incorporate an external

well-founded relation. We first consider Harel proof rule for while-programs with finitely

bounded nondeterminism and its arithmetical completeness. Then we explain the use of

transfinite ordinals to deal with unbounded nondeterminism, a situation where a program

state may have infinitely many possible successor states. This leads to the total correctness

of fair parallel programs. Finally we introduce Dijkstra's weakest preconditions calculus for

unbounded nondeterminism.

Numerous references to the literature are given at paragraph § 9.

1 .6 Hints for reading this survey

This chapter can be read in a number of ways. In all cases, proofs should be omitted

on first reading. Here are two examples of non sequential readings:

• Readers purely interested in Hoare logic can read as follows: § 2 (logical, set and

order theoretic notations), § 3 (syntax and semantics of the programming language), § 4

(partial correctness of a command), § 5.1 (an example of partial correctness proof by

Floyd-Naur method), § 5.3 (a Hoare style presentation of Floyd-Naur partial correctness

proof method by syntax-directed induction), § 7.1.1 (general theorems for proof

construction), § 7.2.1 (syntax of predicates and correctness formulae), § 7.2.2 (deductive

systems and formal proofs), § 7.2.3 (Hoare's proof system H), § 7.2.5 (syntactical rules

of substitution). Then the various complements on Hoare logic of paragraph § 8 can be read

in any order or readers more interested in the soundness and completeness problems can go

on by § 7.1.2 (semantical soundness and completeness), § 7.3 (the semantics of Hoare

logic), § 7.4 (the link between syntax and semantics : soundness and completeness issues

in Hoare logic).

• Readers interested in liveness proof methods but willing to ignore logic can read

successively § 2 (logical, set and order theoretic notations), § 3 (syntax and semantics of

the programming language), § 4 (partial correctness of a command), § 5 (Floyd-Naur

partial correctness proof method and some equivalent variants), § 6 (liveness proof

methods), § 8.9.1 (operational semantics of parallel programs with shared variables), §

8.9.2 (à la Floyd proof methods for parallel programs with shared variables), § 8.10.4

(Dijkstra's weakest preconditions calculus).

2 . Logical, set and order theoretic
notations

For terms of logical character we use the following notations : tt denotes truth, ff

falsity, ¬ negation, ∧ conjunction, ∨ inclusive disjunction, ⇒ logical implication, = (or

⇔) logical equivalence, ∀ v. p universal quantification (p is true for any v), ∃ v. p existential

quantification (there are some v such that p is true), ∃! v. p unique existential quantification

(there is a unique v such that p is true). ∀ v ∈ E. p is an abbreviation for ∀ v .((v ∈ E) ⇒ p)

and ∃ v ∈ E. p is ∃ v. ((v ∈ E) ∧ p). ∀ v1, …, vn ∈ E. p is an abbreviation for ∀ v1 ∈ E.

… ∀ vn ∈ E. p. The same way ∃ v1, …, vn ∈ E. p is an abbreviation for ∃ v1 ∈ E. … ∃ vn ∈

E. p. We write (B → X ◊ Y) to denote X when B is true and Y otherwise.

Z (respectively N, N+) is the set of integers (positive, strictly positive integers). As

usual in computer science, + is the addition, - the subtraction, * the product, div the

division, mod the modulus and ** the exponentiation of integers. odd(x) (respectively

even(x)) is true if and only if x is an odd (respectively even) integer.

We accept the intuitive concept of a set as a collection of objects called elements of the

set. The notation e ∈ E means that e is an element of the set E and e ∉ E = ¬(e ∈ E).

The void set is denoted ø. E ⊂ E', E ⊆ E' and E = E' respectively denote proper

inclusion, inclusion and equality of sets and (E ⊃ E') = (E' ⊂ E), (E ⊇ E') = (E' ⊆ E)

and (E ≠ E') = ¬(E = E'). We use the set theoretic operations ∪ (union), ∩ (intersection)

and - (difference). If a set D is fixed then for subsets E of D the complement ¬E of E is (D

- E). If E is a set then P(E) (called the power set of E) denotes the set of all subsets of E. If

E0, …, En-1 are sets, the Cartesian product E0 x … x En-1 is the set of n-tuples

<e0, …, en-1> , with ei ∈ E i for i = 0, …, n - 1. In symbols : E0 x … x En-1 =

{<e0, …, en-1> : e0 ∈ E0 ∧ … ∧ en-1 ∈ En-1} where “:” reads “for those which satisfy”.

The projection <e0, …, en-1>i is the i-th component ei of the n-tuple <e0, …, en-1>. If n

> 1, the elimination <e0, …, en-1>~i is the (n - 1)-tuple <e0, … , ei-1, ei+1, … , en-

1>. If E0 = … = En-1 = E then En = E0 x … x En-1. We define E0 to be {ø} and

identify E1 with E. The cardinality of a set E is denoted | E | hence if E is finite, | E | is the

number of elements of E.

Given a positive integer n and a set E, we define an n-ary relation r on E as a subset

of En. n is called the arity of r and is denoted #r. We say that r is binary when #r = 2 and

often use the infix notation x r y for <x, y> ∈ r. For example we write x ≤ y to mean that x

is less than or equal to y.
If r, r' ⊆ E x E are binary relations on E then r ˚ r' = {< e, e'> :

∃ e" ∈ E. <e, e"> ∈ r ∧ <e", e'> ∈ r'} is the product of r and r', r-1 = {<e', e> : <e ,

e'> ∈ r} is the inverse of r. If, moreover, p ⊆ E is a subset of E then p  r = {<e, e'> ∈ r : e

∈ p} is the left restriction of r to p and r  p = {<e, e'> ∈ r : e' ∈ p} is the right restriction

of r to p. The equality relation on E also called the diagonal of E2 is δ = {<e, e> : e ∈ E}.

The power of a binary relation r on a set E is defined by recurrence as r0 = δ, rn+1 =
rn ˚ r for n ≥ 0. The (strict) transitive closure r+ of r is r+ = ∪{rn : n > 0} and the reflexive

transitive closure r* of r is r* = r0 ∪ r+.

A partially ordered set is a pair <E, ≤> where E is a nonvoid set and ≤ is a binary

relation on E which is reflexive (∀ a ∈ E. a ≤ a), antisymmetric (∀ a, b ∈ E.(a ≤ b ∧ b ≤ a)

⇒ (a = b)) and transitive (∀ a, b, c ∈ E.(a ≤ b ∧ b ≤ c) ⇒ (a ≤ c)). Given P ⊆ E, a ∈ E is an

upper bound of P if ∀ b ∈ P. b ≤ a; a is the least upper bound of P (in symbols lub P) if a

is an upper bound of P and if b is any upper bound of P then a ≤ b. If lub P exists, then it is

unique. Lower bounds and the glb (greatest lower bound) are defined dually, that is by

replacing ≤ by its inverse (also called dual) ≥ defined by (a ≥ b) = (b ≤ a). A complete

lattice is a partially ordered set <E, ≤> such that lub P and glb P exist for all P, P ⊆ E. It

follows that E has a greatest element or supremum T = lub E = glb ø and a least element or

infimum ⊥ = glb E = lub ø. <P(E), ⊆> is a complete lattice such that lub = ∪, glb = ∩, T = E

and ⊥ = ø.

Given two sets A and B and a binary relation φ on A ∪ B, we call φ a function of A

into B (and write φ : A → B) if (<a, b> ∈ φ) ⇒ (a ∈ A ∧ b ∈ B) ∧ (∀ a ∈ A. ∃! b ∈ B.<a, b>

∈ φ). A = dom φ is called the domain and B = rng φ is the range of φ. We use the functional

notation b = φ(a) instead of <a, b> ∈ φ. The set of all functions of A into B will be denoted

BA or more frequently A → B.

We specify a function φ : A → B without giving it a name using the lambda notation

“λ x : A → B. e” where the expression e is such that ∀ a ∈ A. φ(a) = e(a). We write λ x ∈

A. e (respectively λ x. e) when B (respectively A and B) can easily be inferred from e. If φ :

A → B then φ[a ← b] is the function φ' : A ∪ {a} → B ∪ {b} such that φ'(a) = b and ∀

a' ∈ A .((a' ≠ a) ⇒ (φ'(a') = φ(a'))). A function φ : {a1, …, an} → {b1, …, bn} such that

φ(ai) = bi for i = 1, …, n will be simply written [a1 ← b1, …, an ← bn] so that [a1 ← b1,

…, an ← bn](ai) = bi.

A family γ = <γi : i ∈ I> of elements of E is a function φ from the index set I into the

set E, where γi = φ(i). When I ⊆ N, γ is called a sequence of elements of E. More precisely,

if I = ø then γ is called an empty sequence and is written ε. When I = N, it is an infinite

sequence and we write γ = γ0, …, γi, … . When n ∈ N and I = {i : 0 ≤ i < n}, γ is

called a finite sequence of length n and we write γ = γ0, …, γn-1. We define seqn E to be the

set of sequences of elements of E of length n ≥ 0, seq* E = ∪n ≥ 0 seqn E, seqω E to be the

set of infinite sequences of elements of E and seq E = seq* E ∪ seqω E. Moreover, the

concatenation γe of e ∈ E to the right of γ is defined by εe = e, γe = γ0, …, γn-1, e if γ is a

finite sequence of length n and γe = γ if γ is an infinite sequence.

Let <A, ≤> and <B, ∠> be partially ordered sets. φ : A → B is monotone (or

increasing) if ∀ a, b ∈ E. (a ≤ b) ⇒ (φ(a) ∠ φ(b)). x ∈ A is a fixpoint of φ : A → A if φ(x) =

x. It is a prefixpoint if x ≤ φ(x) and a postfixpoint if φ(x) ≤ x. Let <L, ≤> be a complete

lattice with infimum ⊥ and φ : L → L be monotone. The set {x ∈ L : φ(x) = x} of

fixpoints of φ is a (nonempty) complete lattice for ≤ with infimum lfp φ = glb{x ∈ L : φ(x)

≤ x} and supremum gfp φ = lub{x ∈ L : x ≤ φ(x)} (TARSKI [1955]). An increasing chain

is a sequence γ of elements of A such that ∀ i ∈ dom γ - {0}. γi-1 ≤ γi. φ : L → L is upper-

continuous if lub{φ(γi) : i ∈ dom γ} = φ(lub{γi : i ∈ dom γ}) for any increasing chain γ of

L. If φ is upper-continuous then lfp φ = lub{φn(⊥) : n ≥ 0} where ∀ x ∈ L. φ0(x) = x

and∀ n ∈ N. ∀ x ∈ L. φn+1(x) = φ(φn(x)), (KLEENE [1952]). In particular, if r is a binary
relation r on a set E then r* is uniquely determined by the facts that r* = δ ∪ r ˚ r* (or

r* = δ ∪ r* ˚ r) and if x ⊆ E x E is such that x = δ ∪ r ˚ x (or x = δ ∪ x ˚ r) then r* ⊆ x

that is r* = lfp λ x : E2 → E2. δ ∪ r ˚ x (or r* = lfp λ x : E 2 → E 2. δ ∪ x ˚ r). If

<L, ≤, ⊥> is a complete lattice, <P, ∠> is a poset with infimum ⊥', α : L → P is strict (α(⊥)
= ⊥'), upper-continuous and α ˚ φ = ψ ˚ α and moreover φ : L → L and ψ : P → P are

monotone then α(lfp φ) = lfp ψ.

3 . Syntax and semantics of the
programming language

Since Hoare logic is closely bounded to a programming language, we introduce a

very simple Pascal-like (WIRTH [1971]) language. We first define its syntax that is the set

of well-formed programs. We use an abstract syntax describing the structure of

programs by trees (McCARTHY [1963]) and leave unspecified the concrete syntax (where

programs are linear strings of tokens to be parsed unambiguously (AHO, SETHI &

ULLMAN [1986])). Then we define the operational semantics of the language that is the

effect of executing syntactically correct programs. Traditionally, one imagines the

program running on an abstract machine with primitive instructions (NEUHOLD [1971]).

Its execution steps can be idealized by mapping abstract syntactic constructs in the

program to a transition relation on configurations (KELLER [1976]). The language is non-

deterministic since variables can be assigned random values so that a configuration may

have several possible successors. An execution of the program is a finite or infinite

sequence of configurations representing successive observable states of the machine

during execution. When observation of intermediate configurations is unnecessary, we

use a relational semantics directly defining the relationship between initial and final

configurations of program executions (HOARE & LAUER [1974]). This relational semantics

is latter used as a basis for justifying Hoare's logic (HOARE [1969]). This axiomatic

semantics associates an axiom or a rule of inference with each kind of basic or

structured statement of the language which states what we may assert after execution of

that statement in terms of what was true beforehand.

Such complementary definitions of programming language semantics

(HOARE & LAUER [1974], DONAHUE [1976], APT & PLOTKIN [1986]) are useful for

describing the semantics at various levels of details. This is a natural extension of

FLOYD [1967a] and HOARE [1969] primitive idea that “the specification of proof techniques

provides an adequate formal definition of a programming language” where “an” had to

be replaced by “one of” because not all methods have the same power of expression.

3 .1 Syntax

Basic commands of our programming language are the null command “skip” and

the assignment “X := E” of the value of an expression E to a programming variable X or

the nondeterministic assignment “X := ?” of a random value to X. Commands C1, C2

can be composed sequentially “(C1; C2)” and conditionally “(B → C1 ◊ C2)” according

to the value of a Boolean expression B. A command C can also be iterated “(B * C)”

while B holds.

This abstract syntax is more formally defined below. For the time being, the sets

Pvar of programming variables (ranged over by X), Expr of expressions (ranged over

by E) and Bexp of Boolean expressions (ranged over by B) are assumed to be given.

Expr and Bexp will be detailed later. The set Com of commands (ranged over by C) is

the smallest set closed under the given formation rule (similar to a context-free grammar

expressed in Backus-Naur Form (BNF, NAUR [1960])):

DEFINITION Syntax of commands

X : Pvar Programming variables

E : Expr Expressions

B : Bexp Boolean expressions

C : C o m Commands (1)

C ::= skip | X := E | X := ? | (C1 ; C2) | (B → C1 ◊ C2) | (B * C)

When necessary we omit parentheses and use a Pascal-like concrete syntax.

Example A program to compute x ** y (2)

The program with concrete syntax :

Z := 1; (3)
while Y<>0 do
if odd(Y) then

 begin Y := Y - 1; Z := Z * X end
else
begin Y := Y div 2; X := X * X end;

has the following abstract syntax:

(Z := 1; (Y<>0 * (odd(Y) → (Y := Y-1; Z := Z*X) ◊ (Y := Y div 2; X := X*X)))) (4)
�

The components of a command C are C itself and the commands appearing in C

together with their components. Two instances of the same command C' in a command

C should be considered as different components of C. Therefore we mark components

C' ∈ Comp[C] of a command C by the Dewey number designating the root of the

subtree of C' in the syntactic tree of C. For example, Comp[((X := 1; X := 1); X := 1)]

= {((X := 1; X := 1); X := 1)ε, (X := 1; X := 1)0, X := 100, X := 101, X := 11} so

that “X := 100” is the first, “X := 101” the second and “X := 11” the third instance of

assignment command “X := 1” in the sequence “((X := 1; X := 1); X := 1)”. More

formally:

DEFINITION Components of a command (5)

Compη[C] = {Cη} if C is skip, X := E or X := ? (.1)

Compη[(C1; C2)] = {(C1; C2)η} ∪ Compη0[C1] ∪ Compη1[C2] (.2)

Compη[(B → C1 ◊ C2)] = {(B → C1 ◊ C2)η} ∪ Compη0[C1] ∪ Compη1[C2] (.3)

Compη[(B * C)] = {(B * C)η} ∪ Compη0[C] (.4)

so that :

Comp[C] = Compε[C]. (.5)

Loops[C] = Comp[C] ∩ {(B*C')η : B ∈ Bexp ∧ C' ∈ Com ∧ η ∈ seq* {0, 1}} (.6)

Comp = {Comp[C] : C ∈ Com} (.7)

L o o p s = {Loops[C] : C ∈ Com} (.8)

Example Components of program (4) (6)

C

1000 1001 1011

(Z := 1; (Y <> 0 * (odd(Y) (Y := Y-1; Z := Z*X) ◊ (Y := Y div 2; X := X*X)))) →

C C C C
C C

C
C

C
1

10

100 101

1010

0

�

When there is no ambiguity, the exponent η of a component Cη will be omitted

and we identify Comp with Com.

3 .2 Operational semantics

A state (or valuation) is a function s with domain a given set Var of variables

(including the set Pvar of programming variables) and range a nonempty set D of

objects (called data in computer science). s(v) is called the value of variable v in state s:

d : D Data (7)

s : S = Var → D States (8)

The operational semantics of a command C is a model of its execution. Such an

execution will be understood as a finite or infinite sequence “γ0, …, γn, …” of

configurations such that <γn, γn+1> ∈ op[C] and op[C] is the operational transition

relation. The initial configuration γ0 has the form <s0, C> where s0 records the initial

values of variables. Configuration γn has the form <sn, Cn> where sn records the current

values of variables after execution of n program steps and Cn records the command

remaining to be executed. If execution terminates in configuration γl then γl = sl where

sl records the final values of variables. In particular, <<s, C>, <s', C'>> ∈ op[C] means

that one step of execution of C in state s can lead to state s' with C' being the remainder

of C to be executed. If <<s, C>, s'> ∈ op[C] then execution of C in state s can lead to

state s' in one step and is then terminated. Hence we have:

γ : Γ = (S x Com) ∪ S Configurations (9)

op : Com → P(Γ x Γ) Operational transition (10)
relation

The definition of the semantics of expressions will be postponed. For the time

being, we will assume that the semantics of expressions is given: if E ∈ Expr and s ∈ S

then E(s) = I[E](s) ∈ D is the value of expression E in state s. The same way, if B ∈

Bexp then I[B] also written B is the set of states s such that B holds in state s:

I : Expr → (S → D), E = I[E] Semantics of expressions (11)

I : Bexp → P(S), B = I[B] Semantics of Boolean
expressions (12)

The operational transition relation is defined by structural induction on the abstract

syntax of commands (in the style of PLOTKIN [1981] but using a direct recursive

definition) as follows :

DEFINITION Operational transition relation (13)

op[skip] = {<<s, skip>, s> : s ∈ S} (.1)

op[X := E] = {<<s, X := E>, s[X ← E(s)]> : s ∈ S} (.2)

op[X := ?] = {<<s, X := ?>, s[X ← d]> : s ∈ S ∧ d ∈ D} (.3)

op[(C1 ; C2)] = {<<s,(C1';C2)>,<s',(C1";C2)>>: <<s,C1'>,<s',C1">> ∈ op[C1]} (.4)

∪ {<<s, (C1'; C2)>,<s', C2>> : <<s, C1'>, s'> ∈ op[C1]}

∪ op[C2]

op[(B → C1 ◊ C2)] = {<<s, (B → C1 ◊ C2)>, <s, C1>> : s ∈ B} ∪ op[C1] (.5)

∪ {<<s, (B → C1 ◊ C2)>, <s, C2>> : s ∉ B} ∪ op[C2]

op[(B * C)] = {<<s, (B * C)>, <s, (C; (B * C))>> : s ∈ B} (.6)

∪ {<<s, (C'; (B * C))>, <s', (C"; (B * C))>> :

<<s, C'>, <s', C">> ∈ op[C]}

∪ {<<s, (C'; (B * C))>, <s', (B * C)>> : <<s, C'>, s'> ∈ op[C]}

∪ {<<s, (B * C)>, s> : s ∉ B}

Example Operational semantics of program (4) (14)

Using the components (5) of program (4) given at example (2), we can define

labels:
(15)

L1 = Cε = C, L2 = C1, L3 = (C10; C1), L4 = (C100; C1), L5 = (C1001; C1),

L6 = (C101; C1), L7 = (C1011; C1), including a final label L8 represented by the

symbol “√”

 so as to name program points as follows:
(16)

L LLLLLL2 L1

(Z := 1; (Y <> 0 * (odd(Y) (Y := Y-1; Z := Z*X) ◊ (Y := Y div 2; X := X*X)))) →

3 4 5 6 7 8

A label L can also be understood as designating the command remaining to be executed

when control is at that point L. According to definition (13), the operational transition

relation of program (4) is:

op[C] = {<<s, L1>, <s[Z ← 1], L2>> : s ∈ S} (17)

∪ {<<s, L2>, <s, L3>> : s(Y) ≠ 0}

∪ {<<s, L3>, <s, L4>> : odd(s(Y))}

∪ {<<s, L4>, <s[Y ← s(Y) - 1], L5>> : s ∈ S}

∪ {<<s, L5>, <s[Z ← s(Z) * s(X)], L2>> : s ∈ S}

∪ {<<s, L3>, <s, L6>> : even(s(Y))}

∪ {<<s, L6>, <s[Y ← s(Y) div 2], L7>> : s ∈ S}

∪ {<<s, L7>, <s[X ← s(X) * s(X)], L2>> : s ∈ S}

∪ {<<s, L2>, s> : s(Y) = 0}

A possible execution sequence of this program is therefore as follows:

<[X ← 3, Y ← 2, Z ← 0], L1>, <[X ← 3, Y ← 2, Z ← 1], L2>, <[X ← 3, Y ← 2, Z ← 1],

L3>, <[X ← 3, Y ← 2, Z ← 1], L6>, <[X ← 3, Y ← 1, Z ← 1], L7>, <[X ← 9, Y ← 1,

Z ← 1], L2>, <[X ← 9, Y ← 1, Z ← 1], L3>, <[X ← 9, Y ← 1, Z ← 1], L4>, <[X ← 9,

Y ← 0, Z ← 1], L5>, <[X ← 9, Y ← 0, Z ← 9], L2>, <[X ← 9, Y ← 0, Z ← 9]>. �

3 .3 Relational semantics

The relational semantics or interpretation I[C] (also noted C) of a command C is a

relation between states such that <s, s'> ∈ C if and only if an execution of command C

started in initial state s may terminate into final state s' :

DEFINITION HOARE & LAUER [1974] Relational semantics (18)

I : Com → P(S x S)

I[C] = C = {<s, s'> : <<s, C>, s'> ∈ op[C]*}

The relational semantics can be characterized as follows :

THEOREM HOARE & LAUER [1974], GREIF & MEYER [1981] (19)

skip = {<s, s> : s ∈ S} (.1)

X := E = {<s, s[X ← E(s)]> : s ∈ S} (.2)

X := ? = {<s, s[X ← d]> : s ∈ S ∧ d ∈ D} (.3)
(C1 ; C2) = C1 ˚ C2 (.4)

(B → C1 ◊ C2) = (B  C1) ∪ (¬B  C2) (.5)

(B * C) = (B  C)* ¬B (.6)

= lfp λ X. (δ ¬B) ∪ ((B  C) ˚ X) (.7)

(B * C) is the unique r ⊆ S2 such that: (.8)

. r ⊆ (S x ¬B) (.8.a)

. ∀ q ⊆ S. (q  (B  C) ⊆ S x q) ⇒ (q  r ⊆ S x q) (.8.b)

. ((B  C) ˚ r) ⊆ r (.8.c)

. (δ ¬B) ⊆ (δ ∩ r) (.8.d)

Example Calculus of the relational semantics of a simple program (20)

Assume D = Z , the relational semantics of C = (Y <> 0 * Y := Y - 1) is

C = {<s, s[Y ← 0]> : s(Y) ≥ 0}.

To prove this, observe that by (19.7), C = lfp F where F(X) = (δ  ¬Y<>0) ∪

((Y<>0  Y := Y-1) ˚ X) = {<s, s> : s(Y) = 0} ∪ {<s, s[Y ← s(Y) - 1]> : s[Y] ≠ 0} ˚

X. Define Xi = Fi(ø). We have X0 = ø, X1 = {<s, s[Y ← 0]> : s(Y) = 0}. Assume

by induction hypothesis that Xi = {<s, s[Y ← 0]> : 0 ≤ s(Y) ≤ i - 1}. Then Xi+1 =
F (X i) = {< s , s > : s(Y) = 0} ∪ {< s, s[Y ← s(Y) - 1]> : s[Y] ≠ 0} ˚

{ < s, s[Y ← 0]> : 0 ≤ s(Y) ≤ i - 1} = {< s, s> : s(Y) = 0} ∪ {< s, s'> : ∃ s " .

s[Y] ≠ 0 ∧ s" = s[Y ← s(Y) - 1] ∧ 0 ≤ s"(Y) ≤ i - 1 ∧ s' = s"[Y ← 0]} =

{ < s , s > : s(Y) = 0} ∪ {< s , s [Y ← s (Y) - 1] [Y ← 0] > : s[Y] ≠ 0 ∧

0 ≤ s[Y ← s(Y) - 1](Y) ≤ i - 1} = {<s, s> : s(Y) = 0} ∪ {<s, s[Y ← 0]> :

1 ≤ s(Y) ≤ i} = {<s, s[Y ← 0]> : 0 ≤ s(Y) ≤ i}. It follows that C = lfp F =

∪ i ≥ 0 X i = {< s , s [Y ← 0] > : ∃ i ≥ 0 . 0 ≤ s (Y) ≤ i } =

{<s, s[Y ← 0]> : 0 ≤ s(Y)}. �

Proof of theorem 10:

For short we write op instead of op[C] when C is clear from the context.

• (19.1), (19.2) : skip and X := E are handled the same way as :

• (19.3) : X := ? = {<s, s'> : <<s, X := ?>, s'> ∈ op*} [by (18)] = {<s, s'> :
< < s, X := ?> , s'> ∈ δ ∪ op ˚ o p *} [since r* = δ ∪ r ˚ r*] = {< s, s'> : ∃ γ ∈ Γ.

<<s, X := ?>, γ> ∈ op ∧ <γ, s'> ∈ op*} [since <s, X := ?> ≠ s'] = {<s, s'> : d ∈ D ∧

<s[X ← d], s'> ∈ op*} [by (13.3)] = {<s, s[X ← d]> : s ∈ S ∧ d ∈ D} [since by (13),

<γ", γ'> ∈ op implies γ" ∉ S so that <s", s'> ∈ op* if and only if s" = s' ∈ S].

• (19.4) : < s, s'> ∈ (C 1; C2) ⇔ < < s, (C1; C2)> , s'> ∈ o p * [by (18)] ⇔

(∃ s". <<s, C1>, s"> ∈ op* ∧ <<s", C2>, s'> ∈ op*) [by (13.4)] ⇔ (∃ s". <s, s"> ∈ C1

∧ <s", s'> ∈ C2) [by (18)] ⇔ <s, s'> ∈ C1 ˚ C2 [by definition of ˚].

• (19.5) : (B → C 1 ◊ C2) = {<s, s'> : ∃ γ ∈ Γ.<<s, (B → C 1 ◊ C2)>, γ> ∈ op ∧

< γ, s'> ∈ op *} = {<s, s'> : s ∈ B ∧ < <s, C1> , s'> ∈ op *} ∪ {<s, s'> : s ∉ B ∧

<<s, C2>, s'> ∈ op*} = (B  C1) ∪ (¬B  C2) [by (13.5)].

• (19.6) : <s, s'> ∈ (B  C)*  ¬B if and only if there are n ≥ 1 and s1, …, sn ∈ S

such that s = s1 and for all i = 1, …, n - 1, si ∈ B and <si, si+1> ∈ C and sn = s' ∉ B

that is if and only if there is an execution sequence of the form “<s1, (B * C)>,

<s1, (C; (B * C))>, …, <s2, (B * C)>, <s2, (C; (B * C))>, …, <sn, (B * C)>, sn”

with s = s1, …, sn-1 ∈ B and sn = s' ∉ B hence if and only if <s, s'> ∈ (B * C).

• (19.7) : Let F = λ X. δ ∪ (B  C) ˚ X and G = λ X. (δ  ¬B) ∪ (B  C) ˚ X. We

have F0(ø)  ¬B = G0(ø) = (δ  ¬B). Assume by induction hypothesis that
Fn(ø)  ¬B = Gn(ø) then Fn+1(ø)  ¬B = F(Fn(ø))  ¬B = (δ  ¬B) ∪ ((B  C) ˚

Fn(ø)  ¬B) = (δ  ¬B) ∪ ((B  C) ˚ Gn(ø)) = Gn+1(ø). Since r* = lfp λ x. δ ∪ r ˚ x, it

follows that (B * C) = (B  C)*  ¬B = (lfp F)  ¬B = (∪ n≥0 F n(ø))  ¬B =

∪n≥0 (Fn(ø)  ¬B) = ∪n≥0 Gn(ø) = lfp G.

• (19.8) : We first show that (B * C) satisfies conditions (a)-(d) :

- (a) (B * C) = (B  C)*  ¬B ⊆ S x ¬B.

- (b) If (q  r ⊆ S x q) then by induction on n ≥ 0, (q  rn ⊆ S x q). This is true
for n = 0 since q  δ = δ  q ⊆ S x q. Moreover q  rn+1 = q  (rn ˚ r) = (q  rn) ˚ r ⊆

(S x q) ˚ r = S2 ˚ (q  r) ⊆ S2 ˚ (S x q) = S x q. Whence if (q  (B  C) ⊆ S x q) then

(q  (B  C)n ⊆ S x q) so that q  (B * C) = q  (B  C)*  ¬B ⊆ q  (B  C)* =

q  (∪n≥0 (B  C)n) = ∪n≥0 (q  (B  C)n) ⊆ ∪n≥0 S x q = S x q.

- (c) Since (B * C) = (δ  ¬B) ∪ ((B  C) ˚ (B * C)), we have (B  C) ˚ (B * C)

⊆ (B * C).
- (d) Since (B * C) = (δ  ¬B) ∪ ((B  C) ˚ (B * C)) we have (δ  ¬B) ⊆

(B * C). so that (δ  ¬B) = δ ∩ (δ  ¬B) ⊆ δ ∩ (B * C).

• Assuming that r satisfies conditions (19.8), we show that r = (B * C) :
- (δ  ¬B) = δ ∩ r ⊆ r and (B  C) ˚ r ⊆ r so that r is a postfixpoint of F =

λ X. (δ  ¬B) ∪ ((B  C) ˚ X) whence (B * C) = lfp F ⊆ r.

- To show that r ⊆ (B * C), we assume that <s, s'> ∈ r and prove that <s, s'> ∈

(B  C)*  ¬B. Let q = {s1 ∈ S : <s, s1> ∈ (B  C)*}. We have q  (B  C) = {<s1, s2>

∈ (B  C) : <s, s1> ∈ (B  C)*} ⊆ {<s3, s2> : <s, s2> ∈ (B  C)+} ⊆ {<s3, s2> : <s, s2>

∈ (B  C)*} ⊆ S x q. By (19.8.b), (q  r ⊆ S x q) so that s ∈ q and <s, s'> ∈ r imply s'

∈ q whence <s, s'> ∈ (B  C)*. Moreover <s, s'> ∈ r and (19.8.a) imply s' ∈ ¬B, so

that <s, s'> ∈ (B  C)*  ¬B. �

Observe that the relational semantics (19) of our language Com is not “equivalent”

to its operational semantics (13) because information about program termination is lost.

Example Programs with different operational semantics but identical relational (21)
semantics

Assuming D = Z, C = “Y := 0” and C' = “(Y := ?; (Y <> 0 * Y := Y - 1))” have

the same relational semantics C = C' = {<s, s[Y ← 0]> : s ∈ S}. We have C =
{<s, s[Y ← 0]> : s ∈ S} by (19.2) and C = Y := ? ˚ (Y <> 0 * Y := Y-1) [by 10.4] =

{<s, s[Y ← d]> : s ∈ S ∧ d ∈ D } ˚ {<s, s[Y ← 0]> : 0 ≤ s(Y)} [by (19.3) and

example (20)] = {<s, s[Y ← d][Y ← 0] > : 0 ≤ d} = {<s, s[Y ← 0]> : s ∈ S} .

Hence no distinction is made between program C for which termination with Y = 0 is

guaranteed and program C' for which termination with Y = 0 is possible but not

guaranteed (with a usual Pascal-like implementation). �

It follows that if we choose (19) (or latter Hoare logic) as the definition of the

semantics of Com then a faithful implementation of Com should ignores the possibility

of nontermination as a viable answer whenever termination is possible. This “angelic”

nondeterminism of FLOYD [1967b] could be implemented by parallelism or breadth search

to simultaneously examine all possible choices offered (we have to assume in a finite

number) by random assignments (HAREL [1979]) The “demonic” nondeterminism of

DIJKSTRA [1975] [1976] is a radically different alternative where results are valid only if

the program examined always terminates. Again a strictly faithful implementation

should use depth-first backtracking to guarantee nontermination if this is possible for

one choice in random assignments. In practice, nondeterminism is implemented by

choosing arbitrarily or sometimes fairly one of the alternatives offered by (19). Then

angelic and demonic nondeterminism can be understood as describing the best and

worst possible situation (HOARE [1978a], JACOBS & GRIES [1985]). In conclusion (19) is

an approximate version of (13) where “details” about termination are deliberately

ignored.

4 . Part ia l correctness o f a
command

An assertion is a set of states. A specification is a pair <p, q> of assertions on

states (where p is called the input specification or precondition and q is the output

specification or postcondition). A command C is said to be partially correct with respect

to a specification <p, q> (written { p }C{ q }) if any terminating execution of C

starting from an initial state s satisfying p must end in some final state s' satisfying q.

Stated in terms of the relational semantics (18), this means that (p  C) ⊆ (S x q):

DEFINITION FLOYD [1967a], NAUR [1966] Partial correctness (22)

p, q : Ass = P(S) Assertions

<p, q> : Spec = Ass x Ass Specifications

{ p }C{ q } : Ass x Com x Ass → {tt, ff} Partial correctness

{ p }C{ q } = (p  C) ⊆ (S x q)

Example Partial correctness of program (4) (23)

Assume for program (4) that Var is {X, Y, Z, x, y} and D is the set Z of integers.

This program is partially correct with respect to the specification <p, q> such that:

p = {s ∈ S : s(X) = s(x) ∧ s(Y) = s(y) ≥ 0}

q = {s ∈ S : s(Z) = s(x) ** s(y)}

Otherwise stated, if x and y ≥ 0 respectively denote the initial values of programming

variables X, Y and if the corresponding execution terminates then the final value of Z is

equal to x ** y. �

Observe that definition (22) of partial correctness is essentially of semantical

nature. It is relative to the operational semantics (13) and is defined in terms of naïve set

theory. No reference is made to a particular formal logical language for describing the

sets of states p and q (called “assertions” for convenience). Therefore we make no

difference between a predicate P (such as “Y ≥ 0 ∧ Z * (X ** Y) = x ** y”) and the

assertion P which its denote (that is “{s ∈ S : s(Y) ≥ 0 ∧ s(Z) * (s(X) ** s(Y)) =

s(x) ** s(y)}” in this example). The consequences of restricting assertions p, q to

those that can be formally described by first-order predicates will be studied later at

paragraph § 7.2.

5 . Floyd-Naur partial correctness
proof method and some
equivalent variants

The first method for proving partial correctness was proposed by FLOYD [1967a]

and NAUR [1966]. After giving a simple introductory example, we formally derive Floyd-

Naur's method from the operational semantics (13) using an elementary stepwise

induction principle and predicates attached to program points to express invariant

properties of programs. This systematic construction of the verification conditions

ensures that the method is semantically sound (i.e. correct) and complete (i.e. always

applicable). Then we introduce another presentation of Floyd-Naur's method inspired

by Hoare logic where proofs are given by induction on the syntactical structure of

programs. These two approaches are shown to be equivalent in the strong sense that, up

to a difference of presentation, they require to verify exactly the same conditions. Few

other partial correctness proof methods are shortly reviewed and shown also to be

variants of the basic Floyd-Naur's method.

5 .1 An example of partial correctness proof by
Floyd-Naur method

Example Partial correctness proof of program (4) (24)

• The informal partial correctness proof of program (4) by Floyd-Naur's method

first consists in discovering predicates Pk(X, Y, Z, x, y) associated with each label Lk,

k = 1, …, 8 which should relate the values X, Y, Z of variables X, Y, Z whenever

control is at Lk to the initial values x, y, z of these variables:

{L1} { P1(X, Y, Z, x, y) = (X = x ∧ Y = y ≥ 0) } (25)
Z := 1;

{L2} { P2(X, Y, Z, x, y) = (Y ≥ 0 ∧ Z * (X ** Y) = x ** y) } {-- loop invariant --}
while Y <> 0 do

{L3} { P3(X, Y, Z, x, y) = (Y > 0 ∧ Z * (X ** Y) = x ** y) }
if odd(Y) then

 begin

{L4} { P4(X, Y, Z, x, y) = (Y > 0 ∧ Z * (X ** Y) = x ** y) }
Y := Y - 1;

{L5} { P5(X, Y, Z, x, y) = (Y ≥ 0 ∧ Z * (X ** (Y + 1)) = x ** y) }
 Z := Z *X;

end
else

begin

{L6} { P6(X, Y, Z, x, y) = (even(Y) ∧ Y > 0 ∧ Z * (X ** Y) = x ** y) }

 Y := Y div 2;

{L7} { P7(X, Y, Z, x, y) = (Y ≥ 0 ∧ Z * (X ** (2 * Y)) = x ** y) }
 X := X * X;

end;

{L8} { P8(X, Y, Z, x, y) = (Z = x ** y) }

• Observe that predicates Pk associated with labels Lk, k = 1, …, 8 can be

understood as describing a set of states Pk. For example:

P2 = {s ∈ S : s(Y) ≥ 0 ∧ s(Z) * (s(X) ** s(Y)) = s(x) ** s(y)}

• Then it must be shown that these predicates satisfy verification conditions, which

can be stated informally as follows:

(ε) p ⇒ P1(X, Y, Z, x, y) where p is the input specification (26)
(i1) P1(X, Y, Z, x, y) ⇒ P2(X, Y, 1, x, y)

(i2) [P2(X, Y, Z, x, y) ∧ Y ≠ 0] ⇒ P3(X, Y, Z, x, y)

(i3) [P2(X, Y, Z, x, y) ∧ Y = 0] ⇒ P8(X, Y, Z, x, y)

(i4) [P3(X, Y, Z, x, y) ∧ odd(Y)] ⇒ P4(X, Y, Z, x, y)

(i5) [P3(X, Y, Z, x, y) ∧ even(Y)] ⇒ P6(X, Y, Z, x, y)

(i6) P4(X, Y, Z, x, y) ⇒ P5(X, Y - 1, Z, x, y)

(i7) P5(X, Y, Z, x, y) ⇒ P2(X, Y, Z * X, x, y)

(i8) P6(X, Y, Z, x, y) ⇒ P7(X, Y div 2, Z, x, y)

(i9) P7(X, Y, Z, x, y) ⇒ P2(X * X, Y, Z, x, y)

(σ) P8(X, Y, Z, x, y) ⇒ q where q is the output specification

• These verification conditions imply that the predicates are local invariants, that is

Pk holds whenever control is at point Lk, that is to say, according to (15), when

command Lk remains to be executed. In practice it is only necessary to discover loop

invariants since other local invariants can be derived from the loop invariants using

these verification conditions.

• It follows that the local invariants on states attached to program points are

equivalent to the following global invariant on configurations: (27)

 i = ∪
κ=1

7
 {<s, Lk> : s ∈ Pk} ∪ P8

i is called invariant because it is always true during execution:

({<s, C> : s ∈ p}  op[C]*) ⊆ i

It follows immediately that:

(p  C) ⊆ (S x q)
�

5 .2 The stepwise Floyd-Naur partial correctness
proof method

A partial correctness proof can always be organized in the same way and reduced

to the discovery of local invariants which are then shown to satisfy elementary

verification conditions corresponding to elementary program steps. To show this, we

first introduce an induction principle expressing the essence of invariance proofs. Then

we specialize the induction principle for the operational semantics (13) of language

Com. This consists in representing the global invariant on configurations by local

invariants on states attached to program points. Once properties of programs have been

chosen to be expressed in this way, Floyd's verification conditions can be derived by

calculus from the operational semantics (13). This construction of the verification

conditions for local invariants a priori ensures semantical soundness and completeness

of the proof method.

5.2 .1 Stepwise induction principle

Floyd-Naur's method is usually understood as stepwise induction (MANNA, NESS &

VUILLEMIN [1972]): to prove that some property i of a program is invariant during the

course of the computation, it is sufficient to check that i is true when starting the

computation and to show that if i is true at one step of the computation, it remains true

after the next step. This means that Floyd-Naur's method consists in applying the

following lemma to the operational semantics:

LEMMA COUSOT [1981] Stepwise induction principle (28)

if p, p', q ∈ P(E) and r ∈ P(E x E) then:

 [(p  r*  p') ⊆ (E x q)] ⇔ [∃ i ∈ P(E). (p ⊆ i) ∧ (i  r ⊆ E x i) ∧ (i ∩ p' ⊆ q)]

Proof

• For ⇒, we observe that i = {e ∈ E : ∃ e' ∈ p. <e', e> ∈ r*} satisfies conditions p ⊆ i

and i  r ⊆ E x i whereas p  r*  p' ⊆ E x q implies i ∩ p' ⊆ q.

• For ⇐, we observe that, by induction on n ≥ 0, p ⊆ i and i  r ⊆ E x i imply that

p  rn ⊆ E x i whence p  r* ⊆ E x i so that p  r*  p' ⊆ E x (i ∩ p') ⊆ E x q. �

Floyd-Naur partial correctness proof method consists in discovering local

assertions on states attached to program points which must be shown to satisfy local

verification conditions. As shown by example (24), this can be understood as the

discovery of a global assertion i upon configurations which is shown to satisfy a global

verification condition gvc[C][p,q](i) derived from lemma (28) :

THEOREM KELLER [1976], PNUELI [1977], COUSOT [1981] Induction principle for (29)

Floyd-Naur's stepwise partial correctness proof method

{ p }C{ q } = [∃ i ∈ P(Γ). gvc[C][p, q](i)] (.1)

where gvc[C][p, q](i) = (∀ s ∈ p.<s, C> ∈ i) ∧ (i  op[C] ⊆ Γ x i) ∧ (i ∩ S ⊆ q) (.2)

Proof

• { p }C{ q } = (p  C ⊆ S x q) [by (22)] = (p  {<s', s> : <<s', C>, s> ∈ op[C]*} ⊆

S x q) [by (18)] = ({<s, C> : s ∈ p}  op[C]*  S ⊆ Γ x q) = (∃ i ∈ P(Γ). ({<s, C> : s ∈ p} ⊆

i) ∧ (i  op[C] ⊆ Γ x i) ∧ (i ∩ S ⊆ q)) [by (28)] = (∃ i ∈ P(Γ).(∀ s ∈ p.<s, C> ∈ i) ∧

(i  op [C] ⊆ Γ x i) ∧ (i ∩ S ⊆ q)). �

 Any i satisfying the verification condition gvc[C][p, q](i) is always true during

execution hence is a global invariant.. Such a global invariant always exists since there

is a strongest global invariant which implies all others and can be characterized as a

fixpoint:

THEOREM PARK [1969], CLARKE [1979b], COUSOT [1981] Fixpoint characterization (30)

of the strongest global invariant

The strongest global invariant

 I = {γ : ∃ s ∈ p. <<s, C>, γ> ∈ op[C]*} (.1)

is such that:

I = lfp λ X : P(Γ). {<s, C> : s ∈ p} ∪ {γ : ∃ γ'. <γ', γ> ∈ X  op[C]} (.2)

if { p }C{ q } then gvc[C][p, q](I) holds and ∀ i. gvc[C][p, q](i) ⇒ (I ⊆ i). (.3)

Proof

• <P(Γ), ⊆, ø> is a complete lattice. φ = λ X : P(Γ x Γ). δ ∪ X ˚ op[C] and ψ =

λ X : P(Γ). {<s, C> : s ∈ p} ∪ {γ : ∃ γ'. <γ', γ> ∈ X  op [C]} are monotone. α =

λ X : P(Γ x Γ).{γ ∈ P(Γ) : ∃ s ∈ p. <<s,C>, γ> ∈ X} is strict, upper-continuous and

α ˚ φ = ψ ˚ α = λ X. {γ ∈ P(Γ) : ∃ s ∈ p. <<s, C>, γ> ∈ δ ∪ X ˚ op[C]}. Therefore

α(lfp φ) = α(op[C]*) = I = lfp ψ.

• Obviously {<s, C> : s ∈ p} ⊆ I. Moreover I  op[C] = {<γ, γ'> : ∃ s ∈ p.

<<s, C>, γ> ∈ op[C]* ∧ <γ, γ'> ∈ op[C]} ⊆ {<γ, γ'> : ∃ s ∈ p. <<s, C>, γ'> ∈ op[C]+} ⊆ Γ

x I). Finally { p }C{ q } ⇒ (p  C ⊆ S x q) [by (22)] ⇒ (p  {<s', s> : <<s', C>, s> ∈

op[C]*} ⊆ S x q) [by (18)] ⇒ (I  S ⊆ Γ x q) ⇒ (I ∩ S ⊆ q).

• if (∀ s ∈ p. <s, C> ∈ i) ∧ (i  op[C] ⊆ Γ x i) then ψ(i) ⊆ i so that I = lfp ψ =

∩{X ∈ P(Γ) : ψ(X) ⊆ X} [by TARSKI [1955]] ⊆ i. �

Example Application of induction principle (29) to the correctness proof of (31)

program (4)

Let us go on with example (24) and show that (26) is equivalent to (29):

• ∀ s ∈ p. <s, C1> ∈ i is equivalent to p ⊆ P1.

• i  op[C] ⊆ Γ x i is equivalent to the conjunction {<s, Lk> : s ∈ Pk}  op[C]

⊆ Γ x i for k = 1, …, 7 and P8  op[C] ⊆ Γ x i so that the proof can be done by cases

corresponding to each possible transition from configurations <s, Lk> for any s

satisfying predicate Pk attached to point Lk. Using in each case the definition of op[C],

we obtain Floyd's simpler verification conditions:

- For the assignments Xk := Ek, k = 1, 4, 5, 6, 7 we have <<s, Lk>, <s', Lk'>> ∈

op [C] if and only if k' = succ(k) where succ = [1 ← 2, 4 ← 5, 5 ← 2, 6 ← 7,

7 ← 2]. Therefore the corresponding verification conditions are of the following form

given by Floyd: ∀ s ∈ Pk. s[Xk ← Ek(s)] ∈ Psucc(k).

For example when k = 4, we have to prove that [s(Y) > 0 ∧ s(Z) * (s(X) ** s(Y))

= s(x) ** s(y)] ⇒ [s[Y ← s(Y) - 1] ∈ {s' : s'(Y) ≥ 0 ∧ s'(Z) * (s'(X) ** (s'(Y) + 1)) =

s'(x) ** s'(y)}] or equivalently [s(Y) > 0 ∧ s(Z) * (s(X) ** s(Y)) = s(x) ** s(y)]

⇒ [(s(Y) - 1) ≥ 0 ∧ s(Z) * (s(X) ** ((s(Y) - 1) + 1)) = s(x) ** s(y)] which is

obvious.

- For the test k = 3, we have <<s, L3>, <s', Lk'>> ∈ op[C] if and only if s' = s

and if s ∈ Y <> 0 then k' = 4 else k' = 6, so that we have to prove that

(P3 ∩ Y <> 0) ⊆ P4 ∧ (P3 ∩ Y = 0) ⊆ P6.

- The same way, for the while loop k = 2, we have to prove that (P2 ∩ odd(Y)) ⊆

P3 ∧ (P2 ∩ even(Y)) ⊆ P8.

• ((i ∩ S) ⊆ q) = (P8 ⊆ q) is equivalent to P8 = q. �

5.2 .2 Representing a global invariant on configurations by
local invariants on states attached to program points

However, instead of using a single global invariant i on configurations as in (29),

Floyd and Naur proposed to use local invariants on states attached to program points

(originally, arcs of flowcharts). Such program points L ∈ Lab[C] for commands C

∈ Comp can be understood as labels specifying where control can reside at before,

when or after executing a step within C. According to the operational semantics (13),

Lab[C] can be chosen as the set of control states C' of configurations <s, C'> ∈

S x Comp encountered during execution of command C, together with a final label,

arbitrarily denoted “√”, corresponding to configurations γ ∈ S for which execution of C

is terminated:

DEFINITION Labels designating program control points (32)

Lab[C] = At[C] ∪ In[C] ∪ After[C] (.1)

At[C] = {C} (.2)

In[C] = ø if C is skip, X := E or X := ? (.3)

In[(C1; C2)] = {(C'1; C2) : C'1 ∈ In[C1]} ∪ At[C2] ∪ In[C2] (.4)

In[(B → C1 ◊ C2)] = At[C1] ∪ In[C1] ∪ At[C2] ∪ In[C2] (.5)

In[(B * C1)] = {(C'; (B * C1)) : C' ∈ At[C1] ∪ In[C1]} (.6)

After[C] = { √ } (.7)

Example Labels of program (4) (33)

The labels of program (4) have been defined at (15). We have At[C10] = {C10}

and In[C10] = {C100, C1001, C101, C1011} whereas At[Cε] = {L1}, In[Cε] = {L2, L3,

L4, L5, L6, L7} and After[Cε] = {L8}. �

 The local invariants are assertions on states attached to program points. More

formally they can be defined as a function 'inv', which maps labels of C to assertions:

DEFINITION Local invariants (34)

inv : Lab[C] → Ass

Example Local invariants for program (4) (35)

Local invariants for program (4) have been given at (25): inv(Lk) = Pk,

k = 1, …, 8. �

The local invariants inv(L), L ∈ Lab[C] can be understood as describing the global

invariant γ(inv) ∈ P(Γ), which is the set of configurations such that when control is at L

the memory state belongs to inv(L). Reciprocally, a global invariant i ∈ P(Γ) can be

decomposed into local invariants α(i)(L), L ∈ Lab[C] , defined by the fact that when

control is at L the only possible memory states s are those for which the configuration

<s, L> belongs to i (or s belongs to i if L = √):

DEFINITION COUSOT & COUSOT [1982] Connection between local and global
invariants

Concretization function (36)

γ : (Lab[C] → Ass) → P(Γ) (.1)

γ(inv) = {<s, L> : s ∈ inv(L) ∧ L ∈ Lab[C] - { √ }} ∪ inv(√) (.2)

Abstraction function: (37)

α : P(Γ) → (Lab[C] → Ass) (.1)

α(i)(L) = {s : <s, L> ∈ i} if L ∈ At[C] ∪ In[C] (.2)

α(i)(L) = i ∩ S if L ∈ After[C] (.3)

Since α is a bijection, the inverse of which is γ, the discovery of a global invariant

i ∈ P(Γ) satisfying verification condition gvc[C][p, q](i) is equivalent to the discovery of

local invariants inv(L), L ∈ L a b [C] satisfying verification condition

gvc[C][p, q](γ(inv)). This leads to the construction of the local verification

conditions by calculus (COUSOT & COUSOT [1982]). This equivalence is of theoretical

interest only since, from a practical point of view, each local invariant is simpler than

the global one and the task of checking gvc[C][p, q](γ(inv)) can be decomposed into the

verification of more numerous but simpler conditions, one for each local invariant.

5.2 .3 Construction of the verification conditions for local
invariants

To formally derive the local verification conditions from induction principle (29),

we first express the operational semantics (13) in an equivalent form using program

steps. From a syntactic point of view, the next elementary step Step[C][L] which will

be executed when control is at point L ∈ At[C] ∪ In[C] of command C ∈ Comp is an

atomic command or a test defined by cases as follows (where n ≥ 0):

DEFINITION Elementary steps within a command (38)

Step[C][(...((C'; C1); C2) ...; Cn)] = C' if C' is skip, X := E or X := ? (.1)

Step[C][(...(((B → C' ◊ C"); C1); C2)...; Cn)] = B (.2)

Step[C][(...(((B * C'); C1); C2)...; Cn)] = B (.3)

Example Elementary steps of program (4) (39)

For program C defined by (4) with labels (15), we have Step[C] =

[L1 ← Z := 1, L2 ← Y <> 0, L3 ← odd(Y), L4 ← Y := Y - 1, L5 ← Z := Z * X,

L6 ← Y := T div 2, L7 ← X := X * X]. �

Again from a syntactic point of view, the next label Succ[C][L] which will be

reached after execution of an elementary step when control is at point L ∈

At[C] ∪ In[C] of command C ∈ Comp can be defined by cases as follows (where n ≥
0 and (...(C1; C2)...; Cn) is the final label √ for n = 0):

DEFINITION Successors of a program control point (40)

Succ[C][(...((C'; C1); C2)...; Cn)] = (.1)

(...(C1; C2)...; Cn) if C' is skip, X := E or X := ?

Succ[C][(...(((B → C' ◊ C"); C1); C2)...; Cn)] = (.2)

[tt ← (...((C'; C1); C2)...; Cn), ff ← (...((C"; C1); C2)...; Cn)]

Succ[C][(...(((B * C); C1); C2)...; Cn)] = (.3)

[tt ← (...(((C; (B * C)); C1); C2)...; Cn), ff ← (...(C1; C2)...; Cn)]

Example Successors of control points of program (4) (41)

For program C defined by (4) with labels (15), we have Succ[C] = [L1 ← L2,

L 2 ← [t t ← L 3 , ff ← L 8], L3 ← [t t ← L 4 , ff ← L 6], L4 ← L 5 , L5 ← L 2 ,

L 6 ← L7, L7 ← L2]. �

Now from a semantical point of view, execution of an elementary step Step[C][L]

in memory state s can lead to any successor state s' ∈ NextS[C]<s, L> as follows:

DEFINITION Successor states (42)

NextS[C]<s, L> = {s} if Step[C][L] is skip (.1)

NextS[C]<s, L> = {s[X ← E(s)]} if Step[C][L] is X := E (.2)

NextS[C]<s, L> = {s[X ← d] : d ∈ D} if Step[C][L] is X := ? (.3)

NextS[C]<s, L> = {s} if Step[C][L] is B (.4)

Again from a semantical point of view, the next label NextL[C]<s, L> which can

be reached after execution of an elementary step in configuration <s, L> of command C

∈ Comp can be defined by cases as follows:

DEFINITION Successor control point (43)

NextL[C]<s, L> = {Succ[C][L]} if Step[C][L] is skip, X := E or X := ? (.1)

NextL[C]<s, L> = {Succ[C][L](s ∈ B)} if Step[C][L] is B (.2)

The operational semantics (13) can now be given an equivalent stepwise

presentation:

LEMMA Stepwise presentation of the operational semantics (44)

op[C] = {<<s, L>, final <s', L'>> : s ∈ S ∧ L ∈ At[C] ∪ In[C] ∧

s' ∈ NextS[C]<s, L> ∧ L' ∈ NextL[C]<s, L> }

where final <s', √> = s' and otherwise final γ = γ.

We have seen that a partial correctness proof of { p }C{ q } by Floyd-Naur's

method consists in discovering local invariants inv ∈ Lab[C] → Ass satisfying gvc[C][p,

q](γ(inv)). This global verification condition is equivalent to a conjunction of simpler

local verification conditions as follows:

THEOREM NAUR [1966], FLOYD [1967], MANNA [1969] [1971] Floyd-Naur partial (45)

correctness proof method with stepwise verification conditions

A partial correctness proof of { p }C{ q } by Floyd-Naur's method consists in

discovering local invariants inv ∈ Lab[C] → Ass, which must be proved to satisfy the

following local verification conditions :

. p ⊆ inv(L) if L ∈ At[C] (.1)

. inv(L) ⊆ inv(Succ[C][L]) if L ∈ At[C] ∪ In[C] ∧ Step[C][L] is skip (.2)

. inv(L) ⊆ {s ∈ S : s[X ← E(s)] ∈ inv(Succ[C][L])} (.3)

if L ∈ At[C] ∪ In[C] ∧ Step[C][L] is X := E

. {s[X ← d] : s ∈ inv(L) ∧ d ∈ D} ⊆ inv(Succ[C][L]) (.4)

if L ∈ At[C] ∪ In[C] ∧ Step[C][L] is X := ?

. (inv(L) ∩ B) ⊆ inv(Succ[C][L](tt)) if L ∈ At[C] ∪ In[C] ∧ Step[C][L] is B (.5)

. (inv(L) ∩ ¬B) ⊆ inv(Succ[C][L](ff)) if L ∈ At[C] ∪ In[C] ∧ Step[C][L] is B (.6)

. inv(L) ⊆ q if L ∈ After[C] (.7)

The verification condition (45.3) for assignment is backward. This name arises out of

the fact that the postcondition inv(Succ[C][L] is back-transformed into the assertion

{s ∈ S : s[X ← E(s)] ∈ inv(Succ[C][L])} written in terms of the states before

assignment. Verification condition (45.4) for random assignment is forward.

Verification condition (45.3) can also be given an equivalent forward form

(KING [1969]) :

. {s[X ← E(s)] : s ∈ inv(L)} ⊆ inv(Succ[C][L])

if L ∈ At[C]∪In[C] ∧ Step[C][L] is X:=E (.8)

Proof

By (29), we have to show that γ(inv(L)) satisfies gvc[C][p, q](γ(inv(L))). We

proceed by simplification of gvc[C][p, q](γ(inv(L))) which constructively leads to local

verification conditions (45):

• First, (∀ s ∈ p. <s, C> ∈ γ(inv(L))) ⇔ (∀ s ∈ p. C ∈ At[C] ∪ In[C] ∧ s ∈ inv(C))

[by (36.2)] ⇔ (p ⊆ inv(C)) [by (32.2)] ⇔ (∀ L ∈ At[C]. p ⊆ inv(L)) [by (32.2)].

• Then, according to (36) and (44), the condition γ(inv)  op[C] ⊆ Γ x γ(inv) can be

decomposed into a conjunction of simpler verification conditions, one for each program

step:

γ(inv)  op[C] ⊆ Γ x γ(inv)

⇔ {<s, L> : s ∈ inv(L) ∧ L ∈ Lab[C] - {√}}  op[C] ⊆ Γ x [{<s, L> : s ∈ inv(L) ∧

L ∈ Lab[C] - {√}} ∪ inv(√)]

⇔ { < < s, L> , f i n a l < s', L'> > : s ∈ i n v (L) ∧ L ∈ A t [C] ∪ I n [C] ∧

s' ∈ NextS[C]<s,L> ∧ L' ∈ NextL[C]<s,L>} ⊆ Γ x [{<s, L> : s ∈ inv(L) ∧

L ∈ Lab[C] - {√}} ∪ inv(√)]

⇔ ∀ L ∈ At[C] ∪ In[C]. ∀ s ∈ inv(L). {final <s', L'> : s' ∈ NextS[C]<s, L> ∧

L' ∈ NextL[C]<s, L>} ⊆ [{<s", L"> : s" ∈ inv(L") ∧ L" ∈ Lab[C] - {√}} ∪
inv(√)]

We go on by cases, according to (38), (40) and (42):

- If Step[C][L] is X := E (skip and X: = ? are handled the same way), then we have

to check that :

{final <s', L'> : s' ∈ {s[X ← E(s)]} ∧ L' ∈ {Succ[C][L]} } ⊆ [{<s", L"> : s" ∈

inv(L") ∧ L" ∈ Lab[C] - {√}} ∪ inv(√)]

⇔ final <s[X ← E(s)], Succ[C][L]> ∈ [{<s", L"> : s" ∈ inv(L") ∧ L" ∈ Lab[C] -

{√}} ∪ inv(√)]

⇔ s[X ← E(s)] ∈ inv(Succ[C][L])

(and ∀ s ∈ inv(L). s[X ← E(s)] ∈ inv(Succ[C][L]) is obviously equivalent to inv(L) ⊆

{s ∈ S : s[X ← E(s)] ∈ inv(Succ[C][L])} and to {s[X ← E(s)] : s ∈ inv(L)} ⊆

inv(Succ[C][L]))),

- If Step[C][L] is B then we have to check that :

{final <s', L'> : s' ∈ {s} ∧ L' ∈ {Succ[C][L](s ∈ B)} } ⊆ [{<s", L"> : s" ∈ inv(L")

∧ L" ∈ Lab[C] - {√}} ∪ inv(√)]

⇔ final <s, Succ[C][L](s ∈ B)> ∈ [{<s", L"> : s" ∈ inv(L") ∧ L" ∈ Lab[C] - {√}} ∪
inv(√)]

⇔ s ∈ inv(Succ[C][L](s ∈ B)).

• Finally, (γ(inv) ∩ S ⊆ q) ⇔ (inv(√) ⊆ q) [by (36.2)] ⇔ (∀ L ∈ After[C]. inv(L) ⊆ q)

[by (32.7)]. �

5.2 .4 Semantical soundness and completeness of the
stepwise Floyd-Naur partial correctness proof
method

A proof method is sound if it cannot lead to mistaken conclusions. It is complete

if it is always applicable to prove indubitable facts.

THEOREM DE BAKKER & MEERTENS [1975] Soundness and semantical completeness (46)

of the stepwise Floyd-Naur method

The stepwise presentation of Floyd-Naur partial correctness proof method is

semantically sound and complete.

Proof

The method is sound since if inv satisfies (45) then, by construction of (45),

gvc[C][p, q](γ(inv)) holds so that { p }C{ q } derives from (29). It is semantically

complete since if { p }C{ q } is true then by (29) we know that I = {<s, C> : s ∈ p} 

op[C]* satisfies gvc[C][p,q](I) so that by construction, (45) holds for inv = α(I). �

We insists upon semantical soundness and completeness as in DE BAKKER &

MEERTENS [1975] or MANNA & PNUELI [1970] since (46) is relative to a given semantics of

programs (13) and to a representation of invariants by sets as opposed to the existence

of a formal calculus in a given language to prove partial correctness of programs

(GERGELY & SZÖTS [1978], SAIN [1985]).

5 .3 The compositional Floyd-Naur partial
correctness proof method

HOARE [1969] introduced the idea (often called compositionality) that the

specification of a command should be verifiable in terms of the specifications of its

components. This means that partial correctness should be proved by induction on the

syntax of programs using their relational semantics (19) instead of an induction on the

number of transitions using their operational semantics (13). Following OWICKI [1975],

we give a syntax-directed presentation of Floyd-Naur's method without appeal to a

formal logic. To do this we associate preconditions and postconditions with commands

and introduce structural verification conditions so that a proof of a composite command

is composed of the proofs of its constituent parts. Although this later turns out to be

redundant, we prove the semantical soundness and completeness of the method since

the underlying reasoning constitutes a simple introduction to relative completeness

proofs of Hoare logic.

5.3 .1 Preconditions and postconditions of commands

A partial correctness proof of { p }C{ q } by Floyd-Naur's method consists in

discovering a precondition pre(C') and a postcondition post(C') specifying the partial

correctness {pre(C')}C'{post(C')} of each component C' of command C. This

includes an invariant linv(C') for each loop C' within C. Formally “pre”, “post” and

“linv” can be understood as functions which maps components of C to assertions :

DEFINITION Preconditions, postconditions and loop invariants attached to (47)

commands

pre, post : Comp[C] → Ass (.1)

linv : Loops[C] → Ass (.2)

Example Preconditions, postconditions and loop invariants for program (4) (48)

For program C defined by (4) with components defined by (5), we can choose :

pre(Cε) = pre(C0) = P1

post(C0) = pre(C1) = linv(C1) = post(C1001) = post(C100) = post(C1011) = post(C101) =

post(C10) = P2

pre(C10) = P3

pre(C100) = pre(C1000) = P4

post(C1000) = pre(C1001) = P5

pre(C101) = pre(C1010) = P6

post(C1010) = pre(C1011) = P7

post(C1) = post(Cε) = P8

�

5.3 .2 Compositional verification conditions

Then these assertions should be proved to satisfy the following verification

conditions which are defined compositionally, that is by recursion on the syntax of

commands :

DEFINITION OWICKI [1975] Compositional Floyd-Naur partial correctness (49)

proof method

A partial correctness proof of { p }C{ q } by Floyd-Naur's method consists in

discovering preconditions, postconditions and loop invariants (47) which must be

proved to satisfy the following compositional verification conditions :

. p ⊆ pre(C) ∧ post(C) ⊆ q (.1)

For each component C' ∈ Comp[C] of C :

. pre(C') ⊆ post(C') if C' is skip (.2)

. pre(C') ⊆ {s ∈ S : s[X ← E(s)] ∈ post(C')} if C' is X := E (.3)

. {s[X ← d] : s ∈ pre(C') ∧ d ∈ D} ⊆ post(C') if C' is X := ? (.4)

. pre(C') ⊆ pre(C1) ∧ post(C1) ⊆ pre(C2) ∧

post(C2) ⊆ post(C') if C' is (C1; C2) (.5)

. (pre(C') ∩ B) ⊆ pre(C1) ∧ (pre(C') ∩ ¬B) ⊆ pre(C2) ∧

post(C1) ⊆ post(C') ∧ post(C2) ⊆ post(C') if C' is (B → C1 ◊ C2) (.6)

. pre(C') ⊆ linv(C') ∧ (linv(C') ∩ B) ⊆ pre(C1) ∧

post(C1) ⊆ linv(C') ∧ (linv(C') ∩ ¬B) ⊆ post(C') if C' is (B * C1) (.7)

Observe that these compositional verification conditions could also have been defined

by an attribute grammar (KNUTH [1968b]) using context-free grammar (1) with attributes

“pre”, “post” and “linv” so that (49) expresses the relationships between these attributes

(see GERHART [1975] and REPS & ALPERN [1984]).

Example Compositional verification conditions for program (4) (50)

These verification conditions are given below for program C defined by (4).

Some of them, corresponding to assertions attached to the same label, are obviously

satisfied :

pre(Cε) ⊆ pre(C0) ∧ post(C0) ⊆ pre(C1) ∧ post(C1) ⊆ post(Cε) ∧ pre(C100) ⊆ pre(C1000)

∧ post(C1000) ⊆ pre(C1001) ∧ post(C1001) ⊆ post(C100) ⊆ post(C10) ∧ pre(C101) ⊆

pre(C1010) ∧ post(C1010) ⊆ pre(C1011) ∧ post(C1011) ⊆ post(C101) ⊆ post(C10) ⊆ linv(C1)

Moreover, (49.7) distinguishes the precondition of a loop (e.g. pre(C1) = (X = x ∧ Y =y ≥

0 ∧ Z = 1)) from its invariant (e.g. linv(C1) = (Y ≥ 0 ∧ Z * (X ** Y) = x ** y)) :

pre(C1) ⊆ linv(C1)

The remaining verification conditions correspond to elementary steps of the program.

They are set theoretic interpretations of formulae (26) :

(ε) p ⊆ pre(Cε)

(i1) pre(C0) ⊆ {s ∈ S : s[Z ← 1] ∈ post(C0)}

(i2) (linv(C1) ∩ {s ∈ S : s(Y) ≠ 0}) ⊆ pre(C10)

(i3) (linv(C1) ∩ ¬{s ∈ S : s(Y) ≠ 0}) ⊆ post(C1)

(i4) (pre(C10) ∩ {s ∈ S : odd(s(Y))}) ⊆ pre(C100)

(i5) (pre(C10) ∩ ¬{s ∈ S : odd(s(Y))}) ⊆ pre(C101)

(i6) pre(C1000) ⊆ {s ∈ S : s[Y ← s(Y) - 1] ∈ post(C1000)}

(i7) pre(C1001) ⊆ {s ∈ S : s[Z ← s(Z) * s(X)] ∈ post(C1001)}

(i8) pre(C1010) ⊆ {s ∈ S : s[Y ← s(Y) div 2] ∈ post(C1010)}

(i9) pre(C1011) ⊆ {s ∈ S : s[X ← s(X) * s(X)] ∈ post(C1011)}

(σ) post(Cε) ⊆ q

�

5.3 .3 Semantical soundness and completeness of the
compositional Floyd-Naur partial correctness proof
method

The compositional presentation Floyd-Naur's proof method is semantically sound

and complete :

THEOREM Soundness of the compositional Floyd-Naur proof method (51)

If verification conditions (49) are satisfied for all components C' of C then :

∀ C' ∈ Comp[C]. { pre(C') }C'{ post(C') }

It follows from (49.1) that { p }C{ q } holds.

Proof

We prove that ∀ C' ∈ Comp[C]. { pre(C') }C'{ post(C') } or equivalently by

(22) that ∀ C' ∈ Comp[C]. (pre(C')  C') ⊆ (S x post(C')) by structural induction on

C ' :

• I f C ' i s X : = E t h e n b y (4 9 . 3) w e h a v e

(pre(C') ⊆ {s ∈ S : s[X ← E(s)] ∈ post(C')}) ⇔ ({s[X ← E(s)] : s ∈ pre(C')} ⊆

post(C')) ⇔ ((pre(C')  C') ⊆ (S x post(C'))) by (19.2). The cases skip and X := ?

are handled the same way.
• If C' is (C1; C2) then (pre(C')  C1; C2) = (pre(C')  C1 ˚ C2) [by (19.4)] =

(pre(C')  C1) ˚ C2 ⊆ (S x post(C1)) ˚ C2 [since (pre(C1)  C1) ⊆ (S x post(C1)) by

induction hypothesis] = S2 ˚ (post(C1)  C2) ⊆ S2 ˚ (pre(C2)  C2) [by (49.5)] ⊆

S2 ˚ (S x post(C2)) [since (pre(C2)  C2) ⊆ (S x post(C2)) by induction hypothesis] =

S x post(C2) ⊆ S x post(C') [by (49.5)]. The case C' = (B → C1 ◊ C2) is handled the

same way.

• If C' is (B * C1) then (pre(C1)  C1) ⊆ (S x post(C1)) holds by induction

hypothesis which implies (linv(C')  (B  C1)) ⊆ (S x linv(C')) by (49.7). Also

p r e (C ') ⊆ linv(C') and (linv(C') ∩ ¬B) ⊆ post(C') by (49.6) so that

(pre(C')  (B  C1)*  ¬B) ⊆ (S x post(C')) by (28) hence (pre(C')  (B * C1)) ⊆ (S

x post(C')) by (19.6). �

THEOREM Semantical completeness of the compositional Floyd-Naur proof method (52)

If { p }C{ q } holds then there are functions pre, post and linv verifying

conditions (49) for all components C' of C.

Proof

The proof is by structural induction on C :

• If C is X := E then { p }X := E{ q } ⇒ (p  X := E) ⊆ (S x q) [by (22)] ⇒

{s[X ← E(s)] : s ∈ p} ⊆ q [by (19.2)] ⇒ (49.1) ∧ (49.3) if we let pre(X := E) = p

and post(X := E) = q. The cases skip and X := ? are handled the same way.

• If C is (C1; C2) then we let pre(C) = pre(C1) = p, post(C) = post(C2) = q

and post(C1) = pre(C2) = {s : ∃ s' ∈ p. <s', s> ∈ C 1}. Then (49.1) and (49.5)

are satisfied. It remains to show that (49.2), …, (49.7) hold for all components C' of

C. By induction hypothesis, we just have to show that { pre(C1) }C1{ post(C1) }

and { pre(C2) }C2{ post(C1) }.

We have { p } C 1{ {s : ∃ s' ∈ p.< s' , s> ∈ C 1} } because (p  C 1) =

{ < s, s '> : s ∈ p ∧ < s, s '> ∈ C 1 } ⊆ {< s", s '> : ∃ s ∈ p .< s, s '> ∈ C 1 } = S x

{s : ∃ s' ∈ p. <s', s> ∈ C 1}. Moreover { p }(C1; C2){ q } ⇒ (p  (C1; C2)) ⊆

(S x q) [by (22)] ⇒ ((p  C1) ˚ C2) ⊆ (S x q) [by (19.4)] ⇒ (∀s', s, s" ∈ S. (s' ∈ p ∧

<s', s> ∈ C 1 ∧ <s, s"> ∈ C 2) ⇒ (s" ∈ q)) ⇒ (({s : ∃ s' ∈ p. <s', s> ∈ C 1}  C 2) ⊆

(S x q)) ⇒ { pre(C2) }C2{ post(C1) } by (22).

• The proof is similar when C is (B → C1 ◊ C2) choosing pre(c') = p, pre(C1) = p ∩

B, pre(C2) = p ∩ ¬B and post(C') = post(C1) = post(C2) = q.

• If C is (B * C1) then { p }(B * C1){ q } ⇒ (p  (B * C1)) ⊆ (S x q) [by (22)] ⇒

(p  (B  C1)*  ¬B) ⊆ (S x q) [by (19.6)] ⇒ [∃ i ∈ Ass. (p ⊆ i) ∧ (i  (B  C1) ⊆ S x i) ∧

(i ∩ ¬B ⊆ q)] [by (28)]. We now define pre((B * C1)) = p, linv((B * C1)) = i,

post((B * C1)) = q, pre(C1) = i ∩ B and post(C1) = i. It follows that (49.1) and (49.7)

hold for C. It remains to show that { pre(C1) }C1{ post(C1) }. This immediately

follows from the definitions of pre(C1) and post(C1), (i ∩ B)  C1 ⊆ S x i) and (22). �

5 .4 Equivalence of stepwise and compositional
Floyd-Naur partial correctness proofs

Examples (26) and (50) show that the compositional Floyd-Naur partial

correctness proof method introduces some trivially satisfied verification conditions

which do not appear in the stepwise version. Apart from this difference in the

presentation, the stepwise and compositional Floyd-Naur partial correctness proofs of

program (4) are equivalent. This property is general in the sense that a proof using one

presentation can always be derived from a proof using the other presentation. Since the

assertions are the same in both presentations, (30.3) and (36) imply that preconditions

and postconditions in the compositional presentation (hence later in Hoare logic) are

local invariants, a fact which is often taken for granted. By (46), this also implies that

the syntax-directed presentation is semantically sound and complete, a fact already

proved by (51) and (52).

5.4 .1 The compositional presentation of a stepwise Floyd-
Naur partial correctness proof

The precondition pre(C') of a component C' of a command C ∈ Com (and loop

invariant linv(C') when C' is a loop) can always be chosen as the local invariant inv(L)

attached to the label L = Lpre[C][C'] designating where control is just before executing

that component C'. The same way, the postcondition post(C') of a component C' of a

command C can always be chosen as the local invariant inv(L) attached to the label L =

Lpost[C][C'] designating where control is just after executing that component C'.

DEFINITION Program points before and after components of a command (53)

The label just before and after a component C' of a command C ∈ Com :

Lpre[C] ∈ Comp[C] → Lab[C] (.1)

Lpost[C] ∈ Comp[C] → Lab[C] (.2)

is defined by structural induction on C :

. Lpre[C][C] = C (.3)

. Lpost[C][C] = √ (.4)

For each C' ∈ Comp[C] - {C} when C is (C1;C2), (B → C1 ◊ C2) or (B * C1) :

• Lpre[(C1; C2)][C'] = (Lpre[C1][C']; C2) if C' ∈ Comp[C1] (.5)

. Lpre[(C1; C2)][C'] = Lpre[C2][C'] if C' ∈ Comp[C2] (.6)

. Lpost[(C1; C2)][C'] = C2 (.7)

if C' ∈ Comp[C1] ∧ Lpost[C1][C'] = √
. Lpost[(C1; C2)][C'] = (Lpost[C1][C']; C2) (.8)

if C' ∈ Comp[C1] ∧ Lpost[C1][C'] ≠ √
. Lpost[(C1; C2)][C'] = Lpost[C2][C'] if C' ∈ Comp[C2] (.9)

• Lpre[(B → C1 ◊ C2)][C'] = Lpre[C1][C'] if C' ∈ Comp[C1] (.10)

. Lpre[(B → C1 ◊ C2)][C'] = Lpre[C2][C'] if C' ∈ Comp[C2] (.11)

. Lpost[(B → C1 ◊ C2)][C'] = Lpost[C1][C'] if C' ∈ Comp[C1] (.12)

. Lpost[(B → C1 ◊ C2)][C'] = Lpost[C2][C'] if C' ∈ Comp[C2] (.13)

. Lpre[(B * C1)][C'] = (Lpre[C1][C']; (B * C1)) if C' ∈ Comp[C1] (.14)

• Lpost[(B * C1)][C'] = (B * C1) (.15)

if C' ∈ Comp[C1] ∧ Lpost[C1][C'] = √
. Lpost[(B * C1)][C'] = (Lpost[C1][C']; (B * C1)) (.16)

if C' ∈ Comp[C1] ∧ Lpost[C1][C'] ≠ √

THEOREM Compositional presentation of a stepwise proof (54)

If inv ∈ Lab[C] → Ass satisfies (45) then :

pre = λ C' ∈ Comp[C]. inv(Lpre[C][C']) (.1)

linv = λ C' ∈ Loops[C]. inv(Lpre[C][C']) (.2)

post = λ C' ∈ Comp[C]. inv(Lpost[C][C']) (.3)

satisfies (49).

5.4 .2 The stepwise presentation of a compositional Floyd-
Naur partial correctness proof

THEOREM Stepwise presentation of a compositional proof (55)

If pre, post ∈ Comp[C] → Ass and linv ∈ Loops[C] → Ass satisfy (49) then

inv ∈ Labs[C] → Ass defined as follows by structural induction on C :

. inv(C) = linv(C) if C ∈ Loops (.1)

. inv(C) = pre(C) if C ∈ Comp - Loops (.2)

. inv(√) = post(C) (.3)

. inv((C'1; C2)) = inv(C'1) if C = (C1; C2) ∧ C'1 ∈ In[C1] (.4)

. inv((C'; (B * C1))) = inv(C') if C = (B * C1) ∧ C' ∈ At[C1] ∪ In[C1] (.5)

satisfies (45).

5 .5 Variants of Floyd-Naur partial correctness
proof method

Lemma (29) hence Floyd-Naur's method has a great number of equivalent

variants, each one leading to a different partial correctness proof methodology

(COUSOT & COUSOT [1982]). For example MANNA [1971] uses an invariant i and an output

specification q which relate the possible configurations during execution to the initial

states of variables. Otherwise stated, one uses relations between the current and initial

values of variables instead of assertions upon their current values. More formally, we

have :

DEFINITION MANNA [1971] Relational partial correctness (56)

p : Ispec = P(S) Input specifications (.1)

q : Ospec = P(S x S) Output specifications (.2)

{ p }C〈 q 〉 : Ispec x Com x Ospec → {tt, ff} Relational partial (.3)

{ p }C〈 q 〉 = (p  C) ⊆ q correctness (.4)

Induction principle (29) can be rephrased as follows for relational partial correctness:

THEOREM MANNA [1971], COUSOT & COUSOT [1982] Stepwise partial correctness (57)

relational proofs using invariants

{ p }C〈 q 〉 = [∃ i ∈ P(S x Γ).{<s, <s, C>> : s ∈ p} ⊆ i (.1)

∧ {<s, γ'> : ∃ γ.<s, γ> ∈ i ∧ <γ, γ'> ∈ op[C]} ⊆ i (.2)

∧ i ∩ S2 ⊆ q] (.3)

It is also possible to prove relational partial correctness using an invariant i which relates

the possible configurations during execution to the final states of the variables :

THEOREM MORRIS & WEGBREIT [1977], COUSOT & COUSOT [1982] Subgoal induction (58)

{ p }C〈 q 〉 = [∃ i ∈ P(Γ x S). {<s, s> : s ∈ S} ⊆ i (.1)

∧ {<γ, s> : ∃ γ'. <γ, γ'> ∈ op[C] ∧ <γ', s> ∈ i} ⊆ i (.2)

∧ {<s, s'> : s ∈ p ∧ <<s, C>, s'> ∈ i} ⊆ q] (.3)

Assume that <s, s'> ∈ C so that execution γ0, …, γn of command C started in

configuration γ0 = <s, C> with s ∈ p, such that <γk-1, γk> ∈ op[C] for k = 1, …, n does

terminate in state γn = s'. Then <γn, s'> ∈ i by (58.1) and by downward induction on k =

n, n-1, …, 0, <γk, s'> ∈ i follows from (58.2). In particular <γ0, s'> ∈ i whence <s, s'>

∈ q by (58.3). It follows that (p  C) ⊆ q whence { p }C 〈 q 〉 holds. Semantical

completeness follows from that fact that i can always be chosen as op[C]*S.

Semantical soundness and completeness imply that these partial correctness proof

methods are all equivalent. This is also true in the stronger sense that the necessary

invariants can be derived from one another:

THEOREM COUSOT & COUSOT [1982], DIJKSTRA [1982a] Equivalence of stepwise (59)

induction and subgoal induction

 - if i satisfies (57) then i' = {<γ, s> : ∀s'. <s', γ> ∈ i ⇒ <s', s> ∈ q} satisfies (58) (.1)

 - if i' satisfies (58) then i = {<s, γ> : ∀s". <γ, s"> ∈ i' ⇒ <s, s"> ∈ q} satisfies (57) (.2)

Proof

• If i satisfies (57) then i ∩ S2 ⊆ q so that ∀ s ∈ S. ∀ s' ∈ S. <s', s> ∈ i ⇒ <s', s> ∈ q

hence {<s, s> : s ∈ S} ⊆ i' [by 33.1]. Moreover (<γ, γ'> ∈ op [C] ∧ <γ', s> ∈ i' ∧

<s',γ> ∈ i) ⇒ (<s', γ'> ∈ i ∧ <γ', s> ∈ i') [by (57)] ⇒ (<s', γ'> ∈ i ∧ (∀ s'. <s', γ'> ∈ i ⇒

<s', s> ∈ q)) [by (59.1)] ⇒ <s', s> ∈ q so that {< γ, s> : ∃ γ '. < γ, γ '> ∈ op [C] ∧

< γ ' , s> ∈ i'} ⊆ i'. Finally, (s ∈ p ∧ < < s, C> , s'> ∈ i') ⇒ (< s, < s, C> > ∈ i ∧

(∀s". <s", <s, C>> ∈ i ⇒ <s", s'> ∈ q)) [by (57) and (59.1)] ⇒ <s, s'> ∈ q hence

{<s, s'> : s ∈ p ∧ <<s, C>, s'> ∈ i'} ⊆ q.

• If i' satisfies (58) then {<s, s> : s ∈ S} ⊆ i' so that i ∩ S2 = {<s, s'> : ∀ s".

<s', s"> ∈ i' ⇒ <s, s"> ∈ q} ⊆ {<s, s'> : <s', s'> ∈ i' ⇒ <s, s'> ∈ q} = q. Moreover

(<s, γ> ∈ i ∧ < γ, γ '> ∈ op [C] ∧ < γ ', s"> ∈ i') ⇒ ((∀ s'. < γ, s'> ∈ i' ⇒ <s, s'> ∈ q) ∧

<γ, s"> ∈ i') [by (59.2) and (58)] ⇒ <s, s"> ∈ q so that {<s, γ'> : ∃ γ. <s, γ> ∈ i ∧

<γ, γ'> ∈ op[C]} ⊆ i. Finally, ∀ s ∈ p. ∀ s". <<s, C>, s"> ∈ i' ⇒ <s, s"> ∈ q [by (58)]

hence {<s, <s, C>> : s ∈ p} ⊆ i [by (59.2)]. �

Replacing i by ¬j in (58), we obtain an equivalent relational partial correctness proof

method proceeding by reductio ad absurdum:

THEOREM COUSOT & COUSOT [1982] Induction principle for contrapositive proofs (60)

{ p }C〈 q 〉 = [∃ j ∈ P(Γ x S). p  ¬q ⊆ {<s, s'> : <<s, C>, s'> ∈ j} (.1)

∧ j ⊆ {<γ, s> : ∀ γ'. <γ, γ'> ∈ op[C] ⇒ <γ', s> ∈ j} (.2)

∧ {<s, s> : s ∈ S} ⊆ ¬j] (.3)

This consists in proving an invariance property by considering the situation where the

contrary property should be true and in establishing that this situation is impossible.

Assume that <s, s'> ∈ C so that execution γ0, …, γn of command C started in

configuration γ0 = <s, C> with s ∈ p, such that <γk-1, γk> ∈ op[C] for k = 1, …, n does

terminate in state γn = s'. Assume, by reductio ad absurdum, that <s, s'> ∉ q. Then <γ0,

s'> ∈ j by (60.1) and by induction on k = 1, …, n, <γk, s'> ∈ j follows from (60.2). In

particular <γn, s'> ∈ j in contradiction with <γn, s'> ∉ j following from (60.3).

Semantical completeness follows from that fact that the contra-invariant j can always be

chosen as ¬(op[C]*S).

This may lead to simpler proofs when the “absurd” configuration is much simpler

than the “sensible” one (see VERJUS [1987] for an example).

6 . Liveness proof methods

Obviously termination is not implied in partial correctness since for example if

true = I[true] = S then true * skip = ø so that {p}true * skip{q} is true for all

p, q ∈ Ass. FLOYD [1967a] originally introduced total correctness as the conjunction of

partial correctness and termination. Hoare logic has also been extended to cope with

termination and more generally with liveness properties of programs (ALPERN &

SCHNEIDER [1985]).

We first introduce execution traces generated by the operational semantics (13) so

as to define total correctness and prove that it is the conjunction of partial correctness,

deadlock freeness and termination. After giving a short mathematical recall on well

founded relations, well orderings and ordinals, we introduce FLOYD [1967a]'s well-

founded set method to prove termination of programs. We next consider an extension of
this method to prove liveness properties P ˜˜C˜˜→ Q stipulating that starting from a

configuration of P, program C does eventually reaches a configuration of Q

(LAMPORT [1977]). Finally we study BURSTALL [1974] intermittent assertion method for

proving total correctness (MANNA & WALDINGER [1978], GRIES [1979]) and generalize it to

arbitrary liveness properties. After proper generalization, Burstall's method includes

Floyd's method (COUSOT & COUSOT [1987]) and is more flexible since it allows the

combination of inductions on various underlying structures of the program (syntax,

computation, data, etc.).

6 .1 Execution traces

We use execution traces to record the successive configurations that can be

encountered during a terminating or non-terminating execution of a program. Since

programs are nondeterministic, they can have many different possible executions so that

we have to use sets of finite or infinite traces. The theory of traces is surveyed by

MAZURKIEWICZ [1989].

Let be given a set Com of programs, a set S of states so that the set of

configurations is Γ = (S x C o m) ∪ S and an operational semantics

op ∈ C o m → P (Γ x Γ) .

DEFINITION Execution traces (61)

The set of finite complete execution traces of length n ∈ N+ for command C ∈ Com

starting in configuration γ ∈ Γ is :

∑n[C]γ = {σ ∈ seqn Γ : σ0 = γ ∧ ∀ i ∈ {1, …, n - 1}. <σi-1 , σi> ∈ op[C]

∧ ∀ γ ∈ Γ. <σn-1, γ> ∉ op[C]} (.1)

the set of infinite traces of execution of command C ∈ Com starting in configuration γ ∈

Γ is :

∑ω[C]γ = {σ ∈ seqω Γ : σ0 = γ ∧ ∀ i ∈ N. <σi , σi+1> ∈ op[C]} (.2)

so that the set of finite traces of execution of command C ∈ Com starting in

configuration γ ∈ Γ is :

∑*[C]γ = ∪{∑n[C]γ : n ∈ N} (.3)

and the set of traces of execution of command C ∈ Com starting in configuration γ ∈ Γ

is :

∑[C]γ = ∑*[C]γ ∪ ∑ω[C]γ (.4)

Given p ∈ Ass, we can define the traces of command C starting in a state of p ∈ Ass as :

∑n[C](p) = ∪{∑n[C]<s, C> : s ∈ p} (.5)

∑*[C](p) = ∪{∑*[C]<s, C> : s ∈ p} (.6)

∑ω[C](p) = ∪{∑ω[C]<s, C> : s ∈ p} (.7)

∑[C](p) = ∪{∑[C]<s, C> : s ∈ p} (.8)

These sets of traces can also be given an equational definition, see DE BRUIN [1984].

6 .2 Total correctness

 Let us recall (22) that a command C is said to be partially correct with respect to a

specification <p, q> (written {p}C{q}) if any terminating execution of C starting from

an initial state s satisfying p must end in some final state s' satisfying q. C is said to be

totally correct with respect to <p, q> (written [p]C[q]) if any execution of C starting

from an initial state s satisfying p does terminate properly in a final state s' satisfying q.

Partial and total correctness can be defined in terms of execution traces as follows :

DEFINITIONS FLOYD [1967a] Partial and total correctness

[p]C[q] : Ass x Com x Ass → {tt, ff} Total correctness (62)

[p]C[q] = ∀ σ ∈∑[C](p). ∃ n ∈ N+. σ ∈ ∑n[C](p) ∧ σn-1 ∈ q

{p}C{q} : Ass x Com x Ass → {tt, ff} Partial correctness (63)

{p}C{q} = ∀ σ ∈ ∑[C](p). ∀ i ∈ dom σ. (σi ∈ S) ⇒ (σi ∈ q)

Total correctness as defined by (62) does not necessarily imply partial correctness (63)

because definition (62) does not imply that all states σi ∈ S belong to q. However this

follows from (13) because final states s ∈ S have no possible successor, an hypothesis

that we subsequently make upon the operational semantics:

HYPOTHESIS Final states are blocking states (64)

∀ C ∈ Com. ∀ s ∈ S. ∀ γ ∈ Γ. <s, γ> ∉ op[C]

Observe that (64) ⇒ [(62) ⇒ (63)]. A command C is said to terminate for initial states s

∈ p if and only if no execution trace starting from configuration <s, C> can be infinite:

DEFINITION Termination (65)

τ[p]C : Ass x Com → {tt, ff}

τ[p]C = ∀ σ ∈ ∑[C](p). ∃ n ∈ N+. σ ∈ ∑n[C](p)

Termination is proper or clean for final states σn-1 ∈ S. Execution may also end with

other blocking states σn-1 ∈ Γ - S. For example, a sequential program may be blocked by

a run-time error such as division by zero or a parallel program may be permanently

blocked because all processes are delayed at synchronization commands. Execution of a

command C starting with initial states s ∈ p can be blocked if and only if it can reach

some state some σn-1 which is not final and has no possible successor :

DEFINITION Blocked execution (66)

β{p}C : Ass x Com → {tt, ff}

 β{p}C = ∃ n ∈ N+. ∃ σ ∈ ∑n[C](p). σn-1 ∉ S

When no execution of a command C starting with initial states s ∈ p can end in a

blocking configuration, we say that these executions are deadlock free :

DEFINITION Deadlock freedom (67)

¬ β{p}C = ∀ n ∈ N+. ∀ σ ∈ ∑n[C](p). σn-1 ∈ S

Under hypothesis (64), total correctness is the conjunction of partial correctness,

deadlock freedom and termination :

THEOREM Characterization of total correctness (68)

(64) implies [p]C[q] = {p}C{q} ∧ ¬ β{p}C ∧ τ[p]C

According to (13), final states s ∈ S are the only possible states with no possible

successor, an hypothesis that is sometimes made made upon the operational semantics :

HYPOTHESIS Final states are the only blocking states (69)

∀ C ∈ Com. ∀ γ ∈ Γ. (∀ γ' ∈ Γ. <γ, γ'> ∉ op[C]) ⇒ (γ ∈ S)

Under hypotheses (64) and (69), total correctness can be expressed as the conjunction

of partial correctness and termination :

THEOREM FLOYD [1967a] Characterization of total correctness (70)

(64) and (69) imply [p]C[q] = {p}C{q} ∧ [p]C[true]

Proof

(69) implies that τ[p]C = [p]C[true] = ∀ σ ∈ ∑[C](p). ∃ i ∈ dom σ. σi ∈ S where

true = I[true] = S and that β{p}C = ff since no execution can be blocked. By (64) and

(69), [p]C[q] = ∀ σ ∈ ∑[C](p). ∃ i ∈ dom σ. σi ∈ q = {p}C{q} ∧ [p]C[true]. �

6 .3 Well founded relations, well orderings and
ordinals

A relation -< on a class W is well-founded if and only if every subclass of W has a

minimal element that is wf(W, -<) = [∀ E ⊂ W. (E ≠ ø ⇒ ∃ y ∈ E. (¬ ∃ z ∈ E. z -< y))] is

true. If wf(W, -<) then obviously there is no infinite decreasing sequence x0 >- x1 >- …

where >- is the inverse of -<.

A relation -< on a class W is a strict partial ordering if and only if it is anti-

reflexive and transitive that is spo(W, -<) = [(∀ x ∈ W. ¬(x -< x)) ∧ (∀ x, y, z ∈ W. (x -<

y ∧ y -< z) ⇒ (x -< z))] is true. Observe that if ≤ is a partial ordering on W then x < y = (x

≤ y ∧ x ≠ y) is a strict partial ordering on W whereas if < is a strict partial ordering on W

then x ≤ y = (x < y ∨ x = y) is a partial ordering on W. A linear ordering on W is a strict

partial ordering such that any two different elements of W are comparable: lo(W, -<) =

spo(W, -<) ∧ [∀ x, y ∈ W. ((x ≠ y) ⇒ (x -< y ∨ y -< x))]. A relation -< on a class W is

well-ordered if and only if it is a well-founded linear ordering on W: wo(W, -<) =

wf(W, -<) ∧ lo(W, -<). A well-order is a pair <W, -<> such that wo(W, -<).

To study common properties of well-ordered relations independently of their

support class W, mathematicians have introduced a universal well-order called the class

Ord of ordinals ordered by <. We say that two well-orderings <W1, -<1> and <W2, -<2>

have the same order type if there exists a bijection ι from W1 onto W2 such that x -<1 y

⇔ ι(x) -<2 ι(y). An ordinal can be understood as the class of all well-orderings of the

same order type. Intuitively Ord is the transfinite sequence 0 < 1 < 2 < … < ω < ω+1 <

ω+2 < … < ω+ω = ω.2 < ω.2+1 < ω.2+2 < … < ω.2+ω = ω.3 < … < ω.4 < … < ω.ω =

ω2 < ω2+1 < … < ω2.ω=ω3 <… < ωω = 2ω < … < ωωω = 3ω< … < ε0 = ωωω…}ω times

= ωω < … < ωωω < … and so on (although what is behind may seems inaccessible

indeed ineffable). An ordinal α is a limit ordinal if it is neither 0 nor the successor of an

ordinal that is if β < α then there is an ordinal γ such that β < γ < α. The first limit ordinal

ω is the order type of N well-ordered by <. If C ⊂ Ord then lub C is the least upper

bound of C [∀ x ∈ C. x ≤ lub C ∧ ∀ a ∈ Ord. ((∀ x ∈ C. x ≤ a) ⇒ (lub C ≤ a)] and

lub+ C is the least strict upper bound of C [∀ x ∈ C. x < lub+ C ∧ ∀ a ∈ Ord. ((∀ x ∈

C. x < a) ⇒ (lub+ C ≤ a)]. A more detailed and rigorous presentation of ordinals can

be found in SHOENFIELD [1977].

A well-founded relation -< on a set W can be embedded into a well-ordered

relation on W (using KNUTH [1968a] topological sorting algorithm when W is finite)

hence into an initial segment of the ordinals. Assuming wf(W, -<), we can do this by the

rank function rk(W, -<) (for short rk-<) defined by rk-<(x) = lub+{rk-<(y) : y -< x}.

Minimal objects x of W (with no y -< x) will have rank 0. The objects x of W which are

not minimal but which are such that y -< x only for minimal objects y of W will have

rank 1, and so on. One can easily verify by induction on -< that rk-<(x) is an ordinal.

Observe also that (x -< y) ⇒ (rk-<(x) < rk-<(y)). We call rk-<(W) = lub+{rk-

<(x) : x ∈ W} the rank of (W, -<).

6 .4 Termination proofs by Floyd's well-founded
set method

To prove termination, we must discover a well-founded (FLOYD [1967a] proposed

well-ordered) relation -< on a set W and a variant function f : Γ → W and show that its

value decreases after each program step: ∀ γ, γ' ∈ op[C]. f(γ') -< f(γ).

Example Proof of termination of program (4) (71)

Program (4) was proved to be partially correct at example (24) using local

invariants (25). To prove termination, let W be N x {L1, …, L8} and -< be the well-

founded relation on W defined by <Y, L> -< <Y', L'> if and only if (0 ≤ Y < Y') ∨

(Y = Y' ∧ L « L') where < is the usual ordering on natural numbers 0 < 1 < 2 <… and

« is defined by L8 « L6 « L4 « L3 « L2 « L7 « L5 « L1. Let f : Γ → W be defined by

f(<Li, s>) = fi(s(Y)) for i = 1, …, 7 and f(s) = f8(s(Y)) where fi(y) = <y, Li>. The

proof that the value of f decreases after each program step amounts to the following

local arguments :

(i1) [P1(X,Y,Z,x,y) ∧ Z' = 1 ∧ P2(X,Y,Z',x,y)] ⇒ f2(Y) -< f1(Y) (since L2 « L1) (72)

(i2) [P2(X,Y,Z,x,y) ∧ Y ≠ 0 ∧ P3(X,Y,Z,x,y)] ⇒ f3(Y) -< f2(Y) (since L3 « L2)

(i3) [P2(X,Y,Z,x,y) ∧ Y = 0 ∧ P8(X,Y,Z,x,y)] ⇒ f8(Y) -< f2(Y) (since L8 « L2)

(i4) [P3(X,Y,Z,x,y) ∧ odd(Y) ∧ P4(X,Y,Z,x,y)] ⇒ f4(Y) -< f3(Y) (since L4 « L3)

(i5) [P3(X,Y,Z,x,y) ∧ even(Y) ∧ P6(X,Y,Z,x,y)] ⇒ f6(Y) -< f3(Y) (since L6 « L3)

(i6) [P4(X,Y,Z,x,y) ∧ Y' = Y - 1 ∧ P5(X,Y',Z,x,y)] ⇒ f5(Y') -< f4(Y) (since Y'<Y)

(i7) [P5(X,Y,Z,x,y) ∧ Z' = Z * X ∧ P2(X,Y,Z',x,y)] ⇒ f2(Y) -< f5(Y) (since L2 « L5)

(i8) [P6(X,Y,Z,x,y) ∧ Y' = Y div 2 ∧ P7(X,Y',Z,x,y)] ⇒ f7(Y') -< f6(Y) (since Y'<Y)

(i9) [P7(X,Y,Z,x,y) ∧ X' = X * X ∧ P2(X',Y,Z,x,y)] ⇒ f2(Y) -< f7(Y) (since L2 « L7)

In practice it is only necessary to prove that all program loops terminate since the

ordering « on labels directly follows from the syntactic structure of the program. �

Floyd's method for proving termination is sound because no infinite decreasing

sequence f(σ0) » f(σ1) » … » f(σi) » … where σ ∈ ∑ω[C](p) is possible, so that

execution of the program must sooner or later terminate in a final state σn-1 ∈ S since by

definition of ∑n[C](p) we have ∀ γ ∈ Γ. <σn-1, γ> ∉ op[C].

For completeness, observe that the distance n - i - 1 of the current state σi to the

final state σn-1 of any execution trace σ of a terminating program is finite and that this

distance strictly decreases after each program step. Hence we can hope to be always

able to define the variant function f(σi) as being this distance n - i - 1. When this is true,

we say after DIJKSTRA [1976] that the program strongly terminates. The nondeterminism

of a program C is finite if and only if no configuration of C can have infinitely many

possible successors: ∀ γ ∈ Γ. ∃ n ∈ N. | {γ' : <γ, γ'> ∈ op[C]} | ≤ n. It is bounded

when there is an upper bound on the number of possible successors: ∃ n ∈ N. ∀ γ ∈ Γ.

| {γ' : <γ, γ'> ∈ op[C]} | ≤ n. When the nondeterminism of a program is finite then it

terminates if and only if it strongly terminates. Then termination can always be proved

with (W, -<) chosen as (N, <). We say that the nondeterminism of a program is

enumerable if and only if any configuration of C has a enumerable set of possible

successors: ∀ γ ∈ Γ . | { γ ' : < γ , γ '> ∈ o p [C]} | ≤ | N | = ω . When the

nondeterminism of a program is enumerable but not finite, there may be infinitely many

execution traces σ starting with the same given initial state σ0 = <s, C> with no finite

upper bound on the length n of these traces σ. In this case, the program is said to

weakly terminate. This is the case of the following example:

(X <> 0 * (X < 0 → (X := ? ; (X < 0 → X := -X ◊ skip)) ◊ X := X - 1))

where X takes its values in N (i.e. the set D of data at (7) is N). Then f cannot be chosen

as being integer valued but we can always find a convenient well-founded range (W, -<)

for f.

6 .5 Liveness

BURSTALL [1974] generalized Floyd's total correctness property into liveness. Given

a specification <P, Q> ∈ P(Γ) x P(Γ x Γ) a command C is said to be inevitably lead from P
to Q (written P ˜˜C˜˜→ Q, using a variant of LAMPORT [1977]'s notation) if any execution

of C starting from an initial configuration γ of P inevitably reaches a configuration γ'

such that <γ, γ'> ∈ Q. Liveness can be defined in terms of execution traces as follows :

D E F I N I T I O N BURSTALL [1974], LAMPORT [1977], ALPERN & SCHNEIDER

[1985] Liveness (73)

P ˜˜C˜˜→ Q : P(Γ) x Com x P(Γ x Γ) → {tt, ff}

P ˜˜C˜˜→ Q = ∀ γ ∈ P. ∀ σ ∈ ∑[C]γ. ∃ i ∈ dom σ. <γ, σi> ∈ Q

In particular [p]C[q] = {<s, C> : s ∈ p} ˜˜C˜˜→ {<γ, s'> : γ ∈ Γ ∧ s' ∈ q}.

6 .6 Generalization Floyd's total correctness
proof method to liveness

Floyd's total correctness proof method can be generalized to liveness properties

by the following induction principle:

THEOREM PNUELI [1977], COUSOT & COUSOT [1985] Floyd's liveness proof method (74)

P ˜˜C˜˜→ Q = [∃ α ∈ Ord. ∃ i ∈ α → P(Γ x Γ).

(∀ γ ∈ P. ∃ β < α. <γ, γ> ∈ i(β)) (.1)

∧ (∀ β < α. (β > 0)

⇒ (∀ γ, γ' ∈ Γ. (<γ, γ'> ∈ i(β))

⇒ (∃ γ" ∈ Γ. <γ', γ"> ∈ op[C]))) (.2)

∧ (∀ β < α. (β > 0)

⇒ (∀ γ, γ', γ" ∈ Γ. (<γ, γ'> ∈ i(β) ∧ <γ', γ"> ∈ op[C])

⇒ (∃ β' < β. <γ, γ"> ∈ i(β')))) (.3)

∧ (i(0) ⊆ Q)] (.4)

Proof

• We prove soundness (⇐) by reductio ad absurdum. Assume we have found α ∈

Ord and i ∈ α → P(Γ x Γ) satisfying verification conditions (74) and there is a

configuration γ ∈ P and a trace σ ∈ ∑[C]γ such that ∀ j ∈ dom σ. <γ, σj> ∉ Q. Then there

would be an infinite strictly decreasing sequence of ordinals β ∈ seqω Ord such that ∀ j ∈

N. j ∈ dom σ ∧ <γ, σj> ∈ i(βj), a contradiction since < is well-founded on Ord. We define

<βj : j ∈ N> inductively as follows: by (74.1), ∃ β0 < α. <γ, γ> ∈ i(β0) whence <γ, σ0> ∈

i(β0) since σ0 = γ. If j ∈ dom σ ∧ <γ, σj> ∈ i(βj) then βj ≠ 0 since otherwise by (74.4) <γ,

σj> ∈ i(βj) ⊆ Q so that by (74.2), ∃ γ ∈ Γ. <σj, γ> ∈ op[C] so that by (61.1), j + 1 ∈ dom

σ . Moreover by (61.1), < σ j, σ j+1> ∈ o p [C] so that by (74.3), ∃ β j+1 < β j.

<γ, σ j+1> ∈ i(β j+1) .

• To prove completeness (⇒), assume ∀ γ ∈ P. ∀ σ ∈ ∑[C]γ. ∃ i ∈ dom σ. <γ, σi>

∈ Q. Define <γ', γ'> « <γ, γ> = [γ ∈ P ∧ ∃ σ ∈ ∑[C]γ. ∃ i ∈ dom σ. (∀ j < i. <σ0, σj> ∉ Q)

∧ (<σ0, σi> ∈ Q) ∧ (γ' = γ = σ0) ∧ ∃ k < i. ((γ = σk) ∧ (γ' = σk+1))].

We prove by reductio ad absurdum that « is well-founded on Γ x Γ. Assume

there is a infinite sequence <σ0, σ0> » <σ1, σ1> » …. If σ0 = σ0 then we have (∀ k ∈ N. σk

= σ0 ∧ <σ0, σk> ∉ Q ∧ <σk, σk+1> ∈ op[C]) so that σ ∈ ∑[C]σ0 in contradiction with ∃ i

∈ dom σ. <γ, σi> ∈ Q. If σ0 ≠ σ0 then the same reasoning can be done by concatenation of

a finite prefix <σ'0, σ'0> » … » <σ'k, σ'k> such that [σ1 ∈ P ∧ σ' ∈ ∑[C]σ1 ∧ ∃ i ∈ dom σ'.

∃ k < i. (∀ j < i. <σ'0, σ'j> ∉ Q) ∧ (<σ'0, σ'i> ∈ Q) ∧ (σ0 = σ1 = σ'0) ∧ (σ1 = σ'k) ∧ (σ0 =

σ'k+1)] to the left of this sequence <σ0, σ0> » <σ1, σ1> » ….

We choose α = rk«(Γ x Γ) and i(β) = {<γ, γ'> ∈ P x Γ : ∃ σ ∈ ∑[C]γ. ∃ i ∈ dom σ.

(∀ j < i. <σ0, σ j> ∉ Q) ∧ (<σ0, σ i> ∈ Q) ∧ (γ = σ0) ∧ (∃ k ≤ i. γ' = σk) ∧ (β = rk«<γ,

γ'>)}. Obviously, (∀ γ ∈ P. rk«<γ, γ> < α ∧ <γ, γ> ∈ i(rk«<γ, γ>)) so that (74.1) holds.

If 0 < β < α and <γ, γ'> ∈ i(β) then rk«<γ, γ'> is different from 0 so that ∃ <γ, γ'> « <γ, γ'>

whence <γ', γ'> ∈ op[C] and (74.2) is true. If 0 < β <α, <γ, γ'> ∈ i(β) and <γ', γ"> ∈

op[C] then let σ ∈ ∑[C]γ, i ∈ dom σ and k ≤ i be such that (∀ j < i. <σ0, σj> ∉ Q) ∧ (<σ0,

σi> ∈ Q) ∧ (γ = σ0) ∧ (γ' = σk) ∧ (β = rk«<γ, γ'>). Since rk«<γ, γ'> is different from 0, ∃

< γ , γ '> « < γ , γ '> whence [γ ∈ P ∧ ∃ σ' ∈ ∑ [C] γ . ∃ i' ∈ d o m σ '. (∀ j < i ' .

<σ'0, σ'j> ∉ Q) ∧ (<σ'0, σ'i'> ∈ Q) ∧ (γ = γ = σ'0) ∧ ∃ k' < i'. ((γ' = σ'k') ∧ (γ' = σ'k'+1))]

so that <γ, γ'> ∉ Q, hence <σ0, σk> ∉ Q so that k < i. Moreover ∃ σ" ∈ ∑[C]γ with σ"0 =

σ0 = γ, σ"1 = σ1, …, σ"k = σk = γ', σ"k+1 = γ". Then [∃ i" ∈ dom σ". ∃ k" < i". (∀ j < i".

<σ"0, σ"j> ∉ Q) ∧ (<σ"0, σ"i"> ∈ Q) ∧ (γ = γ = σ"0) ∧ (γ' = σ"k") ∧ (γ" = σ"k"+1)] with k"

= k so that <γ, γ"> « <γ, γ'>. It follows that β' = rk«<γ, γ"> < rk«<γ, γ'> = β and <γ, γ'>

∈ i(β") whence (74.3) holds. Finally, if <γ, γ'> ∈ i(0) and <γ, γ'> ∉ Q then rk«<γ, γ'> = 0

whence there is no <γ, γ'> « <γ, γ'> so that [∀ σ ∈ ∑[C]γ. ∀ i ∈ dom σ. (∃ j < i. <σ0,

σj> ∈ Q) ∨ (<σ0, σi> ∉ Q) ∨ ∀ k < i. ((γ ≠ σk) ∨ ∀ γ' ∈ Γ. (γ' ≠ σk+1))] so that for any σ

∈ ∑[C]γ, choosing the least i ∈ dom σ. <σ0, σi> ∈ Q, we have i > 1 and ∀ k < i. (γ ≠ σk),

a contradiction for k=0. �

6 .7 Burstall total correctness proof method and
its generalization

FLOYD [1967a]'s total correctness proof method is by induction on the structure

of computations where computations are understood as empty or as a step followed by a

computation. A la Floyd proofs are elegant for programs which exactly have this linear

structure of computations. For example, this is the case for a program computing the

size of a list L ::= <> | <A; tl(L)> (where A is an atom and tl(L) is a list) since its

structure is of the form: size(L) = (L = <> → 0 ◊ 1 + size(tl(L)). HOARE [1969]

remarked that programs (at least those written in structured languages with no gotos,

etc) often have a tree-like structure of computations similar to their syntactic structure,

so that correctness proofs are better handled by induction on this syntactic structure.

BURSTALL [1974] adopted the point of view that proofs are better handled by induction on

the data structures manipulated by the program since the structure of the computations is

often similar to that of these data structures. For example, an iterative program using a

stack for computing the size of a tree T ::= <> | <lf(T); A; rg(T)> (where lf(T) and

rg(T) are trees) would have a structure of computations of the form: size(T) = (L = <>

→ 0 ◊ 1 + size(lf(L) + size(rg(L)). The following induction principle generalizes these

points of view by considering that arbitrary structures of computations can be specified

by a well-founded relation (W, -<) (or from a mathematical point of view (Ord, <))

which basis ultimately corresponds to elementary program steps:

THEOREM COUSOT & COUSOT [1987] Burstall's liveness proof method (75)

P ˜˜C˜˜→ Q = [∃ Λ ∈ Ord. ∃ θ ∈ Λ → P(Γ x Γ). ∃ α ∈ Ord. ∃ i ∈ Λ → α → P(Γ x Γ).

(∃ π ∈ Λ. θπ ⊆ P  Q) (.1)

∧ (∀ λ ∈ Λ.∀ γ ∈ Γ. ∃ β < α. <γ, γ> ∈ iλ(β)) (.2)

∧ (∀ λ ∈ Λ. ∀ β < α. ∀γ, γ' ∈ Γ.

<γ, γ' > ∈ iλ(β)) ⇒

[(∃ γ" ∈ Γ. <γ', γ"> ∈ op[C]

∧ ∀ γ" ∈ Γ. (<γ', γ"> ∈ op[C] ⇒ ∃ β' < β. <γ, γ"> ∈ iλ(β'))) (.3)

∨ (∃ λ' < λ. ∀ γ" ∈ Γ. <γ', γ"> ∈ θλ' ⇒ ∃ β' < β. <γ, γ"> ∈ iλ(β'))) (.4)

∨ (<γ, γ'> ∈ θλ)])] (.5)

To prove P ˜˜C˜˜→ Q, we must prove Γ ˜˜C˜˜→ θλ for λ ∈ Λ so that by (75.1)

Γ ˜˜C˜˜→ θπ = P ˜˜C˜˜→ Q holds. The liveness proofs Γ ˜˜C˜˜→ θλ for λ ∈ Λ can be

done using (75.2), (75.3) and (75.5) hence by Floyd's liveness proof method (74).

However, it is better to exhibit a proof showing up the recursive structure of the

computations. The basis corresponds to elementary program steps (75.3) whereas

induction is described by means of lemmata θλ', λ' < λ which are first proved to be

correct (Γ ˜˜C˜˜→ θλ') and can then be used in (75.4) for proving θλ. More precisely,

<γ, γ'> ∈ iλ(β) if and only if starting execution in configuration γ may lead to

configuration γ' from which some final configuration γ such that <γ, γ> ∈ θλ will

inevitably be reached. To prove this we can either show by (75.3) that a single program

step inevitably lead to a state γ" with the same property (<γ, γ"> ∈ iλ(β')) but closer to the

goal (since β' < β) or else use lemma θλ' which, according to a previous proof (λ' < λ),

states that zero or more program steps inevitably lead to a state γ" with the same

property (<γ, γ"> ∈ iλ(β')) but closer to the goal (since β' < β).

7 . Hoare logic

HOARE [1969] introduced the idea that partial correctness can be proved

compositionally, by induction on the syntax of programs. This idea turned out to be of

prime importance in other domains such as denotational semantics where “The values of

expressions are determined in such a way that the value of a whole expression depends

functionally on the values of its parts - the exact connection being found through the

clauses of the syntactical definition of the language” (SCOTT & STRACHEY [1972]) but had

to be slightly modified to take context-sensitive properties of languages into account.

HOARE [1969] also introduced the idea that such proofs can be formalized using a

formal logic. The first motivation is that “axioms may provide a simple solution to the

problem of leaving certain aspects of a language undefined”. To illustrate this point of

view, Hoare gives the example of addition (+) and multiplication (*) of natural

numbers. These operations can be formalized by a few axioms of which N is a model.

They can also be given different consistent interpretations corresponding to various

possible implementations ⊕ and ⊗ of + and * in a machine where only a finite subset {0,

…, maxint} of N is representable. These interpretations include modulo arithmetic

(x ⊕ y) = (x + y) mod (maxint+1), firm boundary arithmetic (x ⊕ y) = (x + y > maxint

→ maxint ◊ x + y) and overflow arithmetic (x ⊕ y) = (x + y > maxint → undefined ◊
x + y). More generally the idea would be that a program text may have different

interpretations (a computer scientist would say computer implementations) but its

correctness should be established once for all its possible interpretations (hence in a

machine-independent way). This leads to the second motivation of Hoare's axiomatic

semantics: “the specification of proof techniques provides an adequate formal definition

of a programming language”. The idea first appeared in FLOYD [1967a] and was

illustrated by HOARE & WIRTH [1973] on a part of Pascal. The trouble with this axiomatic

semantics is that non-standard hence computer unimplementable interpretations are not

ruled out (BERGSTRA & TUCKER [1984], WAND [1978]).

7 .1 Hoare logic considered from a semantical
point of view

7.1.1 General theorems for proof construction

In paragraph § 5.3, we have considered Hoare logic from a semantical point of

view that is to say with respect to the conventional operational semantics (13). In

summary this essentially consists in the natural extension of the relational semantics

(19) of commands from pairs of states to pairs of sets of states (22). This leads to the

proof of partial correctness by structural induction on commands using theorem (49)

which can also be rephrased as follows:

THEOREM HOARE [1969], COOK [1978] Semantic interpretation of Hoare logic (76)

{p}skip{p} = tt (.1)

{{s ∈ S : s[X ← E(s)] ∈ p}}X := E{p} = tt (.2)

{p}X := ?{{s[X ← d] : s ∈ p ∧ d ∈ D}} = tt (.3)

{p}(C1; C2){q} = (∃ i ∈ Ass.{p}C1{i} ∧ {i}C2{q}) (.4)

{p}(B → C1 ◊ C2){q} = ({p ∩ B}C1{q} ∧ {p ∩ ¬ B}C2{q}) (.5)

{p ∩ B}C{p} ⇒ {p}(B * C){p ∩ ¬B} (.6)

(∃ p', q' ∈ Ass. (p ⊆ p') ∧ {p'}C{q'} ∧ (q ⊆ q')) = {p}C{q} (.7)

In these theorems, the consequence rule (76.7) has been isolated whereas in (49) it is

distributed over all theorems (76.1) to (76.6). The idea is interesting because proofs

concerning properties of objects manipulated by the program (which turn out to be

always of the form p ⊆ p') are isolated from proofs concerning the computation

(sequence of operations) performed by the program. In practice this separation leads to

excessively tedious proofs. The method proposed by HOARE [1979] “of reducing the

tedium of formal proofs is to derive general rules for proof construction out of the

simple rules accepted as postulates”. For example derived theorems such as

“(p ⊆ {s ∈ S : s[X ← E(s)] ∈ q}) ⇒ {p}X := E{q}” or “({s'[X ← E(s')] : s' ∈ p} ⊆

q) ⇒ {p}X := E{q}” are directly applicable hence often more useful than (76.2). Also

the r ec ip roca l o f (76 .6) i s no t t r ue (fo r example

“ { X = 0 } w h i l e t r u e d o X : = X + 1 { X = 0 ∧ ¬true}” holds but

“{X = 0 ∧ true} X := X + 1 {X = 0}” does not). Hence (76.6) does not make

completely clear the fact that a loop invariant has to be found (most often different from

the precondition and postcondition). In practice, we prefer a more explicit formulation :

COROLLARY Partial correctness proof of while loops (77)

{p}(B * C){q} = (∃ i ∈ Ass. (p ⊆ i) ∧ {i ∩ B}C{i} ∧ ((i ∩ ¬B) ⊆ q))

Example Partial correctness proof of assignments (78)

Let us derive “({s'[X ← E(s')] : s' ∈ p} ⊆ q) ⇒ {p}X := E{q}” from (76) :

(a) {s'[X ← E(s')] : s' ∈ p} ⊆ q by assumption,

(b) (s ∈ p) ⇒ (s[X ← E(s)] ∈ q) by (a) and set theory,

(c) p ⊆ {s ∈ S : s[X ← E(s)] ∈ q} by (b) and set theory,

(d) {{s ∈ S : s[X ← E(s)] ∈ q}}X := E{q} by (76.2),

(e) q ⊆ q from set theory,

(f) {p}X := E{q} by (c), (d), (e) and (76.7).

�

Proof of theorems (76) and (77)

• {p}skip{p} = ((p  skip) ⊆ (S x p)) [by (22)] = ((p  {<s, s> : s ∈ S}) ⊆ (S x p))

[by (19.1)] = tt.

• {{s ∈ S : s[X ← E(s)] ∈ p}}X := E{p} = (({s ∈ S : s[X ← E(s)] ∈ p}  {<s,

s[X ← E(s)]> : s ∈ S}) ⊆ (S x p)) [by (22) and (19.2)] = ({<s, s[X ← E(s)]> :

s[X ← E(s)] ∈ p} ⊆ {<s, s'> : s' ∈ p}) = tt .

• {p}X := ?{{s[X ← d] : s ∈ p ∧ d ∈ D}} is tt since (p  X := ?) = {<s, s[X ← d]> :

s ∈ p ∧ d ∈ D} by (22) and (19.3).

• {p}(C1; C2){q} = ((∀s, s', s".(s ∈ p ∧ <s, s'> ∈ C1 ∧ <s', s"> ∈ C2) ⇒ s" ∈ q) by

(22) and (19.4). This implies that if we let i bet {s': ∃ s ∈ p. <s, s'> ∈ C1} then (p  C1)

⊆ (S x i) and (i  C2) ⊆ (S x q) whence {p}C1{i} ∧ {i}C2{q} holds. Reciprocally if i ∈

Ass is such that {p}C1{i} ∧ {i}C2{q} then (p  C1) ⊆ (S x i) and (i  C2) ⊆ (S x q) by

(22) so that (p  (C1; C2)) = (p  (C1 ˚ C2)) = ((p  C1) ˚ C2) ⊆ ((S x i) ˚ C2) = (S2 ˚ (i 

C2)) ⊆ (S2 ˚ (S2  q)) = (S2  q).

• {p}(B → C 1 ◊ C2){q} = [((p ∩ B)  C 1 ∪ (p ∩ ¬ B)  C 2) ⊆ (S x q)] =

({p ∩ B}C1{q} ∧ {p ∩ ¬ B }C2{q}) by (22) and (19.5).

• {p}(B * C){q} = ((p  (B  C)*¬B) ⊆ S x q) [by (22) and (19.6)] = (∃ i ∈ Ass. (p

⊆ i) ∧ (i  (B  C) ⊆ S x i) ∧ ((i ∩ ¬B) ⊆ q)) [by (28)] = (∃ i ∈ Ass. (p ⊆ i) ∧ {i ∩

B}C{i} ∧ ((i ∩ ¬B) ⊆ q)) [by (22)]. It follows that {p ∩ B}C{p} ⇒ ((p ⊆ p) ∧ {p ∩

B}C{p} ∧ ((p ∩ ¬B) ⊆ (p ∩ ¬B))) ⇒ {p}(B * C){p ∩ ¬B}.

• ((p ⊆ p') ∧ {p'}C{q'} ∧ (q ⊆ q')) ⇒ ((p ⊆ p') ∧ ((p'  C) ⊆ (S x q')) ∧ (q ⊆ q')) ⇒

((p  C) ⊆ (S x q)) ⇒ {p}C{q} by (22). �

7.1 .2 Semantical soundness and completeness

If we have proved {p}C{q} by application of theorems (76) to components C' ∈

Comp[C] of C then we conclude, by structural induction, that {p}C{q} holds. This is

called semantic soundness. If we can prove by (22) using (13) that {p}C{q} holds,

then this can always be proved by application of theorems (76) to components C' ∈

Comp[C] of C. This is called semantic completeness. We use the epithet “semantic”

because soundness and completeness are relative to partial correctness as defined by

(22) with respect to operational semantics (13), that is are defined in terms of

mathematical structures without reference to a particular logical language for assertions.

THEOREM Semantical soundness and completeness of Hoare logic

Hoare's partial correctness proof method (76) is semantically sound. (79)

Hoare's partial correctness proof method (76) is semantically complete. (80)

Proof

The proof that {p}C{q} is provable by (76) is by structural induction on C.

• If {p}skip{q} holds then p ⊆ q by (22) and (19.1). Also p ⊆ p. Therefore the

proof is “{p}skip{p} by (76.1) whence {p}skip{q} by p ⊆ p, p ⊆ q and (76.7)”.

• If {p}X := E{q} holds then {s'[X ← E(s')] : s' ∈ p} ⊆ q by (22) and (19.2).

Also p ⊆ {s ∈ S : s[X ← E(s)] ∈ {s'[X ← E(s')] : s' ∈ p}}. Therefore the proof is

simply as follows : “{{s ∈ S : s[X ← E (s)] ∈ {s'[X ← E (s')] : s' ∈ p}}} X :=

E {{s'[X ← E(s')] : s' ∈ p}} by (76.2) whence {p}X := E{q} by p ⊆ {s ∈ S :

s [X ← E (s)] ∈ {s ' [X ← E (s')] : s' ∈ p}}, {s'[X ← E (s')] : s ' ∈ p} ⊆ q and

(76.7)”.

• If {p}X := ?{q} holds then {s[X ← d] : s ∈ p ∧ d ∈ D} ⊆ q by (22) and (19.3).

Also p ⊆ p. Therefore the proof is “{p}X := ?{{s[X ← d] : s ∈ p ∧ d ∈ D}} by (76.3)

whence {p}X := ?{q} by p ⊆ p, {s[X ← d] : s ∈ p ∧ d ∈ D} ⊆ q and (76.7)”.

• If {p}C1; C2{q} holds then by (76.4) there is an assertion i ∈ Ass such that

{p}C1{i} and {i}C2{q} are true. Hence, by induction hypothesis, {p}C1{i} and

{i}C2{q} are provable by induction on C1 and C2 using theorems (76). Then applying

(76.4), we conclude {p}C1; C2){q}.

• If {p}(B → C 1 ◊ C2){q} holds then by (76.5) {p ∩ B}C 1{q} and {p ∩

¬B}C2{q} are true whence provable by induction on C1 and C2 using theorems (76).

Then we conclude by (76.5).

• If {p}(B * C){q} holds then by (77) there is an assertion i ∈ Ass such that (p ⊆ i),

{i ∩ B}C{i} and (i ∩ ¬B ⊆ q) are true. Hence, by induction hypothesis, {i ∩ B}C{i}

is provable by induction on C using theorems (76). The proof goes on with “{i}(B *

C){i ∩ ¬B} by (76) whence {p}(B * C){q} by (p ⊆ i), (i ∩ ¬B ⊆ q) and (76.7)”. �

7.1 .3 Proof outlines

HOARE [1969] was aware that a formal proof is often tedious and claimed that “it

would be fairly easy to introduce notational conventions which would significantly

shorten it”. From a practical point of view, it is indeed essential to be able to present

proofs by Hoare's method informally together with the program text. OWICKI [1975]

showed that a proof à la Hoare can be presented as a proof outline that is to say as a

proof à la Floyd where local invariants are attached to program points:

DEFINITION OWICKI [1975] Proof outline (81)

The proof outline of a proof of {p}C{q} by theorems (76) is the triple pre, post

: Comp[C] → Ass, linv : Loops[C] → Ass such that pre(C) = p, post(C) = q and by

structural induction on C' ∈ Comp[C] :

- If C' is (B → C1 ◊ C2) then pre(C1) = pre(C') ∩ B, pre(C2) = pre(C') ∩ ¬B,

post(C1) = post(C1) = post(C'),

- If C' is (C1; C2) then we can only prove {pre(C')}(C1; C2){post(C')} by

application of (76.4) once and of (76.7) n ≥ 0 times. Therefore we have pre(C') = p1 ⊆

… ⊆ pn, {pn}C1{i}, {i}C2{qn}, qn ⊆ … ⊆ q1 = post(C'). We let pre(C1) = pre(C'),

post(C1) = pre(C2) = i and post(C2) = post(C').

- If C' is (B * C1) then we can only prove {pre(C')}(B * C1){post(C')} by

application of (76.6) once and of (76.7) n ≥ 0 times. Therefore we have pre(C') = p1 ⊆

… ⊆ pn = i, {i ∩ B}C1{i}, i ∩ ¬B = qn ⊆ … ⊆ q1 = post(C'). We let pre(C1) = i ∩ B,

post(C1) = i and linv(C') = i.

The following two theorems show that Hoare's method (76) is equivalent to the

syntax-directed presentation of Floyd's method of paragraph 5.3, hence by (55) is

semantically equivalent to Floyd's original stepwise proof method, otherwise stated that

assertions in a proof outline are local invariants:

THEOREM À la Floyd presentation of a proof by Hoare logic (82)

A proof outline of {p}C{q} by Hoare's method (76) satisfies (49)

Proof

(49.1) is true by definition (81). If C is skip then {p}skip{q} can only be proved

using (76.1) and (76.7). It follows that p ⊆ q so that (49.2) holds. The proof is similar

when C is X := E or X := ?. (49.5), (49.6) and (49.7) directly follow from definition

(81). �

THEOREM À la Hoare presentation of a proof by Floyd's method (83)

If assertions attached to program points are local invariants in the sense of Floyd (i.e.

satisfies (45) or equivalently by (54) and (55) satisfies (49)) then they can be used to

prove partial correctness by Hoare's method (76).

Proof

The proof is by structural induction on C. If C is X := E then the proof à la Hoare

is “p ⊆ {s ∈ S : s [X ← E (s)] ∈ q} [which is true by (81) and (49.3)],

{{s ∈ S : s[X ← E(s)] ∈ q}}X := E{q} [by (76.2) and q ⊆ q] hence {p}X := E{q}

[by (76.7)]”. The proofs are similar when is is skip or X := ?.

If C is (C1; C2) then by induction hypothesis there are proofs à la Hoare of

{pre(C1)}C1{post(C1)} and {pre(C2)}C2{post(C2)}. It follows from (81) and (76.4)

that p = pre(C1) and post(C2) = q. If we let i be post(C1) = pre(C2) then we can use

(76.7) to prove {p}C1{i} ∧ {i}C2{q} and conclude {p}C1{i} by (76.4). The proofs

are similar when C is (B → C1 ◊ C2) or (B * C1). �

7 .2 Hoare logic considered from a syntactical
point of view

The function of mathematical logic is to provide formal languages for describing

the structures with which the mathematician work, and to study the methods of proof

available to them. HOARE [1969] introduced the same idea in computer science:

“Computer programming is an exact science in that all the properties of a program and

all the consequences of executing it in any given environment can, in principle, be

found out from the text of the program itself by means of purely deductive reasoning.

Deductive reasoning involves the application of valid rules of inference to sets of valid

axioms. It is therefore desirable and interesting to elucidate the axioms and rules of

inference which underlie our reasoning about computer programs”.

Hoare logic HL consists of first order predicates P, Q, … for describing

assertions p, q, … and correctness formulae {P}C{Q} for describing the partial

correctness {p}C{q} of commands C. First we define the set HL of Hoare's formulae

that is the syntax of predicates P, Q, … and correctness formulae {P}C{Q}. We also

fill in the details of the syntax (1) of expressions and Boolean expressions of the

programming language Com. This syntactical definition is parametrized by a basis ∑ =

<Cte, Fun, Rel, #> (also called signature, type,…) that is sets of constant, function and

relation symbols together with their arity.

Then we introduce Hoare's proof system to define inductively which formulae of

Hoare logic are provable to be true. The proof system consists of sets of postulates

(axioms) and of syntactic rules of manipulation of formulae by rewritting (rules of

inference) to logically derive conclusions from hypotheses. These axioms and rules of

inference are defined finistically so that given formal proofs are checkable by

algorithmic means (although the proof itself may not be derivable by a machine). This

approach is “syntactical” in that the emphasis is upon a formal language for describing

assertions about the values taken by the program variables and upon a formal deductive

system for deriving proofs based upon combinatorial manipulations of formal

assertions. Proofs are parametrized by a set of axioms, which are supposed to describe

properties of the data manipulated by the programs into all the details of which we do

not want to enter. This is usual in logic where the primitive notions (0, +, …) of

mathematical theories (such as groups,…) have no fixed meaning. This is also

consistent with HOARE [1969] point of view that “Another of the great advantages of

using an axiomatic approach is that axioms offer a simple and flexible technique for

leaving certain aspects of a language undefined for example, range of integers, accuracy

of floating point, and choice of overflow technique. This is absolutely essential for

standardization purposes, since otherwise the language will be impossible to implement

efficiently on different hardware designs. Thus a programming language standard

should consist of a set of axioms of universal applicability, together with a choice of

supplementary axioms describing the range of choices facing an implementor”.

Then we define which mathematical structures can be understood as being models

or interpretations of Hoare logic. Otherwise stated we define which formulae of Hoare

logic HL are semantically true with respect to a relational semantics C of programs C ∈

Com. This programming language semantics (19) itself depends upon the semantics

(also called a model or interpretation) <D, V> of the basis ∑ = <Cte, Fun, Rel, #> that

is upon the domain D of data on which programs operate and the exact interpretation

V[c] of the basic constants c ∈ Cte, V[f] of the functions f ∈ Fun and V[r] of the

relations r ∈ Rel involved in the programs and predicates. By leaving this interpretation

as a parameter, we define a family of semantics of Hoare logic with respect to a family

of possible operational semantics of the programming language.

Kurt Gödel showed that truth and provability do not necessarily coincide:

provable implies true, refutable implies false but some formulae may be undecidable that

is neither provable nor refutable (using proofs that can be checked mechanically)

although they are either true or false (SMORYNSKI [1977]). Therefore the question is

whether Hoare's formal proof system captures the true partial correctness formulae,

only these (soundness) and ideally all of these (completeness).

7.2 .1 Syntax of predicates and correctness formulae

We have defined the syntax of the programming language Com at (1). We now

define the syntax of the logical language HL which will be used to specify the partial

correctness of programs. Hoare logic is a first-order language allowing only to quantify

over elements, but not over subsets or functions (for example “∀ A ∈ P(N). (0 ∈ A ∧ ∀ x

∈ A. (x + 1) ∈ A) ⇒ (A = N)” or “∀ P. ∀ x1. … ∀ xn. {P}skip{P}” are not a first-

order sentences).

In order to specify the syntax of predicates, we consider given disjoint sets of

symbols as follows :

DEFINITION Symbols (84)

X, Y : Pva r Programming variables (.1)

x, y : Lvar Logical variables (.2)

v, u : Var = Pvar ∪ Lvar Variables (.3)

c : Cte Constant symbols (.4)

f : F u n Function symbols (.5)

r : R e l Relation symbols (.6)

DEFINITION Arity of function and relation symbols (85)

: Fun ∪ Rel → N+

At any moment we shall use only a finite number of variables but assume that we are

given a countably infinite supply of these (in the examples we use capital letters for

programming variables and lower-case letters for logical variables). The basis ∑ =

<Cte, Fun, Rel, #> of the logical language HL is assumed to be given but is otherwise

left unspecified.

The purpose of the syntactical definition of the logical language HL is to define

algorithmically which finite strings of symbols (chosen in Var ∪ Cte ∪ Fun ∪ Rel ∪ {(,

), =, ¬, ∧, ∨, ⇒, ∃, ∀, ., {, }, skip, :=, ?, ;, →, ◊, *}) belong to HL, logicians would say

are well-formed formulae. The sets of terms, atomic formulae, first-order predicates,

correctness formulae and formulae are the smallest sets closed under the following

formation rules (from which a recognizer is easy to derive, see for example AHO, SETHI &

ULLMAN [1986]):

DEFINITION Syntax of formulae

T : Ter Terms

T ::= v | c | f(T1, …, T#f) (86)

A : Afo Atomic formulae

A ::= (T1 = T2) | r(T1, …, T#r) (87)

P, Q : P r e Predicates

P ::= A | ¬P | (P1 ∧ P2) | (P1 ∨ P2) | (P1 ⇒ P2) | ∃ x. P | ∀ x. P (88)

H : Hcf Hoare correctness formulae

H ::= {P}C{Q} (89)

F : H L Formulae of Hoare logic

F ::= P | H (90)

(in (87), “=” is a relation of arity 2 in infix notation. The reason why we keep it separate

from the relations in Rel is that its intended interpretation is fixed as the diagonal

(equality) relation δ whereas the interpretations of members of Rel can be specified

arbitrarily).

In paragraph § 3.1 the syntax of expressions was left unspecified. From now on,

we assume that Expr is included in the set of terms containing only programming

variables and that BExp is included in the set of propositions (i.e. quantifier-free

predicates) containing only programming variables:

DEFINITION Syntax of expressions

E : Expr Expressions

E ::= X | c | f(E1, …, E#f) (91)

B : BExp Boolean expressions

B ::= (E1 = E2) | r(E1, …, E#r) | ¬B | (B1 ∧ B2) | (B1 ∨ B2) | (B1 ⇒ B2) (92)

Definitions (84) to (90) are justified by the (restrictive) assumption that all we

shall ever have to say about programs is expressible by sentences of HL. To formally

define the axiomatic semantics of the programming language Com, it only remains to

define exactly all we can assert to be true about programs. This consists in partitioning

HL into HLtt (what is truth) and HLff (what is falsity). To do this logicians have

proposed to complementary approaches:

- The semantical point of view consists in defining an interpretation I : HL → {tt,ff}

with HLtt = {F ∈ HL : I[F] = tt} and HLff = {F ∈ HL : I[F] = ff}.

- The syntactical point of view consists in defining which sentences of HL are

provable to be true (with given limited means, so that (hopefully) proofs can be checked

by mechanical computation).

We first start with provability.

7.2 .2 Deductive systems and formal proofs

The basis of the inductive definition of formal proofs for a logical language HL is

provided by a set of axioms, that is a set of formulae of HL the truth of which is

postulated. Since the set of axioms is usually not finite, we use a finite set AS = {ASi : i

∈ ∆α} of axiom schemata ASi the instances of which are axioms. Otherwise stated an

axiom schema ASi is a syntactic rule specifying a set {A ∈ HL : IsAxiom(A, ASi)} of

axioms by their syntax. This set of axioms is said to be recursive because membership

is decidable that is there is a program IsAxiom(A, ASi) (called a recognizer) which

given any formula A ∈ HL will always terminate and answer "tt" or "ff" whether or not

formula A belongs to the set of axioms generated by the axiom schema ASi.

The induction step in the definition of formal proofs is provided by a set of

inferences <F1, …, Fn, F> ∈ HLn+1 with n ≥ 1, traditionally written under the form:

F 1, …, Fn

———————
F

which means that if formulae F1, …, Fn are provable then so is formula F. A further

requirement is again that this set of valid inferences should be recursive. Hence the set

of inferences is usually specified by a finite set IR = {IRi : i ∈ ∆ι} of syntactical rules

(called rules of inference) so that there is a program IsInference(F1, …, Fn, F, IRi)

which given any formulae F1, …, Fn, F of HL will always terminate and answer "tt" or

"ff" whether or not the inference is correct according to one of the inferences generated

by the rule IRi.

The deductive system H is the (recursive) set of all axioms generated by the axiom

schemata and all inferences generated by the rules of inference:

DEFINITION Deductive system (93)

AS = {ASi : i ∈ ∆α} Axiom schemata,

IsAxiom(A, ASi) Axiom recognizer

IR = {IRi : i ∈ ∆ι} Rules of inference

IsInference(F1, …, Fn, F, IRi) Inference recognizer

H = ∪{{A ∈ HL : IsAxiom(A, ASi)} : i ∈ ∆α} Deductive system

 ∪ ∪{{<F1, …, Fn, F> ∈ HLn+1 : IsInference(F1, …, Fn, F, IRi)} : i ∈ ∆ι}

In order to be able to leave unspecified some aspects of the programming language Com

(such as machine dependent features) we assume that we are given an additional set Th

⊂ HL of axioms, the truth of which is taken for granted. Th can be understood as a

specification of the data and operations on these data which are used by the programs of

Com. A proof of F from Th in the deductive system H is a finite sequence F0,…,Fn of

formulae, with Fn= F, each of which is either a member of Th, an axiom of H, or else

follows from earlier Fi by one of the inferences of H:

DEFINITION Formal proof (94)

Proof(F0, …, Fn, F, Th, H) =

[Fn= F] ∧ [∀ i ∈ {0,…,n}. [(Fi ∈ Th) ∨ (∃ k ∈ ∆α. IsAxiom(Fi, ASk)) ∨

(∃ k ∈ ∆ι. ∃ m ≥ 1. ∃ j1 < i, …, ∃ jm < i. IsInference(Fj1, …, Fjm, Fi, IRk))]]

Clearly from the above specification we can write a simple combinatorial program to

check proofs (provided Th is recursive). Using the more traditional notations of logic
(BARWISE [1977]) we say that F is provable from Th ⊂ HL in H, and write |- Th ∪ H F, if

there is a proof of F from Th in H:

DEFINITION Provability (95)
 |- Th ∪ H F if F ∈ Th (.1)

|- Th ∪ H F if F ∈ H (.2)

 F1, ..., Fm

|- Th ∪ H F if |- Th ∪ H F1, ..., |- Th ∪ H Fm and ————— ∈ H (.3)

F

7.2 .3 Hoare's proof system H

In HOARE [1969]'s proof system H below, P[v ← T] denotes the predicate obtained

by simultaneously substituting term T for all free occurrences of variable v in predicate

P. If the substitution would cause an identifier in T to become bound (e.g. ∀ x .(f(x) =

y)[y ← x]) then a suitable replacement of bound identifiers in P must take place before

the substitution in order to avoid the conflict (e.g.∀ z. (f(z) = y)[y ← x] is ∀ z. (f(z) =

x)). Substitution will be defined more rigorously later on by (118).

DEFINITION Hoare proof system

 Axiom schemata of H:

{P} skip {P} Skip axiom (96)

{P[X ← E]} X := E {P} (Backward) assignment axiom (97)

{P} X := ? {∃ X. P} Random assignment axiom (98)

(A schema of axioms of the form {P}skip{P} means that ∀ v1. … ∀ vn. {Q} skip {Q}

is true for all formulae Q ∈ Pre with free variables v1,…,vn. This is an approximation

of the second-order axiom ∀ P. ∀ v1. … ∀ vn. {P} skip {P} where quantification over

predicates is mimicked by a recursive set of axioms corresponding to all possible

instances Q of quantified predicate P.)

Rules of inference of H:

 {P1} C1 {P2}, {P2} C2 {P3}

———————————— Composition rule (99)
 {P1} (C1; C2) {P3}

 {P ∧ B} C1 {Q}, {P ∧ ¬B} C2 {Q}

——————————————— Conditional rule (100)
 {P} (B → C1 ◊ C2) {Q}

 {P ∧ B} C {P}
—————————— While rule (101)
 {P}(B * C) {P ∧ ¬B}

 P ⇒ P', {P'} C {Q'}, Q' ⇒ Q
————————————— Consequence rule (102)

 {P} C {Q}

The backward assignment axiom (97) which corresponds to (45.3) can be given an

equivalent forward form corresponding to (45.8) as proposed by FLOYD [1967a]:

{P} X := E {∃ X'. P[X ← X'] ∧ X = E[X ← X']} (Forward) assignment axiom (103)

Example Formal partial correctness proof of program (4) using H (104)

(a) {(Y-1)≥0 ∧ Z*X*(X**(Y-1))=x**y} Y := Y-1 {Y≥0 ∧ Z*X*(X**Y)=x**y} by (97)

(b) {Y≥0 ∧ Z*X*(X**Y)=x**y} Z := Z*X {Y≥0 ∧ Z*(X**Y)=x**y} by (97)

(c) {(Y-1)≥0 ∧ Z*X*(X**(Y-1))=x**y} (Y := Y-1; Z := Z*X) {Y≥0 ∧ Z*(X**Y)=x**y} by a, b, (99)

(d) (Y>0 ∧ Z*(X**Y)=x**y ∧ odd(Y)) ⇒ ((Y-1)≥0 ∧ Z*X*(X**(Y-1))=x**y) from Th

(e) (Y≥0 ∧ Z*(X**Y)=x**y) ⇒ (Y≥0 ∧ Z*(X**Y)=x**y) from Th

(f) {Y>0 ∧ Z*(X**Y)=x**y ∧ odd(Y)} (Y := Y-1; Z := Z*X) {Y≥0 ∧ Z*(X**Y)=x**y} by d, c, e, (102)

(g) {(Y div 2)≥0 ∧ Z*((X*X)**(Y div 2))=x**y} Y := Y div 2 {Y≥0 ∧ Z*((X*X)**Y)=x**y} by (97)

(h) {Y≥0 ∧ Z*((X*X)**Y)=x**y} X := X*X {Y≥0 ∧ Z*(X**Y)=x**y} by (97)

(i) {(Y div 2)≥0 ∧ Z*((X*X)**(Y div 2))=x**y} (Y := Y div 2; X := X*X){Y≥0 ∧ Z*(X**Y)=x**y}

by g, h, (99)

(j) (Y>0 ∧ Z*(X**Y)=x**y ∧ ¬odd(Y)) ⇒ ((Y div 2)≥0 ∧ Z*((X*X)**(Y div 2))=x**y) from Th

(k) {Y>0 ∧ Z*(X**Y)=x**y ∧ ¬odd(Y)} (Y := Y div 2; X := X*X) {Y≥0 ∧ Z*(X**Y)=x**y}

by j, i, e, (102)

(l) {Y>0 ∧ Z*(X**Y)=x**y} (odd(Y) → (Y := Y-1; Z := Z*X) ◊ (Y := Y div 2; X := X*X))

{Y≥0 ∧ Z*(X**Y)=x**y} by f, k, (100)

(m) (Y≥0 ∧ Z*(X**Y)=x**y ∧ Y<>0) ⇒ (Y>0 ∧ Z*(X**Y)=x**y) from Th

(n) {Y≥0 ∧ Z*(X**Y)=x**y ∧ Y<>0} (odd(Y) → (Y := Y-1; Z := Z*X) ◊

(Y := Y div 2; X := X*X)) {Y≥0 ∧ Z*(X**Y)=x**y} by m, l, e, (102)

(o) {Y≥0 ∧ Z*(X**Y)=x**y} (Y<>0 * (odd(Y) → (Y := Y-1; Z := Z*X) ◊

(Y := Y div 2; X := X*X))) {Y≥0 ∧ Z*(X**Y)=x**y ∧ ¬(Y<>0)} by n, (101)

(p) {Y≥0 ∧ 1*(X**Y)=x**y} Z := 1 {Y≥0 ∧ Z*(X**Y)=x**y} by (97)

(q) {Y≥0 ∧ 1*(X**Y)=x**y} (Z := 1; (Y<>0 * (odd(Y) → (Y := Y-1; Z := Z*X) ◊

(Y := Y div 2; X := X*X)))) {Y≥0 ∧ Z*(X**Y)=x**y ∧ ¬(Y<>0)} by p, o, (99)

(r) (X=x ∧ Y=y≥0) ⇒ (Y≥0 ∧ 1*(X**Y)=x**y) from Th

(s) (Y≥0 ∧ Z*(X**Y)=x**y ∧ ¬(Y<>0)) ⇒ (Z=x**y) from Th

(t) {X=x ∧ Y=y≥0} (Z := 1; (Y<>0 * (odd(Y) → (Y: = Y-1; Z: = Z*X) ◊

(Y := Y div 2; X := X*X)))) {Z=x**y} by r, q, s, (102)

�

7.2 .4 Hoare's proof system H' for proof outlines

If the deductive system H is useful for reasoning about Hoare logic, formal proofs

using this proof system are totally unworkable (as shown be the level of details needed

in example (104)). Proof outlines (81), as introduced by OWICKI [1975] and OWICKI &

GRIES [1976a], offer a much more useful linear notation for proofs in which the program

is given with assertions interleaved at cutpoints. A natural deduction programming logic

of proof outlines was first presented in CONSTABLE & O'DONNELL [1978]. Hoare proof

outline system H' below is due to BERGTRA & KLOP [1984], LIFSCHITZ[1984]. Further

developments can be found in SCHNEIDER & ANDREWS [1986].

DEFINITION Hoare proof outline system

C ' : C o m ' Asserted commands (105)

C ' ::= {P1} skip {P2}

| {P1} X := E {P2}

| {P1} X := ? {P2}

| {P1} (C'1; {P2} C'2) {P3}

| {P1} (B → {P2 }C'1 ◊ {P3} C'2) {P4}

| {P1} (B * {P 2} C' {P3}) {P4}

| {P} C'

| C'{P}

{P} skip {P} Skip axiom (106)

{P[X ← E]} X := E {P} Assignment axiom (107)

{P} X := ? {∃ X. P} Random assignment axiom (108)

{P1} C'1 {P2}, {P2} C'2 {P3}

————————————— Composition rule (109)
 {P1} (C'1; {P2} C'2) {P3}

 {P ∧ B} C'1 {Q}, {P ∧ ¬B} C'2 {Q}

—————————————————— Conditional rule (110)
{P} (B → {P ∧ B}C'1 ◊ {P ∧ ¬B}C'2) {Q}

 {P ∧ B} C' { P }
——————————————— While rule (111)
{P} (B * {P ∧ B}C'{P}) {P ∧ ¬B}

(P ⇒ P'), {P'} C' {Q}
————————— Left consequence rule (112)
 {P} {P'} C' {Q}

{P} C' {Q'}, (Q' ⇒ Q)
————————— Right consequence rule (113)
 {P} C'{Q'} {Q}

Example Proof outline of program (4) using H' (114)

{X = x ∧ Y = y ≥0} by (112), (113)

{Y ≥ 0 ∧ 1*(X**Y) = x**y} by (107), (109)

(Z := 1;

{Y ≥ 0 ∧ Z*(X**Y) = x**y} by (111)

(Y <> 0 *

{Y ≥ 0 ∧ Z*(X**Y) = x**y ∧ Y <> 0} by (112)

{Y > 0 ∧ Z*(X**Y) = x**y} by (110)

(odd(Y) →

{Y > 0 ∧ Z*(X**Y) = x**y ∧ odd(Y)} by (112)

{(Y-1) ≥ 0 ∧ Z*X*(X**(Y-1)) =x**y} by (107), (109)

(Y := Y - 1;

{Y ≥ 0 ∧ Z*X*(X**Y) = x**y} by (107)

Z := Z * X)

◊

{Y > 0 ∧ Z*(X**Y) = x**y ∧ ¬odd(Y)} by (113)

{(Y div 2) ≥ 0 ∧ Z*((X*X)**(Y div 2)) = x**y} by (107), (109)

(Y := Y div 2;

{Y ≥ 0 ∧ Z*((X*X)**Y) = x**y} by (107)

X := X * X)

)

{Y ≥ 0 ∧ Z*(X**Y) = x**y}

))

{Y ≥ 0 ∧ Z*(X**Y) = x**y ∧ ¬(Y <> 0)}

{Z = x**y}
�

7.2 .5 Syntactical rules of substitution

Up to now, we have used informal definitions of variables, bound variables and

free variables occurring in a predicate or a command and of the substitution P[v ← T]

of a term T for a variable v in a predicate P. We now give the fully formal definitions.

This paragraph can be omitted and one can go on with paragraph § 7.3.

7 . 2 . 5 . 1 Variables appearing in a term, predicate, command or

correctness formula

The set of variables appearing in a term, predicate, command or correctness

formula is defined by structural induction as follows :

DEFINITION Variables appearing in a formula (115)

Var(c) = ø (.1)

Var(v) = {v} (.2)

Var(f(T1, …, T#f)) = ∪{Var(Ti) : 1 ≤ i ≤ #f} (.3)

Var((T1 = T2)) = Var(T1) ∪ Var(T2) (.4)

Var(r(T1, …, T#r)) = ∪{Var(Ti) : 1 ≤ i ≤ #r} (.5)

Var(¬P) = Var(P) (.6)

Var((P1 ∧ P2)) = Var((P1 ∨ P2)) = Var((P1 ⇒ P2)) = Var(P1) ∪ Var(P2) (.7)

 Var(∃ v. P) = Var(∀ v. P) = {v} ∪ Var(P) (.8)

Var(skip) = ø (.9)

Var(X := E) = {X} ∪ Var(E) (.10)

Var(X := ?) = {X} (.11)

Var((C1; C2)) = Var(C1) ∪ Var(C2) (.12)

Var((B → C1 ◊ C2)) = Var(B) ∪ Var(C1) ∪ Var(C2) (.13)

Var((B * C)) = Var(B) ∪ Var(C) (.14)

Var({P} C {Q}) = Var(P) ∪ Var(C) ∪ Var(Q) (.15)

Var(F1, … , Fn) = Var(F1) ∪ … ∪ Var(Fn) (.16)

7 . 2 . 5 . 2 Bound and free variables appearing in a term, predicate,

command or correctness formula

In the formula ∃ x. ((+(x, y) = 0)), variable x is "bounded" up by ∃ whereas y is

sort of floating "free". The notions of bound and free variable can be made more precise

as follows :

DEFINITION Bound variables appearing in a formula (116)

Bound(A) = ø (.1)

Bound(¬P) = Bound (P) (.2)

Bound((P1∧P2)) = Bound((P1∨P2)) = Bound((P1⇒P2)) = Bound(P1) ∪ Bound(P2)

(.3)

 Bound(∃ v. P) = Bound(∀ v. P) = Bound(P) ∪ {v} (.4)

Bound(C) = ø (.5)

Bound({P} C {Q}) = Bound(P) ∪ Bound(Q) (.6)

Bound(F1, … , Fn) = Bound(F1) ∪…∪ Bound(Fn) (.7)

DEFINITION Free variables appearing in a formula (117)

Free(A) = Var(A) (.1)

Free(¬P) = Free(P) (.2)

Free((P1 ∧ P2)) = Free((P1 ∨ P2)) = Free((P1 ⇒ P2)) = Free(P1) ∪ Free(P2) (.3)

 Free(∃ v. P) = Free(∀ v. P) = Free(P) - {v} (.4)

Free(C) = Var(C) (.5)

Free({P} C {Q}) = Free(P) ∪ Free(C) ∪ Free(Q) (.6)

Free(F1, … , Fn) = Free(F1) ∪ … ∪ Free(Fn) (.7)

7 . 2 . 5 . 3 Formal definition of substitution of a term for a variable in

a term or predicate

The substitution P[v ← T] denotes the result of renaming bounded occurrences of

variables in P so that none of them is v or belongs to Var(T) and then replacing all free

occurrences of variable v by term T. Substitution can be formally defined as follows :

DEFINITION Substitution of a term for a variable (118)

v'[v ← T] = T if v'=v (.1)

= v' if v'≠v

c[v ← T] = c (.2)

f(T1,…,T#f)[v ← T] = f(T1[v ← T],…,T#f[v ← T]) (.3)

(T1 = T2)[v ← T] = (T1[v ← T] = T2[v ← T]) (.4)

r(T1,…,T#r)[v ← T] = r(T1[v ← T],…,T#r[v ← T]) (.5)

(¬P)[v ← T] = ¬(P[v ← T]) (.6)

(P1 ∧ P2)[v ← T] = (P1[v ← T] ∧ P2[v ← T]) (.7)

(P1 ∨ P2)[v ← T] = (P1[v ← T] ∨ P2[v ← T]) (.8)

(P1 ⇒ P2)[v ← T] = (P1[v ← T] ⇒ P2[v ← T]) (.9)

(∃v'.P)[v ← T]

= ∃v'.P if v' = v (.10)

= ∃v'.(P[v ← T]) if v' ≠ v and v' ∉ Var(T)

= ∃w.(P[v' ← w])[v ← T] where w ∉ {v}∪Var(T)∪Var(P),

if v' ≠ v and v' ∈ Var(T)

(∀v'.P)[v ← T]

= ∀v'.P if v' = v (.11)

= ∀v'.(P[v ← T]) if v' ≠ v and v' ∉ Var(T)

= ∀w.(P[v' ← w])[v ← T] where w ∉ {v}∪Var(T)∪Var(P),

if v' ≠ v and v' ∈ Var(T)

7 .3 The semantics of Hoare logic

We now define the semantics of Hoare logic that is an interpretation I : HL → {tt,

ff} defining the truth of predicates and correctness formulae with respect to a relational

semantics (19) of the programming language Com. This programming language

semantics depends upon the semantics (also called a model or interpretation) <D, V> of

the basis ∑. By leaving this interpretation unspecified, we define a family of semantics

of Hoare logic with respect to a family of possible relational semantics of the

programming language.

7.3 .1 Semantics of predicates and correctness formulae

A model or interpretation <D, V> of the basis ∑ = <Cte, Fun, Rel, #> specifies

the semantics of the common part of the programming and logical languages. It consists

of a nonempty set D of data and a function V with domain Cte ∪ Fun ∪ Rel which

define the intended meaning of constants, functions and relations :

DEFINITION Interpretation of symbols (119)

V[c] ∈ D (.1)

V[f] : D#f → D (.2)

V[r] ⊆ D#r (.3)

Let us also recall that we have defined states (or valuations) s assigning a value s(v) ∈ D

to variables v ∈ Var (8) and s[v ← d] for the state s' which agrees with s except that

s'(v) = d :

DEFINITIONS States and assignments

s : S = Var → D States (120)

s[v ← d](u) = (v = u → d ◊ s(u)) Assignment (121)

These states have been used to remember the values assigned to programming variables

during program execution. They will also be used to specify values for free variables in

first order predicates. Remarkably, programming and logical variables can be handled

the same way . This is not always possible for more complicated programming

languages.

We now define the semantics or interpretations T = I[T] of terms T, P = I[P] of

predicates P and {P}C{Q} = I[{P}C{P}] of correctness formulae {P}C{Q} with

respect to a given model <D, V> (and a given state for terms and predicates):

DEFINITION Interpretation of terms (122)

I : Ter → (S → D), T = I[T]

I[v](s) = s(v) (.1)

I[c](s) = V[c] (.2)

I[f(T1, …, T#f)](s) = V[f](I[T1](s), …, I[T#f](s)) (.3)

DEFINITION Interpretation of predicates (123)

I : Pre → Ass, P = I[P]

I[(T1 = T2)] = {s ∈ S : <I[(T1)](s), I[T2](s)> ∈ δ} (.1)

I[r(T1, …, T#r)] = {s ∈ S : <I[T1](s), …, I[T#r](s)> ∈ V[r]} (.2)

I[¬P] = S - I[P] (.3)

I[(P1 ∧ P2)] = I[P1] ∩ I[P2] (.4)

I[(P1 ∨ P2)] = I[P1] ∪ I[P2] (.5)

I[(P1 ⇒ P2)] = (S - I[P1]) ∪ I[P2] (.6)

I[∃ v. P] = {s ∈ S : ({s[v ← d] : d ∈ D} ∩ I[P]) ≠ ø} (.7)

I[∀ v. P] = {s ∈ S : {s[v ← d] : d ∈ D} ⊆ I[P]} (.8)

DEFINITION Interpretation of correctness formulae (124)

I : Hcf → {tt, ff}

I[{P} C {Q}] = {I[P]}C{I[Q]} where {p}C{q} = (p  C) ⊆ (S x q)

Observe that the truth or falsity of a formula {P}C{Q} just depends upon the model

<D, V> since the semantics C of command C (19) itself depends only on the semantics

E of expressions E and B of Boolean expressions B which is the same as the semantics

of terms (with no logical variables) and predicates (with no quantifiers and logical

variables). An interpretation of {P}C{Q} different from (124) is investigated in

ANDRÉKA & NÉMETI [1978], GERGELY & ÚRY [1978], ANDRÉKA, NÉMETI & SAIN [1979] [1981]

[1983], CSIRMAZ [1981a] [1981b], HORTALÁ-GONZÁLEZ & RODRÍGUEZ-ARTALEJO [1985], NÉMETI

[1980], RODRÍGUEZ-ARTALEJO [1985] using a nonstandard transfinite definition of execution

traces.

DEFINITION Interpretation of formulae (125)

I : HL → {tt, ff}

I[F] = (F ∈ Pre → I[F] = S ◊ I[F])

(The function I is polymorphic, so that when P ∈ Pre, and depending upon the context

,we have either I[P] ∈ P(S) (by (123)) or I[P] ∈ {tt, ff} (by (125))).

Example Proof of a formula with two different interpretations (126)

Let us consider the basis <{0, 1}, {+}, ø, #> with #(+) = 2. Then H =

{X = 1} (¬(X = 0) * X := X + 1) {X = 0} is a formula of HL.
A first interpretation would be <N, V> with V[0] = 0N, V[1] = 1N, V[+](x, y) = x

+N y. With this interpretation formula H is semantically true (I[H] = tt) because

execution of program (¬(X = 0) * X := X + 1) starting in a state s such that s(X) = 1

will never terminate.
A second interpretation would be <{0N, 1N}, V> with V[0] = 0N, V[1] = 1N,

V[+](x, y) = (x +N y) mod 2N. With this interpretation formula F is semantically true

because execution of program (¬(X = 0) * X := X + 1) always terminates in a state s
such that s(X) = 0N.

Formula H can be proved to be formally correct from tautologies Th = {((true ∧

¬(X = 0)) ⇒ true), (true ⇒ true), ((X = 1) ⇒ true), ((true ∧ ¬¬(X = 0)) ⇒ (X = 0))}

where true denotes truth e.g.. (x = x), as follows:

(a) (true ∧ ¬(X = 0)) ⇒ true by Th

(b) {true} X := X + 1 {true} by (97)

(c) (true) ⇒ (true) by Th

(d) {true ∧ ¬(X = 0)} X := X + 1 {true} by a, b, c, (102)

(e) {true} (¬(X = 0) * X := X + 1) {true ∧ ¬¬(X = 0)} by d, (101)

(f) (X = 1) ⇒ true by Th

(g) (true ∧ ¬¬(X = 0)) ⇒ (X = 0) by Th

(h) {X = 1} (¬(X = 0) * X := X + 1) {X = 0} by f, e, g, (102)
�

7.3 .2 Semantics of substitution

In (118) we have defined the substitution of a term for a variable in a predicate

which is used in the assignment axiom schema (97). To prove that this axiom schema is

sound we shall need a semantical characterization of substitution. This paragraph §

7.3.2 can be omitted on first reading.

 Informally substitution commutes with interpretation. More precisely, the

interpretation T[v ← T'](s) of term T where T' is substituted for v in state s is the

interpretation T(s[v ← T'(s)]) of term T in state s' =s [v ← T'(s)] which agrees with s

except that the value s'(v) of variable v is the interpretation of term T' in state s :

LEMMA Semantics of substitution of a term for a variable in a term (127)

T[v ← T'](s) = T(s[v ← T'(s)])

Proof

By structural induction on the syntax of terms :

• v [v ← T '] (s) = T ' (s) [by (118.1)] = s[v ← T ' (s)] (v) [by (121)] =

v(s[v ← T'(s)]) [by (122.1)],

• when v' ≠ v, v'[v ← T'](s) = v'(s) [by (118.1)] = s(v') [by (122.1)] =

s[v ← T'(s)](v') [by (121)] = v'(s[v ← T'(s)]) [by (122.1)],

• c[v ← T'](s) = c(s) [by (118.2)] = V [c] [by (122.2)] = c(s[v ← T'(s)]) [by

(122.2)],

• f(T1 …, T#f)[v ← T'](s) = f(T1[v ← T'], …, T#f[v ← T'])(s) [by (118.3)] =

V[f](T1[v ← T'](s), …, T#f[v ← T'](s)) [by (122.3)] = V[f](T1(s[v ← T'(s)]), …,

T#f(s[v ← T'(s)])) [by induction hypothesis (127)] = f(T1, …, T#f)(s[v ← T'(s)]) [by

(122.3)]. �

The same way, substitution of a term for a variable in a predicate can be

semantically characterized by the following :

LEMMA Semantics of substitution of a term for a variable in a predicate (128)

P[v ← T] = {s ∈ S : s[v ← T(s)] ∈ P}

Proof

The proof is (almost) by structural induction on the syntax of predicates. The only

difficulty is for (∀ v'. P)[v ← T] when v' ≠ v and v' ∈ Var(T) because ∀ w. P[v' ← w]

is not a syntactic component of ∀ v'. P. However they have the same shapes and more

variables of T appear in ∀ v'. P than in ∀ w. P[v' ← w]. Thus we define the height

η(P,T) of a predicate P with respect to a term T by structural induction as follows: η(A,

T) = 0; η(¬P, T) = 1 + η(P, T); η(P1 ∧ P2, T) = η(P1 ∨ P2, T) = η(P1 ⇒ P2, T) =

1 + max(η (P1, T), η (P2, T)); η (∃ x. P, T) = η (∀ x. P, T) = 1 + η (P, T) + |

Var(P) ∩ Var(T) |. For a given term T, the proof is by induction on the height η(P, T)

of P. This is long but not difficult. Therefore we only treat few typical cases :

• (T 1 = T2)[v ← T] = (T 1[v ← T] = T2[v ← T]) [by (118.4)] = {s ∈ S :

T 1[v ← T] (s) = T 2[v ← T] (s)} [by (123.1) and definition of δ] = {s ∈ S :

T1(s[v ← T(s)]) = T2(s[v ← T(s)])} [by (127)] = {s ∈ S : s[v ← T(s)] ∈ (T1 = T2)}

[since (T1(s[v ← T(s)]) = T2(s[v ← T(s)])) ⇔ (s[v ← T(s)] ∈ {s' : T1(s') = T2(s')}) ⇔

(s[v ← T(s)] ∈ (T1 = T2)), by (123.1)].

• (P1 ⇒ P2)[v ← T] = (P1[v ← T] ⇒ P2[v ← T]) [by (118.9)] = (S - P1[v ← T])

∪ P2[v ← T] [by (123.6)] = (S - {s ∈ S : s[v ← T(s)] ∈ P1}) ∪ {s ∈ S : s[v ← T(s)] ∈

P2} [by induction hypothesis (128)] = {s ∈ S : s[v ← T (s)] ∉ P1} ∪ {s ∈ S :

s[v ← T(s)] ∈ P2} = {s ∈ S : s[v ← T(s)] ∈ (S - P1) ∪ P2} = {s ∈ S : s[v ← T(s)]

∈ (P1 ⇒ P2)} [by (123.6)].

• (∀ v. P)[v ← T] = ∀ v. P [by (118.11)] = {s ∈ S : ∀ d ∈ D . s[v ← d] ∈ P} [by

(123.8)] = {s ∈ S : ∀ d ∈ D . (s[v ← T(s)])[v ← d] ∈ P} [since (s[v ← d'])[v ← d] =

s[v ← d] by (121)] = {s ∈ S : s[v ← T(s)] ∈ ∀ v. P} [by (123.8)].

• if v' ≠ v and v' ∉ Var(T) then (∀ v'. P)[v ← T] = ∀ v'. (P[v ← T]) [by (118.11)]

= {s ∈ S : {s[v' ← d] : d ∈ D} ⊆ P[v ← T]} [by (123.8)] = {s ∈ S : {s[v' ← d] : d ∈

D} ⊆ {s ∈ S : s[v ← T(s)] ∈ P}} [by induction hypothesis (128) since η(P, T) < η(∀ v'.

P, T)] = {s ∈ S : ∀ d ∈ D . ((s[v' ← d])[v ← T (s)] ∈ P)} = {s ∈ S : ∀ d ∈ D .

((s[v ← T (s)])[v' ← d] ∈ P)} [by (121) since v ≠ v'] = {s ∈ S : s[v ← T (s)] ∈

(∀ v'. P)} [by (123.8)].

• if v' ≠ v and v' ∈ Var(T) then (∀ v'. P)[v ← T] = ∀ w. (P[v' ← w])[v ← T] [by

(118.11)] = {s ∈ S : s[v ← T(s)] ∈ ∀ w. (P[v' ← w])} [by induction hypothesis (128)

since v' ∈ Var(T) and w ∉ {v} ∪ Var(T) ∪ Var(P) imply Var((∀ v'. P)) ∩Var(T) =

(V a r (∀ w . (P [v ' ← w])) ∩ V a r (T)) ∪ { v ' } w h e n c e

η (∀ w. (P[v' ← w]),T) < η (∀ v'. P, T) since η (P[v' ← w], T) = η (P, T) and

v' ∉ V a r (∀ w. (P[v ' ← w])) ∩ V a r (T)] = {s ∈ S : s[v ← T (s)] ∈ {s' ∈ S :

{ s ' [w ← d] : d ∈ D } ⊆ P [v ' ← w] }} [by (123.8)] = {s ∈ S : ∀ d ∈ D .

s[v ← T (s)][w ← d] ∈ P[v' ← w]}} = {s ∈ S : ∀ d ∈ D . s[v ← T (s)][w ← d] ∈

{s' ∈ S : s'[v' ← w(s')] ∈ P}} [by induction hypothesis (128) since η(P[v' ← w], T)

< η((∀ v'. P), T) because w ∉ Var (P) ∪ Var (T) whence η(P[v' ← w], T) ≤
η(P, T)] = {s ∈ S : ∀ d ∈ D . s[v ← T(s)][w ← d][v' ← w(s[v ← T(s)][w ← d])] ∈

P} = {s ∈ S : ∀ d ∈ D . s[v ← T(s)][w ← d][v' ← d] ∈ P} [by (122.1) and (121)] =

{s ∈ S : ∀ d ∈ D . s[v ← T(s)][v' ← d][w ← d] ∈ P} [by (121) since w ≠ v'] = {s ∈ S :

∀ d ∈ D . s[v ← T(s)][v' ← d] ∈ P} [since w ∉ Var(P)] = {s ∈ S : s[v ← T(s)] ∈ (∀ v'.

P)} [by (123.8)]. �

7 .4 The link between syntax and semantics:
soundness and completeness issues in Hoare
logic

In paragraph § 7.2 we have defined the language HL of Hoare logic and then the
provability |- Th ∪ H F of formulae F. In paragraph § 7.3 we have defined the semantics

of HL that is the truth F of formulae F. We now investigate the relationship between

these two definitions that is the soundness of provability (is a provable formula always

true ?) and the completeness of provability (is a true formula always provable ?). The

deductive system H is sound for HL (provided all theorems in Th are true). The

question of completeness is more subtle because this depends upon which class of

interpretations I (induced by the semantics (D, V) of the basis ∑) is considered. Hence

we can only prove relative completeness, a notion first delineated by WAND [1978] and

COOK [1978].

7.4 .1 Soundness of Hoare logic

Hoare deductive system H is sound: if we have proved {P} C {Q} from Th using

H then C is partially correct with respect to specification <P, Q> (assuming that all T in

Th are true) :

THEOREM COOK [1978] Soundness of Hoare logic (129)
(∀ T ∈ Th. I[T] = tt) ∧ (|- Th ∪ H {P} C {Q}) ⇒ {P} C {Q}

The proof of (129) shows that Hoare's formal proof system H simply consists in

applying theorem (76) within the framework of the restricted logical language HL. This

proof can be done by a theorem prover (SOKOLOWSKI [1987]).

Proof
Assuming ∀ T ∈ Th. I[T] = tt and given a proof H0, …, Hn of {P} C {Q}, we

prove by induction that for all i = 0, …, n we have I[Hi] = tt, so that in particular {P} C

{Q} is true:

• If Hi ∈ Th, then by hypothesis I[Hi] = tt.

• If Hi is an axiom of H, then three cases have to be considered for any given P ∈

Pre :

- For a skip axiom (96), {P} skip {P} obviously holds by (76.1),

- For a backward assignment axiom (97), we have {P[X ← E]} X := E {P} =

{{s ∈ S : s[v ← E(s)] ∈ P}} X := E {P} [by (128)] which is true by (76.2),

- For a forward assignment axiom (103), we have ∃ X'. P[X ← X'] ∧ X =

E[X ← X'] = {s ∈ S : ({s[X' ← d] : d ∈ D} ∩ P[X ← X'] ∧ X = E[X ← X']) ≠ ø}

[by (124) and (123.7)] = {s ∈ S : ({s[X' ← d] : d ∈ D} ∩ {s ∈ S : s[X ← s(X')] ∈ P} ∩

{s ∈ S : s(X) = E(s[X ← s(X')])}) ≠ ø} [by (123.4), (128), (122.1) and (127)] = {s ∈

S : ∃ d ∈ D . s[X ← d] ∈ P ∧ s(X) = E(s[X ← d])} whence {P} X := E {∃ X'. P[X ←

X'] ∧ X = E[X ← X']} = P  X := E ⊆ S x {s ∈ S : ∃ d ∈ D . s[X ← d] ∈ P ∧ s(X) =

E(s[X ← d])} [by (124)] = {s[X ← E(s)] : s ∈ P} ⊆ {s ∈ S : ∃ d ∈ D. s[X ← d] ∈ P ∧

s(X) = E(s[X ← d])} [by (19.2)] = ∀ s ∈ P. ∃ d ∈ D. s[X ← E(s)][X ← d] ∈ P ∧ s[X ←

E(s)](X) = E(s[X ← E(s)][X ← d]) = ∀ s ∈ P. ∃ d ∈ D. s[X ← d] ∈ P ∧ E(s) = E(s[X ←

d]) which is obviously true by choosing d = E(s).

- For a random assignment axiom we have {P} X := ? {∃ X. P} = {P} X := ? {{s

∈ S : ({s[X ← d] : d ∈ D} ∩ P) ≠ ø}} [by (123.7)] = {P} X := ? {{ s ∈ S : ∃ d ∈ D.

s[X ← d] ∈ P}} = {P} X := ? {{s'[X ← d'] : d' ∈ D ∧ s' ∈ P}} [by (121) since we let

s' = s[X ← d] and d' = s(X)] = tt by (76.3).

• If Hi follows from an inference of H, then four cases have to be considered for any

given P1, P2, P, P', Q, Q' ∈ Pre :

- For a composition inference, assuming {P1} C1 {P2} and {P2} C2 {P3} by

induction hypothesis, we have {P1} (C1; C2) {P3} = tt by (76.4),

- For a conditional inference (100), assuming {P ∧ B} C1 {Q} and {P ∧ ¬B}

C2 {Q} by induction hypothesis, we have {P ∩ B} C1 {Q} and {P ∩ ¬B} C2 {Q} by

(123.4) and (123.3) hence {P} (B → C1 ◊ C2) {Q} is true by (76.5),

- For a while inference (101), assuming {P ∧ B} C {P}, we have {P ∩ B} C {P}

[by (123.4)] = {P} (B * C) {P ∩ ¬B} [by (76.6)] = {P} (B * C) {P ∧ ¬B} [by

(123.4) and (123.3)],

- For a consequence inference (102), assuming (P ⇒ P'), {P'} C {Q'} and (Q' ⇒

Q) by induction hypothesis, we have P ⊆ P' and Q' ⊆ Q by (123.6) hence {P} C {Q}

by (76.7). �

7.4 .2 Relative completeness of Hoare logic

7 . 4 . 2 . 1 Completeness and incompleteness issues for Hoare logic

Having defined the syntax Com of programs [see (1) with later complements (91)

for expressions and (92) for Boolean expressions] parametrized by a basis <Cte, Fun,

Rel, #> [(84), (85)], we have approached Hoare's ideas on formal definition of the

partial correctness of programs C ∈ Com, in essentially two different ways:

• From the semantic point of view of computer scientists (corresponding to the

point of view of mathematicians using normal everyday set-theoretic apparatus where

objects are thought of in terms of their representation, e.g. sets are understood as

collections of objects), we have assumed that the semantics <D, V> of the basis <Cte,

Fun, Rel, #> is given (119), from which we have defined the sets S of states (120), the

set Ass = P(S) of assertions as well as the semantics E = I[E] (122) of expressions E

(91) and the semantics B = I[B] (123) of Boolean expressions B (92), whence the

operational semantics op[C] (13) and then the relational semantics C = I[C] [(18), (19)]

of programs C ∈ Com. This leads to the introduction of Hoare's partial correctness

specifications:

HS(I) = Ass x Com x Ass Hoare's specifications (130)

where the dependence upon the interpretation I is a shorthand for denoting the

dependence upon the basis <Cte, Fun, Rel, #> and its semantics <D, V>. A triple <p,

C, q> of HS(I) should be understood as specifying that p is the input specification and q

is the output specification of program C where p and q are sets of states specifying all

possible combinations of values of the variables. The set HS(I) has been partitioned

(22) into a subset representing truth (i.e. which programs C are partially correct with

respect to which specifications):

HS(I)tt = {<p, C, q> : p ∈ Ass ∧ Hoare's valid specifications (131)

 C ∈ Com ∧ q ∈ Ass ∧ {p}C{q} = tt}

and a subset representing falsity (i.e. all we know not to be true about the partial

correctness of programs):

HS(I)ff = {<p, C, q> : p ∈ Ass ∧ Hoare's invalid specifications (132)

 C ∈ Com ∧ q ∈ Ass ∧ {p}C{q} = ff}

Within this framework, we have explained several (equivalent) partial correctness proof

methods by decomposition of the proof that {p}C{q} = tt into simpler elementary

proofs based upon stepwise induction (45) as in NAUR [1966] and FLOYD [1967a] or

compositional induction (49), (76) as in HOARE [1969]. In this development, we have

already used a formalized language with only vestigial traces of English but without any

linguistic constrain (for example we felt free to use second order sentences [such as

(19.8.b)] and regretfully to misuse English).

• Then we have defined the language Hcf (89) of Hoare logic for describing partial

correctness (or incorrectness) of programs. By choosing the particular language Hcf,

we deliberately limit our means of expression. Hence we have adopted the syntactical

point of view of computer scientists (corresponding to the use of specific formal

languages by logicians, where objects are thought of in terms of their denotation and

rewriting manipulations). In this framework, we can define veracity (and falsehood) of

partial correctness formulae by two disjoint sublanguages Hcftt ⊂ Hcf (a n d

Hcfff ⊂ Hcf). We have used two methods to specify the sublanguage Hcftt, one

defining “truth” and the other “provability”:

• Following the semantic development of logic (also called “model theory”,

BARWISE [1977], part A), we have defined the semantics of Hcf, by means of an

interpretation I : Hcf → {tt,ff} (124) which depends upon the semantics <D, V> of the

basis <Cte, Fun, Rel, #> and induces a partition of the language Hcf into true and false

sentences:

Hcftt(I) = {H ∈ Hcf : I[H] = tt} Hoare's valid correctness formulae (133)

Hcfff(I) = {H ∈ Hcf : I[H] = ff} Hoare's invalid correctness formulae (134)

(Instead of writing I[H] = tt, logicians would use the satisfaction relation I |= H. The set

Hcftt(I) = {H ∈ Hcf : I |= H} of sentences of Hcf true in I would be called the theory of

I).

• Following the calculative development of logic (also called “proof theory”,

BARWISE [1977], part D), we have presented Hoare deductive system H (93) with its axiom

schemata (96) to (98) and rules of inference (99) to (102) and defined provability |- Th ∪

H H of formulae H ∈ H with respect to a set Th of postulates (95). Therefore we get the

subset of provable sentences (contrary to the ordinary situation in logic we do not define

refutable sentences since we are not interested in partial incorrectness ¬H):

 Hcfpr(Th) = {H ∈ Hcf : |- Th ∪ H H}. Hoare's provable (135)

correctness formulae

In order to compare syntactical objects Th, Hcfpr(Th), Hcftt(I) with semantic

objects I, HStt(I), we can map Hoare correctness formulae H = {P}C{Q} into triples

γ(H) = <I[P], C, I[Q]> of HS(I) and assume that the interpretation I is a model of

postulates Th, that is to say that every formula t of Th is true for interpretation I:

∀ t ∈ Th. I[t] = tt. Then we get the following picture of inclusion between these sets

(up to the correspondence γ):

Hcf
pr

(Th)

Hcf
t t
()IHcf

ff
()I

H S
tt
()IH S

ff
()I

The fact that Hcfpr(Th) ⊂ Hcftt(I) follows from the soundness theorem (129): every

provable formula is true. The inclusions γ(Hcftt(I)) ⊂ HS(I)tt and γ(Hcfff(I)) ⊂ HS(I)ff

follow from the interpretation (123) of correctness formulae. Now, the incompleteness /

completeness question is whether these inclusions are strict or not :

- ∀I. HS(I)tt ⊆ γ(Hcftt(I)): is every true fact about the partial correctness of

programs expressible in the restricted language Hcf ?

- ∀I. Hcftt(I) ⊆ Hcfpr(Th): is every true formula of Hcf provable by the deductive

system H ?

In both cases, and without additional hypotheses, the answer is no. Intuitively, the

origin of these incompleteness problems is that there exist programs C ∈ Com

constructing (input-output) relationships between objects of the domain D of data that,

under the assumption that the programming language Com and first-order formulae Pre

must have the same signature <Cte, Fun, Rel, #>, cannot be described by a predicate

of Pre. To illustrate the phenomenon, we shall use “abacus arithmetic” a limited version

of usual arithmetic with 0, Su(x) = x + 1 and Pr(x) = x - 1 (with 0 - 1 = 0) as only non-

logical symbols.

7 . 4 . 2 . 2 Abacus arithmetic

The purpose of this section is to show that addition cannot be defined by some

formula of abacus arithmetic PreA defined by (88) where the basis is A = <Cte, Fun,

Rel, #> with Cte = {0}, Fun = {Pr, Su}, Rel = ø, #(Pr) = #(Su) = 1 for interpretation
IA defined by (123) where D = N, V[0] = 0,V[Pr](x) = (x = 0 → 0 ◊ x -N 1) and

V [Su](x) = x +N 1. It is also shown that the theory of abacus arithmetic (i.e.

PreA,tt(IA) = {P ∈ PreA : I[P] = tt}) is decidable, that is there is an algorithm which

given P ∈ PreA will always terminate and answer “tt” if P ∈ PreA,tt(IA) and answer “ff”

if this is not true. We will also show that abacus arithmetic has nonstandard

interpretations.

7 . 4 . 2 . 2 . 1 Inexpressibility of addition in abacus arithmetic

LEMMA ENDERTON [1972] Disjunctive normal form (135)

A quantifier-free predicate P and its negation ¬P have equivalent disjunctive normal

forms P∨∧ and P∨∧ (i.e. I[P] = I[P∨∧] and I[¬P] = I[P∨∧] for all interpretations I)

such that:

P∨∧ = ∨ i = 1, m ∧ j = 1, n Pij P∨∧ = ∨ k = 1, p ∧ l = 1, q Pkl

where the Pij and Pkl are atomic formulae or negations of atomic formulae.

Proof

By induction on the syntactical structure of P:

• If P is an atomic formula A then P∨∧ = ∨ i =1, 1 ∧ j = 1, 1 A and P∨∧ =

∨ k = 1 , 1 ∧ l = 1 , 1 ¬ A .

• If P is ¬Q then P∨∧ = Q∨∧ and P∨∧ = Q∨∧.

• If P is (Q ∨ R) then P∨∧ = (Q∨∧ ∨ R∨∧) whereas P∨∧ = ¬(Q ∨ R) = ¬Q ∧ ¬R =

(Q∨∧ ∧ R∨∧) = ((∨ i = 1, m ∧j = 1, n Qij) ∧ (∨ k = 1, p ∧ l = 1, q Rkl)) = ∨ r = 1, n*m Tr with

Ti+m*(k-1) = (∧ j = 1, n Q ij ∧ ∧ l = 1, q Rkl) for i = 1, …, m; k = 1, …, p; using a

generalized form of the distributive law ((P1 ∨ P2) ∧ (P3 ∨ P4)) = (P1 ∧ P3) ∨

(P1 ∧ P4) ∨ (P2 ∧ P3) ∨ (P2 ∧ P4) .

• If P is (Q ∧ R) = ¬(¬Q ∨ ¬R) or P is (Q ⇒ R) = (¬Q ∨ R) then we use the

previous transformations. �

LEMMA ENDERTON [1972] Quantifier elimination (136)

Any predicate P ∈ PreA is equivalent to a quantifier-free predicate P' ∈ PreA (i.e.

IA [P] = IA [P']), (with no occurrence of the Pr symbol or of terms with two

occurrences of the same variable).

Proof

Generalizing the simultaneous substitution P[x ← t] of term t for all occurrences

of variable x in predicate P, we can define on the model of (118) the substitution

P[F' ← F] of F for all occurrences of F' in predicate P. We obtain P' from P by

repeated application of the following transformations (such that IA[P] = IA[P']):

• We first eliminate the function symbols Pr from P by repeated transformation of P

into P[Pr(t) ← x] ∧ (((t = 0) ∧ (x = 0)) ∨ (¬(t = 0) ∧ (Su(x) = t))), where x ∈ Var -

Var(P) is a fresh variable, as long as some term Pr(t) appears within P.

• Then we eliminate universal quantifiers ∀ v. Q from P by repeated transformation

of P into P[∀ v. Q ← ¬(∃ v. ¬Q)].

• Finally we eliminate all subformulae ∃ x. Q from P, starting from the innermost

ones (so that Q can be assumed to be quantifier-free), by repeated application of

transformations, in the following order:

- Q is replaced by its disjunctive normal form ∃ x. Q = ∃ x. Q∨∧ = ∃ x. ∨ i = 1, m ∧ j

= 1, n Qij = ∨ i = 1, m (∃ x. ∧ j = 1, n Qij) so that in the following we can assume that Q

is of the form ∧ j = 1, n Qij with all Qij being an atomic formula A or the negation ¬A

of an atomic formula A.

- ∃ x. ∧ i = 1, n Qi where x does not appear in Qk, 1 ≤ k ≤ n is replaced by Qk ∧

(∃ x. ∧ i = 1, k-1 Qi ∧ ∧ j = k+1, n Qj). Afterwards, using the commutativity of =, all Qi

can be assumed to be of the form A or ¬A where A is (Sup(x) = Suq(t)) and t is 0, x or

another variable y ≠ x, with Su0(t) = t and Sup+1(t) = Sup(Su(t)).

- All (Sup(x) = Suq(x)) are replaced by (0 = 0) if p = q and by ¬(0 = 0) when p ≠
q whence no term has two occurrences of the same variable so that in the following we

can assume that t is 0 or y≠x:

. If all Qi are of the form ¬(Sup(x) = Suq(t)) then ∃ x.∧ i = 1, n Qi assert than we

can find a value of x different from a finite number of given values, so that ∃ x. ∧ i = 1, n

Qi is replaced by (0 = 0) representing truth.

. Else some Qk is of the form (Sup(x) = t') where t' is a term of the form Sur(t)

with t = 0 or t = y ≠ x so that intuitively x can be chosen as (t' - p) ≥ 0. Therefore Qk

is replaced by (0 = 0) if p = 0 else by (¬(t' = 0) ∧ ¬(Su(t') = 0) ∧ … ∧ ¬(Sup-1(t') =

0)) expressing that x ≥ 0 whereas all terms Qi, i = 1, …, n, i ≠ k, which are of the form

¬(Suq(x) = ti) or (Suq(x) = ti), are respectively replaced by ¬(Suq(t') = Suq(ti)) or

(Suq(t') = Suq(ti)) since intuitively x = (t' - p) ≥ 0 and q + x = ti is equivalent to x = (t' -

p) ≥ 0 and q + t ' = ti + p. Since formula Q no longer contains variable x, ∃ x. Q can be

replaced by Q. �

LEMMA ENDERTON [1972] Definability in abacus arithmetic (137)

A subset E ⊆ N is definable by P ∈ PreA (i.e. ∃ v ∈ Var. E = {s(v) ∈ N : s ∈ IΑ[P]}) if

and only if it is finite or cofinite (i.e. N - E is finite).

Proof

Let P' be the quantifier-free predicate equivalent to P (136) in disjunctive normal

form (135). If v ∉ Var(P') then ∀ d ∈ N. (s ∈ IA[P'] ⇔ s[v ← d] ∈ IA[P']) whence

E = {s(v) ∈ N : s ∈ IΑ[P']} = N is cofinite so that in the following we can assume that

v occurs free in P'. Then we proceed by induction on the syntactical structure of P'. If

P' is an atomic formula Aij, it is of the form (Sup(v) = Suq(t)) where t is 0 or x ≠ v

whence if t is 0 then E = ø (when q < p) or E = {q - p} (when q ≥ p) is finite else t is x

≠ v and E = {v ∈ N : ∃ x ≥ 0. p + v = q + x} = (p ≥ q → N ◊ {v ∈ N : v ≥ (q - p)})

is cofinite. If P' is a negated atomic formula Aij then E is the complement of a finite or

cofinite set hence is cofinite or finite. If P' is a conjunction ∧ j = 1, n Aij of atomic

formulae Aij or negations Aij of atomic formulae then E is the intersection of finite or

cofinite sets. If all are cofinite then it is cofinite else it is finite. Finally if P' is a

disjunction ∨ i = 1, m ∧ j = 1, n Aij then E is the union of finite or cofinite sets hence

is finite or cofinite. �

LEMMA ENDERTON [1972] Inexpressibility of addition in abacus arithmetic (138)

There is no formula P ∈ PreA equivalent to A + B = C (more precisely such that IA[P] =

{s ∈ S : (s(A) + s(B)) = s(C)}).

Proof

Otherwise the set of even naturals would be definable by ∃ k. (k + k = v) (more

precisely ∃ k. P[A ← k][B ← k][C ← v]), in contradiction with (137). �

Let ComA be the language (1) with the abacus arithmetic A as basis. Every partial

recursive function (such as addition of natural numbers) can be computed by some

command C ∈ ComA (LAMBEK [1961]; BOOLOS & JEFFREY [1974], § 7). However (138)

shows that addition is not expressible in PreA. It follows that ComA has a greater

expressive power than PreA. This is the source of incompleteness problems with Hoare

logic.

7 . 4 . 2 . 2 . 2 Decidability of abacus arithmetic

LEMMA ENDERTON [1972] Decidability of abacus arithmetic (139)

The theory PreA,tt(IA) = {P ∈ PreA : I[P] = tt} of abacus arithmetic is decidable.

Proof

The algorithm used in the proof of (136) transforms a predicate P ∈ PreA into an

equivalent quantifier free formula P' with variables v1,…,vn. Using the same algorithm

we can transform ¬∃ v1. … ∃ vn. ¬P' into a quantifier free formula P" with no

variables and atoms of the form (Sum(0) = Sun(0)) which are replaced by tt if m=n and

ff otherwise. Then the answer is obtained using truth tables (tt ∧ tt = tt, tt ∧ ff = ff,

…). �

The decidability of PreA,tt(IA) shows that the fact that true correctness formulae in

Hcftt(I) are not provable by H does not necessarily come from unprovability problems

in PreA that would be inherited in Hoare logic through the consequence rule.

7 . 4 . 2 . 2 . 3 Nonstandard interpretations of abacus arithmetic

LEMMA BERGSTRA & KLOP [1984] Nonstandard interpretations of abacus arithmetic (140)

The nonstandard interpretation I'A defined by D' = ({0} x N) ∪ (N+ x Z), V'[0] = <0,

0>, V'[Pr](<i, x>) = (i = 0 → (x = 0 → <0, 0> ◊ <0, x -N 1>) ◊ <i, x -Z 1>) and

V'[Su](x) = (x = 0 → <0, x -N 1> ◊ <i, x -Z 1>) has the same theory than the standard

interpretation IA i.e. is such that PreA,tt(I'A) = PreA,tt(IA).

This is an extension of the standard naturals: <0, 0> ≡ 0 < <0, 1> ≡ Su(0) < <0, 2> ≡ Su2(0)

< … < … < <i, -2> < <i, -1> < <i, 0> < <i, 1> < <i, 2> < … < … < <j, -1> < <j, 0> < <j, 1> <

… by strictly greater nonstandard infinite numbers, organized by groups isomorphic to

integers (however I'A is not a model of Peano arithmetic with addition and

multiplication, because there are too few nonstandard numbers, see BOOLOS & JEFFREY

[1974], § 17) .

Proof of lemma (140)
If P' ∈ PreA and s ∈ IA [P'] then obviously s' = λ v. <0, s(v)> ∈ I'A [P'].

Reciprocally, if s' ∈ I'A[P'] then we define s ∈ IA[P] where P is equivalent to P',

quantifier free and in disjunctive normal form ∨ i = 1, m ∧ j = 1, n Pij, with the Pij being

atoms Q of the form (Sum(0) = Sun(0)), (Sum(x) = Sun(0)), (Sum(x) = Sun(y)) with

x ≠ y or their negation ¬Q [(136), (137)]. One of the

∧ j = 1, n Pij hence all Pij must be true in s' and we define s so that all Pij are also true in

s. If x ∈ VP = ∪ j = 1, n Var(Pij) and s'(x) = <k, p> then s(x) = (k = 0 → p ◊ (k * ω) + p

- µ) else s(x) = 0 where ω is a natural greater than [max({p : x ∈ VP ∧ s'(x) = <k, p>}) -

µ] + κ + 1, µ = min({0} ∪ {p : x ∈ VP ∧ s'(x) = <k, p>}) and κ ∈ N+ is greater than all n

such that the term Sun(0) appears in P. Hence the idea is to map finitely many finite

segments of groups of nonstandard numbers into disjoint segments of N in the same

order beyond the finite initial segment used to do the standard computations. Then, the

truth of (Sum(0) = Sun(0)) or its negation does not depend upon the states s' and s. If

(Sum(x) = Sun(0)) is true in s' then s'(x) = <0, n - m> and n - m ≥ 0 so that it is also

true for s(x) = n - m. If ¬(Sum(x) = Sun(0)) is true in s' then s'(x) = <k, p> with

either k = 0 and m+p ≠ n in which case it is also true for s(x) = p or else k > 0 in which

case m + s(x) = m + (k * ω) + p - µ > κ > n. If (Sum(x) = Sun(y)) is true in s' then

s'(x) = <k, p> and s'(y) = <k, q> with m + p = n + q. Therefore it is also true of s(x) =

(k * ω) + p - µ and s(y) = (k * ω) + q - µ. If ¬(Sum(x) = Sun(y)) is true in s' then

s'(x) = <k, p> and s'(y) = <l, q> with k = l and m + p ≠ n + q in which case m + s(x) =

m + (k * ω) + p - µ ≠ n + (k * ω) + q - µ = n + s(y) or else k ≠ l in which case m + s(x)

= n + s(y) would imply ω ≤ (k - l) * ω = m - n + (q - µ) - (p - µ) ≤ κ + (q - µ) < ω. �

No predicate of the standard theory PreA,tt(IA) can distinguish nonstandard numbers

from the standard naturals. Whence partial correctness is unchanged when considering

nonstandard interpretations. For example {0 = 0} C {X = 0} with C = (¬(X = 0) *

X := Pr(X)) is true in the above nonstandard interpretation since C is either started

with some value <0, p> of X and terminates with the value <0, 0> or else X is initially <i,

p> and takes successive values <i, p>, <i, p - 1>, <i, p - 2>, … so that execution of C

never terminates (HITCHCOCK & PARK [1973]).

7 . 4 . 2 . 3 Incompleteness results for Hoare logic

We are now in a position to explain the incompleteness results for Hoare logic:

(a) the partial correctness of a program C may not be expressible by a formula

{P}C{Q} and, for the same reason that in certain cases first-order languages may be too

weak assertion languages, (b) some true formula {P}C{Q} may not be provable by the

deductive system H ∪ Th where Th is the set of all theorems P true in a given

interpretation and (c) Th may not be axiomatizable by a deduction system T so that

incompleteness problems for the first-order language Pre show in Hoare logic through

the consequence rule.

7 . 4 . 2 . 3 . 1 Unspecifiable partially correct programs

A program based upon abacus arithmetic PreA which computes addition by

successive increments is not provable in H since, by (138), addition is not expressible

in PreA. It follows that Hoare logic is incomplete since partial correctness of this

program is not expressible in Hcf:

THEOREM BERGSTRA & TUCKER [1982a] Unspecifiable partially correct programs (141)

∃ I. γ(Hcftt(I)) ≠ HS(I)tt

Proof

Choosing the basis A = <{0}, {Su, Pr}, ø, #> of abacus arithmetic IA, p = {s ∈ S

: s(X) = s(x) ∧ s(Y) = s(y)}, C = (¬(X = 0) * (Y := Su(Y); X := Pr(X))), q = {s ∈ S :

s(Y) = s(y) + s(x)} we have {p}C{q} hence <p, C, q> ∈ HS(I)tt whereas by (138) there

is no Q ∈ PreΑ such that IA[Q] = q whence no {P}C{Q} ∈ Hcf such that γ({P}C{Q}) =

<p, C, q>. �

The proof shows that “{X = x ∧ Y = y} (¬(X = 0) * (Y := Su(Y); X := Pr(X))) {Y = y

+ x}” is not expressible in abacus arithmetic PreA because addition cannot be

represented in this logic (138). Hence we can enrich the basis A with the addition

symbol + to get Presburger arithmetic PB = <{0}, {Su, Pr, +}, ø, #>. But then “{X =

x ∧ Y = y} (Z := 0; (¬(X = 0) * (Z := Z + Y; X := Pr(X))) {Z = x * y}” is not

expressible because multiplication cannot be represented in this logic (ENDERTON [1972],

Co.32G). Presburger arithmetic has no sound and complete Hoare logic for its while

programs (COOK [1978], BERGSTRA & TUCKER [1982a]) although one can be found when

restricting the class of considered programs as in CHERNIAVSKY & KAMIN [1977]. Hence we

must enrich the basis PB with the multiplication symbol * to get Peano arithmetic PE

<{0}, {Su, Pr, +, *}, ø, #> (but then by Gödel second incompleteness theorem, Peano

arithmetic IPE is no longer first-order axiomatizable). This situation was first described

by HAREL [1979], MEYER & HALPERN [1980] [1981], BERGSTRA, TIURYN & TUCKER [1982],

MEYER [1986]: the partial correctness of a program C on basis Σ can always be expressed

by a Hoare correctness formula {P}C{Q}with predicates P, Q ∉ PreΣ using extra

symbols of Peano arithmetic PA = (0, Su, +, *, <) which may not appear in the

programs and whose semantics may not be expressed in the language PreΣ. This is

because the functions and relations computed by the program are recursive, hence can

be coded in arithmetic (JOHNSTONE [1987], § 4). But then incompleteness problems in

PrePA appear through the consequence rule.

A similar incompleteness argument can be given using the fact that the transitive

closure of a first-order expressible binary relation is computable by a while-program but

may not be first-order expressible (GUREVICH [1984], GAIFMAN & VARDI [1985]). Then

transitive closures (IMMERMAN [1983]) or least fixpoints (AHO & ULLMAN [1979]) can be

turned into logical operators. Such extented first-order logics are studied in GUREVICH

[1985] [1988].

7 . 4 . 2 . 3 . 2 Unprovable partially correct programs

It may also happen that partial correctness can be specified by a Hoare formula

{P}C{Q}, but may not be provable using Hoare's deductive system H [(96) to (102)],

even with the help of all true postulates Th = {P ∈ Pre : I[P] = tt} in the intended

interpretation I. As independently shown by GERGELY & SZÖTS [1978] and WAND [1978] it

might be the case that given P, Q ∈ Pre the proof of { P }(B * C){ Q } by (77) would

involve an intermediate assertion i which cannot be expressed by a first order predicate:

¬(∃ P ∈ Pre. I[P] = i). In this case, the proof using (77) cannot be carried out into H

because intermediate (and in particular loop) invariants are not first-order definable.

Otherwise stated, intermediate states in the computation of a program (e.g. with

recursive procedures) are often much more complicated than the initial and final states

involved in paragraph § 7.4.2.3.1. Hence the language of first order logic Pre may be

too weak to describe precisely enough the set of intermediate states that is computed by

a program.

7 . 4 . 2 . 3 . 2 . 1 Incompleteness of Hoare logic for an interpretation

with decidable first-order theory

A program based upon abacus arithmetic PreA which involves a loop invariant I

expressing addition is not provable in H since, by (138), the invariant I is not

expressible in PreA (BERGSTRA & KLOP [1984]). It follows that Hoare logic is incomplete:

THEOREM GERGELY & SZÖTS [1978], WAND [1978] Local incompleteness of Hoare

logic (142)

∃ I. Hcftt(I) ≠ Hcfpr(Th)

Proof (BERGSTRA & KLOP [1984])

Let us choose abacus arithmetic PreA and define P = ((X = x) ∧ (Y = 0)), C =

(¬(X = 0) * C'), C' = (X := Pr(X); Y := Su(Y)) and Q = (Y= x).

The proof of {P}C{Q} in H must involve the while inference rule (101) with

some I such that {I ∩ ¬(X = 0)}C'{I} and the consequence rule (102) so that (P ⇒ I)

and ((I ∧ (X = 0)) ⇒ Q). Then by the soundness theorem (129), we have { I ∩ ¬(X=0)

}C'{ I }, whence {<s, s[X ← s(X) -0 1] [Y ← s(Y) + 1] : s ∈ I ∧ (s(X) ≠ 0) } ⊆

{<s', s">: s" ∈ I} by (19.2), (19.4) and (22) so that by (123) we must have:

(a) {s ∈ S : (s(X) = s(x)) ∧ (s(Y) = 0)} ⊆ I,

(b) {s[X ← s(X) - 1][Y ← s(Y) + 1] : s ∈ I ∧ (s(X) ≠ 0)} ⊆ I,

(c) {s ∈ I : s(X) = 0} ⊆ {s ∈ S : s(Y) = s(x)}.

Let us show that i = {s ∈ S : s(x) = s(Y) + s(X)} is the unique solution I of (a), (b), (c).

If s[X ← 0][Y ← s(X) + s(Y)] ∈ I then 0 ≤ s(X) + s(Y) and by (c) we have s(X) +

s(Y) = s(x) whence s ∈ i. By (b), we have s[X ← n + 1][Y ← s(X) + s(Y) - (n + 1)] ∈

I ∧ n + 1 ≤ s(X) + s(Y) which implies s[X ← n][Y ← s(X) + s(Y) - n] ∈ I ∧ n ≤ s(X) +

s(Y). It follows, by induction, that m ≥ n ≥ 0 implies (s[X ← m][Y ← s(X) + s(Y) -

m] ∈ I ∧ m ≤ s(X) + s(Y)) ⇒ (s[X ← n][Y ← s(X) + s(Y) - n] ∈ I ∧ n ≤ s(X) + s(Y)) ⇒

(s ∈ i). When m = s(X) + s(Y) ≥ n = s(X) ≥ 0, we get (s[X ← s(X) + s(Y)][Y ← 0] ∈

I) ⇒ (s ∈ I) ⇒ (s ∈ i). Moreover, if s ∈ i then s' = s[X ← s(X) + s(Y)][Y ← 0] is such

that s'(X) = s(Y) + s(X) = s(x) = s'(x) and s'(Y) = 0 so that by (a) we have s ∈ I

whence (s ∈ i) ⇒ (s ∈ I) ⇒ (s ∈ i). In conclusion i = I.

Now, by (138), an invariant I expressing that x = (Y + X) is not expressible in

PreA . �

The same way, ABRAMOV [1981] proves that an invariant I expressing that A + B > C is

needed to prove {A > C} (A > 0 * (A := Pr(A); B := Su(B))) {B > C} whereas

ABRAMOV [1984] shows that I is not expressible in the first-order logic with basis <{0},

{Su, Pr}, {>}, #>.

7 . 4 . 2 . 3 . 2 . 2 Incompleteness of Hoare logic for an interpretation

with undecidable first-order theory

As above (§ 7.4.2.3.1) we could enrich the predicate language Pre with Peano

arithmetic which would allow more expressive predicates. However, as shown by COOK

[1978], § 6, p. 85, this would not solve the completeness problem: if the halting problem

is undecidable for interpretation I of Com then the set of valid Hoare formulae of the

form {true}C{false}, C ∈ Com is not recursively enumerable hence cannot be included

in the recursively enumerable set of provable Hoare formulae in any formal deductive

system Th ∪ H. The rest of this paragraph is devoted to a detailed explanation of the

argument. (Another proof of the local incompleteness of Hoare logic (142) not referring

to an interpretation I whose first-order theory Th is decidable is given by LEIVANT &

FERNANDO [1987], Theorem 1).

7 . 4 . 2 . 3 . 2 . 2 . 1 The set of provable Hoare formulae is recursively

enumerable

A set E is recursive if there is a terminating algorithm to check that x ∈ E. A set E

is recursively enumerable if there is an algorithm that list elements of E in some order

(of course since E may be infinite, the list may never be completed but any particular

element of E will appear in the list after some finite length of time).

LEMMA Recursive enumerability of provable Hoare formulae (143)

Hcf is recursively enumerable. If Th is recursive then Hcfpr(Th) is recursively

enumerable.

Proof

Computer scientists know that symbols, finite lists of symbols, finite lists of lists

of symbols, etc… can be coded in a machine into an integer in binary representation and

that from this representation it is possible to recover the original object. Gödel

numbering is a similar idea. An odd code σi is associated with the n basic logical or

programming symbols σi : = = 3, ⇒ = 5, ∧ = 7, ∨ = 9, ¬ = 10, ∀ = 13,

∃ = 15, skip = 17, := = 19, ◊ = 21, …, σn = 2 n + 1 and with the constant

symbols ci = 2 (n + 1) + 10 i + 1 where Cte ⊆ {ci : i ∈ N}, function symbols fi

= 2 (n+1) + 10 i + 3 where Fun ⊆ {fi : i ∈ N}, relation symbols ri = 2(n+1) + 10 i

+ 5 where Rel ⊆ {ri : i ∈ N}, programming variables Xi = 2 (n+1) + 10 i + 7 where

Pvar ⊆ {Xi : i ∈ N} and logical variables xi = 2 (n+1) + 10 i + 9 where Lvar ⊆ {xi : i

∈ N} are assumed to be enumerable. Then a command or a predicate that is a finite

string σ1,…,σn of symbols will be coded as σ1,…,σn = 2 σ1 3 σ2 5 σ3 ... pn
σn

where pn is the nth prime number. Then a Hoare correctness formula {P}C{Q} will be

coded as {P}C{Q} = 2 P 3 C 5 Q. Then a proof in H that is a finite string

F1,…,Fm of predicates or Hoare correctness formulae will be coded as F1,…,Fm = 2
F1 3 F2 ... pm

Fm where pm is the mth prime number.

Now given an integer n it is possible to decode it. If n is odd then n is the code σ of a

symbol σ = n-1. Else it is even and can be decomposed into its prime factors n

=2n1 3n2 ... pm
nm. The decomposition is unique. If each ni is odd then n is the code

of a finite string of symbols n-1 = n1-1 n2-1 … nm-1. A syntactical recognizer will

tell if the string is a syntactically correct command or predicate. Else each ni can be

decomposed into its prime factors. If m = 3, n1-1 is a predicate P, n2-1 is a command

C and n3-1 is a predicate Q then n is the code of Hoare formula {P}C{Q}. Else it can

be checked if each ni is the code of a predicate or a Hoare formula Fi = ni
-1 so that n

is the code of a proof n-1 = n1-1 n2-1 … nm-1. Else n is not the Gödel number of a

proof, Hoare formula, predicate, command or symbol. Observe that the numbering is

injective: different objects have different Gödel numbers, coding and decoding is

recursive that is can be done by a terminating algorithm as informally described above

and the set of codes is recursive that is given any natural number n the algorithm

described above always terminates with the object n-1 coded by n or else answer that n

is not a Gödel number.

To do the recursive enumeration of Hcf, we just have to enumerate the natural

numbers, for each one we check if it is the Gödel number of a Hoare formula and then

output the corresponding formula. Since all Hoare correctness formulae H have a code

H ∈ N and no two different formulae can have the same code, no formula H can be

omitted in the enumeration.

To do the recursive enumeration of Hcfpr(Th), we just have to enumerate the

natural numbers, for each one we check that it is the Gödel number of a proof F1 ... Fn

and then test the validity of the proof using a recognizer to check that Fi is an instance of

an axiom scheme or combinatorially check that Fi follows from previous Fj by a rule of

inference of H or we algorithmically check that Fi ∈ Th (the algorithm exists since Th is

assumed to be recursive). If the proof is correct we output the formula Fn. �

7 . 4 . 2 . 3 . 2 . 2 . 2 The non-halting problem is not semi-decidable for

Peano arithmetic

 A problem P depending upon data d ∈ D with a logical answer "yes" or "no" is

decidable (or solvable) (written Decidable(P)) if and only if there exists an algorithm

(Decision(P) : D → {tt, ff}) which when given the data d always terminates with output

"tt" or "ff" corresponding to the respective answer "yes" or "no" to the problem. A

problem is undecidable (or unsolvable) when no such algorithm exists.

A problem P depending upon data d ∈ D with a logical answer "yes" or "no" is semi-

decidable (written Semi-decidable(P)) if and only if there exists an algorithm (Semi-

Decision(P) : D → {tt, ff}) which when given the data d always delivers an answer "tt"

in a finite amount of time when this the answer to the problem is "yes" but may answer

"ff" or may be blocked or else may not terminate when the problem for d has answer

"no".

The halting problem is the problem of deciding whether execution of a command C ∈

Com started in a given initial state s ∈ S terminates or not (for the interpretation I where

the basis <{0, 1}, {+, *}, ø, #> has its natural arithmetical interpretation on N).

LEMMA CHURCH [1936], TURING [1936] [1937] Undecidability of halting problem (144)

The halting problem is semi-decidable but undecidable. The non-halting problem is not

semi-decidable.

Sketch of proof

• Following HOARE & ALLISON [1972], we now briefly sketch a coarse proof for a

subset of Pascal. A Pascal program is a finite sequence of characters. It can be

represented in Pascal as a text file of arbitrary length. Obviously, we can write a Pascal

function I of type “function I(var F, D : text) : Boolean” such that if F is the text

of a Pascal function of type “function F(var D : text) : Boolean” and D is the text of

the data of F then I(F, D) is the result F(D) of executing function F with data D. I is

simply a Pascal interpreter written in Pascal but specialized in execution of Boolean

functions F with text parameter D.

• The semi-decision algorithm for the halting problem simply consists in executing

F with data D using interpreter I and answering “tt” upon termination:

function SemiDecisionOfHaltingProblem(var F, D : text);

var R : Boolean;

begin R := I(F, D); write('tt'); SemiDecisionOfHaltingProblem := True; end;

• To show that the halting problem is undecidable, we prove by reductio ad

absurdum that we cannot write a termination prover in Pascal that is a function of type

“function T(var F, D : text) : Boolean” such that for all texts F of Pascal functions

F of type “function F(var D : text) : Boolean” and all data D of type “text”, execution

of T with data F and D would always terminate and yield a result T(F, D) which is

“True” if and only if execution of I(F, D) i.e. of F with data D does terminate.

Assuming the existence of such a T, we let TC be the text : “function C(var F : text)

: Boolean; begin if T(F, F) then C := not I(F, F) else C := True end;”. Observe

that T(F, F) terminates and either T(F, F) = True and “C := not I(F, F)” terminates

or T(F, F) = False and “C := True” terminates so that T(TC, TC) is “True”. Then

I(TC, TC) = if T(TC, TC) then not I(TC, TC) else True = not I(TC, TC), a

contradiction. In conclusion there is no algorithm by means of which we can test an

arbitrary program to determine whether or not it always terminates for given data.

• The argument can be rephrased for Com using a coding of text files into natural

numbers (or for Turing machines, see rigorous details in BOOLOS & JEFFREY [1974], § 3 &

4; DAVIS [1977]; ENDERTON [1972], § 3.5; KLEENE [1967], § 43 or ROGERS [1967], § 1.9).

• The negation ¬P of a problem P depending upon data d ∈ D with a logical answer

“yes” or “no” is the problem of answering the opposite of P : ¬P(d) = (P(d) = “yes” →

“no” ◊ “yes”). We have Decidable(P) ⇔ [Semi-decidable(P) ∧ Semi-decidable(¬P)]. ⇒ is

obvious. For ⇐ define Decision(P)(d) by executing alternatively one step of Semi-

Decision(P)(d) and one step of ¬Semi-Decision(¬P)(d) as long as both are not terminated

and by terminating Decision(P)(d) as soon as one of these fairly interleaved executions

of Semi-Decision(P)(d) and ¬Semi-Decision(¬P)(d) is terminated.

• If the non-halting problem were semi-decidable then [Semi-decidable(halting) ∧

Semi-decidable(¬halting)] would imply Decidable(halting), in contradiction with the

undecidability of the halting problem. �

7 . 4 . 2 . 3 . 2 . 2 . 3 The set of valid Hoare formulae for Peano arithmetic

is not recursively enumerable

LEMMA Valid Hoare formulae for Peano arithmetic (145)

The set Hcftt(I) is not recursively enumerable for Peano arithmetic (i.e.the interpretation

I where the basis <{0, 1}, {+, *}, ø, #> has its natural arithmetical interpretation on

N).

Proof
Assume the contrary. Let s ∈ S be a state, Var(C) = X1, …, Xn be the variables of

C with initial values x1 = s(X1), …, xn = s(Xn) ∈ N and P = (X1 = Sux1(0)) ∧ … ∧ (Xn

= Suxn(0)) where Su0(0) = 0 and Sun+1(0) = (Sun(0) + 1). Execution of C in state s

never terminates if and only if I[{P}C{false}] = tt (where false is (0 = 1)). Hence

execution of C in state s never terminate if and only if the formula {P}C{false} is to be

found in the recursive enumeration of Hcftt(I). It would follow that the non-halting

problem would be semi decidable, in contradiction with (144). �

7 . 4 . 2 . 3 . 2 . 2 . 4 Incompleteness of Hoare logic for Peano arithmetic

THEOREM COOK [1978], APT [1981a] Incompleteness of Hoare logic for (146)

Peano arithmetic

 ∃ I. Hcftt(I) ≠ Hcfpr(Th) (where Th is recursive and I is Peano arithmetic).

Proof
Hcfpr(Th) is recursively enumerable by (143) but Hcftt(I) is not by (145) hence

these sets are different. �

We say that the interpretation domain D is Herbrand definable when all elements of D

can be represented by a term:

DEFINITION Herbrand definability (147)

D is Herbrand definable if and only if (∀ d ∈ D. ∃ T ∈ Ter. I[T] = d)

Theorem (146) is also a consequence of (145) combined with the following

observation:

THEOREM BERGSTRA & TUCKER [1982a], BERGSTRA & TIURYN [1983] (148)

if Th is recursive, | D | = | N |, D is Herbrand definable and Hcftt(I) = Hcfpr(Th) then

Hcftt(I) is recursive.

Proof

If C ∈ Com then for all n ∈ N there is Cn ∈ Com - Loops running at most n

(assignments or test) steps of C. Indeed, since | D | = | N |, Lab[C] is finite and D is

Herbrand definable there is a bijection η between Lab[C] and some finite subset

η(Lab[C]) = {L0, …, Lk} of Ter with L0 = η(√) and L1 = η(C). Let Xc ∈ Pvar -

Var(C) be a fresh variable used as program counter. Cn is (… ((Xc := L1 ; I1) ; I2) ;

… In) where each Ii = (¬(Xc = L0) → (S1 ; (S2; … (Sk-1 ; Sk)…)) ◊ skip) executes one

step of C (unless C is terminated). Each Sj executes the elementary step of C labeled Lj

and updates the program counter Xc therefore Sj is (Xc = Lj → (Step[C][Lj] ;

Xc := η(Succ[C][Lj]) ◊ skip) when Step[C][L] is skip, X := E or X := ? and Sj is (Xc

= Lj → (B → Xc := η(Succ[C][Lj](tt)) ◊ Xc := η(Succ[C][Lj](ff))) ◊ skip) when

Step[C][Lj] is B.

Moreover there is a formula Rn of Pre such that {P}Cn{Q} holds if and only if Rn

is true. Rn is (P ⇒ wlp(Cn, Q)) where by induction on the syntax of Cn ∈ Com - Loops,

wlp(skip, Q) = Q, wlp(X := E, Q) = Q[X ← E], wlp(X := ?, Q) = ∀X.Q, wlp((B → C1

◊ C2), Q) = ((B ∧ wlp(C1, Q)) ∨ (¬B ∧ wlp(C2, Q))), wlp((C1; C2), Q) = wlp(C1,

wlp(C2, Q)). wlp(C, Q) is explained in more details below, see (151).

If Hcftt(I) = Hcfpr(Th) and Th is recursive then Hcftt(I) is recursively enumerable

by (143). Moreover Hcfff(I) is also recursively enumerable because {P}C{Q}

∈ Hcfff(I) if and only if Rn ∉ Th so that Hcfff(I) can be recursively enumerated by

generating all formulae {P}C{Q} according to the syntax (89) and recursively testing

for each of them that Rn ∉ Th. We conclude that Hcftt(I) is recursive by running

alternatively one step of the algorithms to recursively enumerate Hcftt(I) and Hcfff(I). �

BERGSTRA, CHMIELINSKA & TIURYN [1982a] have shown that the converse of (148) is not

true : we may have Hcftt(I) ≠ Hcfpr(Th) with Hcftt(I) recursive.

7 . 4 . 2 . 3 . 3 Unprovable valid predicates, mechanical proofs

Following COOK [1978], definition (95) of provability |- Th ∪ H H includes the use

of a given set Th of postulates which are indispensable in the consequence rule (102).

Hence Hoare's system H can be thought of as being equipped with an infallible oracle

answering questions on the validity of first-order predicates. In this way, the reasoning

about the programs is separated from the reasoning about the underlying language Pre

of invariants.

However FLOYD [1967a] propounded the definition of this set Th of postulates as

the set of provable theorems in a formal deductive system. This approach was further

advocated by HOARE [1969] (with the additional idea that “a programming language

standard should consist of a set of axioms of universal applicability, together with a

choice from a set of supplementary axioms describing the range of choices facing an
implementor”). More precisely, we should define Th = {P ∈ Pre : |- A ∪ T P} by

means of a set of non-logical axioms A and a deductive system T. The set A of non-

logical axioms should be recursive (that is P ∈ A should be decidable by a machine) and

consistent (A should have at least one model i.e. an interpretation I such that ∀ t ∈ A.

I[t] = tt). The existence of this deductive system A ∪ T depends upon the class of

interpretations I which is considered.

More precisely, by Gödel's 1930 completeness theorem (see BARWISE [1977],

§ A.1.4; BOOLOS & JEFFREY [1974], § 12; ENDERTON [1972], § 2.5; JOHNSTONE [1987], § 3 or

KLEENE [1967], § 52), there is a deductive system T such that all (and only) formulae

which holds for all interpretations I which are models of some given set of axioms A ⊂

Pre are provable in A ∪ T:

{P ∈ Pre : |- A ∪ T P} = {P ∈ Pre :∀I. (∀ t ∈ A. I[t] = tt) ⇒ I[P] = tt}. (149)

However when considering some given intended interpretation I (for example Peano

arithmetic) or a restricted non-empty class κ of such interpretations I satisfying all

axioms of A, it may happen, by Gödel's 1931 second incompleteness theorem (see

SMORYNSKI [1977], § A.1.4; BOOLOS & JEFFREY [1974], § 16; ENDERTON [1972], § 3.5;

JOHNSTONE [1987], § 9 or KLEENE [1967], § 44) that some P1 ∈ Pre is true for I (or all I in κ)

but is neither provable nor refutable in A ∪ T. By Gödel's 1930 completeness theorem

(149), this simply means that P1 may be true for some interpretations I' and false for

other interpretations I". Hence we should add P1 or ¬P1 to A in order to eliminate the

unintended interpretations I' or I". But then there is some P2 ∈ Pre which is true for I

(or all I in κ) but is neither provable nor refutable in A ∪ {P1} ∪ T, and so on. This

means that unintended interpretations cannot be eliminated when using only first-order

concepts (ANDRÉKA, NÉMETI & SAIN [1979], BERGSTRA & TUCKER [1982a], CARTWRIGHT [1983],

NÉMETI [1980]).

Since program hand-proving is tedious, long and sometimes difficult, the

1970s have lived in hopes of mechanical verification of program correctness (KING

[1969], IGARASHI, LONDON & LUCKHAM [1975], BOYER & MOORE [1979]). This approach has

theoretical limits determined by uncomputability problems: no computer (even ideal

ones without size and time limits) can be used to automatically prove program partial

correctness. This follows from Gödel's 1931 second incompleteness theorem which

implies that the theory {P ∈ Pre : ∀ I ∈ κ. I[P] = tt} of a class κ of interpretations

satisfying the axioms A (i.e. ∀ I ∈ κ. (∀ t ∈ A. I[t] = tt)) and including Peano arithmetic

is not recursive (because otherwise proofs would simply consists in using the

terminating algorithm to check that ∀I ∈ κ. I[P] = tt). Hence the discovery of the

invariant needed in the while rule (101) can be partly automated (WEGBREIT [1974],

GERMAN & WEGBREIT [1975], KATZ & MANNA [1976]) but ultimately requires human

interventions. The same way, the use of the consequence rule (102) may also call for

such error-prone human interactions. But then, lonesome individuals have to carefully

manage large amounts of detailed information produced by machines. This has practical

limits discussed in DE MILLO, LIPTON & PERLIS [1979]. Experience with a proof editor for

interactive proof checking is discussed in REPS & ALPERN [1984] and that with more

ambitious verification environments in BOYER & MOORE [1988], CONSTABLE, JOHNSON &

EICHENLAUB [1982] and GOOD [1984].

7 . 4 . 2 . 4 Cook's relative completeness of Hoare logic

COOK [1978] circumscribed these incompleteness problems by assuming that the

set Th of mathematical theorems P ⇒ P' which have to be used in the consequence rule

(102) is given. This corresponds to the common mathematical practice to accept certain

notions and structures as basic and work axiomatically from there on, even if we are

aware that these notions cannot be completely axiomatized in the restricted language of

first order logic. COOK [1978] also assumed that the intermediate invariants needed in the

composition rule (99) and while rule (101) can be expressed in the first order language

Pre. This is called relative completeness, which consists in proving that:

Expressive(Com, Pre, op, I) ⇒ (150)
∀ C ∈ Com.∀ P, Q ∈ Pre. ({ P }C{ Q } ⇒ |- Th ∪ H { P }C{ Q })

where Th = {P ∈ Pre : I[P] = tt} and Expressive(Com, Pre, op, I) is a sufficient (and

preferably necessary) condition implying that intermediate invariants can be expressed

in Pre. This implies that true Hoare formulae are provable: Expressive(Com, Pre, op, I)

⇒ Hcftt(I) ⊆ Hcfpr(Th).

7 . 4 . 2 . 4 . 1 Expressiveness à la Clarke

Such a condition Rc(Com, Pre, op, I) was first proposed in COOK [1978], an

equivalent one was later proposed by CLARKE [1977]. Observe that in the proof of

{P}(C1; C2){Q} we can choose an intermediate invariant I such that I =

{s ∈ S : ∀ s' ∈ S. (<s, s'> ∈ C1) ⇒ (s' ∈ I[Q])} whereas in the proof of {P}(B *

C){Q} we can choose an intermediate invariant I such that I = {s ∈ S : ∀ s' ∈ S. (<s,

s'> ∈ B * C) ⇒ (s' ∈ I[Q])}. This leads to the following:

DEFINITON DIJKSTRA [1976] Weakest liberal precondition (151)

wlp : P(S x S) x P(S) → P(S)

wlp(r, q) = {s ∈ S : ∀ s' ∈ S. (<s, s'> ∈ r) ⇒ (s' ∈ q)}

so that execution of a command C starting from a state s ∈ wlp(C, Q) cannot reach a

final state not satisfying the predicate Q. The qualifier “liberal” means that non-

termination is left as an alternative. The epithet “weakest” means “making less possible

restrictions on initial states”. More precisely, P ⊆ wlp(C, Q) is another notation for { P

}C{ Q } :

LEMMA DIJKSTRA [1976] Definition of partial correctness using wlp (152)

{ p }C{ q } ⇔ p ⊆ wlp(C, q)

Proof

{ p }C{ q } ⇔ (p  C ⊆ S x q) ⇔ [∀ s, s' ∈ S. (s ∈ p) ⇒ ((<s, s'> ∈ C) ⇒ (s' ∈ q))] ⇔

(p ⊆ wlp(C, Q)). �

Termination is obviously not implied since, for example, if execution of command C

never terminates then C = ø whence wlp(C, q) = S. DIJKSTRA [1976]'s most commonly

used predicate transformer wp guarantees termination (see paragraph § 8.4.8). Possible

alternative definitions of wlp are studied in MORRIS [1987a].

DEFINITION CLARKE [1977] Expressiveness à la Clarke (153)

The interpretation I is said to be expressive for the languages Com and Pre if and only if

∀ C ∈ Com.∀ Q ∈ Pre. ∃ P ∈ Pre. P = wlp(C, Q).

The expressiveness requirement rules out the interpretations that have been used in

paragraph § 7.4.2.3 to prove incompleteness results for Hoare logic. For example:

THEOREM Non-expressiveness of abacus arithmetic (154)

The standard interpretation IA of abacus arithmetic PreA is not expressive for

ComA

Sketch of proof

This follows from the local incompleteness (142) and relative completeness (156)

below. One can also prove that for Q = (Z = 0) and C = (¬(X = 0 ∧ Y = 0) * ((X = 0 →

Y := Y - 1 ◊ X := X - 1); Z := Z - 1)) we have wlp(C, Q) = {s ∈ S : Z(s) = X(s) +

Y(s)} but, by (138), no formula of PreA is equivalent to (Z = X + Y). �

THEOREM COOK [1978] Expressiveness of Peano arithmetic (155)

The standard interpretation IPE of Peano arithmetic PE <{0}, {Su, Pr, +, *}, {<}, #>

on the domain N of natural numbers is expressive for ComPE and PrePE.

Proof

We have, by induction on Com, wlp(skip, Q) = Q, wlp(X := E, Q) = Q[X ← E],

wlp(X := ?, Q) = ∀ X. Q, wlp((C1; C2), Q) = wlp(C1, wlp(C2, Q)), wlp((B →

C1 ◊ C2), Q) = (B ∧ wlp(C1, Q)) ∨ (¬B ∧ wlp(C2, Q)). For a while-loop (B * C), the

idea is to code the values <s(X1), …, s(Xk)> of free variables X1, …, Xk of B and C in

state s by their Gödel number and then to code the terminating execution traces <s0, …,

sn> of the loop by their Gödel number. To do this we observe that for all n ∈ N the

coding of any finite sequence of naturals <a0, …, an> ∈ seq* N into a natural c and the

later decoding of c into the ai is representable in Peano arithmetic by a predicate

δ ∈ PrePE with Var(δ) = {c, n, i, a} such that: ∀ n ∈ N. ∀ c ∈ N. ∃ <a0, …, an> ∈

Nn+1. ∀ i ≤ n. δ ⇔ (a = ai) and ∀ n ∈ N. ∀ <a0, …, an> ∈ Nn+1. ∃ c ∈ N. ∀ i ≤ n. δ

⇔ (a = ai) (see ENDERTON [1972], p. 247-248). Now wlp((B * C), Q) = {s ∈ S : ∃ s' ∈ S.

∃ n ∈ N. (<s, s'> ∈ (B  C)n) ∧ (s' ∈ ¬B ∧ Q)} [by (151) and (19.6)] = P ∧ ¬B ∧ Q

where we have to find P such that P = {s ∈ S : ∃ s' ∈ S . ∃ n ∈ N . <s, s'> ∈

(B  C)n } = {s ∈ S : ∃ n ∈ N . ∃ < s 0 , …, s n > ∈ S n + 1 . (∀ i < n. (si ∈ B) ∧

(<si, si+1> ∈ C)) ∧ (sn = s)}. Assume that X is the only free variable in B and C,

(generalization consists in coding the values of the variables into an integer), we have P

= {s ∈ S : ∃ n ∈ N . ∃ < d 0 , …, dn > ∈ N n + 1 . (∀ i < n. (s[X ← d i] ∈ B) ∧

(<s[X ← di], s[X ← di+1]> ∈ C)) ∧ (s(X) = dn)}. Let x ∈ Lvar be a fresh variable not

appearing in B or C. Let, by induction hypothesis, R ∈ PrePE be such that R = wlp(C,

(X = x)). We have P = {s ∈ S : ∃ n ∈ N. ∃ <d0, …, dn> ∈ Nn+1. (∀ i < n. s ∈ (B

∧ R)[X ← di][x ← di+1]) ∩ (X = dn))} = (∃ n. ∃ c. (∀ i < n. ∃ X. ∃ x. δ[a ← X] ∧

δ[i ← i+1][a ← x] ∧ B ∧ R) ∧ δ[i ← n][a ← X]). �

BERGSTRA & TUCKER [1982c] have shown that the expressiveness concept is

awkward to apply for two-sorted data types. For example two independent copies of N

can form a two-sorted sorted interpretation that is not expressive.

7 . 4 . 2 . 4 . 2 Relative completeness of Hoare logic

By the expressiveness requirement on interpretations I, one can always express in

Pre intermediate invariants which are sufficient to prove the partial correctness of

commands C using Hoare logic:

THEOREM COOK [1978] Relative completeness of Hoare logic (156)

(I is expressive for Com and Pre ∧ Th = {P ∈ Pre : I[P] = tt}) ⇒
∀ C ∈ Com.∀ P, Q ∈ Pre. ({ P }C{ Q } ⇒ |- Th ∪ H { P }C{ Q })

Proof

By structural induction on formulas {P}C{Q}.

• If { P }skip{ Q } then P ⇒ P is true [by (123.6) and (125)] and so is P ⇒ Q [by

(22), (19.1), (123.6) and (125)]. It follows by hypothesis that (P ⇒ P) and (P ⇒ Q)

belong to Th. Therefore the proof of {P}skip{Q} consists in applying the skip axiom

(96) and the consequence rule (102).

• If { P }X := E{ Q } then P ⊆ {s ∈ S : s[X ← E(s)] ∈ Q} [by (22) and (19.2)]

whence P ⇒ Q[X ← E] is true [by (123.6) and (128)]. Therefore the proof of {P}X

:= E{Q} consists in applying the assignment axiom (97) and the consequence rule

(102).

• If { P }X := ?{ Q } then {s[X ← d] : s ∈ P ∧ d ∈ D} ⊆ Q [by (22) and (19.3)]

whence {s : ∃ d ∈ D . s[X ← d] ∈ P} ⊆ Q so that ∃ X. P ⇒ Q is true [by (123.7),

(123.6), and (125)]. The proof of {P}X := ?{Q} consists in applying the random

assignment axiom (98) and the consequence rule (102).

• If { P }(C1; C2){ Q } then P ⊆ wlp((C1; C2), Q) [by (152)] = wlp(C1, wlp(C2,

Q)) [by (151) and (19.4)]. By expressiveness let I and J be such that I = wlp(C2, Q)

and J = wlp(C1, I). By induction hypothesis we can prove {I}C1{J} and {J}C2{Q}.

Moreover P ⇒ I and Q ⇒ Q are true so that the proof of {P}(C1; C2){Q} ends by

application of the composition rule (99) and the consequence rule (102).

• If { P }(B → C1 ◊ C2){ Q } then we can prove {P ∧ B}C1{Q} and {P ∧

¬B}C2{Q} [by (22), (19.5), (123.4), (123.3) and induction hypothesis] and conclude

by the conditional rule (100).

• If { P }(B * C){ Q } then let I, J be such that I = wlp((B * C), Q) and J = wlp(C,

I). We have wlp(C, I) ⊆ wlp(C, I) whence { wlp(C, I) }C{ I } [by (152)] so that by

induction hypothesis we can prove that {J}C{I}. Moreover I = {s ∈ S : ∀ s' ∈ S. (<s,

s'> ∈ (B * C)) ⇒ (s' ∈ Q)} [by (151)] = {s ∈ S : ∀ s' ∈ S. (<s, s'> ∈ (δ  ¬B) ∪ (B 
C) ˚ (B * C)) ⇒ (s' ∈ Q)} [by (19.7)] = {s ∈ S : (s ∈ ¬B) ⇒ (s ∈ Q)} ∪ {s ∈ S :

∀ s' ∈ S. (<s, s'> ∈ (B  C) ˚ (B * C)) ⇒ (s' ∈ Q)} = (¬B ⇒ Q) ∪ {s ∈ B : ∀ s' ∈ S.

(<s, s'> ∈ C ˚ (B * C)) ⇒ (s' ∈ Q)} [by (123)] = (¬B ⇒ Q) ∪ (B ∩ wlp(C ˚ (B * C),

Q)) [by (151)] = (¬B ⇒ Q) ∪ (B ∩ wlp(C, wlp((B * C), Q))) [by (151)]. It follows

that (I ∧ B) ⇒ J. Whence applying the consequence rule (102) with (I ∧ B) ⇒ J,

{J}C{I} and I ⇒ I, we can prove {I ∧ B}C{I} so that {I}(B * C){I ∧ ¬B} derives

from the while rule (101). Finally P ⇒ I [by (152)] and (I ∧ ¬B) ⇒ Q so that the proof

of {P}(B * C){Q} ends by application of the consequence rule (102).

• Observe that in the above proof Cook's expressiveness is only used to guarantee

weak expressiveness (RODRÍGUEZ-ARTALEJO [1985]) that is that loop invariants for the

while rule (101) and intermediate invariants for the composition rule (99) can be

expressed in Pre. �

7 . 4 . 2 . 4 . 3 Expressiveness à la Cook and its equivalence with

Clarke's notion of expressiveness

The original notion of expressiveness is due to COOK [1978] and was expressed in

term of the predicate transformer slp(C, P) (that is the set of all final states C can reach

when started in a state satisfying P, such that { p }C{ slp(C, p) } and { p }C{ q } ⇒

slp(C, p) ⊆ q):

DEFINITION DIJKSTRA [1976] Strongest liberal postcondition (157)

slp(r, p) = {s ∈ S : ∃ s' ∈ p. <s', s> ∈ r}

DEFINITION COOK [1978] Expressiveness à la Cook (158)

The interpretation I is said to be expressive for the languages Com and Pre if and only if

∀ C ∈ Com.∀ P ∈ Pre. ∃ J ∈ Pre. J = slp(C, P).

However expressiveness à la Cook is equivalent to expressiveness à la Clarke. To show

this we first observe that:

LEMMA Relationships between wlp and slp (159)

{ p }C{ q } ⇔ (slp(C, p) ⊆ q), wlp(r, q) = ¬slp(r-1, ¬q) and slp(r, p) = ¬wlp(r-1,

¬p)

Proof

{ p }C{ q } ⇔ (p  C ⊆ S x q) ⇔ [∀ s, s' ∈ S. ((s ∈ p) ∧ (<s, s'> ∈ C)) ⇒ (s' ∈ q)]

⇔ (slp(C, p) ⊆ q). Moreover ¬slp(r-1, ¬q) = {s ∈ S : ¬(∃ s'. s' ∈ ¬q ∧ <s', s> ∈ r-1)}

[by (157)] = {s ∈ S : ∀ s'. s' ∈ q ∨ <s, s'> ∉ r} = wlp(r, q) [by (151)]. Finally slp(r,

p) = ¬¬slp(r-1-1, ¬¬p) = ¬wlp(r-1, ¬p). �

LEMMA Semantic inversion (160)

if {X1,…,Xn} = Free(C), {x1,…,xn} ∩ Free(C) = ø, {x1,…,xn} ∩ Free(P) = ø, Q =

s l p (C , X 1 = x1 ∧ … ∧ X n = xn) and Q' = (∃ X 1 . … ∃ X n . Q ∧

P)[x1 ← X1] … [xn ← Xn] then Q' = slp(C-1, P).

Proof

• We let n = 1 for simplicity. We first prove that (∃ s". s"(X) = s"(x) ∧

< s " , s [X ← d] [x ← s (X)] > ∈ C) ⇔ (< s, s[X ← d] > ∈ C). If < s " ,

s[X ← d][x ← s(X)]> ∈ C then s"(y) = s[X ← d][x ← s(X)](y) for y ∉ Free(C) =

{X} since execution of C does not modify the value of variables not appearing in C. It

follows that s"(y) = s(y) for y ∉ {x, X} and s"(x) = s(X). Whence s"(X) = s"(x)

implies s"(X) = s(X) that is s"(y) = s(y) for y ≠x and s"(x) = s(X) so that s" =

s[x ← s(X)]. It follows that <s[x ← s(X)], s[X ← d][x ← s(X)]> ∈ C whence that

<s[x ← d'], s[X ← d][x ← d']> ∈ C for all d' ∈ D since x ∉ Free(C). For d' = s(x)

we conclude that <s, s[X ← d]> ∈ C. Reciprocally if <s, s[X ← d]> ∈ C then

<s[x ← d'], s[X ← d][x ← d']> ∈ C for all d' ∈ D since x ∉ Free(C) so that for d' =

s(X) we get < s [x ← s (X)] , s [X ← d] [x ← s (X)] > ∈ C that is

<s", s[X ← d][x ← s(X)]> ∈ C with s" = s[x ← s(X)] so that s"(X) = s"(x) since x ≠
X.

• I[(∃ X. Q ∧ P)[x ← X]] = {s ∈ S : s[x ← s(X)] ∈ I[(∃ X. Q ∧ P)]} [by (128),

and (122.1)] = {s ∈ S : ∃ d ∈ D . s[x ← s(X)][X ← d] ∈ Q ∩ P} [by (123.7) and

(123.4)] = {s ∈ S : ∃ d ∈ D. s[x ← s(X)][X ← d] ∈ slp(C, X=x) ∩ P} [by hypothesis

of (160)] = {s ∈ S : ∃ d ∈ D . ∃ s". s"(X) = s"(x) ∧ <s", s[X ← d][x ← s(X)]> ∈ C ∧

s[x ← s(X)][X ← d] ∈ P} [by (157), (123.1), (122.1) and (121) since X≠x] =

{s ∈ S : ∃ d ∈ D . <s, s[X ← d]> ∈ C ∧ s[x ← s(X)][X ← d] ∈ P} [by the above

argument] = {s ∈ S : ∃ d ∈ D . <s, s[X ← d]> ∈ C ∧ s[X ← d] ∈ P} [since X ≠ x

implies s[x ← s (X)][X ← d] = s[X ← d][x ← s(X)] and x ∉ Free(P) so that

s[X ← d][x ← d'] ∈ P implies s[X ← d] ∈ P] = {s ∈ S : ∃ s'.<s, s'> ∈ C ∧ s' ∈ P}

[since <s, s'> ∈ C implies s(y) = s'(y) when y ∉ Free(C) so that s'=s[X ← d] where

d = s'(X)] = slp(C-1, P) [by (157)]. �

THEOREM CLARKE [1977], JOSKO [1983], OLDEROG [1980] [1983] Equivalent (161)

definitions of expressiveness

Expressiveness à la Cook is equivalent to expressiveness à la Clarke: (153) ⇔ (158)

Proof
If ∀ C ∈ C o m. ∀ P ∈ Pre. ∃ J ∈ Pre. J = slp(C , P) then if {X1, …, Xn} =

Free(C), {x1, …, xn} ∩ Free(C) = ø, {x1, …, xn} ∩ Free(P) = ø, Q = slp(C, X1 = x1

∧ … ∧ Xn = xn) and Q' = (∀ X1. … ∀ Xn. Q ⇒ ¬P)[x1 ← X1] … [xn ← Xn] then

¬Q' = ¬slp(C-1, ¬P) [by (160)] = wlp(C, P) [by (159)] is expressible in Pre.

The same way if R = wlp(C, X1 = x1 ∧ … ∧ Xn = xn) and R' = (∃ X1. … ∃ Xn.

Q ∧ ¬P)[x1 ← X1] … [xn ← Xn] then ¬R' = slp(C, P). �

7 . 4 . 2 . 4 . 4 Relative completeness of Hoare logic for arithmetical

while-programs and nonstandard interpretations

 Hoare logic is relatively complete for while-programs applied to arithmetic:

THEOREM COOK [1978] Relative completeness of Hoare logic for arithmetical (162)

while-programs

H ∪ Th(N) is relatively complete for the standard interpretation IPE of Peano arithmetic

PE <{0}, {Su, Pr, +, *}, {<}, #> on the domain N of natural numbers where Th(N) =

{P ∈ PrePE : IPE[P] = tt} is the number theory.

Proof
By (155), IPE is expressive for ComPE and PrePE so that, by relative completeness

(156), the Hoare logic H ∪ Th(N) is relatively complete for IPE. �

HAREL [1979] has pointed out that any interpretation I can be expanded to an

interpretation with a complete Hoare logic by expanding it to an arithmetical universe

(but this expansion may increase the degree of undecidability of the theory of I). A

simpler expansion when Hcftt(I) is recursive is proposed in BERGSTRA, CHMIELINSKA &

TIURYN [1982b].

In (162) the facts about arithmetic one needs in a program correctness proof are

given by the oracle Th(N). BERGSTRA & TUCKER [1983] use instead Peano's first-order

axiomatization of arithmetic (KLEENE [1967], § 38; JOHNSTONE [1987], § 3). Second-order

Peano arithmetic PE2 over the basis Cte = {0, 1}, Fun = {+, *} and Rel = ø can be

formalized by the following axioms (axioms (163.4) to (163.7) are not strictly

necessary since addition and multiplication can be defined the same way as (x ≤ y) is

defined by (∃ z. (x + z) = y)):

DEFINITION Second-order Peano arithmetic PE2 (163)

∀ x. ¬(x + 1 = 0) (.1)

∀ x. ∀ y. (x + 1 = y + 1) ⇒ (x=y) (.2)

∀ x. ¬(x = 0) ⇒ ∃ y. (x = y + 1) (.3)

∀ x. (x + 0 = x) (.4)

∀ x. ∀ y. (x + (y + 1)) = ((x + y) + 1) (.5)

∀ x. (x * 0 = 0) (.6)

∀ x. ∀ y. (x * (y + 1)) = ((x * y) + y) (.7)

∀ P. (P[x ← 0] ∧ ∀ x. P ⇒ P[x ← x + 1]) ⇒ ∀ x. P (.82)

The last axiom (163.82) states that if a property P is true for 0 and is true for the

successor x + 1 of x whenever it is true for x then it is true for all x. Since P ranges

over all subsets of N, the second-order axiom (163.82) describes properties of | P(N) | =

ℵ1 subsets of N. To stay in the realm of first-order logic, one can define first-order

Peano arithmetic PE1 which consists of axioms (163.1) to (163.7) plus the axiom

scheme:

DEFINITION First-order Peano arithmetic PE1 (164)

∀ x. ¬(x + 1 = 0) (.1)

… …

∀ x. ∀ y. (x * (y + 1)) = ((x * y) + y) (.7)

For all P ∈ PrePE.

(P[x ← 0] ∧ ∀ x. P ⇒ P[x ← x']) ⇒ ∀ x. P (.81)

There are | N | = ℵ0 = ω predicates P (the proof uses an enumeration of PrePE by Gödel

numbers, see (143)) and | N | ≠ | P(N) | whence (164.81) describes less subsets of N

than (163.82) (The proof that | N | ≠ | P(N) | is by reductio ad absurdum using Cantor

diagonal argument : if | P(N) | = | N | then P(N) is of the form {sj : j ∈ N} where sj

⊂ N for all j ∈ N. Then the set {i ∈ N : i ∉ si} would be some element sk of P(N)

whence a contradiction since either k ∈ sk and sk = {i ∈ N : i ∉ si} implies k ∉ sk or k

∉ sk and sk = {i ∈ N : i ∉ si} implies k ∈ sk). Since PE1 imposes less constrains on its

interpretations than PE2, PE1 can have nonstandard interpretations that are disallowed

by PE2. Such nonstandard models of PL1 (SKOLEM [1934]; BOOLOS & JEFFREY [1974], § 17

or KLEENE [1967], § 53) consists of the naturals followed by infinitely many blocks

isomorphic to Z : 0, 1, 2, … …… …-2' -1' 0' 1' 2… …… …-2" -1" 0" 1" 2"…

……, without least nor greatest block and between any two blocks lies a third. It

follows that N is not first-order axiomatizable (although it is by PE2 since N is the only

model of PE2) in the sense that there are true facts that can be proved by PE2 but not by

PE1 (using again the diagonalization argument : if Pi is the predicate with Free(Pi) = x

and Gödel number i then Q such that ∀ i ∈ N. Q[x ← i] = ¬Pi[x ← i] is not one of

them). So why not use second-order logics ? Essentially because PE1 deals with finite

sets of integers (as in pure arithmetic) whereas PE2 deals with infinite sets of integers

(as in mathematical analysis) and P(N) is much more complicated to understand than N

(COHEN [1966] proved that there are infinitely many different ways to conceive of P(N)

from the same N). The same way Hoare logic deals with finite sets of variables and

terminating programs i.e. finite execution traces and BERGSTRA & TUCKER [1983] have

shown that Hoare logic for while-programs is essentially first order : the strongest

postcondition calculus can be represented in Peano arithmetic PE1 (because slp(C, P)

can be expressed by a predicate SLP(C, P) of PE1, see the proof of (155) and (159)) so

that Hoare logic over PE1 is equivalent to PE1 itself (because {P}C{Q} is equivalent to

(SLP(C, P) ⇒ Q) by (159)). The comparison of Hoare-style reasoning about programs

to reasoning about programs with first order rendering of predicate transformers is

pursued by LEIVANT [1985].

7 . 4 . 2 . 4 . 5 On the unnecessity of expressiveness

 Expressiveness is sufficient to obtain relative completeness but it is not

necessary: BERGSTRA & TUCKER [1981] have shown that Hoare logic can be complete for

an inexpressive interpretations I whose first-order theory has some expressive model

(i.e. interpretation I' with the same first-order theory {P ∈ Pre : I'[P] = tt}). This point

is illustrated by the following:

THEOREM BERGSTRA & TUCKER [1982a] Unnecessity of expressiveness (165)

Hoare logic H ∪ Th(N) is relatively complete for any model I of Peano arithmetic (such

that ∀ P ∈ Th(N). I[P] = tt where Th(N) = {P ∈ PrePE : IPE[P] = tt}) but I is not

expressive for PrePE and ComPE when I is not the standard model IPE of arithmetic.

Proof
By (162), the Hoare logic H ∪ Th(N) is relatively complete for IPE. Since any P ∈

PrePE is true for the standard interpretation IPE if and only if it is true for the

nonstandard interpretation I, H ∪ Th(N) is also relatively complete for I.

Let C = (X := Y; ((¬(X=0) * X := Pr(X)); X := Y)). Execution of C for the

nonstandard interpretation I terminates only if the initial value of Y is standard. It

follows that slp(C, S) = {s ∈ S : (s(X) = s(Y)) ∧ s(Y) ∈ N}. Now I is not expressive

for PrePE and ComPE since otherwise there is a P ∈ PrePE such that P = slp(C, S), so

that ∃ Y. P is true of X only if X is a standard natural number in contradiction with the

fact that no predicate of PrePE can be used to distinguish among standard and

nonstandard numbers. �

BERGSTRA & TIURYN [1983] have identified and studied two necessary (but not

sufficient) conditions that an interpretation I must satisfy if a sound Hoare logic is to be

complete for this given I: first they prove that the first order theory of I must be PC-

compact that is each asserted program which is true in all models of the theory is true in

all models of a finite subset of the theory (if Th = {P ∈ Pre : I[P] = tt} then ∀ H ∈

Hcftt[Th]. ∃ Th' ⊆ Th. (| Th' | ∈ N) ∧ (H ∈ Hcftt[Th']) where Hcftt[T] = {H ∈ Hcf: ∀

I'. (∀ P ∈ T. I'[P] = tt) ⇒ (I'[H] = tt)}). Secondly they prove that the partial correctness

theory Hcftt(I) must be decidable relative to its first order theory Th (as shown in

(148)).

From a practical point of view, the incompleteness results about Hoare logic are

not restrictive for hand-made proofs, just as Gödel's incompleteness theorems do not

prevent mathematicians to make proofs. Only the semantic counterpart of Hoare logic

matters and it is complete in the sense of (80). As far as expressiveness is concerned,

the limited power of first order logic can always be overcome using infinitary logics

since (76) is expressible in Lω1ω (which allows infinite formulae ∧ Φ and ∨ Φ when Φ is

a countable set of formulae, BARWISE [1977]) as noticed in ENGELER [1968] [1975] and

BACK [1980] [1981] (but then the finitary nature of proofs in ordinary first order logic Lωω

is lost). Also the use of a given theory Th corresponds to the common mathematical

practice to accept certain notions and structures as basic and work axiomatically from

there on. However when considering more complicated programming language

features, Hoare logic turns out to be incomplete for intrinsic reasons.

7 . 4 . 2 . 5 Clarke's characterization problem

CLARKE [1977] has shown that some programming languages have no sound and

relatively complete Hoare logic. The formal argument is first that if a programming

language possesses a relatively complete and sound Hoare logic then the halting

problem for finite interpretations must be decidable and second that Algol-like

(NAUR [1960]) or Pascal-like (WIRTH [1971]) languages have an undecidable halting

problem for finite interpretations with | D | ≥ 2. The intuitive reason is that names in

predicates P, Q ∈ Pre and in commands C ∈ Com are used in a similar way: all

considered objects, at a given instant of time, are given different names. Hence

variables of P, Q and C can be interpreted in exactly the same way by means of states

(120). But when considering Algol or Pascal-like languages, the naming conventions in

P, Q and C are totally different. For example objects deeply buried in the run-time stack

cannot be accessed by their name although they can be modified using procedure calls !

Such Algol or Pascal-like languages are more precisely characterized by the following:

DEFINITION CLARKE [1977] Clarke's languages (166)

A Clarke's language L is a programming language allowing procedures (with a finite

number of local variables and parameters taking a finite number of values, without

sharing via aliases) and the following features :

- procedures as parameters of procedure calls (without self-application); (i)

- recursion; (ii)

- static scoping; (iii)

- use of global variables in procedure bodies; (iv)

- nested internal procedures as parameters of procedure calls. (v)

A Clarke language Lj is obtained by disallowing feature (j).

The non-existence of Hoare logic for Clarke's languages (and other variants of (166),

see CLARKE [1977] and LEIVANT & FERNANDO [1987]) introduces the characterization

problem (CLARKE [1984]): what criteria guarantee that a programming language has a

sound and relatively complete Hoare logic ? First we prove the non-existence of Hoare

logics for Clarke languages and next review the literature on the characterization

problem.

7 . 4 . 2 . 5 . 1 Languages with a relatively complete and sound Hoare

logic have a decidable halting problem for finite

interpretations

LEMMA CLARKE [1977] Decidability of the halting problem … (167)

If Com has a sound and relatively complete Hoare logic then the halting problem

must be decidable for all interpretations I on a finite Herbrand definable domain D.

Proof

Let be given some particular finite interpretation I. There is a decision procedure

to verify that P ∈ Th that is I[P] = tt: we just have to check using truth tables that P

holds for the finitely many possible combinations of values of the free variables of P.

Moreover since D is finite and Herbrand definable, Pre is expressive with respect to

Com and I: any subset of D can be represented as a finite disjunction of terms

representing its elements. Then by the soundness theorem (129) and relative
completeness (156) we have { true }C{ false } ⇔ |- Th ∪ H { true }C{ false }

where true = (x = x) and false = ¬(x = x). Since Th is recursive, it follows from (143)

that H c f p r (Th) is recursively enumerable whence so is {C : |-

 Th ∪ H { true }C{ false } } = {C : { true }C{ false } } so that the non-halting

problem is semi-decidable. We conclude that the halting problem cannot be undecidable

(see (144)). �

7 . 4 . 2 . 5 . 2 The halting problem for finite interpretations is

undecidable for Clarke's languages

The halting problem is decidable for while-programs on finite interpretations (we

may test for termination (at least theoretically) by watching the execution trace of the

program to see if a state is repeated, JONES & MUCHNICK [1977]). For recursion one might

expect that the program could be viewed as a type of push-down automaton for which

the halting problem is also decidable (COOK [1971], JONES & MUCHNICK [1978]). However

this is not true for Clarke's languages:

LEMMA CLARKE [1977], JONES & MUCHNICK [1978] Undecidability of the halting (168)

problem…

Clarke's languages have an undecidable halting problem for finite interpretations

with | D | ≥ 2.

Proof

The proofs of JONES & MUCHNICK [1978] (modified in CLARKE [1977]) consist in

showing that such languages can be used to simulate a queue machine which have an

undecidable halting problem. Clarke's languages can also simulate the more well-

known Turing machines (TURING [1936] [1937]; ENDERTON [1977], § 2; BOOLOS &

JEFFREY [1974], § 5; KLEENE [1967], § 41; ROGERS [1977], § 1.5). Since, by Church thesis

(i.e. formally unprovable mathematical assertion), all functions intuitively computable

algorithmically are computable by Turing machines (CHURCH [1936], KLEENE [1936],

TURING [1937]), it follows that all computable functions are programmable in Clarke's

languages with | D | ∈ N+ - {1}. Hence by (144), the halting problem is undecidable. A

similar result was previously obtained by LANGMAACK [1973], where it is shown that the

pure procedure mechanism of Algol 60 can simulate any Turing machine.

A Turing machine has a finite number of internal states Q0, …, Qn. It can read

and write symbols chosen in a finite alphabet S0, …, Sm (containing the blank symbol

'_') on a potentially infinite tape marked off into squares by means of a head which can

also be moved left or right, one square at a time:

1 1 _ _ _ _ _ _ ________

Write S Move rightMove left
j

S
i

Qi

0

An instruction has the form M(Qi, Si, Sj, D, Qj) where D is 'Left' or 'Right'. This

instruction is executable if the machine is in the configuration <Qi, Si>, that is its

internal state is Qi and the symbol scanned under the head is Si. Its execution consists in

overwriting the square under the head by symbol Sj, in moving the head on the tape one

square of the present square in the direction indicated by D and in changing the internal

state into Qj. A program consists of a finite number of instructions M(Qi, Si, Sj, D, Qj),

i = 1, …, l. Its execution consists in repeatedly executing any one of the executable

instructions. The execution of the program halts when no instruction is executable.

Initially the tape contains finitely many non-blank symbols.

By induction on the number of steps, it follows that only finitely many squares

can be non-blank at any time during execution of the program. Therefore Turing

machines can be built-up recursively from a finite number of simpler identical machines

M1, …, Mn consisting only of two squares:

No_Head

Qi

_ _ 0 1 : Square[Right] Square[Left] :

Present_State :

M

M

1

M

S i
M
0

1

2

3 Head_Position : On_Subtape

Right

Machine M0 is empty. The internal state of each machine consists of two squares

(Square[Left] and Square[Right]), an indication of whether the head of the Turing

machine is on its left square (Head_Position = Left), on its right square (Head_Position

= Right), on a square of one of the machines Mi-1, …, M1 (Head_Position =

On_Subtape), or on a square of one of the machines Mi+1, …, Mn (Head_Position =

No_Head) and an indication of whether machine Mi-1 is empty (Is_Empty_Subtape =

true). We could have used only Boolean variables as done by the Pascal compiler. To

execute the program of the Turing machine, machine Mn has access to the current state

Qi stored in the global variable Present_State (using feature (166.iv) of Clarke's

languages). Execution of an instruction of the Turing machine (such as

M(Qi, Si, Sj, Left, Qj) when the head is on the left square of machine Mn (i.e.

Head_Position = Left) containing Si (i.e. Square[Left] = Si)) may require to extend the

tape by one square on side D (D = Left in the example). In this case, machine Mn

(currently simulated by procedure Turing_Machine) assigns Sj to its D square,

No_Head to its Head_Position, Qj to Present_State and creates a new machine Mn+1

(by a recursive call to procedure Turing_Machine, using feature (166.ii) of Clarke's

languages). This machine Mn+1 has two blank squares and Head_Position =

Initial_Head_Position = D. Mn+1 is now in charge of executing the program of the

Turing machine. To do this, machine Mn+1 can ask the cooperation of machine Mn

(hence recursively of machines Mn-1, ..., M1) using functions and procedures local to

Mn and passed to procedure Turing_Machine upon creation of machine Mn+1 (using

features (166.i) and (166.v) of Clarke's languages). These functions and procedures

can be used by Mn+1 to read (Scanned_Symbol_On_Ends_Of_Subtape) or write

(Write_On_Ends_Of_Subtape) the squares of Mn and to read

(H e a d _ P o s i t i o n _ O n _ E n d s _ O f _ S u b t a p e) o r w r i t e

(Set_Head_Position_On_Ends_Of_Subtape) the Head_Position of Mn. Procedure

M_On_Subtape can be used by machine Mn+1 to execute an instruction

M(Qi, Si, Sj, D, Qj) of the Turing machine when Mn+1 knows that the head of the

Turing machine is not on the squares of machine Mn (by calling

Head_Position_On_Ends_Of_Subtape) so that after execution of this instruction, the

head will remain on the subtape represented by machines Mn, …, M1. It follows that

in order to simulate the Turing machine, machine Mn+1 has just to take care of head

moves from its squares to those of machine Mn. For example when the head is on the

left square of machine Mn+1 (i.e. Head_Position = Left) and reads Si (i.e. Square[Left]

= Si), execution of M(Qi, Si, Sj, Right, Qj) consists in writing Sj in this left square,

in changing Head_Position to On_Subtape, in changing the Head_Position of machine

Mn to Left (by calling Set_Head_Position_On_Ends_Of_Subtape(Left)) and in going to

the next state by assignment of Qj to Present_State. When n = 0, the Head_Position of

machine M1 is simply changed to Right. Details are given in the following Pascal

program (using the static scope execution rule (166.iii) which states that procedure calls

are interpreted in the environment of the procedure's declaration rather than in the

environment of the procedure call, thus allowing to access values normally buried

deeply in the run-time stack):

program Simulate_Turing_Machine;

const Blank = '_';
type
State_Type = 0..107; Symbol_Type = char;
Head_Position_Type = (Left, Right, On_Subtape, No_Head); Side_Type = Left..Right;

function Opposite(D : Side_Type) : Side_Type;
{ Opposite(Left) = Right and Opposite(Right) = Left. }
begin {Opposite}
case D of
Left : Opposite := Right;
Right : Opposite := Left;
end;
end; {Opposite}

var Present_State : State_Type;
{ Present state of the Turing machine. }

Stopped : Boolean;
{ True only if the Turing machine must halt (initially false). }

Configuration_Found : Boolean;
{ To check no invalid configuration (Present_State, scanned symbol) is found. }

procedure Turing_Machine
(Initial_Head_Position : Side_Type;
 Is_Empty_Subtape : Boolean;
 function Scanned_Symbol_On_Ends_Of_Subtape(D: Side_Type) : Symbol_Type;
 procedure Write_On_Ends_Of_Subtape(D: Side_Type; WS : Symbol_Type);
 function Head_Position_On_Ends_Of_Subtape : Head_Position_Type;
 procedure Set_Head_Position_On_Ends_Of_Subtape(P : Head_Position_Type);
 procedure Dump_Subtape;

procedure M_On_Subtape(Q : State_Type; S : Symbol_Type;
WS : Symbol_Type; D : Side_Type; NQ : State_Type));

var
Square : array [Side_Type] of Symbol_Type;
Head_Position : Head_Position_Type;

{ An infinite tape is represented by its finite non-blank part as a quadruple }
{ <Square[Left], subtape, Square[Right], Head_Position>, where the Head_Position }
{ equals D if the head is on 'Square[D]' where D is 'Left' or 'Right', 'On_Subtape' }
{ if the head is on the subtape or else 'No_Head' when the head is outside that }
{ part of the whole tape. Is_Empty_Subtape is true if and only if the subtape is }
{ empty. When the subtape is not empty, it can be manipulated by functions and }
{ procedures, similar to the ones explained below for manipulating the tape. }
{ A call of 'Turing_Machine' extends the subtape by two additional blank squares on }
{ its left and right ends. The head of the machine is set on one of these }
{ additional squares as specified by Initial_Head_Position. }

function Scanned_Symbol_On_Ends_Of_Tape(D: Side_Type) : Symbol_Type;
{ Returns the symbol written on the square on the D end of the tape. }
begin Scanned_Symbol_On_Ends_Of_Tape := Square[D]; end;

procedure Write_On_Ends_Of_Tape(D : Side_Type; WS : Symbol_Type);
{ Writes WS on the square on the D end of the tape. }
begin Square[D] := WS; end;

function Head_Position_On_Ends_Of_Tape : Head_Position_Type;
{ To check if the head of the machine is on the left end of the tape (when the }
{ returned value is Left) or on its right end (when the returned value is Right) }
{ or whether it is on the subtape delimited by the extreme squares (On_Subtape) }
{ or if it is outside the part of the ideal infinite tape represented by that }
{ finite tape (No_Head). }
begin Head_Position_On_Ends_Of_Tape := Head_Position; end;

procedure Set_Head_Position_On_Ends_Of_Tape(P : Head_Position_Type);
 { Sets the Head_Position of the tape to P. }

begin Head_Position := P; end;

procedure Dump_Tape;
{ Dump all tape marking the scanned symbol under the head between square brackets. }
procedure Dump_Square(D : Side_Type);
begin {Dump_Square}
if (Head_Position = D) then write('[') else write(' ');
if (Square[D] = Blank) then write('_') else write(Square[D]);
if (Head_Position = D) then write(']');

end; {Dump_Square}
begin Dump_Square(Left); Dump_Subtape; Dump_Square(Right); end;

procedure M(Q : State_Type; S, WS : Symbol_Type; D : Side_Type; NQ : State_Type);
{ Whenever the machine (which is not stopped) comes to state Q (that is the }

 { instruction labeled Q) while scanning under the head a square where S is }
{ written, (set Configuration_Found to true), overwrite this square with WS, move }
{ the head in the direction indicated by D one square of the present square and }
{ proceed to instruction labeled NQ. }
begin {M}
if (not Configuration_Found) and (not Stopped) and (Present_State = Q) then
begin
if (Head_Position = Opposite(D)) then begin
if (Square[Opposite(D)] = S) then begin
Configuration_Found := true;
Square[Opposite(D)] := WS;
if Is_Empty_Subtape then Head_Position := D
else begin { Move the head on the Opposite(D) end of the subtape }
Set_Head_Position_On_Ends_Of_Subtape(Opposite(D));
Head_Position := On_Subtape;

end;
Present_State := NQ; { Go to next state. }

end;

end else if (Head_Position = D) then begin
if (Square[D] = S) then begin
Configuration_Found := true;
Square[D] := WS; Head_Position := No_Head;
{ From now on, the continuation of the simulation of the Turing machine }
{ is delegated to the next call of procedure 'Turing_Machine' which }
{ extends the non empty tape by two new blank squares on its ends and }
{ moves the head of the machine on the square on the D end. }
Present_State := NQ; { Go to next state. }
Turing_Machine(D, false, Scanned_Symbol_On_Ends_Of_Tape,

Write_On_Ends_Of_Tape, Head_Position_On_Ends_Of_Tape,
Set_Head_Position_On_Ends_Of_Tape, Dump_Tape, M);

end;
end else if (Head_Position = On_Subtape) then begin
if (Head_Position_On_Ends_Of_Subtape = D)

and (Scanned_Symbol_On_Ends_Of_Subtape(D) = S) then begin
Configuration_Found := true;
Write_On_Ends_Of_Subtape(D, WS);
{ The head leaves the subtape for the D square }
Set_Head_Position_On_Ends_Of_Subtape(No_Head); Head_Position := D;
Present_State := NQ; { Go to next state. }

end else { The move of the head on the subtape will remain on that subtape. }
M_On_Subtape(Q, S, WS, D, NQ);

end;
end;
end; {M}

begin {Turing_Machine}
Head_Position := Initial_Head_Position;
Square[Left] := Blank; Square[Right] := Blank;
while (not Stopped) do begin
{ Execute one instruction of the Turing machine }
Configuration_Found := false;
{**}

 { Turing machine of ENDERTON [1977], p. 532. (This machine computes x + y. The }
{ arguments x and y of the + function are respectively represented by a string of }
{ 1's of length x and y. The arguments are separated by a single blank. The tape }
{ is otherwise blank. The head is initially on the leftmost non-blank symbol. The }

 { result is a string of 1's of length x + y. }
 { M(State, Scan, Write, Move, Next state) }

M(0, '1', '1', Right, 0); { Pass over x. }
M(0, Blank, '1', Right, 1); { Fill blank square between x and y }
M(1, '1', '1', Right, 1); { Pass over y. }
M(1, Blank, Blank, Left, 2); { Move to end of y; }
M(2, '1', Blank, Left, 3); { Erase a 1 at end of y. }
M(3, '1', '1', Left, 3); { Back up to leftmost 1 of x + y. }
M(3, Blank, Blank, Right, 4); { Halt. }

{**}
{ Initialize the tape to compute x + y with x = 2 and y = 3 }
M(100, Blank, '1', Left, 101); { Write y }
M(101, Blank, '1', Left, 102);
M(102, Blank, '1', Left, 103);
M(103, Blank, Blank, Left, 104); { Write blank between x and y }
M(104, Blank, '1', Left, 105); { Write x }
M(105, Blank, '1', Left, 106);
M(106, Blank, Blank, Right, 107); { Move head on leftmost 1 of x }

{**}
if Present_State = 107 then begin
{ Dump the initial tape and start the computation. }
Dump_Tape; writeln; Present_State := 0;

end else if (not Configuration_Found) then begin
{ Dump the final tape and halt the computation. }
Dump_Tape; writeln; Configuration_Found := true; Stopped := true;

end;
end;
end; {Turing_Machine}

function Scanned_Symbol_On_Ends_Of_Empty_Tape(D: Side_Type) : Symbol_Type;
begin Scanned_Symbol_On_Ends_Of_Empty_Tape := '?'; end;
procedure Write_On_Ends_Of_Empty_Tape(D: Side_Type; WS : Symbol_Type); begin end;
function Head_Position_On_Ends_Of_Empty_Tape : Head_Position_Type;
begin Head_Position_On_Ends_Of_Empty_Tape := No_Head; end;
procedure Set_Head_Position_On_Empty_Tape(P : Head_Position_Type); begin end;

procedure Move_On_Empty_Tape(D : Side_Type; Q : State_Type); begin end;
procedure Dump_Empty_Tape; begin end;
procedure M_On_Empty_Tape(Q : State_Type; S : Symbol_Type;

WS : Symbol_Type; D : Side_Type; NQ : State_Type); begin end;

begin {Simulate_Turing_Machine}
Present_State := 100; Stopped := false;
Turing_Machine(Right, true, Scanned_Symbol_On_Ends_Of_Empty_Tape,

Write_On_Ends_Of_Empty_Tape, Head_Position_On_Ends_Of_Empty_Tape,
Set_Head_Position_On_Empty_Tape, Dump_Empty_Tape, M_On_Empty_Tape);

end. {Simulate_Turing_Machine}

Execution of the above program leads to the following initial and final

configurations of the Turing machine :

 _[1] 1 _ 1 1 1 _ _ _ _ _

 _[1] 1 1 1 1 _ _ _ _ _ _

The program can be easily modified to simulate any Turing machine. �

7 . 4 . 2 . 5 . 3 Languages with no sound and relatively complete Hoare

logic

THEOREM CLARKE [1977] Non-existence of Hoare logics for Clarke's languages (169)

The Hoare logic for Clarke's languages (166) is not relatively complete in the class of

all expressive interpretations.

Proof

By (167) and (168) there exists no sound and relatively complete Hoare logic for

languages with features (166) since for finite domains D, Pre can be enriched by finitely

many constant symbols denoting elements of D so that D is Herbrand definable. �

First order logic is not expressive for Clarke's languages because their control

structure is very complex. LEIVANT & FERNANDO [1987] gives another proof of (169) using

lambda calculus (for a variant of Clarke's languages). They also exhibit a programming

language whose control structure is trivial (the language consists of the single program

C = (y := x; (¬(y = 0) * y := x + y)) where (0, +) is a torsion-free Abelian group) and

yet for which no relatively complete logic exists in the sense of Cook. The idea is that

the notion of torsion-free group (∀ n ≥ 1. ∀ x. (x ≠ 0) ⇒ (n.x ≠ 0), where 1.x is x and

(n + 1).x abbreviates (n.x) + x) is not finitely axiomatizable in first-order logic

(BARWISE [1977], proposition 2.2) but is completely captured by {x ≠ 0}C{false}. In this

case the poverty of the language is precisely what permits certain interpretations to be

expressive, interpretations which would not be expressive had the program constructs

been used more freely. This result is not in contradiction with relative completeness

(156) which holds for Com as defined by (1) and (13).

LIPTON [1977] proved a form of converse of (167) further extended by CLARKE,

GERMAN & HALPERN [1984], GERMAN & HALPERN [1983] and URZYCZYN [1983] who showed

that for a deterministic acceptable programming language Com (see the long definition

in CLARKE, GERMAN & HALPERN [1983] or GRABOWSKI [1984] and know that almost all

Algol-like programming languages are acceptable (CRASEMANN & LANGMAACK [1983]))

with recursion, the relative completeness of Hoare logic in the class of expressive and

Herbrand definable interpretations is equivalent to the condition that the halting problem

for the programming language must be decidable for finite interpretations.

GRABOWSKI [1984] proved that the requirement of Herbrand definability can be dropped

in the case of partial correctness. The result of CLARKE, GERMAN & HALPERN [1983] also

holds for total correctness but GRABOWSKI [1985] and GRABOWSKI & HUNGAR [1988] proved

that it cannot essentially be strengthened.

7 . 4 . 2 . 6 Nonstandard semantics and logical completeness

 Observe that soundness (129) is proved for all interpretations I satisfying all

theorems of Th whereas completeness in the sense of Cook (156) is relative to a given

expressive interpretation I satisfying all theorems of Th and not for all interpretations I'

with theory Th (i.e. such that Th is exactly the subset of formulae of Pre which are true

for I'). However this second understanding fits better with FLOYD [1967a] and

HOARE [1969] original idea that Hoare logic defines the semantics of the program where

Th is the specification of the operations invoked in the program. It follows that the lack

of a general completeness theorem for a sound Hoare logic implies that the operational

semantics of the programming language is not the semantics about which the logic is

reasoning. This remark has motivated two rather different perspectives on completeness

theorems: the first (ANDRÉKA & NÉMETI [1978], GERGELY & ÚRY [1978], ANDRÉKA, NÉMETI &

SAIN [1979] [1981] [1982] , B E R G S T R A & T U C K E R [1 9 8 4] , B I R Ó [1 9 8 1] ,

CSIRMAZ [1980] [1981a] [1981b], GERGELY & ÚRY [1980], HORTALÁ-GONZÁLEZ & RODRÍGUEZ-

ARTALEJO [1985], MAKOWSKY & SAIN [1986], NÉMETI [1980], SAIN [1985]) consists in

considering “explicit time semantics” or “nonstandard semantics” which can permit of

transfinite execution traces, the second (BERGSTRA & TUCKER [1982b] [1982c]) consists in

considering another notion of completeness called logical completeness such that

H ∪ Th is logically complete if and only if any partial correctness formula H which is

valid in all models of the specification Th is provable in H ∪ Th (that is ∩I Hcftt(I) ⊆

Hcfpr(Th)) whereas CSIRMAZ & HART [1986] only consider finite models. Another variant

of the notion of incompleteness is studied in RODRÍGUEZ-ARTALEJO [1985]. Soundness and

completeness of Hoare logic is studied from an algebraic point of view in

WECHLER [1983].

8 . Complements on Hoare logic

8 .1 Data structures

The assignment axiom (97) is correct for simple variables but cannot be used to

handle all data structures. For example, considering one dimensional arrays, we could

deduce {1 = 1} T[T[2]] := 1 {T[T[2]] = 1} from the assignment axiom (97) and

since (T[1] = 2 ∧ T[2] = 2) ⇒ (1 = 1) we deduce that {T[1] = 2 ∧ T[2] = 2}

T[T[2]] := 1 {T[T[2]] = 1} from the consequence rule (102) but this is not correct.

• One way to handle arrays correctly is to understand the value of an array T as a

function T : dom T → rng T where dom T is the domain of its indexes and rng T is the

domain of its elements and to consider assignments to an element as a modification of

the whole array (McCARTHY [1962], HOARE & WIRTH [1973], MANNA & WALDINGER [1981]).

For example from {T = t ∧ (t(2) = 2) ⇒ (t(1) = 1)} we derive that after assignment

T[T[2]] := 1 we have {T = t[t(2) ← 1] ∧ (t(2) = 2) ⇒ (t(1) = 1)} so that T[T[2]] =

t[t(2) ← 1](t[t(2) ← 1](2)) = t[t(2) ← 1](t(2) = 2 → 1 ◊ t(2)) = (t(2) = 2 → t(1) ◊ 1) =

1.

• Another way to handle arrays correctly is to understand them as a collection of

simple variables with possible aliases (IGARASHI, LONDON & LUCKHAM [1975]). For

example, DE BAKKER [1980] suggests the following assignment axiom for subscripted

variables:

{P[T[E1] ← E2]} T[E1] := E2 {P} (170)

with a refinement of substitution such that:

T[I][T[E1] ← E2] = (I = E1 → E2 ◊ T[I]) (171)

and the case when an arbitrary expression stands for I is not handled. By way of

example, we prove that {(T[2] = 2) ⇒ (T[1] = 1)} T[T[2]] := 1 {T[T[2]] = 1}. We have

(T[T[2]] = 1)[T[T[2]] ← 1] = (∃ I. T[I] = 1 ∧ T[2] = I)[T[T[2]] ← 1] = (∃ I. (I =

T[2] → 1 ◊ T[I]) = 1 ∧ (2 = T[2] → 1 ◊ T[2]) = I). Now the last formula is implied by

(T[2] = 2) ⇒ (T[1] = 1) since if T[2] = 2 holds then we choose I = 1 else we choose

I = T[2]. Thus by the consequence rule and axiom (170) we get the desired result.

• Axioms of assignment applicable to multi-dimensional arrays or pointers to linked

data structures are given in DEMBINSKI & SCHWARTZ [1976], CARTWRIGHT & OPPEN [1978]

[1981], GRIES [1978], GRIES & LEVIN [1980], JANSSEN & VAN EMDE BOAS [1977], KOWALTOWSKI

[1977], LUCKHAM & SUZUKI [1979], MANNA & WALDINGER [1981], MORRIS [1982], PRATT [1976],

SCHWARTZ & BERRY [1979]. One can also consult HOARE [1972a], COOK & OPPEN [1975],

OPPEN & COOK [1975], JONES [1980], TIURYN [1985] and HOARE, HE JIFENG & SANDERS [1987]

on proving partial correctness properties of programs with user-defined data types and

BURSTALL [1972] and NELSON [1983] for the special case of linear lists.

8 .2 Procedures

First we define the syntax and relational semantics of recursive parameterless

procedures. Then we consider partial correctness proofs based upon computation

induction (a generalization of Scott induction) which leads to Hoare's recursion rule.

Since this only rule is not complete, we consider Park's fixpoint induction, which,

using auxiliary variables, can be indirectly transcribed into Hoare's rule of adaptation.

Then these rules are generalized for value-result parameters and numerous examples of

application are provided. References to the literature are given for variable parameters

and procedures as parameters.

8.2 .1 Recursive parameterless procedures

8 . 2 . 1 . 1 Syntax and relational semantics of a parameterless

procedural language

Let us now consider programs of the form Pn :: C1; C2 which consists of a

command C2 calling a single recursive parameterless procedure Pn with body C1:

DEFINITION Syntax of a parameterless procedural language (172)

Pn : Proc Procedure names (.1)

Pg : P r o g Programs (.2)

Pg ::= Pn :: C1; C2

C : C o m Commands (.3)

C ::= skip | X := E | X := ? | (C1; C2) | (B → C1 ◊ C2) | (B * C) | Pn

The relational semantics Pn of a procedure Pn is a relationship between states

such that a call of Pn in state s leads (if execution of such a call does terminate) to a state

s' such that <s, s'> ∈ Pn. When a command C contains a procedure call, the relational

semantics of the command can only be defined if the semantics of the procedure is

known. Therefore, we define the semantics C of a command C as a function of the

semantics r of the procedure Pn :: C1. The definition of C(r) = I[C](r) is similar to (19)

but for the fact that we must define the effect of a procedure call Pn (r) = r and that of a

program: Pn :: C1; C2 = C2(r) where r is the semantics of procedure Pn. If procedure

Pn is not recursive then its semantics is simply r = C1(ø). If it is recursive, the

definition is circular since r = C1(r). To avoid paradoxes, we must prove that this

equation has a solution and, if it is not unique, we must specify which one is to be

considered. To do this, observe that P(S x S) is a complete lattice for the partial ordering

⊆ where ø is the infimum, S x S is the supremum, ∪ is the least upper bound and ∩ is

the greatest lower bound. Also C1 is monotone i.e. r ⊆ r' ⇒ C1(r) ⊆ C1(r'). Therefore,

according to TARSKI [1955], C1 has a least fixed point lfp C1 = ∩{r ∈ P(S x S) : C1(r) ⊆ r}

such that lfp C1 = C1(lfp C1) and r = C1(r) ⇒ (lfp C1 ⊆ r). The semantics of procedure

Pn is chosen to be lfp C1 (this could be justified with respect to an operational semantics

as in (19), see DE BAKKER [1980, Ch. 5]). We get the following:

DEFINITION after SCOTT & DE BAKKER [1969], DE BAKKER & DE ROEVER [1972]

Relational semantics (173)

I : Com → (P(S x S) → P(S x S)) (.1)

skip (r) = {<s, s> : s ∈ S} (.2)

X := E (r) = {<s, s[X ← E(s)]> : s ∈ S} (.3)

X := ? (r) = {<s, s[X ← d]> : s ∈ S ∧ d ∈ D} (.4)
(C1 ; C2) (r) = C1 (r) ˚ C2 (r) (.5)

(B → C1 ◊ C2) (r) = (B  C1 (r)) ∪ (¬B  C2 (r)) (.6)

(B * C) (r) = (B  C (r))* ¬B (.7)

Pn (r) = r (.8)

Pn :: C1; C2 = C2(lfp C1) (.9)

(For a version of (173) taking termination into account see HITCHCOCK & PARK [1973], DE

BAKKER [1976], DE ROEVER [1976], PLOTKIN [1976], MAJSTER-CEDERBAUM [1980] and APT &

PLOTKIN [1986]. A semantics of nondeterministic recursive programs based upon

fixpoints of relations on functions rather than fixpoints of functions on relations is

presented in PLAISTED [1986]).

The recursive programming language (172) with its relational semantics (173) is

strictly more powerful than the iterative language (1) with its semantics (19) since, for

example, when the data space D is finite,the first may use an unbounded storage space

while the second may not (the comparison is pursued in KFOURY [1983], KFOURY &

URZYCZYN [1985]).

8 . 2 . 1 . 2 The recursion rule based upon computational induction

 To prove partial correctness, we need, in addition of theorems (76), means of

proving {p}lfp C1{q} or, more generally, of proving a property P(lfp F) of the least

fixpoint lfp F of a monotone function F on a complete lattice L:

LEMMA SCOTT & DE BAKKER [1969] Computation induction (174)

If <L, ≤, ∪, ∩, ⊥> is a complete lattice and F : L → L is monotone then

[P(⊥) ∧ ∀ X. P(X) ⇒ P(F(X)) ∧ ∀ α. ∀ X ∈ α → L. (∀ β < α. P(Xβ)) ⇒ P(∪ β < α Xβ)] ⇒

P(lfp F)

Proof

lfp F is one of the elements of the transfinite sequence X0 = ⊥, …, Xα = F(Xα−1)

for successor ordinals α, …, Xα = ∪ β < α Xβ for limit ordinals α (see COUSOT &

COUSOT [1979]). Therefore we can prove that P(lfp F) holds by proving ∀ α. P(Xα),

which, by transfinite induction, is implied by P(⊥) ∧ ∀ X. P(X) ⇒ P(F(X)) ∧

∀ α . ∀ X. (∀ β < α . P(Xβ)) ⇒ P(∪ β < α X β). �

Computation induction is a generalization of Scott induction (also called computational

induction in MANNA, NESS & VUILLEMIN [1972]) which corresponds to the particular case

when F is upper-continuous (if so lfp F = Xω where ω = | N |) and P is admissible (i.e.
∀ X ∈ N → L. (∀ n ∈ N . P(Xn)) ⇒ P(∪ n ∈ N Xn)) so that (P(⊥) ∧ ∀ X. P(X) ⇒

P(F(X)) ⇒ P(lfp F). When specialized to the partial correctness proof {p}lfp C1{q} of a

recursive procedure Pn :: C1, computation induction leads to the following theorem

where the assumption ∀ <s, s'> ∈ r. ∀ v ∉ Var (C1). s(v) = s'(v) ∧ ∀ d ∈ D .

<s[v ← d], s'[v ← d]> ∈ r states that the relational semantics r of C1 is without side-

effects, more precisely that the variables v not appearing in C1 cannot be modified and

can have any value during execution of C1:

THEOREM Partial correctness proof of procedures by computation induction (175)

[∀ r ∈ P(S2).

(∀ <s, s'> ∈ r. ∀ v ∉ Var(C1). s(v) = s'(v) ∧ ∀ d ∈ D. <s[v ← d], s'[v ← d]> ∈ r)

⇒ ({p}r{q} ⇒ {p}C1(r){q})]

⇒ {p}lfp C1{q}

Proof

We prove (∀ <s, s'> ∈ lfp C1. ∀ v ∉ Var(C1). s(v) = s'(v) ∧ ∀ d ∈ D. <s[v ← d],

s'[v ← d]> ∈ lfp C1 ∧ {p}lfp C1{q}) by computation induction (174). (∀ <s, s'> ∈ ø.

∀ v ∉ Var(C1). s(v) = s'(v) ∧ ∀ d ∈ D . <s[v ← d], s'[v ← d]> ∈ ø ∧ {p}ø{q}) is

obviously true. If, by induction hypothesis, ∀ <s, s'> ∈ r. ∀ v ∉ Var(C1). s(v) = s'(v) ∧

∀ d ∈ D . <s[v ← d], s'[v ← d]> ∈ r ∧ {p}r{q} is true then {p}C1(r){q} holds by

hypothesis of theorem (175) and we can prove ∀ <s, s'> ∈ C1(r). ∀ v ∉ Var(C1).

s(v) = s'(v) ∧ ∀ d ∈ D. <s[v ← d], s'[v ← d]> ∈ C1(r) by structural induction on the

syntax (172) of C1. Finally ∀ α. ∀ r. (∀ β < α. (∀ <s, s'> ∈ rβ. ∀ v ∉ Var(C1). s(v) =

s'(v) ∧ ∀ d ∈ D . <s[v ← d], s'[v ← d]> ∈ rβ) ∧ (p  rβ ⊆ S x q)) ⇒ ((∀ <s, s'> ∈

∪ β < α rβ . ∀ v ∉ V a r (C 1). s(v) = s'(v) ∧ ∀ d ∈ D . < s[v ← d], s'[v ← d]> ∈

∪ β < α rβ) ∧ p  (∪ β < α rβ) ⊆ S x q) is again obviously true. �

Computation induction (175) can be directly translated into Hoare logic by the

following recursion rule due to HOARE [1971b]:

 Recursive procedure Pn :: C1; :

{P}Pn{Q} |- {P}C1{Q}

—————————— Recursion rule (176)
 {P}Pn{Q}

This rule of inference in the sense of PRAWITZ [1965] means that “H1, …, Hn” is a formal

proof of Hn using:

 H | - H ' 
H ∪  ——— 

 H " 

if and only if “H, H1, …, Hn” is a formal proof of Hn (as defined at (94)) using:

 H ' 
H ∪  — 

 H" 

Formally, the metarule (176) can be avoided by transforming the proof system into in

ordinary one as shown by APT [1981a] and AMERICA & DE BOER [1989].

Example Partial correctness proof by computation induction (177)

The following program terminates with X = n and Y = n ! when initially X = n ≥
0:

procedure F; (178)
begin

if X = 0 then Y := 1

 else begin X := X - 1; F; X := X + 1; Y := Y * X; end;

end;

F;

Partial correctness “{ true } F { Y = X ! }” can be proved using (176) as follows:

(a) { true } F {Y = X ! } by induction hypothesis

(b) { true ∧ X = 0 } Y := 1 { Y = X ! } by (97), (102)

(c) { Y * X = X ! } Y := Y * X { Y = X !} by (97)

(d) { Y * (X + 1) = (X + 1) !} X := X + 1 { Y * X = X } by (97)

(e) { Y = X ! } ⇒ { Y * (X + 1) = (X + 1) ! } from Th

(f) { Y = X ! } X := X + 1 { Y * X = X ! } by e, d, (102)

(g) { true } X =: X - 1 { true } by (97)

(h) { true ∧ ¬(X = 0) } (((X := X - 1; F); X := X + 1); Y := Y * X) { Y * X = X ! } by g, a, f, c,

(99), (102)

(i) { true } (X = 0 → Y := 1 ◊ (((X := X - 1; F); X := X - 1); Y := Y * X)) { Y = X ! } by b, h, (100)

(j) { true } F { Y = X ! } by a, i, (175)

Observe that the recursion rule (176) is powerful enough to prove “{true} F {Y =

X !}” because this conclusion (j) can be used as induction hypothesis (a). This is not

the case for proving “{X = n} F {X = n ∧ Y = n !}” since then we need induction

hypothesis “{X = n - 1} F {X = n - 1 ∧ Y = (n - 1) !}” which cannot be

directly derived from the conclusion “{X = n} F {X = n ∧ Y = n !}” using the

consequence rule (102). Hence a proof method using (175) or (176) only is not

relatively complete (APT [1981a]). �

Various proof rules, known as copy-rule induction, have been proposed by

GORELICK [1975], CLARKE [1977], LANGMAACK & OLDEROG [1980], APT [1981], OLDEROG [1981]

[1983b] [1983c], TRAKHTENBROT, HALPERN & MEYER [1983] to extend the recursion rule (176)

for higher-order procedure calls.

8 . 2 . 1 . 3 The rule of adaptation based upon fixpoint induction

 Since the proof method (175) based upon computation induction is not

complete, we come back to the problem of proving a property P(lfp F) of the least

fixpoint lfp F of a monotone function F on a complete lattice L. When P(lfp F) is of the

form X ∩ lfp F ≤ Y, which is the case for {p}lfp C1{q}, we can use fixpoint induction:

LEMMA PARK [1969] Fixpoint induction (179)

If <L, ≤, ∪, ∩, ⊥> is a complete lattice and F : L → L is monotone then

(X ∩ lfp F ≤ Y) ⇔ (∃ Z ∈ L. F(Z) ≤ Z ∧ X ∩ Z ≤ Y)
Proof

For ⇒ we can choose Z = lfp F so that F(Z) = Z and for ⇐ we have (F(Z) ≤ Z) ⇒

(lfp F ≤ Z) since lfp F = ∩{Z : F(Z) ≤ Z} by TARSKI [1955] whence X ∩ lfp F ≤ X ∩ Z ≤
Y. �

When specialized to the partial correctness proof {p}lfp C1{q} of a recursive procedure

Pn :: C1, fixpoint induction (179) leads to the following proof method (a version of

which is used in COURCELLE [1985] to establish the partial correctness of clausal

programs):

THEOREM after PARK [1969], MANNA & PNUELI [1970] Partial correctness proof of (180)

• (∃ r ∈ P(S2). C1(r) ⊆ r ∧ {p}r{q}) ⇒ {p}lfp C1{q} (.1)

• {p}lfp C1{q} ⇒ (∃ r ∈ P(S2). C1(r) ⊆ r ∧ {p}r{q} (.2)

∧ ∀ <s, s'> ∈ r. ∀ v ∉ Var(C). (s(v) = s'(v))

∧ ∀ d ∈ D. <s[v ← d], s'[v ← d]> ∈ r)
Proof

We have (∃ r ∈ P(S2). C1(r) ⊆ r ∧ {p}r{q}) ⇒ (∃ r ∈ P(S2). C1(r) ⊆ r ∧ (p x S) ∩

r ⊆ S x q) ⇒ ((p x S) ∩ (lfp C1) ⊆ S x q) ⇒ (p  (lfp C1) ⊆ S x q) ⇒ {p}lfp C1{q}.

Reciprocally, if {p}lfp C1{q} then obviously C1(r) ⊆ r ∧ {p}r{q} for r = lfp C1.

Moreover we can prove P(lfp C1) where P(r) = (∀ <s, s'> ∈ r. ∀ v ∉ Var(C). (s(v) =

s'(v)) ∧ ∀ d ∈ D. <s[v ← d], s'[v ← d]> ∈ r) by computation induction (174). P(ø) is

obvious. Assuming P(r) we can prove P(C1(r)) by structural induction on the syntax of

C1. For example P(Pn(r)) = P(r) [by (173.8)] = tt [by induction hypothesis].

P(X := E(r)) = ∀ v ∉ {X} ∪ Var(E). s(v) = s[X ← E(s)](v) ∧ ∀ d ∈ D . <s[v ← d],

s[X ← E(s)][v ← d]> ∈ {<s", s"[X ← E(s")]> : s" ∈ S} is true, etc. Finally ∀ α. ∀ r.

(∀ β < α. P(rβ)) ⇒ P(∪ β < α rβ) is obvious. �

Example Partial correctness proof by fixpoint induction I (181)

Partial correctness “{ X = n } F { X = n ∧ Y = n ! }” of program (178) can be

proved using (180.1) as follows:

(a) r = {<s, s'> : s'(X) = s(X) ∧ s'(Y) = s(X) !} by definition of r

(b) Y := 1(r) ⊆ {<s, s[Y ← 0 !]> : s ∈ S} by (173.2)

(c) X = 0  Y := 1(r) ⊆ r by b, a

(d) X := X - 1(r) ⊆ {<s, s[X ← s(X) - 1]> : s ∈ S} by (173.2)

(e) F(r) ⊆ {<s, s'> : s'(X) = s(X) ∧ s'(Y) = s(X) !} by (173.8), a

(f) (X := X - 1; F)(r) ⊆ {<s, s'> : s'(X) = s(X) - 1 ∧ s'(Y) = (s(X) - 1) !} by d, e, (173.5)

(g) X := X + 1(r) ⊆ {<s, s[X ← s(X) + 1]> : s ∈ S} by (173.2)

(h) ((X := X - 1; F); X := X + 1)(r) ⊆ {<s, s'> : s'(X) = s(X) ∧ s'(Y) = (s(X) - 1) !} by f, g, (173.5)

(i) Y := Y * X(r) ⊆ {<s, s[Y ← s(Y) * s(X)]> : s ∈ S} by (173.2)

(i) ¬X = 0  (((X := X - 1; F); X := X + 1); Y := Y * X)(r) ⊆ r by f, g, (173.5)

(j) (X = 0 → Y := 1 ◊ (((X := X - 1; F); X := X - 1); Y := Y * X))(r) ⊆ r by c, j, (173.6)

(k) {{s : s(X) = n}} r {{s : s(X) = n ∧ s(Y) = n !}} by a, (22)

(l) {{s : s(X) = n}} lfp (X = 0 → Y := 1 ◊ (((X := X - 1; F);

 X := X - 1); Y := Y * X)) {{s : s(X) = n ∧ s(Y) = n !}} by j, k, (178.1)
�

Theorem (180) is not directly expressible in Hoare logic since (∃ r ∈ P(S2). C1(r)

⊆ r ∧ {p}r{q}) does not use only formulae of the style p' ⊆ q' and {p'}C'{q'}. To

enforce this, we can let S'=S2, p' = {<s, s> : s ∈ S}, C1' = {<<s, s>, <s, s'>> : <s, s'>

∈ C1(r)} and q' = r so that {p'}C1'{q'} = {{<s, s'> : s ∈ S}} {<<s, s>, <s, s'>> : <s,

s'> ∈ C1(r)} {r} = (p'  C1' ⊆ S x q') = ({<<s, s>, <s,s>> : <s, s> ∈ C1(r)} ⊆ {<<s0,

s1>, <s, s>> : <s, s> ∈ r}) = C1(r) ⊆ r. In this translation the relationship r between

states before and after the procedure call is expressed using predicates upon states but

the state space S has been changed into S2 (as in MANNA & PNUELI [1974]). To remain in

the spirit of traditional Hoare logic, it is better to use logical auxiliary variables not

appearing in the program to memorize the value of the programming variables before the

procedure call (the importance of these auxiliary variables in correctness proofs for

recursive procedures was first realized by GREIBACH [1975] and GORELICK [1975] and later

thoroughly investigated in GALLIER [1978] [1981], APT, BERGSTRA & MEERTENS [1979], APT &

MEERTENS [1980], MEYER & HALPERN [1980] and APT [1981b]). Let X˘ = <X1, …, Xn> be the

vector of variables Var(C1) = {X1, …, Xn} appearing in command C1. Following

OLDEROG [1983], we write X˘ || x˘ whenever X˘ = <X1, …, Xn>, x˘ = <x1, …, xm>, m =

n and {X1, …, Xn} ∩ {x1, …, xm} = ø and extend all notations to vectors, for example

X˘ = x˘ means X1 = x1 ∧ … ∧ Xn = xm, s(X˘) stands for <s(X1),…,s(Xn)>, s[X˘ ← x˘]

means s[X1 ← x1]…[Xn ← xn], {X˘} is {X1, …, Xn}, etc. Then we let p' = {s ∈ S :

s(X˘) = s(x˘)} and q' = {s' ∈ S : <s'[X˘ ← s'(x˘)], s'> ∈ r} where {X˘} = Var(C1) and

X˘ || x˘ so that {p'}C1(r){q'} implies C1(r) ⊆ r. More precisely, we have:

DEFINITION OLDEROG [1983] Non-interference (182)

X˘ || x˘ = [X˘ = <X1, …, Xn> ∧ x˘ = <x1, …, xm> ∧ m = n ∧ {X1, …, Xn} ∩ {x1, …,

xm} = ø]

THEOREM Partial correctness proof of procedures by fixpoint induction II (183)

∃ r ∈ P(S2). C1(r) ⊆ r ∧ {p}r{q}
⇔

∃ p', q' ∈ P(S).

∀ r' ∈ P(S2).

(∀ <s, s'> ∈ r'. ∀ v ∉ Var(C1). s(v) = s'(v)

∧ ∀ d ∈ D . <s[v ← d], s'[v ← d]> ∈ r')

⇒ ({p'}r'{q'} ⇒ {p'}C1(r'){q'})

∧ ∀ s ∈ p. ∀ d˘ ∈ D˘. (∀ s' ∈ S. s'[X˘ ← s(X˘)] ∈ p'

⇒ s'[X˘ ← d˘] ∈ q') ⇒ s[X˘ ← d˘] ∈ q

where {X˘} = Var(C1) and X˘ || x˘

(The assertion ∀ <s, s'> ∈ r'. ∀ v ∉ Var(C1). s(v) = s'(v) ∧ ∀ d ∈ D . <s[v ← d],

s'[v ← d]> ∈ r' states that the relational semantics r' of C1 is without side-effects, more

precisely that the variables v not appearing in C1 cannot be modified and can have any

value during execution of C1. We have {p'}lfp C1{q'} so that in the assertion ∀ s ∈ p.

∀ d˘ ∈ D ˘. (∀ s' ∈ S. s'[X˘ ← s(X˘)] ∈ p' ⇒ s'[X˘ ← d˘] ∈ q') ⇒ s[X˘ ← d˘] ∈ q, the

assumption ∀ s' ∈ S. s'[X˘ ← s(X˘)] ∈ p' ⇒ s'[X˘ ← d˘] ∈ q' states that <p', q'> is the

specification of the procedure Pn :: C1. More precisely any terminating execution of C1

started with initial values s(X˘) of the variables X˘ satisfying p' must terminate with

final values d˘ of X˘ satisfying q' and this whatever the possible values s'(v) of the

variables v ∉ {X˘} not appearing in the procedure body C1 may be. The assertion states

that any execution of Pn started with values s(X˘) of X˘ and terminated with values d˘ of

X˘ satisfying specification <p', q'> must satisfy the postcondition q whenever the

precondition p is satisfied.)

Proof

• For ⇒ , assume C1(r) ⊆ r ∧ {p}r{q} then {p}lfp C1{q} by (180.1) so that by

(180.2) we can assume that ∀ <s, s'> ∈ r. ∀ v ∉ Var(C1). s(v) = s'(v) ∧ ∀ d ∈ D .

<s[v ← d], s'[v ← d]> ∈ r . Let p' = {s ∈ S : s(X˘) = s(x˘)} and q' = {s' ∈ S :

<s'[X˘ ← s'(x˘)], s'> ∈ r} where {X˘} = Var(C1) and X˘ || x˘.

(A) Assuming ∀ <s, s'> ∈ r'. ∀ v ∉ Var(C1). s(v) = s'(v) ∧ ∀ d ∈ D . <s[v ← d],

s'[v ← d]> ∈ r' and {p'}r'{q'} we first prove {p'}C1(r'){q'}.

(a) We first prove that p'  C1(r') ⊆ p'  C1(r). We have (p'  r' ⊆ S x q') [by (124)]

so that ∀ s, s' ∈ S . (s(X˘) = s(x˘) ∧ <s, s'> ∈ r') ⇒ <s '[X˘ ← s '(x˘)], s'> ∈ r. It

follows that if <s, s'> ∈ r' then <s[x˘ ← s(X˘)], s'[x˘ ← s(X˘)]> ∈ r' [since ∀ v ∉

Var(C1). ∀ d ∈ D . <s[v ← d], s'[v ← d]> ∈ r'] in which case s[x˘ ← s(X˘)](X) =

s[x˘ ← s(X˘)](x˘) = s(X˘) [by (121) since X˘ || x˘ hence {X˘} ∩ {x˘} = ø] so that

<s'[x˘ ← s(X˘)][X˘ ← s'[x˘ ← s(X˘)](x˘)], s'[x˘ ← s(X˘)]> ∈ r and, after simplification

by (121), <s'[x˘ ← s(X˘)][X˘ ← s(X˘)], s'[x˘ ← s(X˘)]> ∈ r hence <s, s'> ∈ r since ∀

v ∉ Var(C1). s'(v) = s(v). We conclude r' ⊆ r, whence by monotony C1(r') ⊆ C1(r) so

that p'  C1(r') ⊆ p'  C1(r).

(b) Then we prove that {p'}C1(r){q'} is true. We have {p'}r{q'} = (p'  r ⊆ S x q')

[by (124)] = (∀ <s, s'> ∈ r : s(X˘) = s(x˘) ⇒ <s'[X˘ ← s'(x˘)], s'> ∈ r) which is true

since <s, s'> ∈ r implies <s'[X˘ ← s(X˘)], s'> ∈ r [since ∀ v ∉ Var(C1). ∀ d ∈ D .

<s[v ← d], s'[v ← d]> ∈ r] hence <s'[X˘ ← s(x˘)], s'> ∈ r [since s(X˘) = s(x˘)]. We

conclude {p'}C1(r){q'} since C1(r) ⊆ r.

(c) Finally, {p'}C1(r'){q'} is true since (b) implies (p'  C1(r) ⊆ S x q'), whence

p'  C1(r') ⊆ S x q' by (a) so that {p'}C1(r'){q'} holds.

(B) Let be given s ∈ p and d˘ ∈ D ˘. Assuming (∀ s' ∈ S. s'[X˘ ← s(X˘)] ∈ p' ⇒

s'[X˘ ← d ˘] ∈ q') we prove that s[X˘ ← d ˘] ∈ q. We have s[x˘ ← s (X˘)](X˘) =

s[x˘ ← s(X˘)](x˘) = s(X˘) [by (121) since X˘ || x˘ hence {X˘} ∩ {x˘} = ø] so that

s[X˘ ← s(X˘)] ∈ p'. By definition of p', this implies s(X˘) = s[X˘ ← s(X˘)](X˘) =

s[X˘ ← s(X˘)](x˘) = s(x˘) [since X˘ || x˘]. Also s[X˘ ← s(X˘)] ∈ p' implies s[X˘ ← d˘] ∈

q' that is <s[X˘ ← d˘][X˘ ← s[X˘ ← d˘](x˘)], s[X˘ ← d˘]> ∈ r , after simplification by

(121), <s[X˘ ← s(x˘)], s[X˘ ← d˘]> ∈ r hence <s[X˘ ← s(X˘)], s[X˘ ← d˘]> ∈ r [since

s(X˘) = s(x˘)] so that <s, s[X˘ ← d˘]> ∈ r [by (121)] whence s[X˘ ← d˘] ∈ q [since s ∈

p and {p}r{q}].

• For ⇐, we have ∀ r' ∈ P(S2). (∀ <s, s'> ∈ r'. ∀ v ∉ Var(C1). s(v) = s'(v) ∧ ∀ d ∈

D . <s[v ← d], s'[v ← d]> ∈ r') ⇒ ({p'}r'{q'} ⇒ {p'}C1(r'){q'}) and (175) which

imply {p'}lfp C1{q'}. Hence by (180.2) there exists r ∈ P(S2) such that C1(r) ⊆

r ∧ {p'}r{q'} ∧ ∀ <s, s'> ∈ r. ∀ x ∉ Var(C1). (s(x) = s'(x)) ∧ ∀ d ∈ D . <s[x ← d],

s'[x ← d]> ∈ r .

To prove {p } r{q } we assume that s ∈ p and < s, s'> ∈ r so that s' =

s[X˘ ← s '(X˘)] since ∀ x ∉ {X˘}. s(x) = s'(x). Also ∀ s" ∈ S . <s"[X˘ ← s(X˘)],

s"[X˘ ← s'(X˘)]> ∈ r since ∀ x ∉ {X˘}. ∀ d ∈ D . <s[x ← d], s'[x ← d]> ∈ r. Hence

{p'}r{q'} implies ∀ s" ∈ S. s"[X˘ ← s(X˘)] ∈ p' ⇒ s"[X˘ ← s'(X˘)] ∈ q'. Then (∀ s" ∈

S. s"[X˘ ← s(X˘)] ∈ p' ⇒ s"[X˘ ← d˘] ∈ q') where d˘ = s'(X˘) implies s[X˘ ← d˘] ∈ q

that is s[X˘ ← s'(X˘)] ∈ q so that, in conclusion, s' ∈ q. �

Theorem (183) can be directly transcribed in Hoare logic using the recursion rule (176)

and the following rule of adaptation (due to MORRIS [19??] and OLDEROG [1983a]) :

 { P ' } C { Q ' }
————————————————————— Rule of adaptation (184)
{∀ x˘. (∀ y˘. (P' ⇒ Q'[X˘ ← x˘])) ⇒ Q[X˘ ← x˘]}C{Q}

where X˘ || x˘ with {x˘} ∩ Free(P', Q', C, Q) = ø and {y˘} = Free(P', Q') - {X˘}

A first version of this rule of adaptation was introduced by HOARE [1971b] and slightly

extended in IGARASHI, LONDON & LUCKHAM [1975] and ERNST [1977]. OLDEROG [1983a] proved

that it is sound and relatively complete and can replace the substitution rule I, the

invariance rule and the elimination rule of APT [1981a]. Although HOARE [1971b] adaptation

rule is relatively complete, MORRIS [19??] and OLDEROG [1983a] showed that it does not

give the best possible precondition and proposed a strengthened version. An incorrect

version of HOARE [1971b] adaptation rule was designed by GUTTAG, HORNING & LONDON

[1978] and LONDON, GUTTAG, HORNING & LAMPSON [1978]. The error was pointed out by

GRIES & LEVIN [1980] who proposed a sound version. A slightly simpler version of the

adaptation rule of GRIES & LEVIN [1980] and GRIES [1981] was proposed by MARTIN [1983]

but BIJLSMA, WILTINK & MATTHEWS [1986] showed that both versions were equivalent. As

pointed out by OLDEROG [1983a] and BIJLSMA, WILTINK & MATTHEWS [1989] the rule of GRIES

& LEVIN [1980] and GRIES [1981] is relatively incomplete. They proposed a sound and

relatively complete variant. Another sound and relatively complete variant was designed

by CARTWRIGHT & OPPEN [1978] [1981].

Example APT [1981a] Recursive factorial procedure with global variables (185)

To prove partial correctness { X = n } F { X = n ∧ Y = n ! } of procedure F of

program (178) we use the recursion rule (176). Assuming {X = n} F {X = n ∧ Y =

n !} by induction hypothesis, we must prove {X = n - 1} F {X = n - 1 ∧ Y = (n - 1) !}

for the recursive call of F. By the rule of adaptation (184) where X˘ = <X, Y>, x˘ = <x,

y> and y˘ = <n> we derive {∀ x. ∀ y. (∀ n. ((X = n) ⇒ (x = n ∧ y = n !))) ⇒ (x = n -

1 ∧ y = (n - 1) !)} F {X = n - 1 ∧ Y = (n - 1) !}. By the consequence rule (102), it

remains to show that (X = n - 1) ⇒ (∀ x. ∀ y. (∀ n'. ((X = n') ⇒ (x = n' ∧ y =

n' !))) ⇒ (x = n - 1 ∧ y = (n - 1) !)) which is obviously true. Then the correctness

proof of procedure F can be completed as shown by the following proof outline:

procedure F;

begin

{ X = n }
if X = 0 then

{ X = n ∧ X = 0 } Y := 1 { X = n ∧ Y = n ! }
else begin

{ X = n ∧ X ≠ 0 } X := X - 1; { X = n - 1 }
F;

{ X = n - 1 ∧ Y = (n - 1) ! } X := X + 1; { X = n ∧ Y = (n - 1) ! } Y := Y * X;
end;

{ X = n ∧ Y = n ! }
end;

{ X = y } F; { X = y ∧ Y = y ! }

For the main call of procedure F it remains to prove {X = y} F {X = y ∧ Y = y !}.

Since (X = y) ⇒ (∀ x'. ∀ y'. (∀ n. ((X = n) ⇒ (x' = n ∧ y' = n !)) ⇒ (x' = y ∧ y' =

y !))) this follows from the rule of adaptation (184) and the consequence rule (102). �

Example DE BAKKER & MEERTENS [1975] Showing the usefulness of auxiliary
variables (186)

The following program computes 2n0 - 1 when n0 is positive:

procedure F;

begin

{ N = n ≥ 0 ∧ S = s }
if N > 0 then begin

{ N = n > 0 ∧ S = s } N := N - 1; { N = n - 1 ≥ 0 ∧ S = s }
F;

{ N = n - 1 ≥ 0 ∧ S = s + 2n-1 - 1 } S := S + 1; { N = n - 1 ≥ 0 ∧ S = s + 2n-1 }
F;

{ N = n - 1 ≥ 0 ∧ S = s + 2n-1 + 2n-1 - 1 } N := N + 1;
end;

{ N = n ≥ 0 ∧ S = s + 2n - 1 }
end;

{ N = n0 ≥ 0 ∧ S = 0 } F; { N = n0 ≥ 0 ∧ S = 2n0 - 1 }

Its partial correctness proof uses the recursion rule (176) with induction hypothesis { N

= n ≥ 0 ∧ S = s } F { N = n ≥ 0 ∧ S = s + 2n - 1 } and the adaptation and consequence

rules (184) and (102) for the main and recursive calls of F. For example { N = n - 1 ≥ 0

∧ S = s } F { N = n - 1 ≥ 0 ∧ S = s + 2n-1 - 1 } follows from the fact that (N = n - 1 ≥ 0 ∧

S = s) implies (∀ n', s'. (∀ n, s. ((N = n ≥ 0 ∧ S = s) ⇒ (n' = n ≥ 0 ∧ s' = s + 2n -

1)) ⇒ (n' = n - 1 ≥ 0 ∧ s' = s + 2n-1 - 1)). The proof proposed in DE BAKKER & MEERTENS

[1975] uses an infinite pattern of assertions (one for each program step) because in their

proof system one cannot use logical variables (n, s) to relate the different values of the

program variables (N, S) at different stages of the computation so that the invariants

have to express the current value of N and S in terms of their initial values n0 and 0 and

of a representation of the computation history (see GREIBACH [1975], GORELICK [1975],

GALLIER [1978] [1981], APT, BERGSTRA & MEERTENS [1979], APT & MEERTENS [1980], MEYER &

HALPERN [1980] and APT [1981b]). �

8 . 2 . 1 . 4 Hoare-like deductive systems with context-dependent

conditions

Hoare deduction systems are Hilbert-style systems (BARWISE [1977]) where proofs

proceed by induction on the syntax of programs. Since this syntax is specified by a

context-free grammar (AHO, SETHI & ULLMAN [1986]) it is not directly possible to express

context-dependent conditions such as the correspondence between procedure calls and

procedure declarations (specifying which procedure bodies are associated with

procedure names). In fact a formula {P}C{Q} is often relative to declarations of named

objects which can be represented by a mapping from names to objects called an

environment (SCOTT & STRACHEY [1972]). Therefore, most often, Hoare correctness

formulae have the form <ρ | {P}C{Q}> where ρ is an environment associating

procedure bodies to procedure names (and informally all procedure names occurring

free in C are declared in ρ and there are no procedure names occurring free in ρ). The

axioms and rules of inference propagate the environment from declarations to calls:
(187)

 < [Pn ← C1] | {P} C2 {Q} >

——————————–—— Rule of programs (.1)
 {P} Pn :: C1; C2 {Q}

 < ρ | {P} skip {P} > Skip axiom (.2)

8.2 .2 Value-result parameters

Let us now consider a procedural language with value-result parameters:

DEFINITION Syntax of a procedural language with value and/or result parameters (188)

Pn : Proc Procedure names (.1)

Pg : P r o g Programs (.2)

Pg ::= Pn (? U ?! V ! W) :: C1; C2

C : C o m Commands (.3)

C ::= skip | X := E | X := ? | (C1; C2) | (B → C1 ◊ C2) | (B * C) | Pn (E, Y, Z)

U, V and W are distinct formal parameters of recursive procedure Pn with body C1

which are respectively passed by value, value-result and result. Therefore a call Pn (E,

Y, Z) with expression E and variables Y and Z as actual parameters consists in creating

new local variables named U, V, W within C1, respectively initialized to the value of E,

to the value of Y and to any value d of D, then in executing the body C1 of procedure

Pn (which may modify the values of local variables U, V, W as well as that of the

global variables (but not the ones named U, V and W which are hidden by their local

homonyms)), and finally in assigning the values of the local variables V and W to the

variables Y and Z (in that order) and then in destroying the local variables named U, V,

W:

DEFINITION after DE ROEVER [1974] Relational semantics of value and/or (189)

result parameter passing

• Pn (E, Y, Z) (r) = (.1)

{<s, s'[U ← s(U)][V ← s(V)][W ← s(W)][Y ← s'(V)][Z ← s'(W)]> :

∃ d ∈ D. <s[U ← E(s)][V ← s(Y)][W ← d], s'> ∈ r}

• Pn (? U ?! V ! W) :: C1; C2 = C2(lfp C1) (.2)

Example (190)

Let Pg be Pn(? A ?! B ! C) :: C1; C2 where C1 is (B := A + B; (A := A + 1; (C :=

A + 1; D := C + 1))) and C2 is (C3; Pn(A + 1, B, B)) with C3 = (A := 1; (B := 10; C :=

100)). By (173.3) and (173.5), the relational semantics of the procedure body is lfp C1

= C1(ø) = {<s, s[A ← s(A) + 1] [B ← s(A) + s(B)] [C ← s(A) + 2] [D ← s(A) +

3]> : s ∈ S}. By (189.1), the semantics of the procedure call is Pn(A + 1, B, B) = {<s,

s'[A ← s(A)] [B ← s(B)] [C ← s(C)] [B ← s'(B)] [B ← s'(C)]> : ∃ d ∈ D . <s[A ← A

+ 1(s)] [B ← s(B)] [C ← d], s'> ∈ lfp C1} = {<s, s[D ← s(A) + 4] [B ← s(A) + 3]> :

s ∈ S}. The semantics of the initialization part of the program body is C3(lfp C1) = {<s,

s[A ← 1] [B ← 10] [C ← 100]> : s ∈ S} so that the semantics of the program is Pg =

C2(lfp C1) = {<s, s[A ← 1] [B ← 10] [C ← 100] [D ← (s[A←1][B←10][C←100](A))

+ 4] [B ← (s[A←1][B←10][C←100](A)) + 3]> : s ∈ S} = {<s, s[A ← 1] [C ← 100]

[D ← 5] [B ← 4] > : s ∈ S}. �

This semantics leads to an analog of theorem (183) and then to the following proof rules

(the rule of adaptation (192) could be simplified as in GRIES & LEVIN [1980], GRIES [1981],

MARTIN [1983] and BIJLSMA, MATTHEWS & WILTINK [1989] by restricting the use of global

variables, the assignments to value parameters, or assuming that value-result and result

parameters are different):

Recursive procedure Pn (? U ?! V ! W) :: C1;

Recursion rule (191)

{P} Pn (? U ?! V ! W) {Q} |- {P}C1{Q}

——————————————————
 {P} Pn (? U ?! V ! W) {Q}

Rule of adaptation (192)

 {P'} Pn(?U, ?!V, !W) { Q ' }
—————————————————————————————————
{∀ x˘. ∀ “u, “v, “w, “y, “z, v’, w’.

((U = “u) ∧ (V = “v) ∧ (W = “w) ∧ (Y = “y) ∧ (Z = “z) ∧

 (∀ m ˘.

((∃‘w.P'[U ← E[U←“u][V←“v][W←“w][Y←“y][Z←“z]][V←“v][W←‘w][Y←“y]

[Z←“z])

⇒ (∃ u’, y’, z’. Q'[X˘ ← x˘] [U ← u’] [V ← v’] [W ← w’] [Y ← y’] [Z ← z’]))))

 ⇒ Q [Z ← w’] [Y ← v’] [X˘ ← x˘] [U ← “u] [V ← “v] [W ← “w]}

Pn(E, Y, Z)

{Q}

where:

• X˘ = Var(E, C1) - {U, V, W, Y, Z} is the value of the global variables (not

used as actual result parameters and not homonyms of actual or formal parameters)

before the call Pn(E, Y, Z),

• x˘ such that X˘ || x˘ are fresh variables denoting the value of X˘ after the call

Pn(E, Y, Z),

• “u, “v, “w, “y, “z are fresh variables denoting the values of the global

variables U, V, W, Y, Z before the call,

• ‘w is a fresh variable denoting the undetermined initial value d ∈ D of formal

result parameter W when execution of the procedure body C1 is started,

• u’, v’, w’ are the values of the local formal parameters U, V and W after

execution of the procedure body C1 and before the result parameters passing,

• {m˘} = Free(P', Q') - ({X˘} ∪ {U, V, W, Y, Z}) is the set of logical variables

used for the specification of the procedure body C1,

• y’, z’ are the values of the global variables Y and Z after execution of the

procedure body C1 and before the result parameters passing,

• all fresh variables are distinct and do not appear in Free(P', Q', C1, E, Q) ∪

{U, V, W, Y, Z}.

When reading rule (192) it must be remembered that substitution is left to right that is to

say P[X ← x][Y ← y] is P'[Y ← y] where P' = P[X ← x].

Example MARTIN [1983] Once used to show the inconsistency of erroneous

procedure- (193)

call proof rules

Assuming {P'} Pn(! Z) {Q'} where P' = true and Q' = ((Z = 1) ∨ (Z = 2)), we

can determine P such that {P} Pn(C) {Q} holds with Q = (C = 2) by the rule of

adaptation (192):

P = ∀ “w, “z, w’. ((Z = “w) ∧ (C = “z) ∧ ((∃ ‘w. P'[Z ← ‘w][C ← “z])

⇒ (∃ z’. Q'[Z ← w’][C ← z’]))) ⇒ Q [C ← w’] [Z ← “w]

= ∀ “w, “z, w’. ((Z = “w) ∧ (C = “z) ∧ ((w’ = 1) ∨ (w’ = 2))) ⇒ (w’ = 2)

= false.

MARTIN [1983] gives David Gries the credit for this example who used it to

demonstrate the inconsistency of a number of procedure-call proof rules. The Euclid

proof rule (LONDON, GUTTAG, HORNING, LAMPSON, MITCHELL & POPEK [1978]), for example,

gives P = true. �

Example BIJLSMA, MATTHEWS & WILTINK [1989] On the use of auxiliary variables (194)

Consider a procedure Pn(? X ! Z) for rounding the real number X to a nearby

integer Z (such as Z := floor(X), Z := ceil(X) or Z = round(X)). The specification

{P'}Pn{Q'} where P' = (m ≤ X ≤ m + 1) and Q' = (Z = m ∨ Z = m + 1) states that Z

is obtained from X by rounding any non-integer X either up or down to an integer, and

by using X itself if X happens to be an integer. Now consider the call Pn(A, C) with

postcondition Q = (C = 0). The corresponding precondition P such that {P} Pn(A, C)

{Q} holds is given by the rule of adaptation (192) as:

P = ∀ “u, “w, “z, w’.

((X = “u) ∧ (Z = “w) ∧ (C = “z) ∧

 (∀ m .

((∃ ‘w. P'[X ← A[X←“u][Z←“w][C←“z]] [Z ← ‘w] [C ← “z])

⇒ (∃ u’, y’, z’. Q'[X ← u’] [Z ← w’] [C ← z’]))))

 ⇒ Q [C ← w’] [X ← “u] [Z ← “w]

= ∀ w’. (∀ m. ((m ≤ A ≤ m + 1) ⇒ (w’ = m ∨ w’ = m + 1))) ⇒ (w’ = 0)

= (A = 0).

This example was designed by BIJLSMA, MATTHEWS & WILTINK [1989] to show that

the precondition in GRIES [1981, Th. 12.4.1 p. 161]'s rule (which would be P = false) is not

the weakest that can be inferred solely from the procedure's specification in cases when

the specification involves auxiliary logical variables. �

Example Homonym formal and actual parameters (195)

Let Pg be Pn(? A ?! B ! C) :: C1; C2 where C1 is (B := A + B; (A := A + 1; (C :=

A + 1; D := C + 1))) and C2 is (C3; Pn(A + 1,B, B)) with C3 = (A := 1; (B := 10; C :=

100)). By (97), the composition rule (99) and the consequence rule (102) we have {A =

a ∧ B = b ∧ C = c} C1 {A = a + 1 ∧ B = a + b ∧ C = a + 2 ∧ D = a + 3} whence by

the recursion rule (191 we derive {P'} Pn (? A ?! B ! C) {Q'} where P' is (A = a ∧ B =

b ∧ C = c) and Q' is (A = a + 1 ∧ B = a + b ∧ C = a + 2 ∧ D = a + 3). Let Q be (A =

a ∧ B = b ∧ C = c ∧ D = d). In order to derive the corresponding precondition P by the

rule of adaptation (192) we observe that X˘ = <D>, m˘ = <a, b, c> whence:

P = (∀ x. ∀ “u, “v, “w, “y, “z, v’, w’.

((A = “u) ∧ (B = “v) ∧ (C = “w) ∧ (B = “y) ∧ (B = “z) ∧

(∀ a, b, c.

 ((∃‘w. P'[A ← E[A←“u][B←“v][C←“w][B←“y][B←“z]] [B←“v] [C←‘w]

[B←“y] [B←“z])

⇒ (∃ u’, y’, z’. Q'[D ← x] [A ← u’] [B ← v’] [C ← w’] [B ← y ’]

[B ← z’]))))

 ⇒ Q[B ← w’] [B ← v’] [D ← x] [A ← “u] [B ← “v] [C ← “w])

= (A = a = b - 3 = d - 4 ∧ C = c). �

Example Recursive factorial procedure with value-result parameters (196)

Let us prove the partial correctness of the following program:

procedure F(?X !Y);

begin

{X = n}
if X = 0 then

{X = n ∧ X = 0} Y := 1
else begin

{X = n ∧ X ≠ 0} F(X - 1, Y); {X = n ∧ Y = (n - 1) !} Y := Y * X;
end;

{X = n ∧ Y = n !}
end;

{X = y} F(X, Y); {X = y ∧ Y = y !}

To prove partial correctness {X = n} F(?X !Y) {X = n ∧ Y = n !} of procedure F, we

use the recursion rule (191). Assuming {X = n} F(?X !Y) {X = n ∧ Y = n !} by

induction hypothesis, we must prove {X = n ∧ X ≠ 0} F(X -1, Y) {X = n ∧ Y = (n -

1) !} for the recursive call of F. By the consequence rule (102) and rule of adaptation

(192) (where {x˘} = {x˘} = ø and m˘ = n, P' = (X = n), Q' = (X = n ∧ Y = n !) and Q

= (X = n ∧ Y = (n - 1) !)) we must show that:

(X = n ∧ X ≠ 0) ⇒

(∀ “u, “w, “z, w’.

((X = “u) ∧ (Y = “w) ∧ (Y = “z)

∧ (∀ n.((∃‘w. P'[X ← (X - 1)[X←“u][Y←“w][Y←“z]] [Y ← ‘w] [Y ← “z])

⇒ (∃ u’, z’. Q'[X ← u’] [Y ← w’] [Y ← z’]))))

⇒ Q [Y ← w’] [X ← “u] [Y ← “w])

that is, after simplification:

(X = n ∧ X ≠ 0) ⇒ (∀ “u, w’. ((X = “u) ∧ (w’ = (“u - 1) !)) ⇒ (“u = n ∧ w’ = (n
- 1) !))

which is obvious. Then the correctness proof of procedure F can be completed as

shown by the above proof outline. Knowing that {X = n} F(?X !Y) {X = n ∧ Y = n !}

holds, it remains to prove {X = y} F(X, Y) {X = y ∧ Y = y !} for the main call of

procedure F. This follows from the rule of adaptation (192) and the consequence rule

(102) since: (X = y) ⇒ (∀ “u, “w, w’. ((X = “u) ∧ (Y = “w) ∧ (∀ n. ((∃ ‘w. (X =

n)[X ← “u] [Y ← ‘w]) ⇒ (∃ u’. (X = n ∧ Y = n !)[X ← u’] [Y ← w’])))) ⇒ (X = y ∧

Y = y !)[Y ← w’] [X ← “u]). �

8.2 .3 Complements on variable parameters and procedures
as parameters

APT [1981a]'s survey on Hoare logic is mainly concerned with procedures and

parameter mechanisms. More recent progresses concerning procedures have been

reported in LANGMAACK & OLDEROG [1980] and OLDEROG [1983b]. In particular, for a

treatment of variable (reference, address,…) parameters, see HOARE [1971b], IGARASHI,

LONDON & LUCKHAM [1975], ERNST [1977], SCHWARTZ [1979], DE BAKKER [1980, Ch. 9], GRIES &

LEVIN [1980], APT [1981a], CARTWRIGHT & OPPEN [1981], GERMAN, CLARKE & HALPERN [1983]

[1988], SIEBER [1985]. A separation of procedural abstraction and parameter passing is

attempted is MORGAN [1988a] [1988b] [1988c].

CLARKE [1977]'s theorem (169) put a borderline to sound and relatively complete

Hoare logics for programs with procedures. CLARKE [1977] also claimed that the

languages Lj (as defined at (166)) do have a sound and relatively complete Hoare logic.

For j ≠ 4 these claims were either proved in CLARKE [1977] or later established by

OLDEROG [1981]. These languages Lj, j ≠ 4 are easy to axiomatize since for each program,

there is a bound on the number of procedure environments (associating a procedure

body to a procedure name) that can be reached during execution (OLDEROG [1983b], DAMM

& JOSKO [1983a] [1983b]). It follows that each of the procedure environments can be treated

as a separate case. The case of L4 was more difficult because it can give rise to non-

homomorphic chains of procedure environments that grow arbitrarily long.

Example (197)

In the following program written in an L4 subset of Pascal:

program L4;
procedure P (X : integer; procedure Q (Z : integer));

procedure L (X : integer); begin Q(X - 1) end;
begin if X > 0 then P(X - 1, L) else Q(X) end;

procedure M;
var N : integer;
procedure R (X : integer); begin writeln(X) end;

begin write('N = '); readln(N); P(N, R) end; {M}
begin M end.

the main procedure M reads the value n of N and calls P(n, Ln) with Ln = R which

recursively calls P(n - 1, Ln-1), P(n - 2, Ln-2), … , P(1, L1) and P(0, L0) thus creating

a chain of procedures procedure Li-1 (X : integer); begin Li(X - 1) end; for i = n, …

, 1 so that execution of P(0, L0) consists in calling L0(0) whence L1(-1), L2(-2), …,

Ln-1(-n+1) and Ln(-n) that is R(-n) which finally prints -n. �

The first axiomatizations of Clarke's language L4 proposed by DAMM & JOSKO [1983a]

[1983b] and OLDEROG [1983c] [1984] used higher-order assertion languages to make

assertions about this unbounded number of procedure environments (i.e. state-

transformation): all concepts for Hoare logic are lifted from programs transforming

states into states to programs transforming state-transformations into state-

transformations. This leads to completeness not relative to the first-order theory of the

interpretation. GERMAN, CLARKE & HALPERN [1983] [1988] were the first to propose a relative

completeness proof for L4 with a first-order oracle and COOK [1978]'s notion of

expressiveness. However the logic extends Hoare logic by allowing quantifiers over

first-order variables (∀ x. H, …) and other logical connectives (H ⇒ H',…) to be

used on the level of Hoare formulae (an idea going back to HAREL, PNUELI & STAVI [1977]

and also exploited in SIEBER [1985]) but is relatively complete only for Hoare correctness

formulae H. Later GOERDT [1987] proposed an indirect axiomatic proof method for L4

which involves the translation of programs into finitely typed lambda calculus and then

the application of GOERDT [1985]'s Hoare calculus. This calculus was shown to be

relatively complete (without Herbrand definability hypothesis) in GOERDT [1988]. Hoare

logic has also been extended to other types of languages with higher-order concepts in

ERNST, NAVLAKHA & OGDEN [1982], DE BAKKER, KLOP & MEYER [1982], GOERDT [1985] [1987]

[1988], HALPERN [1984], LANGMAACK [1983], TRAKHTENBROT, HALPERN & MEYER [1983].

8 .3 Undefinedness

When the evaluation of expressions in the programming language can lead to

runtime errors, it is necessary to deal with partially defined functions. Hoare logic can

be easily extended when the domain of these partial functions is given (for example in

the case of array bounds outside their declared range) or can be easily defined (for

example in the case of dangling pointers) as shown by SITES [1974], GERMAN [1978] [1981],

COLEMAN & HUGUES [1979] and BLIKLE [1981]. Contrary to mathematicians, the computer

scientists are often confronted with the problem of proving properties about partial

objects without the knowledge of their domain. In this case first-order 2-valued logic is

inadequate as pointed out by ASHCROFT, CLINT & HOARE [1972] who have discovered an

error in CLINT & HOARE [1976] for nonterminating functions. Alternatives consist in

introducing an extra element ⊥ in the data domain which is forced by the axiomatization

to behave like a “divergent” or “undefined” data object (CARTWRIGHT [1984]) or, more

generally, in using a 3-valued logic covering undefinedness in program proofs as

proposed by BARRINGER, CHENG & JONES [1984] and studied by HOOGEWIJS [1987].

8 .4 Aliasing and side effects

The assignment axiom (97) is incorrect when aliases (i.e. distinct identifiers

designating a shared storage location) are allowed. One can hide the source of the

problem by prohibiting interference between identifiers in the programming language or

in the proofs (REYNOLDS [1978] [1989], MASON [1987]) or consider augmented versions of

Hoare logic which allows aliasing between variables (JANSSEN & VAN EMDE BOAS [1977],

SCHWARTZ [1979], CARTWRIGHT & OPPEN [1981], OLDEROG [1981], LANGMAACK [1983],

TRAKHTENBROT, HALPERN & MEYER [1983]).

The same way the assignment axiom (97), conditional (100) and while (101)

rules are incorrect when the evaluation of expressions can have side effects (MANNA &

WALDINGER [1981]). A number of Hoare-like axiomatizations of expression languages or

expressions with side effects (CUNNINGHAM & GILFORD [1976], KOWALTOWSKI [1977],

PRITCHARD [1977], SCHWARTZ & BERRY [1979]) modify Hoare logic by introducing Hoare

correctness formulae for expressions {P}E{Q} where the precondition P and

postcondition Q explicitly depend upon a distinguished variable standing for the value

returned by the evaluation of expression E. Alternatives consist in considering other

logics explicitly referring to the state of computation (MANNA & WALDINGER [1981]), in

using the value of a programming language expression as the underlying primitive

(BOEHM [1985]) or in transforming the program into procedural form (LANGMAACK [1983]).

8 .5 Block structured local variables

If we extend the syntax (188) of programs with block structured local variables:

C ::= (var X; C1) (198)

local variable X is like a bound variable of a predicate (see (116)) so that blocks satisfy

the property that systematic replacement of the local variable X by some fresh variable Y

preserves the meaning of the block: (var X; C) is equivalent to (var Y; C[X ← Y]),

provided that Y does not occur free in C. For example, according to this static scope

rule, (var X; ((var X; C1); C2)) is equivalent to (var Y; ((var Z; C1[X ← Z]);

C2[X ← Y])) where Y, Z ∉ Var(C1, C2). This leads to the following rule (HOARE

[1971b], HOARE & WIRTH [1973], APT [1978] [1981a], DE BAKKER [1980]) where the renaming of

X for Y is performed to distinguish between the occurrences of local X in C and

possible free occurrences of nonlocal X in P or Q:

 {P} C[X ← Y] {Q}
————————— Block rule (199)
 {P} (var X; C) {Q}

where Y ∉ Free(P, Q) ∧ ((X = Y) ∨ Y ∉ Free(C))

Observe that rule (199) may necessitate alteration C[X ← Y] of the program text C, but

this can be avoided (naïve solutions such as DONAHUE [1976] fail to treat the scope rule

properly, see the discussion in APT [1981a] and FOKKINGA [1978], OLDEROG [1981] [1983] for

further details). Observe also that rule (199) does not take the possibility of running out

of new storage locations into account (TRAKHTENBROT, HALPERN & MEYER [1983]). There

are other difficulties in defining the semantics of such blocks (see DE BAKKER [1980, Ch. 6],

TRAKHTENBROT, HALPERN & MEYER [1983], HALPERN, MEYER & TRAKHTENBROT [1984], MEYER &

SIEBER [1988], for a discussion). For example, mapping local variables into a global

memory using a stack discipline is an overspecification, since then, for example, {true}

((var X; X := 0); (var Z; Y := Z)) {Y = 0} would hold because X and Z are allocated

at the same address. Although this phenomenon can be observed in a number of

implementations, it is contrary to the specification of block-structured languages where

the initial value of local variables is usually undetermined so that, as shown by (199),

(var X; C) should be equivalent to (var X; (X := ?; C)), see WIRTH [1971] for example.

However this introduces unbounded nondeterminism (see the corresponding difficulties

in paragraph § 8.10.2). Another way to cope with uninitialized local variables (APT

[1981a]) is to use an extra uninitialized value ω ∈ D so that (var X; C) is equivalent to

(var X; (X := ω; C)). But then one can prove {true} ((var X; Y := X); (var X; Z :=

X)) {X = Y}, which is not true for most implementations where the initial value of local

variables is undetermined. DE BAKKER [1980] introduces simple conditions which

guarantee that variables are initialized before being used. One can also force initialization

upon declaration with the syntax (var X := E; C1) (and use union types to allow for

an initial value denoting logical uninitialization).

8 .6 Goto statements

Goto's with static labels cause no problem with FLOYD [1967a] partial correctness

proof method. For each label L, if {Pi, i = 1, …, n} is the set of preconditions of the

statements goto L in the program (including the postcondition of the command

sequentially preceding the command labeled L) and Q is the precondition of the

command labeled L then FLOYD [1967a]'s verification condition is simply (∪ i = 1,…,n

Pi) ⇒ Q. The difficulty with Hoare logic is to express this verification conditional

compositionally, by induction on the syntax of programs (O'DONNELL [1982]). Various

solutions have been proposed by CLINT & HOARE [1972], DONAHUE [1976], WANG [1976],

KOWALTOWSKI [1977], DE BRUIN [1981] and LIFSCHITZ [1984]. An inconsistency problem with

CLINT & HOARE [1972], DONAHUE [1976] and KOWALTOWSKI [1977] goto rules is noticed by

ARBIB & ALAGIC [1979] and O'DONNELL [1982]. Scope problems with jumps out of

procedures have not been explicitly dealt with (but for weakened forms of procedure

escapes, FOKKINGA [1978]).

Techniques similar to that used in theorem (169) have also been used to obtain

incompleteness results for programming languages that include label variables with

retention (CLARKE [1977] [1984]).

8 .7 Functions and expressions (with side effects)

Functions are not called in order to change states - the realm that assertions can

capture - but to return a value. In the proof rule proposed by CLINT & HOARE [1972] the

result returned by the function call f(x) (in the computer science sense) is simply

denoted in predicates by f(x) (in the mathematical sense). This excludes side-effects in

functions (since for example the mathematical identity f(x) + f(x) = 2 f(x) is not valid

whenever a call to f increments x by 1). Moreover ASHCROFT, CLINT & HOARE [1976] have

noticed that the proof rule of CLINT & HOARE [1972] yields an inconsistency whenever a

defined function fails to halt for some possible argument, even if the value of the

function is never computed for that argument, as explained in O'DONNELL [1982]. Hence

the problem is again the one of undefinedness which is not correctly handle in

predicates (see 8.3).

The problem can be circumvented by reduction of expression evaluation to

execution of a sequence of assignment statements (DE BAKKER, KLOP & MEYER [1982]), by

transforming the programmer-declared functions into procedures (LANGMAACK [1983]) or

by modifying Hoare logic by explicitly introducing one or more symbols to denote

expression values (CUNNINGHAM & GILFORD [1976], KOWALTOWSKI [1977], PRITCHARD

[1977], SCHWARTZ [1979]) or by introducing primitive notations to make explicit assertions

about the value of programming language expressions (BOEHM [1982] [1985],

SOKOLOWSKI [1984]).

8 .8 Coroutines

CLINT [1973] extended Hoare logic to simple coroutines (block-body and single

coroutine combination) based upon the semi-coroutine concept of Simula 67 (WANG &

DAHL [1971], DAHL & NYGAARD [1966]). It was further extended by PRITCHARD [1976] to

multiple coroutines and DAHL [1975] to multiple dynamic instances of coroutines. They

use auxiliary variables to accumulate the computation and communication history in

stacks of arbitrary size. CLARKE [1980] showed that, in the case of simple static

coroutines, history variables are useless and that auxiliary variables of bounded size

simulating program counters are enough. CLINT [1981] argues that history variables,

although not necessary, can help for clarity and ease of verification.

Techniques similar to that used in theorem (169) have also been used to obtain

incompleteness results for programming languages that include coroutines with local

recursive procedures that can access global variables (CLARKE [1977] [1984]).

8 .9 Parallel programs

The controversy on the usefulness of program verification (DE MILLO, LIPTON &

PERLIS [1979]) can hardly be extended to parallel programs because their correctness

which is often very intricate cannot be checked by non-reproducible and non-exhaustive

tests. Therefore, clear programming notations as well as correctness proofs are

indispensable, at least when designing the underlying basic algorithms (DIJKSTRA [1968],

ANDREWS [1981]).

The evolution of Hoare logic for parallel programs is tightly coupled with the

slow emergence of clear notations for expressing process synchronization and

communication to which C. A. R. Hoare largely contributed, from shared variables

(HOARE [1972c] [1975], OWICKI & GRIES [1976a] [1976b], …), then monitors (HOARE [1974],

HOWARD [1976], OWICKI [1978]) and finally synchronous message passing (HOARE [1978b],

APT, FRANCEZ & DE ROEVER [1980], LEVIN & GRIES [1981], …).

We discuss proof methods for parallel programs with shared variables and briefly

survey the case of synchronous message passing in HOARE [1978b]'s communicating

sequential processes CSP.

8.9 .1 Operational semantics of parallel programs with
shared variables

We consider (a simplified version of) parallel programs with shared global

variables as introduced by OWICKI [1975] and OWICKI & GRIES [1976a]:

DEFINITION Syntax of parallel programs (200)

. Pp : Pap r Parallel programs (.1)

Pp ::= [C1 || C2 || … || Cn] n ≥ 2

. C : C o m Sequential commands (.2)

C ::= skip | X := E | X := ? | (C1; C2) | (B → C1 ◊ C2)

| (B * C) | (B ¿ C) | √

Execution of a program “[C1 || C2 || … || Cn]” consists in executing processes C1, C2,

… and Cn in parallel. These commands act upon implicitly declared shared global

variables. Evaluation of a Boolean expression B, execution of assignments “X := E” or

“X := ?” and execution of await commands “(B ¿ C)” are atomic or indivisible actions

that is no concurrent action can modify the value of the variables involved in this action.

When a process attempts to execute an await command “(B ¿ C)”, it is delayed until the

condition B is true. Then the command C is executed as an indivisible action.

Evaluation of B is part of the indivisible action so that another process may not change

variables so as to make B false after B has been evaluated but before C begins

execution. Upon termination of “(B ¿ C)”, parallel processing continues. If two or more

processes are waiting for the same condition B, any one of them may be allowed to

proceed when B becomes true, while the others continue waiting. The order in which

processes are scheduled is indifferent, for example a weak fairness hypothesis would be

that no nonterminated hence permanently enabled process Ck can be indefinitely

delayed. A strong fairness hypothesis would be that no process can be indefinitely

delayed if condition B can be infinitely often evaluated to true while that process is

waiting, see LAMPORT [1980a], LEHMANN, PNUELI & STAVI [1981], MANNA & PNUELI [1984]

[1989] and FRANCEZ [1986] for more details on fairness hypotheses. OWICKI [1975] and

OWICKI & GRIES [1976a] assume that await commands (B ¿ C) cannot be imbricated since

this could lead to deadlocks (as in “[(true ¿ (false ¿ skip)) || skip]”). Execution of a

program “[C1 || C2 || … || Cn]” is terminated when all processes have finished their

execution. We use the empty command “√” to denote termination.

To define the operational semantics of parallel programs, we introduce control

states:

DEFINITION Labels designating control states (201)

if Pp is [C1 || C2 || … || Cn] then

. At[(B ¿ C)] ={(B ¿ C)}, In[(B ¿ C)] = ø, After[(B ¿ C)] = {√} (.1)

. Lab[Pp] = Lab[C1] x … x Lab[Cn] (.2)

. P p L a = ∪{Lab[Pp] : Pp ∈ Papr} (.3)

. At[Pp] = At[C1] x … x At[Cn] (.4)

. After[Pp] = After[C1] x … x After[Cn] (.5)

. In[Pp] = Lab[Pp] - At[Pp] - After[Pp] (.6)

The operational semantics of parallel programs is defined by interleaved

executions of atomic actions as defined by (13.1) to (13.6):

DEFINITION Operational semantics of parallel programs (compositional
presentation) (202)

d : D Data (.1)

s : S = Var → D States (.2)

γ : Γ = (S x Com) ∪ (S x PpLa) Configurations (.3)

op : (Com ∪ Papr) → P(Γ x Γ) Operational transition (.4)
 relation

op[(B ¿ C)] = {<<s, (B ¿ C)>, s'> : s ∈ B ∧ <<s, C>, s'> ∈ op[C]*} (.5)

op [√] = ø (.6)

op[[C1 || C2 || … || Cn]] = (.7)

{<<s, L>, <s', L[k ← L'k]>> : k ∈ {1, …, n} ∧ <<s, Lk>, <s', L'k>> ∈ op[Ck]}

∪ {<<s, L>, <s', L[k ← √] >> : k ∈ {1, …, n} ∧ <<s, Lk>, s'> ∈ op[Ck]}

Example (203)

We illustrate the proof methods for parallel programs on the following program

Pp which increments the value of variable X by a + b where a and b are given integer

constants:
(204)

[X := X + a || X := X + b]

L L L L
11 12 21 22

Its operational semantics is (for simplicity we write <s, <L 1, … , Ln>> as

<s, L1, … , Ln>) :

op[Pp] = {<<s, L11, L21>, <s[X ← s(X) + a], L12, L21>> : s ∈ S}

∪ {<<s, L11, L22>, <s[X ← s(X) + a], L12, L22>> : s ∈ S}

∪ {<<s, L11, L21>, <s[X ← s(X) + b], L11, L22>> : s ∈ S}

∪ {<<s, L12, L21>, <s[X ← s(X) + b], L12, L22>> : s ∈ S}

where L11 = (X := X + 1)0, L12 = √0, L21 = (X := X + 1)1 and L22 = √1. This program

is partially correct {p}Pp{q} for the specification p = {s ∈ S : s(X) = s(x)} and q = {s ∈

S : s(X) = s(x) + a + b}. �

By (44), the operational semantics (202) can also be given a stepwise
presentation:

LEMMA Operational semantics of parallel programs (stepwise presentation) (205)

op[[C1 || C2 || … || Cn]] (.1)

= {<<s, L>, <s', L[k ← L'k]>> : k ∈ {1, … , n}

∧ Lk ∉ After[Ck] ∧ s' ∈ NextS[Ck]<s, Lk> ∧ L'k ∈ NextL[Ck]<s, Lk>}

where:

Step[C][(…(((B ¿ C'); C1); C2)…; Cn)] = (B ¿ C') (.2)

Succ[C][(…(((B ¿ C'); C1); C2)…; Cn)] = (…(C1; C2)…; Cn) (.3)

if Step[C][L] is (B ¿ C') then

NextS[C]<s, L> = {s' : s ∈ B ∧ <<s, C'>, s'> ∈ op[C]*} (.4)

NextL[C]<s, L> = {Succ[C][L] : s ∈ B} (.5)

Example Stepwise operational semantics of parallel program (204) (206)

The stepwise presentation of the operational semantics of program Pp = [C1 || C2]

defined at (204) is specified by C1 = (X := X + a), C2 = (X := X + b), At[C1] = {L11},

In[C1] = ø, After[C1] = {L12}, Lab[C1] = {L11, L12}, At[C2] = {L21}, In[C2] = ø,

After[C2] = {L22}, Lab[C2] = {L21, L22}, NextS[C1]<s, L11> = {s[X ← s(X) + a]},

NextL[C1]<s, L11> = {L12}, NextS[C2]<s, L21> = {s[X ← s(X) + b]}, NextL[C2]<s,

L21> = {L22}. �

8.9 .2 À la Floyd proof methods for parallel programs with
shared variables

We follow the style of presentation of COUSOT & COUSOT [1984]. From a semantical

point of view, proofs of partial correctness {p}Pp{q} consist in discovering local

invariants I ∈ Linv[Pp] attached to control points and in proving that they satisfy local

verification conditions lvc[Pp][p, q](I) expressing that local invariants must remain true

after execution of atomic actions. Hence without complementary hypotheses on the set

Linv[Pp] of local invariants we can assume that à la Floyd proof methods are of the

form:

[∃ I ∈ Linv[Pp]. lvc[Pp][p, q](I)] (207)

Up to a connection (α, γ) between local invariants I ∈ Linv[Pp] and global invariants i ∈

P(Γ):

α ∈ P (Γ) → Linv[Pp]) (208)

γ ∈ Linv[Pp] → P(Γ) (209)

this proof method (207) consists in applying induction principle (29.1):

[∃ i ∈ P(Γ). gvc[Pp][p, q](i)] (210)

This induction principle involves a single global invariant i on configurations (i.e.

memory and control states), which is true for initial configurations satisfying p, remains

true after each program step and implies q for final configurations:

(211)

gvc[Pp][p, q](i) = (∀ s ∈ p. <s, C1, … Cn> ∈ i) (.1)

∧ (i  op[Pp] ⊆ Γ x i) (.2)

∧ (∀ <s, √, … , √> ∈ i. s ∈ q) (.3)

By theorem (29.1) this induction principle (210) is semantically sound (⇐) and

complete (⇒):

{p}Pp{q} ⇔ [∃ i ∈ P(Γ). gvc[Pp][p, q](i)] (212)

The connection i = γ(I) and I = α(i) between (207) and (210) expresses the fact that the

global invariant i can be decomposed into local assertions I attached to control points. It

induces a logical connection between local and global verification conditions:

∀ I ∈ Linv[Pp]. lvc[Pp][p, q](I) ⇒ gvc[Pp][p, q](γ(I)) (213)

∀ i ∈ P(Γ). gvc[Pp][p, q](i) ⇒ lvc[Pp][p, q](α(i)) (214)

which, together with (212), ensures the soundness and semantical completeness of
(207):

{p}Pp{q} ⇔ [∃ I ∈ Linv[Pp]. lvc[Pp][p, q](I)] (215)

This approach can also be used to formally construct proof methods by symbolic

calculus: Given gvc[Pp][p, q], α and γ , we can let lvc[Pp][p, q](I) be gvc[Pp][p,

q](γ(I)) (so that the proof method is sound by construction) and check semantical

completeness by showing that gvc[Pp][p, q](i) ⇒ lvc[Pp][p, q](α(i)) = gvc[Pp][p,

q](γ(α(i))) (which is often obvious because gvc[Pp][p, q] is monotone and (α, γ) is a

Galois connection so that ∀ i ∈ P(Γ). i ⇒ γ(α(i))). For example, this point of view was

applied to the design of a partial correctness proof method for CSP programs in COUSOT

& COUSOT [1980].

We now explain a few partial correctness proof methods for parallel programs

following these guidelines.

8 . 9 . 2 . 1 Using a single global invariant

ASHCROFT [1975] partial correctness proof method and the one of KELLER [1976]

(illustrated by BABICH [1979]) consist in directly applying induction principle (29.1).

Example (216)

To prove partial correctness of (204) by (210), we can use the global invariant:

i = {<s, L11, L21> : s(X) = s(x)} ∪ {<s, L12, L21> : s(X) = s(x) + a}

∪ {<s, L11, L22> : s(X) = s(x) + b} ∪ {<s, L12, L22>: s(X) = s(x) + a + b}

and show that (for all s, s' ∈ S):

(s ∈ p) ⇒ (<s, L11, L21> ∈ i)

(<s, L11, L21> ∈ i ∧ s' = s[X ← s(X) + a]) ⇒ (<s', L12, L21> ∈ i)

(<s, L11, L22> ∈ i ∧ s' = s[X ← s(X) + a]) ⇒ (<s', L12, L22> ∈ i)

(<s, L11, L21> ∈ i ∧ s' = s[X ← s(X) + b]) ⇒ (<s', L11, L22> ∈ i)

(<s, L12, L21> ∈ i ∧ s' = s[X ← s(X) + b]) ⇒ (<s', L12, L22> ∈ i)

(<s, L12, L22> ∈ i) ⇒ (s ∈ q)

�

In Ashcroft-Keller method, LinvAK[Pp] is chosen as P(Γ) and (αAK, γAK) is

identity. According to the operational semantics (205), the verification condition (i 

op[Pp] ⊆ Γ x i) of (210) can be decomposed into simpler verification conditions

corresponding to each atomic action. Otherwise stated (i  op[Pp] ⊆ Γ x i) is equivalent

to:

∀ s, s' ∈ S. ∀ L ∈ Lab[Pp]. ∀ k ∈ {1, …, n}. (217)

(<s, L> ∈ i ∧ Lk ∉ After[Ck] ∧ s' ∈ NextS[Ck]<s, Lk> ∧ L'k ∈ NextL[Ck]<s, Lk>)

⇒ (<s', L[k ← L'k]> ∈ i)

This means that starting with i true of <s, L1, … , Lk , … , Ln> and executing any

atomic action labeled Lk of any process Ck of the program (that is a transition in that

process Ck from configuration <s, Lk> to configuration <s', L'k>) leaves i true of <s',

L1 , … , L'k , … , Ln>.

The difficulty with this method is that for large programs the single global

invariant i tends to be unmanageable without being decomposed into simpler assertions.

8 . 9 . 2 . 2 Using an invariant on memory states for each control state

 Early attempts towards the decomposition of the global invariant such as

ASHCROFT & MANNA [1970] and LEVITT [1972] involves the transformation of the parallel

program into an equivalent nondeterministic one upon which Floyd-Naur's partial

correctness proof method is applied. As observed by KELLER [1976], this simply consists

in using induction principle (210) with local invariants on memory states attached to

each control state.

Example Partial correctness proof of program (204) by Ashcroft & Manna's
method (218)

To prove partial correctness of parallel program (204) by (220), we can use the

local invariants:

I<L11, L21> = {s ∈ S : s(X) = s(x)}

I<L11, L22> = {s ∈ S : s(X) = s(x) + b}

I<L12, L21> = {s ∈ S : s(X) = s(x) + a}

I<L12, L22> = {s ∈ S : s(X) = s(x) + a + b}

and show that (for all s, s' ∈ S):

Initialization (220.1):

(s ∈ p) ⇒ (s ∈ I[L11 || L21])

Induction (220.2):

(s ∈ I<L11, L21> ∧ s' = s[X ← s(X) + a]) ⇒ (s' ∈ I<L12, L21>)

(s ∈ I<L11, L22> ∧ s' = s[X ← s(X) + a]) ⇒ (s' ∈ I<L12, L22>)

(s ∈ I<L11, L21> ∧ s' = s[X ← s(X) + b]) ⇒ (s' ∈ I<L11, L22>)

(s ∈ I<L12, L21> ∧ s' = s[X ← s(X) + b]) ⇒ (s' ∈ I<L12, L22>)

Finalization (220.3):

(s ∈ I<L12, L22>) ⇒ (s ∈ q)
�

To formally construct this proof method, we exactly follow the development of

paragraph § 5.2 for Floyd-Naur method.Then we introduce local invariants and their

connection with the global invariant of (210):

DEFINITION Connection between local and global invariants (219)

. LinvAM[Pp] = Lab[Pp] → Ass (where Ass = P(S)) (.1)

. αAM : P(Γ) → Linv[Pp], α(i)(L) = {s : <s, L> ∈ i} (.2)

. γAM : Linv[Pp] → P(Γ), γ(I) = {<s, L> : L ∈ Lab[Pp] ∧ s ∈ I(L)} (.3)

Then we derive local verification conditions by lvc[Pp][p, q](I) = gvc[Pp][p,
q](γAM(I)):

THEOREM Ashcroft & Manna partial correctness proof method for parallel
programs (220)

Pp is [C1 || C2 || … || Cn] then {p}Pp{q} holds if and only if their exists I ∈

Lab[Pp] → Ass

such that:

. if L ∈ At[Pp] then p ⊆ I(L) (.1)

. if s, s' ∈ S, L ∈ At[Pp] ∪ In[Pp], k ∈ {1, … , n} then (.2)

(s ∈ I(L) ∧ Lk ∉ After[Ck] ∧ s' ∈ NextS[Ck]<s, Lk> ∧ L'k ∈ NextL[Ck]<s, Lk>)

⇒ (s' ∈ I(L[k ← L'k])

. if L ∈ After[Pp] then I(L) ⊆ q (.3)

Otherwise stated, starting with I<L1, … , Lk , … , Ln> true of s and executing any

atomic action labeled Lk of any process Ck of the program (that is a transition in that

process Ck from configuration <s, Lk> to configuration <s', L'k>) leaves I<L1, … , L'k
, … , Ln> true of s'. These local verification conditions can further be detailed as in (45)

for each possible kind of atomic action. In particular when the atomic action

Step[C k][Lk] labeled Lk is an await command (B ¿ C) with next label L'k =

Succ[Ck][Lk] we must prove { I(L) ∩ B }C{ I(L[k ← L'k] } to which Floyd's stepwise

partial correctness proof method (45) is directly applicable.

As shown by the success of Floyd-Naur partial correctness proof method, this

approach is very well suited for sequential programs. However for parallel programs Pp

= [C1 || C2 || … || Cn] the number of local invariants I(L), L ∈ Lab[Pp] grows as the

number | Lab[Pp] | of control states that is as the product | Lab[C1] | . | Lab[C2] | . …

. | Lab[Cn] | of the sizes of the processes C1, C2, …, Cn. Apart for trivial programs

this exponential explosion is rapidly unmanageable.

8 . 9 . 2 . 3 Using an invariant on memory states for each program point

In paragraph § 8.9.2.2, Floyd-Naur partial correctness proof method was

generalized to parallel programs by using an invariant on memory states for each control

state <L1, … , Ln> ∈ Lab[Pp]. For sequential programs this is equivalent to the use of

an invariant I(L) ∈ Ass on memory states for each program point L ∈ Prpt[Pp]. These

two points of view do not coincide for parallel programs. So, as first suggested by

ASHCROFT [1975], Floyd-Naur proof method can also be generalized to parallel programs

using an invariant on memory states for each program point. This consists in defining:

DEFINITION Connection between local and global invariants (221)

. Prpt[[C1 || … || Cn]] = ∪{Lab[Ck] : k ∈ {1,…, n}} (.1)

. LinvA[Pp] = Prpt[Pp] → Ass (.2)

. αA : P(Γ) → LinvA[Pp], αA(i)(l) = {s : ∃ L ∈ Lab[Pp]. <s, L[k ← l]> ∈ i} (.3)

. γA : LinvA[Pp] → P(Γ), γA(I) = {<s, L> : ∀ j ∈ {1, … , n}. s ∈ I(Lj)} (.4)

The induction step (γA(I)  op[Pp] ⊆ Γ x γA(I)) of the corresponding verification

conditions lvc[Pp][p, q](I) = gvc[Pp][p, q](γA(I)) can be, following OWICKI & GRIES

[1976a], decomposed into a sequential proof and a proof of interference freedom (also

called “monotony condition” in LAMPORT [1977]). Sequential correctness asserts that

executing any atomic action labeled L of any process Ck of the program (that is a

transition of that process Ck from configuration <s, L> to configuration <s', L'>)

starting with I(L) true of s makes I(L') true of s'. Interference freedom asserts that for

every label L" in a different process Cm, starting with both I(L") and I(L) true of s

leaves I(L") true of s':

THEOREM Incomplete partial correctness proof method for parallel programs (222)

if Pp is [C1 || C2 || … || Cn] then {p}Pp{q} holds if their exists I ∈ Prpt[Pp] →

A s s

such that :

. if k ∈ {1, …, n} and L ∈ At[Ck] then p ⊆ I(L) (.1)

. if s, s' ∈ S, k ∈ {1, …, n}, L ∈ At[Ck] ∪ In[Ck] and L' ∈ Lab[Ck] then (.2)

[s ∈ I(L) ∧ s' ∈ NextS[Ck]<s, L> ∧ L' ∈ NextL[Ck]<s, L>] ⇒ s' ∈ I(L')

. if s, s' ∈ S, k ∈ {1, …, n}, L ∈ At[Ck] ∪ In[Ck], m ∈ {1, …, n} - {k} (.3)

and L" ∈ Lab[Cm] then

[s ∈ I(L") ∧ s ∈ I(L) ∧ s' ∈ NextS[Ck]<s, L>] ⇒ s' ∈ I(L")

. ∩ {I(L) : ∃ k ∈ {1, …, n}. L ∈ After[Ck] } ⊆ q (.4)

but the reciprocal is not true.

Example Partial correctness proof of program (204) with method (222) (223)

Assuming a = 1 and b = 2, we can apply (222) to prove partial correctness of

parallel program (204). The verification conditions are the following:

Initialization (222.1):

p ⊆ I(L11)

p ⊆ I(L21)

Sequential correctness (222.2):

s ∈ I(L11) ⇒ s[X ← s(X) + 1] ∈ I(L12)

s ∈ I(L21) ⇒ s[X ← s(X) + 2] ∈ I(L22)

Interference freedom (222.3):

 s ∈ I(L11) ∧ s ∈ I(L21) ⇒ s[X ← s(X) + 2] ∈ I(L11)

 s ∈ I(L12) ∧ s ∈ I(L21) ⇒ s[X ← s(X) + 2] ∈ I(L12)

 s ∈ I(L21) ∧ s ∈ I(L11) ⇒ s[X ← s(X) + 1] ∈ I(L21)

 s ∈ I(L22) ∧ s ∈ I(L11) ⇒ s[X ← s(X) + 1] ∈ I(L22)

Finalization (222.4):

I(L12) ∩ I(L22) ⊆ q

They are satisfied by the following local invariants:

I[L11] = {s ∈ S : s(X) = s(x) ∨ s(X) = s(x) + 2}

I[L12] = {s ∈ S : s(X) = s(x) + 1 ∨ s(X) = s(x) + 3}

I[L21] = {s ∈ S : s(X) = s(x) ∨ s(X) = s(x) + 1}

I[L22] = {s ∈ S : s(X) = s(x) + 2 ∨ s(X) = s(x) + 3}

�

Using example (204) with a = b = 1, KELLER [1976] and OWICKI & GRIES [1976a] have

shown that the corresponding proof method is semantically incomplete:

Counterexample Incompleteness of method (222) for program (204) (224)

Formally, the strongest global invariant i satisfying the global verification

condition gvc[Pp][p, q] in (210) for program (204) is given by its fixpoint

characterization (30) as:

i = lfp λ X : P(Γ). {<s, C1, …, Cn> : s ∈ p} ∪ {γ : ∃ γ'. <γ', γ> ∈ X  op[Pp]}

= {<s, L11, L21> : s(X) = s(x)} ∪ {<s, L12, L21> : s(X) = s(x) + a}

∪ {<s, L11, L22> : s(X) = s(x) + b} ∪ {<s, L12, L22>: s(X) = s(x) + a + b}

It follows by monotony, that the strongest local invariants are I = αA(i), that is to say:

I(L11) = {s ∈ S : s(X) = s(x) ∨ s(X) = s(x) + b}

I(L12) = {s ∈ S : s(X) = s(x) + a ∨ s(X) = s(x) + a + b}

I(L21) = {s ∈ S : s(X) = s(x) ∨ s(X) = s(x) + a}

I(L22) = {s ∈ S : s(X) = s(x) + b ∨ s(X) = s(x) + a + b}

When a = b = 1 they are too weak to satisfy the interference freedom (222.3) and

finalization (222.4) verification conditions as given at example (223) �

8 . 9 . 2 . 4 Using an invariant on memory and control states for each

program point

The use of an invariant on memory states for each program point is incomplete

because the relationship between memory and control states is lost. This can be avoided

by using local invariants I(Lk) attached to program points Lk of each process Ck of the

program Pp specifying the relationship between the memory state and the control state

of other processes:

LinvL[Pp] = {I ∈ Prpt[Pp] → P(S x Prpt[Pp]n-1) :

∀ k ∈ {1, …, n}. ∀ Lk ∈ Lab[Ck]. (225)

I(Lk) ⊆ S x Lab[C1] x … x Lab[Ck-1] x Lab[Ck+1] x … x Lab[Cn]}

This way of expressing the global invariant can be extirpated from NEWTON [1975] and is

clear in LAMPORT [1977]. These local invariants can be written as a proof outline (as in

7.2.4 and OWICKI & GRIES [1976a]) in which a predicate Pk representing I(Lk) is attached

to control point Lk. Control predicates à la LAMPORT [1977] [1980b] and LAMPORT &

SCHNEIDER [1984] can be used in Pk to explicitly mention the control state. Such control

predicates can, to some extent, be defined in a language independent way (COUSOT &

COUSOT [1989]).

Example Proof outline for parallel program (204)

To prove partial correctness of parallel program (204), we can use the following

local invariants:

I[L11] = {<s, L21> : s(X) = s(x)} ∪ {<s, L22> : s(X) = s(x) + b} (226)

I[L12] = {<s, L21> : s(X) = s(x) + a} ∪ {<s, L22> : s(X) = s(x) + a + b}

I[L21] = {<s, L11> : s(X) = s(x)} ∪ {<s, L12> : s(X) = s(x) + a}

which can be specified by the following proof outline:

{ X = x } (227)

[L11 : { (at(L21) ∧ X = x) ∨ (at(L22) ∧ X = x + b) }

X := X + a
 L12 : { (at(L21) ∧ X = x + a) ∨ (at(L22) ∧ X = x + a + b) }

|| L21 : { (at(L11) ∧ X = x) ∨ (at(L12) ∧ X = x + a) }

X := X + b
 L22 : { (at(L11) ∧ X = x + b) ∨ (at(L12) ∧ X = x + a + b) }]

{ X = x + a + b }
�

This decomposition of the global invariant can be specified by the following

connection between local and global invariants (recall that <L1, … , Ln>~k is <L1, … ,

Lk-1, Lk+1, … , Ln>):

DEFINITION Connection between local and global invariants (228)

. αL : P(Γ) → LinvL[Pp], αL (i)(Lk) = {<s, L~k> : <s, L> ∈ i} (.1)

. γL : LinvL[Pp] → P(Γ), γL(I) = {<s, L> : ∃ k ∈ {1, …, n}. <s, L~k> ∈ I(Lk)} (.2)

Observe that (αL, γL) is a bijection between P(Γ) and LinvL[Pp] which ensures the

soundness and semantical completeness of the derived proof method.

8 . 9 . 2 . 4 . 1 The strengthened Lamport and Owicki & Gries method

The local verification conditions lvc[Pp][p, q](I) = gvc[Pp][p, q](γL(I))

corresponding to the above definition of LinvL[Pp] and (αL, γL) were first designed by

COUSOT & COUSOT [1984] and later by LAMPORT [1988]. The proof method is similar to that

of LAMPORT [1977] and OWICKI & GRIES [1976a] but for the fact that it is strengthened by

allowing the use of the proof outline of the processes not involved in the sequential or

interference freedom proof.

Example (229)

To prove partial correctness of parallel program (204), we can use local invariants

(226) and check the following local verification conditions (for all s, s' ∈ S, c1 ∈ {L11,

L12} and c2 ∈ {L21, L22}):

• Initialization (230.1):

The initialization step (∀ s ∈ p. <s, C1, … Cn> ∈ γA(I)) states that the input

specification p implies the invariants attached to entry points of the processes C1, … ,

Cn of Pp:

. s ∈ p ⇒ <s, L21> ∈ I(L11)

. s ∈ p ⇒ <s, L11> ∈ I(L21)

• Induction step:

The induction step (γA(I)  op[Pp] ⊆ Γ x γA(I)) must be checked for all atomic

actions of all processes Ck of program Pp that is all transitions of that process Ck from

configuration <s, L> to configuration <s', L'>. The proof can be decomposed into

sequential and interference freedom proofs:

- Sequential correctness (230.2):

To prove sequential correctness we must show that starting with I(L) true of

<s, L1, …, Lk-1, Lk+1, …, Ln> (as well as the assertions I(Lj) attached to control

points Lj of the other processes Cj, j ∈ {1, …, n} - {k} true of <s, L1, …, Lj-1, Lj+1,

…, Lk-1, L, Lk+1, …, Ln>) makes I(L') true of <s', L1, …, Lk-1, Lk+1, …, Ln>:

. [<s, c2> ∈ I(L11) ∧ <s, L11> ∈ I(L21) ∪ I(L22)] ⇒ <s[X ← s(X) + a], c2> ∈ I(L12)

. [<s, c1> ∈ I(L21) ∧ <s, L21> ∈ I(L11) ∪ I(L12)] ⇒ <s[X ← s(X) + b], c1> ∈ I(L22)

- Interference freedom (230.3):

 Interference freedom asserts that for every label L" in a different process Cm,

m ∈ {1, … , n} - {k} starting with both I(L) true of <s, L1, …, Lm-1, L", Lm+1, …,

Lk-1, Lk+1, … , Ln> and I(L") true of <s, L1, … , Lm-1, Lm+1, … , Lk-1, L, Lk+1, … ,

Ln> (as well as the assertions I(Lj) attached to control points Lj of the other processes

Cj, j ∈ {1, …, n} - {k, m} true of <s, L1, … , Lm-1, L", Lm+1, … , Lj-1, Lj+1, … ,

Lk-1, L, Lk+1, … , Ln>) leaves I(L") true of <s', L1, … , Lm-1, Lm+1, … , Lk-1, L',

Lk+1, … , Ln> :

. [<s, c2> ∈ I(L11) ∧ <s, L11> ∈ I(L21)] ⇒ <s[X ← s(X) + b], c2> ∈ I(L11)

. [<s, c2> ∈ I(L12) ∧ <s, L12> ∈ I(L21)] ⇒ <s[X ← s(X) + b], c2> ∈ I(L12)

. [<s, c1> ∈ I(L21) ∧ <s, L21> ∈ I(L11)] ⇒ <s[X ← s(X) + a], c1> ∈ I(L21)

. [<s, c1> ∈ I(L22) ∧ <s, L22> ∈ I(L11)] ⇒ <s[X ← s(X) + a], c1> ∈ I(L22)

• Finalization (230.4):

The final step of the partial correctness proof (∀ <s, [√ || … || √]> ∈ γA(I). s ∈

q) shows that final states satisfy the output specification q:

. [<s, L22> ∈ I(L12) ∧ <s, L12> ∈ I(L22)] ⇒ s ∈ q

�

This proof method [∃ I ∈ LinvL[Pp]. lvcSLO[Pp][p, q](I)] directly follows from the

choice lvcSLO[Pp][p, q](I) = gvc[Pp][p, q](γL(I)) with gvc[Pp][p, q](i) defined by

(211) and operational semantics (205):

THEOREM COUSOT & COUSOT [1984] Strengthened Lamport and Owicki & (230)

 Gries method

{p}Pp{q} where Pp is [C1 || C2 || … || Cn] is true if and only if their exists

I ∈ LinvL[Pp] such that for all k ∈ {1, …, n}, m ∈ {1, …, n} -{k} and s, s' ∈ S :

. if l ∈ At[Ck] and L ∈ At[Pp] then s ∈ p ⇒ <s, L~k> ∈ I(l) (.1)

. if l ∈ At[Ck] ∪ In[Ck] and L ∈ Lab[Pp] then (.2)

[<s, L~k> ∈ I(l) ∧ ∀ j ∈ {1,…,n} - {k}. <s, L[k ← l]~j ∈ I(Lj) ∧

s' ∈ NextS[Ck]<s, l> ∧ l' ∈ NextL[Ck]<s, l>] ⇒ <s', L~k> ∈ I(l')

. if l ∈ At[Ck] ∪ In[Ck], l" ∈ Lab[Cm] and L ∈ Lab[Pp] then (.3)

[<s, L[k ← l]~m> ∈ I(l") ∧ <s, L[m ← l"]~k> ∈ I(l) ∧ ∀ j ∈ {1, … , n} - {k, m}.

<s, L[m ← l"][k ← l]~m> ∈ I(Lj) ∧ s' ∈ NextS[Ck]<s, l> ∧ l' ∈ NextL[Ck]<s, l>]

⇒ <s', L[k ← l']~m> ∈ I(l")

. if L ∈ After[Pp] then [∀ k ∈ {1, …, n}. <s, L~k> ∈ I(Lk)] ⇒ s ∈ q (.4)

8 . 9 . 2 . 4 . 2 Newton's method

NEWTON [1975] proof method (although designed for a quite different definition of

concurrent programs) is a weakened version of LAMPORT [1977] and OWICKI & GRIES

[1976a] method in the sense that interference freeness simply consists in proving that any

local invariant I(L"), L" ∈ Lab[Cm] remains true after execution of any atomic action

labeled L of any other process Ck, k ≠ m (and this without assuming that I(L) holds

before executing this atomic action).

Example Partial correctness proof of program (204) by Newton's method (231)

To prove partial correctness of parallel program (204), we can use local invariants

(226) and check the following local verification conditions (for all s, s' ∈ S, c1 ∈ {L11,

L12} and c2 ∈ {L21, L22}):

• Initialization (232.1):

. s ∈ p ⇒ <s, L21> ∈ I(L11)

. s ∈ p ⇒ <s, L11> ∈ I(L21)

• Sequential correctness (232.2):

. <s, c2> ∈ I(L11) ⇒ <s[X ← s(X) + a], c2> ∈ I(L12)

. <s, c1> ∈ I(L21) ⇒ <s[X ← s(X) + b], c1> ∈ I(L22)

• Interference freedom (232.3):

. <s, c2> ∈ I(L11) ⇒ <s[X ← s(X) + b], c2> ∈ I(L11)

. <s, c2> ∈ I(L12) ⇒ <s[X ← s(X) + b], c2> ∈ I(L12)

. <s, c1> ∈ I(L21) ⇒ <s[X ← s(X) + a], c1> ∈ I(L21)

. <s, c1> ∈ I(L22) ⇒ <s[X ← s(X) + a], c1> ∈ I(L22)

• Finalization (232.4):

. [<s, L22> ∈ I(L12) ∧ <s, L12> ∈ I(L22)] ⇒ s ∈ q

�

This proof method [∃ I ∈ L i n v L [P p] . lvc N [P p][p, q](I)] is sound (since

lvcN[Pp][p, q](I) ⇒ lvcSLO[Pp][p, q](I) ⇒ gvc[Pp][p, q](γ(I))) ⇒ {p}Pp{q}) and

relatively complete (since any I ∈ LinvL[Pp] satisfying lvcSLO[Pp][p, q](I) can be

strengthened into I' such that I'(l) = {<s, L~k> ∈ I(l) : ∀ j ∈ {1,…,n} - {k}. <s,

L[k ← l]~j ∈ I(Lj)} satisfying lvcN[Pp][p, q](I')):

THEOREM Newton's method (232)

{p}Pp{q} where Pp is [C1 || C2 || … || Cn] is true if and only if their exists

I ∈ LinvL[Pp] such that for all k ∈ {1, … , n}, m ∈ {1, … , n} -{k} and s, s' ∈ S:

. if l ∈ At[Ck] and L ∈ At[Pp] then s ∈ p ⇒ <s, L~k> ∈ I(l) (.1)

. if l ∈ At[Ck] ∪ In[Ck] and L ∈ Lab[Pp] then (.2)

[<s, L~k> ∈ I(l) ∧ s' ∈ NextS[Ck]<s, l> ∧ l' ∈ NextL[Ck]<s, l>]

⇒ <s', L~k> ∈ I(l')

. if l ∈ At[Ck] ∪ In[Ck], l" ∈ Lab[Cm] and L ∈ Lab[Pp] then (.3)

[<s, L[k ← l]~m> ∈ I(l") ∧ s' ∈ NextS[Ck]<s, l> ∧ l' ∈ NextL[Ck]<s, l>]

⇒ <s', L[k ← l']~m > ∈ I(L")

. if L ∈ After[Pp] then [∀ k ∈ {1, … , n}. <s, L~k> ∈ I(Lk)] ⇒ s ∈ q (.4)

Observe that interference freedom (232.3) disappears when considering monoprocess

programs (n = 1, in which case (232) exactly amounts to Floyd's stepwise partial

correctness proof method (45)) or multiprocess programs with assertions about parts of

the store such that only operations acting upon separate parts may be performed

concurrently (as in HOARE [1975] or MAZURKIEWICZ [1977] for example).

Although partial correctness proof methods (230) and (232) are both

semantically complete, it may be the case that some assertions I ∈ LinvL[Pp] satisfy

(230) but cannot be proved to be invariant using (232) without being strengthened.

Example Weak invariants for program (204) (233)

Parallel program (204) with a = 1 and b = 2 is partially correct with respect to

specification <p, q> such that p = {s ∈ S : s(X) = 0} and q = {s ∈ S : s(X) = 3}. This

can be proved using the verification conditions of (230) given at example (229) and the

following invariants:

I[L11] = {<s, L2> : even(s(X))}

I[L12] = {<s, L2> : s(X) = 1 ∨ s(X) = 3}

I[L21] = {<s, L1> : s(X) = 0 ∨ s(X) = 1}

I[L22] = {<s, L1> : s(X) = 2 ∨ s(X) = 3}

These invariants are too weak to satisfy the verification conditions of (232) given at

example (231). �

8 . 9 . 2 . 4 . 3 The lattice of proof methods including Lamport's method

Any proof method [∃ I ∈ LinvL[Pp]. lvc[Pp][p, q](I)] with local verification

conditions lvc[Pp][p, q] such that lvcN[Pp][p, q](I) ⇒ lvc[Pp][p, q](I) ⇒ lvcSLO[Pp][p,

q](I) for all I ∈ LinvL[Pp] is sound (since lvc[Pp][p, q](I) ⇒ lvcSLO[Pp][p, q](I) ⇒

gvc[Pp][p, q](γ(I)) ⇒ {p}Pp{q}) and semantically complete (since {p}Pp{q} ⇒ [∃ i ∈

P(Γ). gvc[Pp][p, q](i)] ⇒ [∃ i ∈ P(Γ). lvcN[Pp][p, q](α(i))] ⇒ [∃ I ∈ LinvL[Pp].

lvcN[Pp][p, q](I)] ⇒ [∃ I ∈ LinvL[Pp]. lvcN[Pp][p, q](I)]). This is the case of LAMPORT

[1977]'s method which is OWICKI & GRIES [1976a] method with control predicates instead of

auxiliary variables:

THEOREM LAMPORT [1977] Lamport's partial correctness proof method (234)

{p}Pp{q} where Pp is [C1 || C2 || … || Cn] is true if and only if their exists

I ∈ LinvL[Pp] such that for all k ∈ {1, …, n}, m ∈ {1, …, n} -{k} and s, s' ∈ S :

. if l ∈ At[Ck] and L ∈ At[Pp] then s ∈ p ⇒ <s, L~k> ∈ I(l) (.1)

. if l ∈ At[Ck] ∪ In[Ck] and L ∈ Lab[Pp] then (.2)

[<s, L~k> ∈ I(l) ∧ s' ∈ NextS[Ck]<s, l> ∧ l' ∈ NextL[Ck]<s, l>]

⇒ <s', L~k> ∈ I(l')

. if l ∈ At[Ck] ∪ In[Ck], l" ∈ Lab[Cm] and L ∈ Lab[Pp] then (.3)

[<s, L[k ← l]~m> ∈ I(l") ∧ <s, L[m ← l"]~k> ∈ I(l) ∧ s' ∈ NextS[Ck]<s, l> ∧

l' ∈ NextL[Ck]<s, l>] ⇒ <s', L[k ← l']~m> ∈ I(L")

. if L ∈ After[Pp] then [∀ k ∈ {1, …, n}. <s, L~k> ∈ I(Lk)] ⇒ s ∈ q (.4)

Example Partial correctness proof of program (204) by Lamport's method (235)

To prove partial correctness of parallel program (204), we can use local invariants

(226) and check the following local verification conditions (for all s, s' ∈ S, c1 ∈ {L11,

L12} and c2 ∈ {L21, L22}):

• Initialization (234.1):

. s ∈ p ⇒ <s, L21> ∈ I(L11)

. s ∈ p ⇒ <s, L11> ∈ I(L21)

• Sequential correctness (234.2):

. <s, c2> ∈ I(L11) ⇒ <s[X ← s(X) + a], c2> ∈ I(L12)

. <s, c1> ∈ I(L21) ⇒ <s[X ← s(X) + b], c1> ∈ I(L22)

• Interference freedom (234.3):

. [<s, c2> ∈ I(L11) ∧ <s, L11> ∈ I(L21)] ⇒ <s[X ← s(X) + b], c2> ∈ I(L11)

. [<s, c2> ∈ I(L12) ∧ <s, L12> ∈ I(L21)] ⇒ <s[X ← s(X) + b], c2> ∈ I(L12)

. [<s, c1> ∈ I(L21) ∧ <s, L21> ∈ I(L11)] ⇒ <s[X ← s(X) + a], c1> ∈ I(L21)

. [<s, c1> ∈ I(L22) ∧ <s, L22> ∈ I(L11)] ⇒ <s[X ← s(X) + a], c1> ∈ I(L22)

• Finalization (234.4):

. [<s, L22> ∈ I(L12) ∧ <s, L12> ∈ I(L22)] ⇒ s ∈ q
�

8 . 9 . 2 . 5 Using an invariant on memory states with auxiliary

variables for each program point

8 . 9 . 2 . 5 . 1 A stepwise presentation of Owicki & Gries method

OWICKI & GRIES [1976a] partial correctness proof method is based upon (234) using

auxiliary variables (also called "dummy", "phantom", "ghost", "history", "mythical" or

"thought" variables) for completeness.

DEFINITION OWICKI & GRIES [1976a] Auxiliary variables (236)

AV ⊆ Pvar is a set of auxiliary variables for a parallel program Pp and a

specification <p, q> if and only if AV is finite, any X ∈ AV appears in Pp only in

assignments of the form X := E and q does not depend upon some X ∈ AV (i. e. ∀ X

∈ AV . ∀ s ∈ S . ∀ d ∈ D . s[X ← d] ∈ q).

We say that Pp is obtained from Pp' by elimination of auxiliary variables AV if Pp

can be obtained from Pp' by deleting all assignments to the variables of AV and

subsequently replacing some of the components of the form “(true ¿ Y := E)” by

“Y := E”.

We say that p is obtained from p' ∈ Ass by elimination of auxiliary variables AV =

{X1, … , Xn} if and only if ∃ d1 ∈ D. … ∃ dn ∈ D. p = {s[X1 ← d1] … [Xn ← dn] :

s ∈ p '} .

Auxiliary variables can be used to record the history of execution or indicate which part

of a program is currently executing. Owicki & Gries proof method is sound since the

elimination of auxiliary variables does not change the result of program execution. It is

semantically complete since auxiliary variables can simulate program counters:

THEOREM OWICKI & GRIES [1976a] Owicki & Gries partial correctness proof
method (237)

{p}Pp{q} if and only if there exists Pp' and p' such that {p'}Pp'{q} holds by

(234) and there exists a set AV of auxiliary variables for Pp' and <p, q> such that p and

Pp are respectively obtained from p' and Pp' by elimination of auxiliary variables AV.

Example Auxiliary variables for the partial correctness proof of program (204) (238)

The partial correctness of parallel program (204) can be proved using Owicki &

Gries method (237) as shown by the following proof outline:

{ X = x ∧ L1 = 1 ∧ L2 = 1 }

[{ (L1 = 1 ∧ L2 = 1 ∧ X = x) ∨ (L1 = 1 ∧ L2 = 2 ∧ X = x + b) }

(true ¿ (X := X + a; L1 := 2))

 { (L1 = 2 ∧ L2 = 1 ∧ X = x + a) ∨ (L1 = 2 ∧ L2 = 2 ∧ X = x + a + b) }

|| { (L2 = 1 ∧ L1 = 1 ∧ X = x) ∨ (L2 = 1 ∧ L1 = 2 ∧ X = x + a) }

(true ¿ (X := X + b; L2 =: 2))

 { (L2 = 2 ∧ L1 = 1 ∧ X = x + b) ∨ (L2 = 2 ∧ L1 = 2 ∧ X = x + a + b) }]

{ X = x + a + b }
�

8 . 9 . 2 . 5 . 2 On the use of auxiliary variables

As shown by example (238) auxiliary variables can simulate program counters

and this ensures the equivalence of Owicki & Gries method (237) with Lamport method

(234), hence its semantical completeness. LAMPORT [1988] claims that “although dummy

variables can represent the control state, the implicit nature of this representation limits

their utility”. However, contrary to program counters the values of auxiliary variables

are not bounded whence they can also be used to record computation histories

(SOUNDARARAJAN [1984a]). This introduces additional power. For example, as shown by

APT [1981b], the invariants can be restricted to recursive predicates. The argumentation

of LAMPORT [1988] in favor of control predicates goes on with the claim that “the use of

explicit control predicates allows a strengthening of the ordinary Owicki-Gries method

that makes it easier to write annotations”. Observe however that (237) corresponds to

(234) and that a strengthened version corresponding to (230) can be used instead. Then

example (233) shows that the usefulness of this strengthened version does not depend

upon the use of control predicates or auxiliary variables. To designate which part of a

program is currently executing, program counters have the default that their value

changes after each execution of an atomic action within that part. For example

introducing extra “skip” commands in a program would change nothing when using

auxiliary variables but would introduce additional interference freeness checks upon

control predicates. In return, changes to auxiliary variables are not concomitant with an

atomic action. Critical sections (such as “(true ¿ (X := X + a; L1 := 2))” at example

(238)) can be used for assignments but not for Boolean tests. DE ROEVER [1985a]

suggestion of using a dynamic extension of APT, FRANCEZ & DE ROEVER [1980]

“indivisibility” brackets can be very useful in that respect. Finally the use of program

counters would be advantageous for program verifiers since "intelligence" would be

needed to introduce auxiliary variables.

8 . 9 . 2 . 5 . 3 A syntax-directed presentation of Owicki & Gries method

Following the guidelines of paragraphs § 5.2, § 5.3 and § 5.4, we can give a

syntax-directed presentation of (237) due to OWICKI [1975] (see also APT [1981b]), where

definition of program components is extended by Compη[[C'1 || … || C'n]] =

∪{Compηi[C'i] : i = 1, … , n} and Compη[(B ¿ C)] = {(B ¿ C)η} ∪ Compη0[C] :

THEOREM OWICKI [1975] Syntax-directed presentation of Owicki & Gries proof (239)

method

{p}Pp{q} if and only if there exists Pp' ∈ Papr, a set AV of auxiliary variables for

Pp' and <p, q> and preconditions pre ∈ Comp[Pp'] → Ass and postconditions post ∈

Comp[Pp'] → Ass such that :

. Pp is obtained from Pp' by elimination of auxiliary variables AV (.1)

. p ⊆ pre(Pp') ∧ post(Pp') ⊆ q (.2)

Each component C ∈ Comp[Pp'] of program Pp' is sequentially correct:

. if C is skip then pre(C) ⊆ post(C) (.3)

. if C is X := E then pre(C) ⊆ {s ∈ S : s[X ← E(s)] ∈ post(C)} (.4)

. if C is X := ? then {s[X ← d] : s ∈ pre(C) ∧ d ∈ D} ⊆ post(C) (.5)

. if C is (C1; C2) then (.6)

pre(C) ⊆ pre(C1) ∧ post(C1) ⊆ pre(C2) ∧ post(C2) ⊆ post(C)

. if C is (B → C1 ◊ C2) then (.7)

(pre(C) ∩ B) ⊆ pre(C1) ∧ (pre(C) ∩ ¬B) ⊆ pre(C2) ∧ post(C1) ⊆ post(C) ∧

post(C2) ⊆ post(C)

. if C is (B * C1) then (.8)

pre(C) ⊆ post(C1) ∧ (post(C1) ∩ B) ⊆ pre(C1) ∧ (post(C1) ∩ ¬B) ⊆ post(C)

. if C is (B ¿ C1) then (.9)

(pre(C) ∩ B) ⊆ pre(C1) ∧ post(C1) ⊆ post(C)

No await “(B ¿ C)” or assignment “X := E” or “X := ?” command C'j ∈ Comp[Cj] of a

process Cj of program Pp of the form “[C1 || … || Cn]” interfere with the proof of

components C'i ∈ Comp[Ci] of other processes Ci, i ≠ j :

. {pre(C'i) ∩ pre(C'j)}C'j{pre(C'i)} (.10)

. {post(C'i) ∩ pre(C'j)}C'j{post(C'i)} (.11)

8.9 .3 Hoare logics for parallel programs with shared
variables

8 . 9 . 3 . 1 Owicki & Gries logic

After HOARE [1972c] [1975], OWICKI [1975] and OWICKI & GRIES [1976a] [1976b] where the

first to extend HOARE [1969] to parallel programs with shared variables (see also the

summary given by DIJKSTRA [1982d]). The difficulty is that although (239) is syntax-

directed, it is not compositional in the sense of DE ROEVER [1985a], that is "the

specification of a program should be verifiable in terms of the specification of its

syntactic subprograms". More precisely, the sequential proof which is context-free can

be expressed in Hoare's style but interference freeness which is context-sensitive

cannot. Therefore OWICKI & GRIES [1976a] method OG is usually informally presented in

HOARE [1969]'s style adding to H the following :

Rules of inference of OG:

 {P} Pp' {Q} Auxiliary variables (240)
—————— elimination rule
 {P} Pp {Q}

provided Pp is obtained from Pp' by elimination of auxiliary variables AV and Q

contains no variable of AV.

 {P} Pp {Q} Substitution rule (241)
————— ——––—
 {P[X ← T]} Pp {Q}

provided X ∉ Free(Pp, Q).

 {P ∧ B} C {Q} Await rule (242)
———————
 {P} (B ¿ C) {Q}

 {P1} C1 {Q1} … {Pn} Cn {Qn} Parallelism rule (243)

———————————————————
 {P1 ∧ … ∧ Pn} [C1 || … || Cn] {Q1 ∧ … ∧ Qn}

provided {Pi} Ci {Qi}, i = 1, … , n are interference free.

Rule (240) allows for the elimination of auxiliary variables in the program whereas

substitution rule (241) allows for the elimination of auxiliary variables in the

precondition. Rule (243), where interference freedom is defined as in (239.10-11), is

not compositional because interference freeness of the whole is directly reduced to that

of its atomic parts and not to that of its constituent parts. This OWICKI & GRIES [1976a]

proof system can be extended to proof outline as in SCHNEIDER & ANDREWS [1986]. The

relative completeness of OG is proved in APT [1981b].

8 . 9 . 3 . 2 Stirling compositional logic

LAMPORT [1980b] proposed a first compositional version of Hoare logic, named

GHL. It essentially consists in axiomatizing (217), with the disadvantages of global

invariants. However GHL can be developed in a programming language independent

way (LAMPORT & SCHNEIDER [1984], COUSOT & COUSOT [1989]). Another language

independent step toward compositionality was GERTH [1983].

A most important observation is that a compositional specification of a command

should include a first part called assumption or rely-condition describing the desired

behavior of the command and a second part called commitment or guarantee-condition

describing the behavior of the environment (LAMPORT [1983]). A first step was taken by

FRANCEZ & PNUELI [1978] who introduced statements of the form <ϕ> C <ψ> meaning that

in any execution such that the environment behaves according to assumption ϕ, it is

guaranteed that command C behaves according to ψ. However this significantly departs

from Hoare triples since ϕ and ψ are temporal formulae (PNUELI [1985]). A further step

was taken by JONES [1983a] [1983b] who introduced specifications of commands under the

form (Rc, Gc): {P} C {Q} where P is a precondition and Q is a postcondition over

states whereas the assumption A and the guarantee-condition G are sets of pairs of

states characterizing the interference of command C with other processes. More

precisely, Rc defines the relationship which can be assumed to exist between the free

variables of command C in states changed by other processes. Gc is a commitment

which must be respected by all state transformations of C thus constraining the

interference which may be cause by command C.

An HOARE [1969] and OWICKI & GRIES [1976a]-like axiomatization S of JONES [1983a]

[1983b] was proposed by STIRLING [1986] [1988]. In order to remain in the realm of first

order logic where states but not pairs of states are considered, each P ∈ Pre is

determines a set of changes which are invariant with respect to it:

Inv : Pre → P(S x S) (244)

Inv[P] = {<s, s'> : s ∈ P ⇒ s' ∈ P}

The interpretation is that if <s, s'> ∉ Inv[P] then the transition from state s to state s'

interferes with the truth of P. This is extended to families R of formulae in Pre:

Inv : P(Pre) → P(S x S) (245)

Inv[R] = ∩{Inv[P] : P ∈ R}

STIRLING [1988] then defines an invariant implication between sets of formulae :

(R ≡> G) ⇔ (Inv[R] ⊆ Inv[G]) (246)

which is characterized by the following lemma :

(247)

(R ≡> G) ⇔ (∀ Q ∈ G. ∀ R' ⊆ R. (∀ P ∈ R'. P ⇒ Q) ∨ (∀ P ∈ R - R'. ¬P ⇒ ¬Q)) (.1)

R ≡> R (.2)

(R ≡> G ∧ G ≡> H) ⇒ (R ≡> H) (.3)

(G ⊆ R) ⇒ (R ≡> G) (.4)

(P ⇔ Q ∧ R ≡> G) ⇒ (R ∪ {P} ≡> G ∪ {Q}) (.5)

R ∪ {P, Q} ≡> R ∪ {P ∧ Q} (.6)

STIRLING [1988]'s proof system S consists of H for proving properties of sub-commands

within await commands plus the following axiom schemata and rules of inference :

(R, G) : {P} skip {P} Skip axiom (248)

 R ≡> {P}, P ⇒ Q[X ← E], ∀ I ∈ G. (P ∧ I) ⇒ I[X ← E]
————————————————————–——— Assignment rule (249)
 (R, G) : {P} X := E {Q}

 (R, G) : {P1} C1 {P2}, (R, G) : {P2} C2 {P3}

———————————————————— Composition rule (250)
 (R, G) : {P1} (C1; C2) {P3}

 R ≡> {P}, (R, G) : {P ∧ B} C1 {Q}, (R, G) : {P ∧ ¬B} C2 {Q}

—————————————————————————— Conditional rule (251)
 (R, G) : {P} (B → C1 ◊ C2) {Q}

 R ≡> {P}, (R, G) : {P ∧ B} C {P}
—————————————— While rule (252)
 (R, G) : {P}(B * C) {P ∧ ¬B}

 R ≡> R', P ⇒ P', (R', G') : {P'} C {Q'}, Q' ⇒ Q, G' ≡> G
———————————————————————— Consequence rule (253)

 (R, G) : {P} C {Q}

 R ≡> {P}, {P ∧ B} C {Q}, ∀ I ∈ G. {P ∧ B ∧ I} C {I} (254)

—————————————————————— Await rule
 (R, G) : {P} (B ¿ C) {Q}

 R1 ≡> {Q1}, (R1, R2 ∪ G) : {P1} C1 {Q1}, (255)

 (R2, R1 ∪ G) : {P2} C2 {Q2}, R2 ≡> {Q2}

——————————————————— Parallelism rule
 (R1 ∪ R2, G) : {P1 ∧ P2} [C1 || C2] {Q1 ∧ Q2}

 (R, G) : {P} Pp {Q} (256)
————————— Derelativisation rule
 {P} Pp {Q}

 {P} Pp' {Q} (257)
—————— Auxiliary variables elimination rule
 {P} Pp {Q}

provided Pp is obtained from Pp' by elimination of auxiliary variables AV and Q

contains no variable of AV.

 {P} Pp {Q} (258)
————— —–—— Substitution rule
 {P[X ← T]} Pp {Q}

provided X ∉ Free(Pp, Q).

Example (259)

The partial correctness proof (238) of parallel program (204) as given by the

following proof outline :

{P} {I0} [{I11}(true ¿ (X := X + a; L1 := 2)){I12} || {I21}(true ¿ (X := X + b; L2 =:

2)){I22}] {Q}

where :

P = (X = x)

I0 = (X = x ∧ L1 = 1 ∧ L2 = 1)

I11 = ((L1 = 1 ∧ L2 = 1 ∧ X = x) ∨ (L1 = 1 ∧ L2 = 2 ∧ X = x + b))

I12 = ((L1 = 2 ∧ L2 = 1 ∧ X = x + a) ∨ (L1 = 2 ∧ L2 = 2 ∧ X = x + a + b))

I21 = ((L2 = 1 ∧ L1 = 1 ∧ X = x) ∨ (L2 = 1 ∧ L1 = 2 ∧ X = x + a))

I22 = ((L2 = 2 ∧ L1 = 1 ∧ X = x + b) ∨ (L2 = 2 ∧ L1 = 2 ∧ X = x + a + b))

Q = (X = x + a + b)

can be formalized by S as follows :

(a) {I11, I12} ≡> {I11} by (247.4)

(b) {I11 ∧ true} (X := X + a; L1 := 2) {I12} by H ∪ Th

(c) {I11 ∧ true ∧ I21} (X := X + a; L1 := 2) {I21} by H ∪ Th

(d) {I11 ∧ true ∧ I22} (X := X + a; L1 := 2) {I22} by H ∪ Th

(e) ({I11, I12}, {I21, I22}) : {I11} (true ¿ (X := X + a; L1 := 2)) {I12} by a, b, c, d, (254)

(f) {I21, I22} ≡> {I21} by (247.4)

(g) {I21 ∧ true} (X := X + b; L2 := 2) {I22} by H ∪ Th

(h) {I21 ∧ true ∧ I11} (X := X + b; L2 := 2) {I11} by H ∪ Th

(i) {I21 ∧ true ∧ I12} (X := X + b; L2 := 2) {I12} by H ∪ Th

(j) ({I21, I22}, {I11, I12}) : {I11} (true ¿ (X := X + b; L2 := 2)) {I22} by f, g, h, i, (254)

(k) {I11, I12} ≡> I12 by (247.4)

(l) {I21, I22} ≡> I22 by (247.4)

(m) ({I11, I12, I21, I22}, ø) : by k, e, j, l, (255)

{I11 ∧ I21}[(true ¿ (X := X + a; L1 := 2)) || (true ¿ (X := X + b; L2 := 2))]{I12 ∧ I22}

(n) {I11 ∧ I21}[(true ¿ (X := X + a; L1 := 2)) || (true ¿ (X := X + b; L2 := 2))]{I12 ∧ I22} by m, (256)

(o) {I0} [(true ¿ (X := X + a; L1 := 2)) || (true ¿ (X := X + b; L2 := 2))] {Q} by Th, n, (102)

(p) {I0} [X := X + a || X := X + b] {Q} by o, (257)

(q) {I0[L1←1, L2←1]} [X := X + a || X := X + b] {Q} by p, (258)

(r) {P} [X := X + a || X := X + b] {Q} by Th, q, (102)

�

Additional techniques for proving partial or total correctness of parallel programs with

shared variables are extensively discussed in number of surveys such as APT [1984],

BARRINGER [1985], DE ROEVER [1985a] and SCHNEIDER & ANDREWS [1986].

8.9 .4 Hoare logics for communicating sequential processes

HOARE [1978b] [1985b] introduced CSP (Communicating Sequential Processes), a

language for parallel programs with communication via synchronous unbuffered

message-passing. A program has the form “[Pl1 :: C1 || Pl2 :: C2 || … || Pln :: Cn]” where

process labels Pl1, … , Pln respectively designate parallel processes C1, … , Cn.

Shared variables are disallowed.

Communication between processes Pli and Plj (i ≠ j) is possible if process Pli is

to execute a send primitive “Plj ! E” and process Plj is to execute a receive primitive

“Pli ? X”. The first process ready to communicate has to wait as long as the other one

is not ready to execute the matching primitive. Their execution is synchronized and

results in the assignment of the value of expression E (depending upon the values of the

local variables of Pli) to the variable X (which is local to Plj). For example “{X = a}

[Pl1 :: Pl2 ! X || Pl2 :: (Pl1 ? Y; Pl3 ! Y) || Pl3 :: Pl2 ? Z] {Z = a}” is true.

Nondeterminism is introduced via the alternation command “(B1; G1 → C1 ◊ B2;

G2 → C2 ◊ … ◊ Bn; Gn → Cn)” where the guards “Bk; Gk”, k = 1, … , n consist of a

Boolean expression Bk followed by a send “Plj ! E” or “skip” command Gk. Its

execution consists in selecting and executing an arbitrary successful guard Bk; Gk

(where Bk evaluates to true and process Plj is ready to communicate if Gk is “Plj ! E”)

and then the corresponding alternative Ck. Their is no fairness hypothesis upon the

choice between successful guards. For the repetition command “*(B1; G1 → C1 ◊ B2;

G2 → C2 ◊ … ◊ Bn; Gn → Cn)”, this is repeated until all guards “Bk; Gk” fail, that is Bk

evaluates to false or process Plj has terminated if Gk is “Plj ! E”. This is called the

distributed termination convention (APT & FRANCEZ [1984]).

COUSOT & COUSOT [1980] extended Floyd's proof method to CSP using control

predicates. LEVIN & GRIES [1981] extended OWICKI & GRIES [1976a]'s axiomatic method to

CSP using global shared auxiliary variables (to simulate control states). In sequential

proofs, communication is simply ignored thus any assertion may be placed after a

communication command :

{P} Pli ! E {Q} Send rule (260)

{P} Plj ? X {Q} Receive rule (261)

A satisfaction proof (also called cooperation proof) is then provided for any pair of

communication commands which validates these assumptions :

(P ∧ P') ⇒ (Q ∧ Q')[X ← E] Satisfaction proof (262)

when

[… || Pli :: … {P} Plj ! E {Q} … || … || Plj :: … {P'} Pli ? X {Q'} … ||…]

Not all matching pairs of communication commands can rendezvous, so that satisfaction

proofs for dynamically unmatching pairs can be avoided by a simple static analysis of

programs (APT [1983b], TAYLOR [1983]). The use of shared auxiliary variables necessitates

interference freedom proofs, but many trivial ones can be omitted (MURTAGH [1987]). APT,

FRANCEZ & DE ROEVER [1980] succeeded in restricting the use of auxiliary variables so that

the assertions used in the proof of Pli do not contain free variables subject to changes in

Plj, j ≠ i. The soundness and relative completeness of their proof system was shown

by APT [1983a]. A simplified and more comprehensive presentation is given by

APT [1985a]. A restricted and modified version was later introduced by APT [1985b] to

prove the correctness of distributed termination algorithms à la FRANCEZ [1980]. JOSEPH,

MOITRA & SOUNDARARAJAN [1987] have extended their proof rules for fault tolerant

programs written in a version of CSP and executing on a distributed system whose

nodes may fail. However, in these approaches, one cannot deal with the individual

processes of a program in isolation from the other processes. The special case of a

single process interacting with its environment is considered in GERGELY & ÚRY [1982].

To deal with the individual processes of a program in isolation, LAMPORT &

SCHNEIDER [1984] reinterpret Hoare's triple {P}C{Q} so that P = Q is a global invariant

during execution of C whereas BROOKES [1984] [1986] introduces a new class of

assertions for expressing sets of execution traces. In order to remain faithful to Hoare

interpretation of P as a precondition, SOUNDARARAJAN [1983] [1984b] and subsequently

ZWIERS, DE BRUIN & DE ROEVER [1983], ZWIERS, DE ROEVER & VAN EMDE BOAS [1985] allowed to

reason about hidden variables that correspond to the sequences of messages sent and

received by each process up to some moment during the execution of that process, an

idea going back for example to DAHL [1975] for coroutines, MISRA & CHANDY [1981] for

networks of processes, ZHOU CHAO CHEN & HOARE [1981], HOARE [1981] [1984], HEHNER &

HOARE [1983], FRANCEZ, LEHMANN & PNUELI [1984], OLDEROG & HOARE [1986], FAUCONNIER

[1987] for CSP.

Similar proof rules have been developed for the ADA™ rendezvous by GERTH

[1982] and GERTH & DE ROEVER [1984], for BRINCH HANSEN [1978]'s distributed processes

by SOBEL & SOUNDARARAJAN [1985] and DE ROEVER [1985b], for a version of MILNER [1980]

calculus of communicating systems by PONSE [1989], and for more abstract

communication mechanisms named “scripts” by TAUBENFELD & FRANCEZ [1984] and

FRANCEZ, HAILPERN & TAUBENFELD [1985]. Hoare logic was also extended for proving

partial correctness of parallel logic programming languages (MURAKAMI [1988]).

The dynamic creation and destruction of processes is considered in ZWIERS, DE

BRUIN & DE ROEVER [1983], DE BOER [1987], FIX & FRANCEZ [1988].

Additional techniques for proving partial or total correctness of communicating

sequential processes with nested parallelism, hiding of communication channels,

buffered message passing etc… are extensively discussed in number of surveys such as

APT [1985], BARRINGER [1985], HOOMAN & DE ROEVER [1986], ZWIERS [1989].

8.10 Total correctness

Hoare logic was originally designed for proving partial correctness but has been

extended to cope with termination (MANNA & PNUELI [1974], WANG [1976], SOKOLOWSKI

[1976], HAREL [1979]) including in the case of recursive procedures (PNUELI & STAVI [1977],

SOKOLOWSKI [1977], GRIES & LEVIN [1980], APT [1981a], MEYER & MITCHELL [1982] [1983],

MARTIN [1983], PANDYA & JOSEPH [1986], BIJLSMA, WILTINK & MATTHEWS [1986] [1989],

AMERICA & DE BOER [1989]).

8.10.1 Finitely bounded nondeterminism and arithmetical
completeness

In the case of deterministic while-programs (Com without random assignment “X

:= ?”) we can use HAREL [1979, p. 38]'s rule where P(n) stands for P[x ← n] and “x” is an

integer valued logical variable not in Var(B, C) :

P(n + 1) ⇒ B, [P(n + 1)] C [P(n)], P(0) ⇒ ¬B
—————————————————— While rule (263)

 [∃ n. P(n)] (B * C) [P(0)]

Soundness follows from the fact that nontermination would leads to an infinite strictly

decreasing sequence of integers values n, n-1, … for the logical variable x. Semantic

completeness follows from the remark that if execution of the while loop does terminate

then after each iteration in the loop body the number of remaining iterations must strictly

decrease and so, can always be chosen as the value of the logical variable x.

Observe that we now go beyond first-order logic and consider N-logic (also called

ω-logic, BARWISE [1977]) that is a two-sorted language with a fixed structure N. Since N

is infinite, N-logic is stronger than first-order logic. This is because there cannot be a

sound and relatively complete deductive system based on a first-order oracle for total

correctness (HITCHCOCK & PARK [1973]). For the oracle to be a realistic analog of an

axiomatic proof system, it should be a uniform recursive enumeration procedure P of

the theory Th = {P ∈ Pre : I[P] = tt} i.e. the procedure should operate exactly in the

same way over interpretations I with their theories Th equal to one another and should

be totally sound i.e., as in (129), sound over all interpretations with theory Th. The

argument given in APT [1981a] is that if such a procedure P exists, we could prove using

P and the relatively complete deductive system that “[true] C [true]” where C is “(X :=

0; (¬(X = Y) * X := X + 1))” holds for the standard interpretation IPE of arithmetic

which is expressive by (165). Since P is uniform and totally sound, C should be

guaranteed to terminate for all initial values of X and Y but this is not true for the

nonstandard interpretations of arithmetic when the initial value of X is a standard natural

number and that of Y is a nonstandard one. Moreover it is shown in GRABOWSKI [1985]

that there cannot be a deductive system that is sound and relatively complete for total

correctness even if, for acceptable languages (e.g. Pascal-like languages (CLARKE,

GERMAN & HALPERN [1983])), the deductive system is required to be sound only for

expressive interpretations.

It remains to look for classes of interpretations for which total correctness is

relatively complete. The idea of HAREL [1979], called arithmetical completeness, consists

in extending the interpretation to an arithmetic universe by augmenting it, if necessary,

with the natural numbers and additional apparatus for encoding finite sequences into one

natural. More precisely, following GRABOWSKI [1985] where the set of natural numbers is

not primitive but first-order definable in the interpretations involved, an interpretation I

is k-weakly arithmetic if and only if I is expressive and there exist first-order formulae

N(x), E(x, y), Z(x), Add(x, y, z), Mult(x, y, z) with at most k quantifiers and

respectively n, 2n, 2n, N, 3n, 3n free variables for some n such that E defines an

equivalence relation on In and formulae N, E, Z, Add and Mult define on the set

{x : I[N(x)]} the model M such that the quotient model M / E is isomorphic to the

standard model IPE of Peano arithmetic PE with equality <{0}, {Su, +, *}, ø, #>.

GRABOWSKI [1985] states that for every acceptable programming language with recursion

and for every k ∈ N, Hoare logic for total correctness is relatively complete for k-weakly

arithmetic interpretations (but not for ∞-weakly arithmetic interpretations). GRABOWSKI

[1988] proceeds along with the comparison of arithmetical versus relative completeness.

In conclusion, the proof systems for total correctness cannot be of pure first-order

logical character but must incorporate the standard model for Peano arithmetic or an

external well-founded relation.

8.10.2 Unbounded nondeterminism

The while rule (263) implies the strong termination of while loops that is

(DIJKSTRA [1982b]), for each initial state s there is an integer n(s) such that the loop (B *

C) is guaranteed to terminate in at most n(s) iterations. As first observed by BACK [1981],

no such bound can exist for the program given by DIJKSTRA [1976, p. 77] :

(X <> 0 * (X < 0 → (X := ?; (X < 0 → X := -X ◊ skip)) ◊ X := X - 1))

in which case termination that is not strong is called weak termination. In the case of

finitely bounded nondeterminism (∀ γ ∈ Γ. | {γ' ∈ Γ : <γ, γ'> ∈ op[C]} | ∈ N) weak

termination implies strong termination. However when termination is weak but not

strong one can use the following rule due to APT & PLOTKIN [1986] and directly deriving

from Floyd's liveness proof method (74), where P(α) stands for P[x ← α] and “x” is

an ordinal valued logical variable not in Var(B, C) :

(P(α) ∧ α > 0) ⇒ B, [P(α) ∧ α > 0] C [∃ β < α. P(β)], P(0) ⇒ ¬B
————————————————————————— While rule (264)

 [∃ α . P(α)] (B * C) [P(0)]

The use of ordinal-valued loop counters (as in induction principle (74)) was first

advocated in BOOM [1982] but in fact was already proposed by FLOYD[1967a] and

incorporated in Hoare logic by MANNA & PNUELI [1974] under the form of well-founded

sets. APT & PLOTKIN [1986] have shown that, in the case of countable nondeterminism

(such that | D | = ω), rule (264) is sound and complete (provided the assertion language

Pre contains the sort of countable ordinals including the constant 0 and the order relation

< upon ordinals), and that all recursive ordinals are needed.

8.10.3 Total correctness of fair parallel programs

8 . 1 0 . 3 . 1 Fairness hypotheses and unbounded nondeterminism

Total correctness of parallel programs usually depends upon weak or strong

fairness hypotheses (LAMPORT [1980a], LEHMANN, PNUELI & STAVI [1981], MANNA & PNUELI

[1984] [1989] and FRANCEZ [1986]) that is assumptions that an action which can be

respectively permanently or infinitely often executed will eventually be executed. For

example termination of “X := true; [(X * skip) || X := false]” is not guaranteed

without weak fairness hypothesis since the first process “(X * skip)” can loop for ever

if the second process “X := false” is never activated. Under the weak fairness

hypothesis that no non-terminated process can be eternally delayed, the command “X :=

false” must eventually be executed so that the while command “(X * skip)” terminates

and so does the parallel command “[(X * skip) || X := false]”.
We write P ˜wf˜[C1 || … || Cn]˜˜→ Q to state that execution of parallel program

[C1 || … || Cn] under weakly fair execution hypothesis inevitably lead from P to Q.

This fairness hypothesis is more precisely that on all infinite execution traces σ no

process k is permanently enabled and never activated :

DEFINITION Weak fairness hypothesis (265)

∀ γ ∈ Γ. ∀ σ ∈ ∑ω[[C1 || … || Cn]]γ. ∀ k ∈ {1, …, n}.

¬(∀ i ≥ 0. ∃ γ' ∈ Γ. <σi, γ'> ∈ op[Ck] ∧ <σi, σi+1> ∉ op[Ck])

 Observe that in practice the waiting delay is always bounded (say by the lifetime

of the computer) but this bound is unknown. Hence fairness hypotheses with

unbounded waiting delays should be understood as theoretical simplifications of actual

scheduling policies. However this introduces unbounded nondeterminism since for

example “N” can have any finite final value in the program “(X := false; N := 0);

[(X * N := N + 1) || X := false]” which terminates under the weak fairness

hypothesis.

8 . 1 0 . 3 . 2 Failure of Floyd liveness proof method

Floyd's liveness proof method (74) is not (directly) applicable to prove
P ˜wf˜[C1 || … || Cn]˜˜→ Q since under fairness hypotheses there may be no variant

function decreasing after each program step.

Counterexample Failure of Floyd liveness proof method for weak fairness (266)

 Floyd liveness proof method (74) is not applicable to prove termination of “[(X *

skip) || X := false]” executed under the weak fairness hypothesis (265). For

simplification, the operational semantics of this program C can be defined by Γ = {a, b}

and op[C] = op[C1] ∪ op[C2] with op[C1] = {<a, a>} and op[C2] = {<a, b>} where a is

the configuration in which either “(X * skip)” or “X := false” is executable and b is

the final configuration. Let P = {a} and Q = {<a, b>}. Applying (74), we would have

some α, i and an infinite chain of ordinals βk, k ≥ 0 such that <a, a> ∈ i(β0) and 0 < β0

< α [by (74.1) and (74.4) since <a, a> ∉ Q] so that assuming by induction hypothesis

that <a, a> ∈ i(βk) and βk > 0 their exists some βk+1 such that <a, a> ∈ i(βk+1) [by (74.3)

since <a, a> ∈ op[C]] and 0 < βk+1 < βk [by (74.4) since <a, a> ∉ Q], a contradiction

since βk, k ≥ 0 is strictly decreasing. �

The difficulty is due to the fact that some program steps (such as an iteration in the

loop “(X * skip)” of example (266)) do not directly contribute to termination.

However such inoperative steps contribute indirectly to termination in that their

execution brings the scheduler nearer the choice of an operative step. This can be taken

into account by coding the scheduler into the program (APT & OLDEROG [1982]) or by

requiring the variant function to decrease only for such operative steps (LEHMANN, PNUELI

& STAVI [1981]).

8 . 1 0 . 3 . 3 The transformational approach

 Floyd's total correctness proof method can be generalized to liveness properties

of weakly fair parallel programs [C1 || … || Cn] by application of induction principle

(74) to a semantics including a scheduler which ensures that execution of the program is

weakly fair :

DEFINITION APT & OLDEROG [1983] Operational semantics of weakly fair (267)
parallel programs

Γ' = ({1, …, n} → N) x Γ

op '[[C1 || … || Cn]] = {<<p, γ>, <p', γ'>> : ∃ k ∈ {1, …, n}.

<γ, γ'> ∈ op[Ck] ∧ ([pk > 0 ∧ p' <k= p] ∨ [B(p, γ) ∧ p' > 0])}

where

(p' <k= p) = [(p'k < pk) ∧ (∀ j ∈ {1, …, k - 1, k + 1, …, n}. p'j = pj)]

B(p, γ) = [∀ k ∈ {1, …, n}. (∀ γ' ∈ Γ. <γ, γ'> ∉ op[Ck] ∨ pk = 0)]

p' > 0 = [∀ k ∈ {1, …, n}. pk > 0]

Execution is organized into rounds within which each process Ck will be blocked or

else will be executed at least one and at most pk steps so that p1, …, pn can be

interpreted as priorities respectively assigned to processes C1, …, Cn. An execution

step within a round consists in executing a step of some process Ck with a non-zero

priority pk > 0. After this step the priority p'k of that process Ck has strictly decreased

while the priority p'j of other processes Cj is left unchanged (whence p' <k= p). A new

round begins when all processes are either blocked or have a zero priority (whence B(p,

γ) holds), all priorities being strictly positive at the beginning of the next round (whence

p' > 0). This is weakly but not strongly fair since a process which is almost always

enabled but infinitely often disabled may never be activated.

Applying Floyd's liveness induction principle (74) to this transformed semantics,

we get the following induction principle :

THEOREMAPT & OLDEROG [1983] Liveness proof method for weakly fair (268)

parallel programs
P ˜wf˜[C1 || … || Cn]˜˜→ Q =

[∃ α ∈ Ord. ∃ i ∈ α → ({1, …, n} → N) → P(Γ x Γ).

(∀ γ ∈ P. ∀ p ∈ (1, …, n} → N). ∃ β < α. <γ, γ> ∈ i(β)(p)) (.1)

∧ (∀ γ, γ' ∈ Γ. ∀ p, p' ∈ ({1, …, n} → N). ∀ β < α. <γ, γ'> ∈ i (β)(p) ⇒

<γ, γ'> ∈ Q (.2)
∨

[(∃ γ" ∈ Γ. ∃ k ∈ {1, …, n}. <γ', γ"> ∈ op[Ck] ∧ (pk > 0 ∨ B(p, γ'))) (.3)

∧ (∀ k ∈ {1, …, n}. ∀ γ" ∈ Γ.

[<γ', γ"> ∈ op[Ck] ∧ ([pk > 0 ∧ p' <k= p] ∨ [B(p, γ') ∧ p' > 0])]

⇒ [∃ β' < β. <γ, γ"> ∈ i(β')(p')])])] (.4)

Example Termination of a weakly fair parallel program by (268) (269)

Applying (268) to prove termination of “[(X * skip) || X := false]” with

simplified operational semantics defined by Γ = {a, b}, op[C1] = {<a, a>}, op[C2] =

{<a, b>} and specification P = {a} and Q = {<a, b>} we can choose α = ω and i = λ β. λ

p.(β = 0 → {<a, b>} ◊ (β = p1 → {<a, a>} ◊ ø)). �

Including the scheduling policy into the induction principle by counting the number of

step executed within each round is often very clumsy.

8 . 1 0 . 3 . 4 The intermittent well-foundedness approach

 Floyd's total correctness proof method can also be generalized to liveness

properties of weakly fair parallel programs by the following more elegant induction

principle. The variant function β is not asssumed to decrease after each computation

step. When no such progress is possible, it is sufficient that there exists one

permanently enabled process Ck which decreases the rank β when activated. By fairness

hypothesis, this is inevitable. Hence, one has only to record the identity k of the next

process Ck which will make progress to the computation :

THEOREM LEHMANN, PNUELI & STAVI [1981] Liveness proof method for weakly (270)

fair parallel programs
P ˜wf˜[C1 || … || Cn]˜˜→ Q =

[∃ α ∈ Ord. ∃ i ∈ α → {1, …, n} → P(Γ x Γ).

(∀ γ ∈ P. ∃ β < α. ∃ k ∈ {1, …, n}. <γ, γ> ∈ i(β)(k)) (.1)

∧ (∀ γ, γ' ∈ Γ. ∀ β < α. ∀ k ∈ {1, …, n}. <γ, γ'> ∈ i (β)(k) ⇒

<γ, γ'> ∈ Q (.2)
∨

[(∃ γ" ∈ Γ. <γ', γ"> ∈ op[Ck]) (.3)

∧ (∀ j ∈ {1, …, n}. ∀ γ" ∈ Γ. <γ', γ"> ∈ op[Cj] ⇒

[(∃ β' < β. ∃ k' ∈ {1, …, n}. <γ, γ"> ∈ i(β')(k')) (.4)

∨ (j ≠ k ∧ <γ, γ"> ∈ i(β, k))])])] (.5)

Starting from any initial state γ ∈ P (270.1), each program step makes progress toward

the goal Q (270.2) since all non-final intermediate states γ' (which satisfy invariant

i(β)(k) where β bounds the number of remaining operative steps and k is an enabled

operative process) are not blocking states (270.3) whence must have a successor state γ"

either by an operative step (270.4) in which case γ" is closer to the goal or by an

inoperative step (270.5) in which case process Ck remains permanently enabled, which,

by the weak fairness hypothesis guarantees a future progress by (270.4).

Example Termination of a weakly fair parallel program by (270) (271)

Applying (270) to prove termination of “[(X * skip) || X := false]” with

simplified operational semantics defined by Γ = {a, b}, op[C1] = {<a, a>}, op[C2] =

{<a, b>} and specification P = {a} and Q = {<a, b>} we can choose α = 2, i(0) = λ

k.{<a, b>}, i(1)(1) = ø and i(1)(2) = {<a, a>}. �

(265) and (270) approaches can be generalized to arbitrary semantics (COUSOT

[1985]) and formalized in the temporal logic framework (MANNA & PNUELI [1984] [1989]).

LEHMANN, PNUELI & STAVI [1981] and MANNA & PNUELI [1989] consider generalizations of

(270) for strong fairness. GRÜMBERG & FRANCEZ [1982] and GRÜMBERG, FRANCEZ & KATZ

[1983] respectively consider weak and strong equifairness where a permanently or

infinitely often enabled process is infinitely often activated with the further requirement

for the scheduler to give an equally fair chance to each process in a group of jointly

enabled processes. FRANCE & KOZEN [1984] present a unifying generalization of these

fairness and equifairness notions by parametrization of the enabling and activating

conditions.

APT [1984] [1988] and FRANCEZ [1986] are surveys of fair parallel program

correctness proof methods with numerous references to the literature.

8.10.4 Dijkstra's weakest preconditions calculus

DIJKSTRA [1975] [1976] introduced the calculus of weakest preconditions as a

generalization of Hoare logic to total correctness as first considered in FLOYD [1967a] :

DEFINITION DIJKSTRA [1975] Weakest precondition (272)

wp : Com x Ass → Ass

wp(C, q) = ∪ {p ∈ Ass : [p]C[q]}

The operational interpretation of the assertion wp(C, q) is that any valid implementation

of C, when started in any state satisfying wp(C, q), should lead to a finite computation

that ends in a state of q and that it is the weakest such assertion :

THEOREM DIJKSTRA [1976] Characterization of weakest preconditions (273)

∀ C ∈ Com. ∀ p, q ∈ Ass.

[wp(C, q)]C[q] ∧ (.1)

[p]C[q] ⇒ p ⊆ wp(C, q) (.2)

DIJKSTRA [1975] axiomatized wp as follows (the continuity condition (*W3.5) was later

introduced in DIJKSTRA [1976, P. 72] to take into account strong termination of finitely

bounded nondeterminism (DIJKSTRA [1982b] [1982c])) :

THEOREM DIJKSTRA [1975] [1976] Healthiness criteria (274)

∀ C ∈ Com. ∀ p, q ∈ Ass.

wp(C, ø) = ø (.1)

(p ⊆ q) ⇒ (wp(C, p) ⊆ wp(C, q)) (.2)

wp(C, p ∩ q) = wp(C, p) ∩ wp(C, q) (.3)

wp(C, p ∪ q) = wp(C, p) ∪ wp(C, q) (.4)

∀ s ∈ S. | {s' : <s, s'> ∈ C} | ∈ N ⇒ (.5)
∀ p ∈ N → Ass. (∀ i ∈ N. pi ⊆ pi+1) ⇒ (wp(C, ∪ i ∈ N pi) = ∪ i ∈ N wp(C, pi))

Continuity of wp (274.5) is obviously violated for unbounded nondeterminism since

for example if we let D = N and pi = {s ∈ S : s(X) ≤ i} for i ≥ 0 then ∀ i ∈ N. pi ⊆ pi+1

but S = wp(X := ?, S) = wp(X := ?, ∪ i ∈ N pi) ≠ ∪ i ∈ N wp(X := ?, pi) = ∪ i ∈ N ø =

ø, a contradiction when | D | ≥ 1.

Dijkstra's weakest preconditions form a calculus for the derivation of programs that

“turned program development into a calculational activity (and the idea of program

correctness into a calculational notion)” (DIJKSTRA [1984]). This point of view was

extensively developed in DIJKSTRA [1976] and GRIES [1981]. The basis of this calculus is

the following theorem (case (275.7) corresponding to bounded nondeterminism) :

THEOREM DIJKSTRA [1975] (YEH [1976], HOARE [1978a], CLARKE [1979], (275)

HEHNER [1979], APT & PLOTKIN [1986])

wp(skip, q) = q (.1)

wp(X := E, q) = {s ∈ S : s[X ← E(s)] ∈ q} (.2)

wp(X := ?, q) = {s ∈ S : ∀ d ∈ D. s[X ← d] ∈ q} (.3)

wp((C1; C2), q) = wp(C1, wp(C2, q)) (.4)

wp((B → C1 ◊ C2), q) = (B ∩ wp(C1, q)) ∪ (¬B ∩ wp(C2, q)) (.5)

wp((B * C), q) = lfp λ X. (B ∩ wp(C, X)) ∪ (¬B ∩ q) (.6)

∀ s ∈ S. | {s' : <s, s'> ∈ C} | ∈ N ⇒ (.7)

∀ p ∈ N → Ass.

(p0 = ¬B ∩ q) ∧ (∀ i ∈ N. pi+1 = (B ∩ wp(C, pi)) ∪ p0)

⇒ (wp((B * C), q) = ∪ i ∈ N pi)

The derivation of weakest preconditions can be impractical for loops. Therefore (275.6)

and (276.7) are advantageously replaced by the following theorem (using an invariant p

and a variant function t as in FLOYD [1967a]) :

THEOREM DIJKSTRA [1976] (BACK [1981], DIJKSTRA & GASTEREN [1986]) (276)

(∃ D. ∃ W ⊆ D. ∃ t ∈ DS.

wf(W, -<)

∧ ((p ∩ B) ⊆ {s ∈ S : t(s) ∈ W}

∧ (∀ x ∈ D. (p ∩ B ∩ {s ∈ S : t(s) = x}) ⊆ wp(C, p ∩ {s ∈ S : t(s) -< x})))

⇒ (p ⊆ wp((B * C), ¬B ∩ q))

Dijkstra's weakest precondition calculus has been formalized in a number of ways such

as for example using the infinitary logics Lω1ω (for finitely bounded nondeterminism) or

Lω1ω1 (for unbounded nondeterminism, BACK [1980] [1981]), linear algebra (MAIN &

BENSON [1983]), category theory (WAGNER [1986]), etc. It can be extended to more

language features (DE ROEVER [1976], MILNE [1978], HEHNER [1979], VAN LAMSWEERDE &

SINTZOFF [1979], GRIES & LEVIN [1980], DE BAKKER [1980, Ch. 7], FLON & SUZUKI [1981], GRIES

[1981], PARK [1981], MARTIN [1983], ELRAD & FRANCEZ [1984], BIJLSMA, WILTINK &

MATTHEWS [1986] [1989], BROY & NELSON [1989], HESSELINK [1989]), thus loosing part of

their original simplicity when considering complicated languages. Various

generalizations have been introduced by BACK [1980], HOARE & HE JIFENG [1986] [1987],

HOARE, HAYES, HE JIFENG, MORGAN, ROSCOE, SANDERS, SORENSEN & SUFRIN [1987], JACOBS &

GRIES [1985], LAMPORT [1987], NELSON [1987], BACK & VON WRIGHT [1989].

8.11 Examples of program verification

Classical examples of program verification using Floyd-Naur's proof method,

Hoare logic or Dijkstra's weakest preconditions calculus are given in LONDON [1970a]

[1970b], HOARE [1971a] [1972b], FOLEY & HOARE [1971], MANNA [1974], DIJKSTRA [1975], GRIES

[1977], WAND [1980], LŒCKX & SIEBER [1984], FOKKINGA [1987], GRIBOMONT [1989].

8.12 Other logics extending first-order logic with
programs

Hoare's idea of extending first-order logic with programs or for program proofs

has also been exploited in a number of formal systems such as the algorithmic logics of

ENGELER [1967] [1968] [1975] and SALWICKI [1970], RASIOWA [1979], the computational logic

of BOYER & MOORE [1979] [1988], the dynamic logic of PRATT [1976], HAREL [1979] [1980], the

first order programming logic of CARTWRIGHT [1983] [1984], the predicative semantics of

HEHNER [1984a] [1984b], HOARE [1984], HEHNER, GUPTA & MALTON [1986], the programming

logic of CONSTABLE [1977] [1983], CONSTABLE & O'DONNELL [1978], CONSTABLE, JOHNSON &

EICHENLAUB [1982], the situational calculus of MANNA & WALDINGER [1981], the

programming calculus of MORRIS [1987b], the specification logic of REYNOLDS [1982] (see

also TENNENT [1985]), the weakest preconditions calculus of DIJKSTRA [1976] (see

paragraph § 8.10.3), the weakest prespecification of HOARE & HE JIFENG [1986] [1987],

HOARE, HE & SANDERS [1987], HOARE, HAYES, HE JIFENG, MORGAN, ROSCOE, SANDERS, SORENSEN

& SUFRIN [1987] (see also chapter 11 on “Logics of Programs” by KOZEN & TIURYN and

chapter 16 on “Temporal and Modal Logic” by EMERSON in the second volume of this

handbook).

9 . References
ABRAMOV, S. V.

[1981] Remark on the method of intermediate assertions, Soviet Math. Dokl. 24 (1), 91-93.
[1984] The nature of the incompleteness of the Hoare system, Soviet Math. Dokl. 29 (1), 83-84.

AHO, A. V., SETHI, R. & ULLMAN, J. D.
[1986] Compilers; principles, techniques and tools, Addison-Wesley, Reading, 796 p.

AHO, A. V. & ULLMAN, J. D.
[1979] Universality of data retrieval languages, Conference record of the sixth ACM SIGACT-SIGPLAN

symposium on Principles Of Programming Languages, 110-117.
ALPERN, B. & SCHNEIDER, F. B.

[1985] Defining liveness, Information Processing Letters 21, North-Holland, Amsterdam, 181-185.
AMERICA, P. & DE BOER F. S.

[1989] Proving total correctness of recursive procedures, Research report CS-R8904, Centrum voor
Wiskunde en Informatica, Amsterdam, 33 p.

ANDRÉKA, H. & NÉMETI, I.
[1978] Completeness of Floyd logic, Bull. Section of Logic, Wroclaw 7, 115-121.

ANDRÉKA, H., NÉMETI, I. & SAIN, I.
[1979] Completeness problems in verification of programs and program schemes, In Mathematical

Foundations of Computer Science 1979, J. Becvár (Ed.), Lecture Notes in Computer Science 74,
Springer-Verlag, Berlin - New York, 208-218.

[1981] A characterization of Floyd-provable programs, Lecture Notes in Computer Science 118,
Springer-Verlag, Berlin - New York, 162-171.

[1982] A complete logic for reasoning about programs via non-standard model theory, Parts I-II,
Theoretical Computer Science 17, North-Holland, Amsterdam, 193-212 and 259-278.

ANDREWS, G. R.
[1981] Parallel programs : proofs, principles, and practice, Communications of the Association for

Computing Machinery 24 (3), 140-146.
APT, K. R.

[1978] A sound and complete Hoare-like system for a fragment of Pascal, Research Report IW 96/78,
Afdeling informatica, Mathematish Centrum, Amsterdam, 59 p.

[1981a] Ten years of Hoare's logic: a survey - part I, ACM Transactions On Programming Languages And
Systems 3 (4), 431-483.

[1981b] Recursive assertions and parallel programs, Acta informatica 15, 219-232.
[1983a] Formal justification of a proof system for communicating sequential processes, Journal of the

Association for Computing Machinery 30 (1), 197-216.
[1983b] A static analysis of CSP programs, In Logics of programs, Ed. Clarke & D. Kozen (Eds.),

Lecture Notes in Computer Science 164, Springer-Verlag, Berlin - New York, 1-17.
[1984] Ten years of Hoare's logic: a survey - part II: nondeterminism, Theoretical Computer Science

28, North-Holland, Amsterdam, 83-109.
[1985a] Proving correctness of CSP programs, a tutorial, Control Flow and Dataflow : Concepts of

Distributed programming, M. Broy (Ed.), Springer-Verlag, Berlin - New York, 441-474.
[1985b] Correctness proofs of distributed termination algorithms, In Logics and Models of Concurrent

Systems, K. R. Apt (Ed.), NATO ASI Series, Vol. F13, Springer-Verlag, Berlin - New York,
147-167.

[1988] Proving correctness of concurrent programs : a quick introduction, In Trends in Theoretical
Computer Science, E. Börger (Ed.), Computer Science Press, Rockville, 305-345.

APT, K. R., BERGSTRA, J. A. & MEERTENS, L. G. L. T.
[1979] Recursive assertions are not enough - or are they ?, Theoretical Computer Science 8, North-

Holland, Amsterdam, 73-87.
APT, K. R. & DE BAKKER, J. W.

[1977] Semantics and proof theory of PASCAL procedures, In Fourth International Colloquium on
Automata, Languages and Programming, A. Salomaa & M. Steinby (Eds.), Lecture Notes in
Computer Science 52, Springer-Verlag, Berlin - New York, 30-44.

APT, K. R. & FRANCEZ, N.
[1984] Modeling the distributed termination convention of CSP, ACM Transactions On Programming

Languages And Systems 6 (3), 370-379.
APT, K. R., FRANCEZ, N. & DE ROEVER, W. P.

[1980] A proof system for communicating sequential processes, ACM Transactions On Programming
Languages And Systems 2 (3), 359-385.

APT, K. R. & MEERTENS, L. G. L. T.
[1980] Completeness with finite systems of intermediate assertions for recursive program schemes,

SIAM Journal on Computing 9 (4), 665-671.
APT, K. R. & OLDEROG, E.-R.

[1983] Proof rules and transformations dealing with fairness, Science of Computer Programming 3,
North-Holland, Amsterdam, 65-100.

APT, K. R. & PLOTKIN, G. D.
[1986] Countable nondeterminism and random assignment, Journal of the Association for Computing

Machinery 33 (4), 724-767.
ARBIB, M. A. & ALAGIC, S.

[1979] Proof rules for gotos, Acta Informatica 11, 139-148.
ASHCROFT, E. A.

[1975] Proving assertions about parallel programs, Journal of Computer and System Sciences 10 (1),
110-135.

ASHCROFT, E. A., CLINT, M. & HOARE, C. A. R.
[1976] Remarks on “ Program proving : jumps and functions by M. Clint and C.A.R. Hoare”, Acta

informatica 6, 317-318.
ASHCROFT, E. A. & MANNA, Z.

[1970] Formalization of properties of parallel programs, Machine Intelligence 6, Edinburgh University
Press, 17-41.

BABICH, A. F.
[1979] Proving the total correctness of parallel programs, IEEE Transactions on Software Engineering,

SE-5 (6), 558-574.
BACK, R. J. R.

[1980] Correctness preserving program refinements : proof theory and applications, Mathematical
Centre Tracts 131, Mathematisch centrum, Amsterdam.

[1981] Proving total correctness of nondeterministic programs in infinitary logic, Acta Informatica
15 , 233-249.

BACK, R. J. R. & VON WRIGHT, J.
[1989] A lattice-theoretical basis for a specification language, In Mathematics of Program

Construction, J. L. A. van de Snepscheut (Ed.), Lecture Notes in Computer Science 375,
Springer-Verlag, Berlin - New York, 139-156.

BARRINGER, H.
[1985] A survey of verification techniques for parallel programs, Lecture Notes in Computer Science

191, Springer-Verlag, Berlin - New York.
BARRINGER, H., CHENG, J. H. & JONES, C. B.

[1984] A logic covering undefinedness in program proofs, Acta Informatica 21, 251-269.
BARWISE, J.

[1977] An introduction to first-order logic, In Handbook of Mathematical Logic, J. Barwise (Ed.),
North-Holland, Amsterdam (1978), 5-46.

BERGSTRA, J. A., CHMIELINSKA, A. & TIURYN, J.
[1982a] Another incompleteness result for Hoare's logic, Information and control 52, 159-171.
[1982b] Hoare's logic is incomplete when it does not have to be, Lecture Notes in Computer Science

131, Springer-Verlag, Berlin - New York, 9-23.
BERGSTRA, J. A. & KLOP, J. W.

[1984] Proving program inclusion using Hoare's logic, Theoretical Computer Science 30, North-
Holland, Amsterdam, 1-48.

BERGSTRA, J. A. & TIURYN, J.
[1983] PC-compactness, a necessary condition for the existence of sound and complete logics for

partial correctness, In Logics of programs, Ed. Clarke & D. Kozen (Eds.), Lecture Notes in
Computer Science 164, Springer-Verlag, Berlin - New York, 45-56.

BERGSTRA, J. A., TIURYN, J. & TUCKER, J. V.
[1982] Floyd's principle, correctness theories and program equivalence, Theoretical Computer Science

17, North-Holland, Amsterdam, 113-149.

BERGSTRA, J. A. & TUCKER, J. V.
[1981] Algebraically specified programming systems and Hoare's logic, Lecture Notes in Computer

Science 115, Springer-Verlag, Berlin - New York, 348-362.
[1982a] Some natural structures which fail to possess a sound and decidable Hoare-like logic for their

while-programs, Theoretical Computer Science 17, North-Holland, Amsterdam, 303-315.
[1982b] Expressiveness and the completeness of Hoare's Logic, Journal of Computer and System

Sciences 25, 3, 267-284.
[1982c] Two theorems about the completeness of Hoare's logic, Information Processing Letters 15 (4),

143-149.
[1983] Hoare's logic and Peano's arithmetic, Theoretical Computer Science 22 , North-Holland,

Amsterdam, 265-284.
[1984] The axiomatic semantics of programs based on Hoare's logic, Acta Informatica 21, 293-320.

BIJLSMA, A., WILTINK, J.G. & MATTHEWS, P. A.
[1986] Equivalence of the Gries and Martin proof rules for procedure calls, Acta Informatica 23, 357-

360.
[1989] A sharp proof rule for procedures in wp semantics, Acta Informatica 26, 409-419.

BIRÓ, B.
[1981] On the completeness of program verification methods, Bull. Section of Logic, Wroclaw 10 (2),

-.
BLIKLE, A.

[1981] The clean termination of iterative programs, Acta Informatica 16, 199-217.
BOEHM, H.-J.

[1982] A logic for expressions with side effects, Conference record of the ninth ACM SIGACT-
SIGPLAN symposium on Principles Of Programming Languages, 268-280.

[1985] Side effects and aliasing can have simple axiomatic descriptions, ACM Transactions On
Programming Languages And Systems 7 (4), 637-655.

BOOLOS, G. S. & JEFFREY, R. C.
[1974] Computability and logic, Cambridge University Press, Cambridge, 1974, 1980.

BOOM, H. J.
[1982] A weaker precondition for loops, ACM Transactions On Programming Languages And Systems

4 (4), 668-677.
BOYER, R. S. & MOORE, J. S.

[1979] A computational logic, Academic Press, New York.
[1988] A computational logic handbook, Academic Press, New York.

BRINCH HANSEN, P.
[1978] Distributed processes : a concurrent programming concept, Communications of the Association

for Computing Machinery 21 (11), 934-941.
BROOKES, S. D.

[1984] On the axiomatic treatment of concurrency, In Seminar on Concurrency, S. D. Brookes, A. W.
Roscoe & G. Winskel (Eds.), Lecture Notes in Computer Science 197, Springer-Verlag, Berlin -
New York, 1-34.

[1986] A semantically based proof system for partial correctness and deadlock in CSP, In Proceedings
symposium on Logic In Computer Science 1986, IEEE Computer Society Press, 58-65.

BROY, M. & NELSON, G.
[1989] Can fair choice be added to Dijkstra's calculus ?, Research Report MIP - 8902, Fakultät für

Mathematik und Informatik, Universität Passau, West Germany.
BURSTALL, R. M.

[1972] Some techniques for proving correctness of programs which alter data structures, Machine
Intelligence 7, Edinburgh University Press, 23-50.

[1974] Program proving as hand simulation with a little induction, In Information Processing 74,
North-Holland, Amsterdam, 308-312.

CARTWRIGHT, R.
[1983] Non-standard fixed points in first-order logic, In Logics of programs, Ed. Clarke & D. Kozen

(Eds.), Lecture Notes in Computer Science 164, Springer-Verlag, Berlin - New York, 129-146.
[1984] Recursive programs as definitions in first order logic, SIAM Journal on Computing 13 (2), 374-

408.
CARTWRIGHT, R. & OPPEN, D. C.

[1978] Unrestricted procedure calls in Hoare's logic, Conference record of the fifth ACM SIGACT-
SIGPLAN symposium on Principles Of Programming Languages, 131-140.

[1981] The logic of aliasing, Acta Informatica 15, 365-384.

CHERNIAVSKY, J. & KAMIN, S.
[1977] A complete and consistent Hoare axiomatics for a simple programming language, Conference

record of the fourth ACM SIGACT-SIGPLAN symposium on Principles Of Programming
Languages, 131-140 and Journal of the Association for Computing Machinery 26, (1979), 119-
128.

CHURCH, A.
[1936] An unsolvable problem of elementary number theory, Amer. Jour. Math., 58, 345-363.

CLARKE, E. M. Jr
[1977] Programming language constructs for which it is impossible to obtain good Hoare axiom

systems, Conference record of the fourth ACM SIGACT-SIGPLAN symposium on Principles Of
Programming Languages, 10-20 and Journal of the Association for Computing Machinery 26
(1), (1979) 129-147.

[1979] Program invariants as fixedpoints, Computing 21, 273-294.
[1980] Proving correctness of coroutines without history variables, Acta Informatica 13, 169-188.
[1984] The characterization problem for Hoare logic, Phil. Trans. R. Soc. Lond. A 312, 423-440.

CLARKE, E. M. Jr, GERMAN, S. M. & HALPERN, J. Y.
[1983] Effective axiomatizations of Hoare Logics, Journal of the Association for Computing

Machinery 30 (3), 612-636.
CLINT, M.

[1973] Program proving : coroutines, Acta Informatica, 2, 50-63.
[1981] On the use of history variables, Acta Informatica 16, 15-30.

CLINT, M. & HOARE, C. A. R.
[1972] Program proving : jumps and functions, Acta Informatica 1, 214-224.

COHEN, P. J.
[1966] Set theory and the continuum hypothesis, W. A. Benjamin Inc., New York.

COLEMAN, D. & HUGUES, J. W.
[1979] The clean termination of Pascal programs, Acta Informatica 11, 195-210.

CONSTABLE, R. L.
[1977] On the theory of programming logic, Conference record of the ninth annual ACM Symposium

on Theory Of Computing, 269-285.
[1983] Mathematics as programming, In Logics of programs, Ed. Clarke & D. Kozen (Eds.), Lecture

Notes in Computer Science 164, Springer-Verlag, Berlin - New York, 116-128.
CONSTABLE, R. L., JOHNSON, S. & EICHENLAUB, C.

[1982] Introduction to the PL/CV2 programming logic, Lecture Notes in Computer Science 135,
Springer-Verlag, Berlin - New York.

CONSTABLE, R. L. & O'DONNELL, M. J.
[1978] A programming logic, Winthrop, Cambridge Massachusetts.

COOK, S. A.
[1971] A characterization of pushdown machines in terms of time-bounded computers, Journal of the

Association for Computing Machinery 18 (1), 4-18.
[1978] Soundness and completeness of an axiom system for program verification, SIAM Journal on

Computing 7 (1), 70-90.
COOK, S. A. & OPPEN, D. C.

[1975] An assertion language for data structures, Conference record of the second ACM SIGACT-
SIGPLAN symposium on Principles Of Programming Languages, 160-166.

COURCELLE, B.
[1985] Proofs of partial correctness for iterative and recursive computations, In Logic colloquium ‘85,

The Paris Logic Group (Ed.), North-Holland, Amsterdam, 1987, 89-110.
COUSOT, P.

[1981] Semantic foundations of program analysis, In Program flow analysis: theory and practice, S.S.
Muchnick & N. D. Jones (Eds.), Prentice-Hall, Englewood Cliffs, 303-342.

COUSOT, P. & COUSOT, R.
[1979] A constructive version of Tarski's fixpoint theorems, Pacific Journal of Mathematics 82 (1),

43-57.
[1980] Semantic analysis of communicating sequential processes, In Seventh International Colloquium

on Automata, Languages and Programming, J. W. De Bakker & J. van Leeuwen (Eds.), Lecture
Notes in Computer Science 85, Springer-Verlag, Berlin - New York, 119-133.

[1982] Induction principles for proving invariance properties of programs, In Tools & notions for
program construction, D. Néel (Ed.), Cambridge University Press, 75-119.

[1984] Invariance proof methods and analysis techniques for parallel programs, In Automatic program
construction techniques, A. W. Biermann, G. Guiho & Y. Kodratoff (Eds.), Macmillan, New
York, 243-272.

[1985] "A la Floyd" induction principles for proving inevitability properties of programs, In Algebraic
methods in semantics, M. Nivat & J. Reynolds (Eds.), Cambridge University Press, Cambridge,
277-312.

[1987] Sometime = always + recursion = always, on the equivalence of the intermittent and invariant
assertions methods for proving inevitability properties of programs, Acta informatica 24, 1-
31.

[1989] A language independent proof of the soundness and completeness of Generalized Hoare Logic,
Information and Computation 80 (2), 165-191.

CRASEMANN, Ch. & LANGMAACK, H.
[1983] Characterization of acceptable by Algol-like programming languages, In Logics of programs,

Ed. Clarke & D. Kozen (Eds.), Lecture Notes in Computer Science 164, Springer-Verlag, Berlin -
New York, 129-146.

CSIRMAZ, L.
[1980] Structure of program runs of nonstandard time, Acta Cybernet. 4, 325-331.
[1981a] On the completeness of proving partial correctness, Acta Cybernet. 5, 181-190.
[1981b] Programs and program verifications in a general setting, Theoretical Computer Science 16,

North-Holland, Amsterdam, 199-210.
CSIRMAZ, L. & HART, B.

[1986] Program correctness on finite fields, In Proceedings symposium on Logic In Computer Science
1986, IEEE Computer Society Press, 4-10.

CUNNINGHAM, R. J., & GILFORD, M. E. J.
[1976] A note on the semantic definition of side effects, Information Processing Letters 4 (5), North-

Holland, Amsterdam, 118-120.
DAHL, O.-J.

[1975] An approach to correctness proofs of semi-coroutines, In Proceedings of the symposium and
summer school on mathematical foundations of computer science, A. Blikle (Ed.), Lecture Notes
in Computer Science 28, Springer-Verlag, Berlin - New York, 157-174.

DAHL, O.-J. & NYGAARD, K.
[1966] SIMULA - An ALGOL-based simulation language, Communications of the Association for

Computing Machinery 9, 671-678.
DAMM, W. & JOSKO, B.

[1983a] A sound and relatively* complete axiomatization of Clarke's language L4, In Logics of

programs, Ed. Clarke & D. Kozen (Eds.), Lecture Notes in Computer Science 164, Springer-
Verlag, Berlin - New York, 161-175.

[1983b] A sound and relatively* complete Hoare-logic for a language with higher type procedures, Acta
Informatica 20, 59-101.

DAVIS, M.
[1977] Unsolvable problems, In Handbook of Mathematical Logic, J. Barwise (Ed.), North-Holland,

Amsterdam (1978), 567-594.
DE BAKKER, J. W.

[1976] Semantics and termination of nondeterministic recursive programs, In Third International
Colloquium on Automata, Languages and Programming, S. Michaelson & R. Milner (Eds.),
University Press, Edinburgh, 436-477.

[1980] Mathematical theory of program correctness, Prentice-Hall, Englewood Cliffs.
DE BAKKER, J. W. & DE ROEVER, W. P.

[1972] A calculus for recursive program schemes, In First International Colloquium on Automata,
Languages and Programming, M. Nivat (Ed.), North-Holland, Amsterdam, 167-196.

DE BAKKER, J. W., KLOP, J. W. & MEYER J.-J. Ch.
[1982] Correctness of programs with function procedures, In Logics of Programs, D. Kozen (Ed.),

Lecture Notes in Computer Science 131, Springer-Verlag, Berlin - New York, 94-112.
DE BAKKER, J. W. & MEERTENS, L. G. L. T.

[1975] On the completeness of the inductive assertion method, Journal of Computer and System
Sciences 11 (3), 323-357.

DE BOER, F. S.
[1987] A proof rule for process-creation, In Formal description of programming concepts III

(Proceedings of the IFIP TC2 WG2.2 Working Conference on Formal Description of
Programming Concepts, Ebberup, Denmark, 25-28 August 1986), M. Wirsing (Ed.), North-
Holland, Amsterdam, ***-***.

DE BRUIN, A.
[1981] Goto statements : semantics and deduction system, Acta informatica 15, 385-424.
[1984] On the existence of Cook semantics, SIAM Journal on Computing 13 (1), 1-13.

DEMBINSKI, P. & SCHWARTZ, R. L.
[1976] The pointer type in programming languages : a new approach, In Programmation, proceedings

of the second international symposium on programming, B. Robinet (Ed.), Dunod, Paris, 89-
105.

DE MILLO, R. A., LIPTON, R. J. & PERLIS, A. J.
[1979] Social processes and proofs of theorems and programs, Communications of the Association for

Computing Machinery 22 (5), 271-280.
DE ROEVER, W. P.

[1974] Recursion and parameter mechanisms : an axiomatic approach, In Second International
Colloquium on Automata, Languages and Programming, J. Lœckx (Ed.), Lecture Notes in
Computer Science 14, Springer-Verlag, Berlin - New York, 34-65.

[1976] Dijkstra's predicate transformer, non-determinism, recursion and termination, In Mathematical
Foundations of Computer Science, Lecture Notes in Computer Science 45, Springer-Verlag,
Berlin - New York, 472-481.

[1985a] The quest for compositionality, a survey of assertion-based proof systems for concurrent
programs, Part 1 : concurrency based on shared variables, In Formal Models in Programming, E.
J. Neuhold & C. Chroust (Eds.), Elsevier Science Publishers B. V. (North-Holland, Amsterdam),
© IFIP, 181-205.

[1985b] The cooperation test : a syntax-directed verification method, In Logics and Models of
Concurrent Systems, K. R. Apt (Ed.), NATO ASI Series, Vol. F13, Springer-Verlag, Berlin - New
York, 213-257.

DIJKSTRA, E. W.
[1968] A constructive approach to the problem of program correctness, BIT 8, 174-186.
[1975] Guarded commands, nondeterminacy and formal derivation of programs, Communications of the

Association for Computing Machinery 18 (8), 453-457.
[1976] A discipline of programming, Prentice-Hall, Englewood Cliffs.
[1982a] On subgoal induction, In Selected writings on computing: a personal perspective, Springer-

Verlag, Berlin - New York, 223-224.
[1982b] On weak and strong termination, In Selected writings on computing: a personal perspective,

Springer-Verlag, Berlin - New
York, 355-357.

[1982c] The equivalence of bounded nondeterminacy and continuity, In Selected writings on computing:
a personal perspective, Springer-Verlag, Berlin - New York, 358-359.

[1982d] A personal summary of the Gries-Owicki theory, In Selected writings on computing: a personal
perspective, Springer-Verlag, Berlin - New York, 188-199.

[1984] Invariance and non-determinacy, Phil. Trans. R. Soc. London, A 312, 491-499.
DIJKSTRA, E. W. & GASTEREN, A. J. M.

[1986] A simple fixpoint argument without the restriction to continuity, Acta Informatica 23, 1-7.
DONAHUE, J. E.

[1976] Complementary definitions of programming language semantics, Lecture Notes in Computer
Science 42, Springer-Verlag, Berlin - New York.

ELRAD, T. & FRANCEZ, N.
[1984] A weakest precondition semantics for communicating processes, Theoretical Computer Science

29, North-Holland, Amsterdam, 231-250.
ENDERTON, H. B.

[1972] A mathematical introduction to logic, Academic Press, New York.
[1977] Elements of recursion theory, In Handbook of Mathematical Logic, J. Barwise (Ed.), North-

Holland, Amsterdam (1978), 527-566.

ENGELER, E.
[1967] Algorithmic properties of structures, Math. Systems Theory 1, 183-195.
[1968] Remarks on the theory of geometrical constructions, In The syntax and semantics of infinitary

languages, J. Barwise (Ed.), Lecture Notes in Mathematics 72, Springer-Verlag, Berlin - New
York, 64-76.

[1975] Algorithmic logic, In Foundations of computer science, J. W. De Bakker (Ed.), Mathematical
Center Tracts 63, Mathematisch centrum, Amsterdam, 57-85.

ERNST, G. W.
[1977] Rules of inference for procedure calls, Acta Informatica 8, 145-152.

ERNST, G. W., NAVLAKHA, J. K. & OGDEN, W. F.
[1982] Verification of programs with procedure-type parameters, Acta Informatica 18, 149-169.

FAUCONNIER, H.
[1987] Sémantique asynchrone et comportements infinis en CSP, Theoretical Computer Science 54,

North-Holland, Amsterdam, 277-298.
FIX, L. & FRANCEZ, N.

[1988] Proof rules for dynamic process creation and destruction, manuscript, 37 p.
FLON, L. & SUZUKI, N.

[1981] The total correctness of parallel programs, SIAM Journal on Computing 10 (2), 227-246.
FLOYD, R. W.

[1967a] Assigning meanings to programs, In Proc. Symp. in Applied Mathematics, J. T. Schwartz (Ed.),
19 , 19-32.

[1967b] Nondeterministic algorithms, Journal of the Association for Computing Machinery, 14 (4),
636-644.

FOKKINGA, M. M.
[1978] Axiomatization of declarations and the formal treatment of an escape construct, In Formal

Descriptions of Programming Concepts, E. J. Neuhold (Ed.), North-Holland, Amsterdam, 221-
235.

[1987] A correctness proof of sorting by means of formal procedures, Science of Computer
Programming 9, North-Holland, Amsterdam, 263-269.

FOLEY, M. & HOARE, C. A. R.
[1971] Proof of a recursive program : QUICKSORT, Computer Journal 14 (4), 391-395.

FRANCEZ, N.
[1980] Distributed termination, ACM Transactions On Programming Languages And Systems 2 (1), 42-

55.
[1986] Fairness, Springer-Verlag, Berlin - New York.

FRANCEZ, N., HAILPERN, B. & TAUBENFELD, G.
[1985] Script : a communication abstraction mechanism and its verification, In Logics and Models of

Concurrent Systems, K. R. Apt (Ed.), NATO ASI Series, Vol. F13, Springer-Verlag, Berlin -
New York, 169-212.

FRANCEZ, N. & KOZEN, D.
[1984] Generalized fair termination, Conference record of the eleventh ACM SIGACT-SIGPLAN

symposium on Principles Of Programming Languages, 46-53.
FRANCEZ, N., LEHMANN, D. & PNUELI, A.

[1984] A linear history semantics for languages for distributed programming, Theoretical Computer
Science 32, North-Holland, Amsterdam, 25-46.

FRANCEZ, N. & PNUELI, A.
[1978] A proof method for cyclic programs, Acta Informatica 9, 133-157.

GAIFMAN, H. & VARDI, M. Y.
[1985] A simple proof that connectivity of finite graphs is not first-order definable, Bulletin of

European Association for Theoretical Computer Science, June 1985, 43-45.
GALLIER, J. H.

[1978] Semantics and correctness of nondeterministic flowchart programs with recursive procedures, In
Fifth International Colloquium on Automata, Languages and Programming, G. Ausiello & C.
Böhm (Eds.), Lecture Notes in Computer Science 62, Springer-Verlag, Berlin - New York, 252-
267.

[1981] Nondeterministic flowchart programs with recursive procedures : semantics and correctness,
Theoretical Computer Science 13, North-Holland, Amsterdam, Part I : 193-223, Part II : 239-
270.

GERGELY, T. & SZÖTS, M.
[1978] On the incompleteness of proving partial correctness, Acta cybernetica 4 (1), Szeged., 45-57.

GERGELY, T. & ÚRY, L.
[1978] Time models for programming logics, In Mathematical Logic in Computer Science,

(Salgótarján, Hungary, 1978), B. Dömölki & T. Gergely (Eds.), 359-427, Colloquia
Mathematica Societatis János Bolyai 26, North-Holland, Amsterdam, 1981.

[1980] Specification of program behavior through explicit time considerations, In Information
Processing 80, S. H. Lavington (Ed.), North-Holland, Amsterdam,107-111.

[1982] A theory of interactive programming, Acta Informatica 17, 1-20.
GERHART, S. L.

[1975] Correctness-preserving program transformations, Conference record of the second ACM
SIGACT-SIGPLAN symposium on Principles Of Programming Languages, 54-66.

GERMAN, S. M.
[1978] Automatic proofs of the absence of common runtime errors, Conference record of the fifth ACM

SIGACT-SIGPLAN symposium on Principles Of Programming Languages, 105-118.
[1981] Verifying the absence of common runtime errors in computer programs, Report No. STAN-CS-

81-866, Department of computer science, Stanford university.
GERMAN, S. M., CLARKE, E. M. Jr & HALPERN, J. Y.

[1983] Reasoning about procedures as parameters, In Logics of programs, Ed. Clarke & D. Kozen (Eds.),
Lecture Notes in Computer Science 164, Springer-Verlag, Berlin - New York, 206-220.

[1986] True relative completeness of an axiom system for the language L4 (abridged), In Proceedings
symposium on Logic In Computer Science 1986, IEEE Computer Society Press, 11-25.

[1988] Reasoning about procedures as parameters in the language L4, IBM research report, RJ 6387.
GERMAN, S. M. & HALPERN, J. Y.

[1983] On the power of the hypothesis of expressiveness, IBM research report, RJ 4079.
GERMAN, S. M. & WEGBREIT, B.

[1975] A synthesizer of inductive assertions, IEEE Transactions on Software Engineering, SE-1 (1), 68-
75.

GERTH, R.
[1982] A sound and complete Hoare axiomatization of the ADA-rendezvous, In Ninth International

Colloquium on Automata Languages and Programming, M. Nielsen & E. M. Schmidt (Eds.),
Lecture Notes in Computer Science 140, Springer-Verlag, Berlin - New York, 252-264.

[1983] Transition logic : how to reason about temporal properties in a compositional way, In
Proceedings of the sixteenth annual ACM Symposium on Theory Of Computing, 39-50.

GERTH, R. & DE ROEVER, W. P.
[1984] A proof system for concurrent ADA programs, Science of Computer Programming 4, North-

Holland, Amsterdam, 159-204.
GOERDT, A.

[1985] A Hoare calculus for functions defined by recursion on higher types, In Logics of Programs, R.
Parikh (Ed.), Lecture Notes in Computer Science 193, Springer-Verlag, Berlin - New York, 106-
117.

[1987] Hoare logic for lambda-terms as basis of Hoare logic for imperative languages, In Proceedings
symposium on Logic In Computer Science 1987, IEEE Computer Society Press, 293-299.

[1988] Hoare calculi for higher-type control structures and their completeness in the sense of Cook, In
Proceedings of the thirteenth symposium on the Mathematical Foundations of Computer Science
1988, M. P. Chytil, L. Jane & V. Koubek (Eds.), Lecture Notes in Computer Science 324,
Springer-Verlag, Berlin - New York, 329-338.

GOLDSTINE, H. H. & VON NEUMANN, J.
[1947] Planning and coding of problems for an electronic computing instrument, Report for U.S. Ord.

Dept., In Collected Works of J. von Neumann, A. Taub (Ed.), Vol. 5, (1965), Pergamon, New
York, 80-151.

GOOD, D. I.
[1984] Mechanical proofs about computer programs, Phil. Trans. R. Soc. London, A 312, 389-409.

GORELICK, G.A.
[1975] A complete axiomatic system for proving assertions about recursive and non-recursive

procedures, Technical report 75, Department of Computer Science, University of Toronto.
GRABOWSKI, M.

[1984] On the relative completeness of Hoare logics, Conference record of the eleventh ACM SIGACT-
SIGPLAN symposium on Principles Of Programming Languages, 258-261 and Information and
control 66, (1986) 29-44.

[1985] On the relative incompleteness of logics for total correctness, In Logics of Programs, R. Parikh
(Ed.), Lecture Notes in Computer Science 193, Springer-Verlag, Berlin - New York, 118-127.

[1988] Arithmetical completeness versus relative completeness, Studia Logica XLVII (3), Ossolineum
and Kluwer Academic Publishers, Wroclaw, Poland, 213-220.

GRABOWSKI, M. & HUNGAR, *.
[1988] On the existence of effective Hoare logics, In Proceedings symposium on Logic In Computer

Science 1988, IEEE Computer Society Press, ***-***.
GREIBACH, S. A.

[1975] Theory of program structures : schemes, semantics, verification, Lecture Notes in Computer
Science 36 Springer-Verlag, Berlin - New York.

GREIF, I. & MEYER, A. R.
[1981] Specifying the semantics of while programs: a tutorial and critique of a paper by Hoare and

Lauer, ACM Transactions On Programming Languages And Systems 3 (4), 484-507.
GRIBOMONT, P. E.

[1989] Stepwise refinement and concurrency : a small exercise, In Mathematics of Program
Construction, J. L. A. van de Snepscheut (Ed.), Lecture Notes in Computer Science 375,
Springer-Verlag, Berlin - New York, 219-238.

GRIES, D.
[1977] An exercise in proving parallel programs correct, Communications of the Association for

Computing Machinery 20 (12), 921-930.
[1978] The multiple assignment statement, IEEE Transactions on Software Engineering, SE-4 (2), 89-

93.
[1979] Is ‘sometime’ ever better than ‘always’?, ACM Transactions On Programming Languages And

Systems 1, 258-265.
[1981] The science of programming, Springer-Verlag, Berlin - New York.

GRIES, D. & LEVIN, G. M.
[1980] Assignment and procedure call proof rules, ACM Transactions On Programming Languages And

Systems 2 (4), 564-579.
GRÜMBERG, O., FRANCEZ, N.

[1982] A complete proof rule for (weak) equifairness, IBM research report, T. J. Watson Research Center
RC-9634.

GRÜMBERG, O., FRANCEZ, N. & KATZ, S.
[1983] A complete proof rule for strong equifair termination, In Logics of programs, Ed. Clarke & D.

Kozen (Eds.), Lecture Notes in Computer Science 164, Springer-Verlag, Berlin - New York,
257-278.

GUREVICH, Y.
[1984] Toward logic tailored for computational complexity, In Computation and Proof Theory, M. M.

Richter, E. Börger, W. Oberschelp, B. Schinzel & W. Thomas (Eds.), Lecture Notes In
Mathematics 1104, Springer-Verlag, Berlin - New York, 175-216.

[1988] Logic and the challenge of computer science, In Trends in Theoretical Computer Science, E.
Börger (Ed.), Computer Science Press, Rockville, 1-58.

GUTTAG, J. V., HORNING, J. J. & LONDON, R. L.
[1978] A proof rule for Euclid procedures, In Formal Description of Programming Concepts, E. J.

Neuhold (Ed.), North-Holland, Amsterdam, 211-220.
HALPERN, J. Y.

[1984] A good Hoare axiom system for an ALGOL-like language, Conference record of the eleventh
ACM SIGACT-SIGPLAN symposium on Principles Of Programming Languages, 262-271.

HALPERN, J. Y., MEYER, A. R. & TRAKHTENBROT, B. A.
[1984] The semantics of local storage, or what makes the free-list free?, Conference record of the

eleventh ACM SIGACT-SIGPLAN symposium on Principles Of Programming Languages, 245-
254.

HAREL, D.
[1979] First-order dynamic logic, Lecture Notes in Computer Science 68, Springer-Verlag, Berlin - New

York.
[1980] Proving the correctness of regular deterministic programs : a unifying survey using dynamic

logic, Theoretical Computer Science 12, North-Holland, Amsterdam, 61-81.
HAREL, D., PNUELI, A. & STAVI, J.

[1977] A complete axiomatic system for proving deductions about recursive programs, Proceedings of
the ninth annual ACM Symposium on Theory Of Computing, 249-260.

HEHNER, E. C. R.
[1979] Do considered od : a contribution to the programming calculus, Acta Informatica 11, 287-304.
[1984a] The logic of programming, Prentice Hall, Englewood Cliffs.

[1984b] Predicative programming, Communications of the Association for Computing Machinery 27,
134-151.

HEHNER, E. C. R., GUPTA, L. E. & MALTON, A. J.
[1986] Predicative methodology, Acta Informatica 23, 487-505.

HEHNER, E. C. R. & HOARE, C. A. R.
[1983] A more complete model of communicating processes, Theoretical Computer Science 26, North-

Holland, Amsterdam, 105-120.
HESSELINK, W. H.

[1989] Predicate-transformer semantics of general recursion, Acta Informatica 26, 309-332.
HITCHCOCK, P. & PARK, D. M. R.

[1973] Induction rules and proofs of program termination, In First International Colloquium on
Automata, Languages and Programming, M. Nivat (Ed.), North-Holland, Amsterdam, 225-251.

HOARE, C. A. R.
[1961] Algorithm 63, Partition; Algorithm 64, Quicksort; Algorithm 65, Find, Communications of the

Association for Computing Machinery 4 (7), 321-322.
HOARE, C. A. R.

[1969] An axiomatic basis for computer programming, Communications of the Association for
Computing Machinery 12, 10, 576-580, 583 (Ch. 4 of HOARE & JONES [1989, pp. 45-58]).

[1971a] Proof of a program : Find, Communications of the Association for Computing Machinery 14
(1), 39-45 (Ch. 5 of HOARE & JONES [1989, pp. 59-74]).

[1971b] Procedures and parameters : an axiomatic approach, In Symposium on Semantics of Algorithmic
Languages, E. Engeler (Ed.), Lecture Notes in Mathematics 188, Springer-Verlag, Berlin - New
York, 102-116 (Ch. 6 of HOARE & JONES [1989, pp. 75-88]).

[1972a] Proof of correctness of data representations, Acta Informatica 1, 271-281 (Ch. 8 of HOARE &
JONES [1989, pp. 103-116]).

[1972b] Proof of a structured program: ‘the sieve of Eratosthenes’, Computer Journal 15 (4), 321-325
(Ch. 9 of HOARE & JONES [1989, pp. 117-132]).

[1972c] Towards a theory of parallel programming, In Operating System Techniques, C. A. R. Hoare &
R. H. Perrott, Academic Press, New York, 61-71.

[1974] Monitors : an operating system structuring concept, Communications of the Association for
Computing Machinery 17 (10), 549-557 (Ch. 12 of HOARE & JONES [1989, pp. 171-191]).

[1975] Parallel programming : an axiomatic approach, Computer Languages 1 (2), Pergamon Press,
151-160 (Ch. 15 of HOARE & JONES [1989, pp. 245-258]).

[1978a] Some properties of predicate transformers, Journal of the Association for Computing Machinery
25 (3), 461-480.

[1978b] Communicating sequential processes, Communications of the Association for Computing
Machinery 21 (8), 666-677 (Ch. 16 of HOARE & JONES [1989, pp. 259-288]).

[1981] A calculus of total correctness for communicating processes, Science of Computer Programming
1 (1-2), North-Holland, Amsterdam, 49-72.

[1984] Programs as predicates, Phil. Trans. R. Soc. Lond. A 312, 475-489, Also in Mathematical
Logic and Programming Languages, C. A. R. Hoare & J. C. Shepherdson (Eds.), Prentice Hall,
New York, 141-154, 1985 (Ch. 20 of HOARE & JONES [1989, pp. 333-349]).

[1985a] The mathematics of programming, In Proceedings of the fifth conference on Foundations of
Software Technology and Theoretical Computer Science, S. N. Maheshwari (Ed.), Lecture Notes
in Computer Science 206, Springer-Verlag, Berlin - New York, 1-18 (Ch. 21 of HOARE &
JONES [1989, pp. 351-370]).

[1985b] Communicating sequential processes, Prentice Hall, New York, 256 p.
HOARE, C. A. R. & ALLISON, D. C. S.

[1972] Incomputability, Computing Surveys 4 (3), 169-178.
HOARE, C. A. R., HAYES, I. J., HE JIFENG, MORGAN, C. C., ROSCOE, A. W., SANDERS, J. W.,

SORENSEN, I. H. & SUFRIN, B. A.
[1987] Laws of programming, Communications of the Association for Computing Machinery 30 (8),

672-686.
HOARE, C. A. R. & HE JIFENG

[1986] The weakest prespecification, Fundamenta Informaticae 9, Part I : 51-84, Part II : 217-252.
[1987] The weakest prespecification, Information Processing letters 24 (2), North-Holland,

Amsterdam, 127-132.
HOARE, C. A. R., HE JIFENG & SANDERS, J. W.

[1987] Prespecification in data refinement, Information processing letters 25 (2), North-Holland,
Amsterdam, 71-76.

HOARE, C. A. R. & JONES, C. B. (Ed.)
[1989] Essays in computing science, Prentice Hall, New York, 412 p.

HOARE, C. A. R. & LAUER, P.
[1974] Consistent and complementary formal theories of the semantics of programming languages,

Acta Informatica 3, 135-155.
HOARE, C. A. R. & WIRTH, N.

[1973] An axiomatic definition of the programming language PASCAL, Acta Informatica 2, 335-355
(Ch. 11 of HOARE & JONES [1989, pp. 153-169]).

HOOMAN, J. & DE ROEVER, W.-P.
[1989] The quest goes on : a survey of proof systems for partial correctness of CSP, In Current Trends in

Concurrency, Overviews and Tutorials, J. W. de Bakker, W.-P. de Roever & G. Rozenberg (Eds.),
Lecture Notes in Computer Science 224, Springer-Verlag, Berlin - New York, 343-395.

HOOGEWIJS, A.
[1987] Partial-predicate logic in computer science, Acta Informatica 24, 381-393.

HORTALÁ-GONZÁLEZ, Ma T. & RODRÍGUEZ-ARTALEJO, M.
[1985] Hoare's logic for nondeterministic regular programs : a nonstandard completeness theorem,

Lecture Notes in Computer Science 194, Springer-Verlag, Berlin - New York, 270-280.
HOWARD, J. H.

[1976] Proving monitors, Communications of the Association for Computing Machinery 19 (5), 273-
279.

IGARASHI, S., LONDON, R. L. & LUCKHAM, D. C.
[1975] Automatic program verification I : a logical basis and its implementation, Acta Informatica 4,

145-182.
IMMERMAN, N.

[1983] Languages which capture complexity classes, Proceedings of the fifteenth annual ACM
Symposium on Theory Of Computing, 347-354.

JACOBS, D. & GRIES, D.
[1985] General correctness: a unification of partial and total correctness, Acta informatica 22, 67-83.

JANSSEN, T. M. V. & VAN EMDE BOAS, P.
[1977] On the proper treatment of referencing, dereferencing and assignment, Lecture Notes in

Computer Science 52, Springer-Verlag, Berlin - New York, 282-300.
JOHNSTONE, P. T.

[1987] Notes on logic and set theory, Cambridge University Press, Cambridge.
JONES, C. B.

[1980] Software development: a rigorous approach, Prentice-Hall, Englewood Cliffs.
[1983a] Specification and design of (parallel programs), In Information Processing 83, R. E. A. Mason

(Ed.), Elsevier Science Publishers B. V. (North-Holland, Amsterdam), © IFIP, 321-332.
[1983b] Tentative steps toward a development method for interfering programs, ACM Transactions On

Programming Languages And Systems 5 (4), 596-619
JONES, N. D. & MUCHNICK, S. S.

[1977] Even simple programs are hard to analyze, Journal of the Association for Computing Machinery
24 (2), 338-350.

[1978] Complexity of finite memory programs with recursion, Journal of the Association for
Computing Machinery 25, 312-321.

JOSEPH, M., MOITRA, A. & SOUNDARARAJAN, N.
[1987] Proof rules for fault tolerant distributed programs, Science of Computer Programming 8, North-

Holland, Amsterdam, 43-67.
JOSKO, B.

[1983] A note on expressivity definitions in Hoare logic, Schriften zur Informatik und angewandten
Mathematik, Rheinisch Westfalische TH Aachen, Bericht 80.

KATZ, S. & MANNA, Z.
[1976] Logical analysis of programs, Communications of the Association for Computing Machinery

19, 188-206.
KELLER, R. M.

[1976] Formal verification of parallel programs, Communications of the Association for Computing
Machinery 19 (7), 371-384.

KFOURY, A. J.
[1983] Definability by programs in first-order structures, Theoretical Computer Science 25, North-

Holland, Amsterdam, 1-66.

KFOURY, A. J. & URZYCZYN, P.
[1985] Necessary and sufficient conditions for the universality of programming formalisms, Acta

Informatica 22, 347-377.
KING, J.

[1969] A program verifier, Ph. D. Thesis, Carnegie-Mellon U.
KLEENE, S. C.

[1936] λ-definability and recursiveness, Duke Math. Jour. 2, 340-353.
[1952] Introduction to metamathematics, D. Van Nostrand Inc., Princeton.
[1967] Mathematical logic, Wiley & sons, New York.

KNUTH, D. E.
[1968a] The art of computer programming, Vol. 1, Fundamental algorithms, Addison-Wesley, Reading.
[1968b] Semantics of context-free languages, Math. Systems Theory 2 (2), 127-145, correction : Math.

Systems Theory 5, (1971), 95-96.
KOWALTOWSKI, T.

[1977] Axiomatic approach to side effects and general jumps, Acta Informatica 7, 357-360.
LAMBEK, J.

[1961] How to program an infinite abacus, Canadian Math. Bulletin 4, 295-302.
LAMPORT, L.

[1977] Proving the correctness of multiprocess programs, IEEE Transactions on Software Engineering,
SE-3 (2), 125-143.

[1980a] "Sometime" is sometimes "not never", Conference record of the seventh ACM SIGACT-
SIGPLAN symposium on Principles Of Programming Languages, 174-185.

[1980b] The “Hoare logic” of concurrent programs, Acta Informatica 14, 31-37.
[1983] Specifying concurrent program modules, ACM Transactions On Programming Languages And

Systems 5 (2), 190-222.
[1987] win and sin: predicate transformers for concurrency, DIGITAL SRC Research Report 17, System

Research Center, Palo Alto.
[1988] Control predicates are better than dummy variables for reasoning about program control, ACM

Transactions On Programming Languages And Systems 10 (2), 267-281.
LAMPORT, L. & SCHNEIDER, F. B.

[1984] The “Hoare logic” of CSP, and that all, ACM Transactions On Programming Languages And
Systems 6 (2), 281-296.

LANGMAACK, H.
[1973] On procedures as open subroutines, part I, Acta Informatica 2 (1973), 311-333; part II, Acta

Informatica 3 (1974), 227-241.
[1983] Aspects of programs with finite modes, In Foundations of Computation Theory, M. Karpinski

(Ed.), Lecture Notes in Computer Science 158, Springer-Verlag, Berlin - New York, 241-254.
LANGMAACK, H. & OLDEROG, E.R.

[1980] Present day Hoare-like systems for programming languages with procedures : power, limits and
most likely extensions, In Seventh International Colloquium on Automata Languages and
Programming, J. W. De Bakker & J. van Leeuwen (Eds.), Lecture Notes in Computer Science 85,
Springer-Verlag, Berlin - New York, 363-373.

LEHMANN, D., PNUELI, A. & STAVI, J.
[1981] Impartiality, justice and fairness : the ethics of concurrent termination, In Eighth International

Colloquium on Automata Languages and Programming, S. Even & O. Kariv (Eds.), Lecture Notes
in Computer Science 115, Springer-Verlag, Berlin - New York, 264-277.

LEIVANT, D.
[1985] Partial-correctness theories as first-order theories, In Logics of Programs, R. Parikh (Ed.),

Lecture Notes in Computer Science 193, Springer-Verlag, Berlin - New York, 190-195.
LEIVANT, D. & FERNANDO, T.

[1987] Skinny and fleshy failures of relative completeness, Conference record of the fourteenth ACM
SIGACT-SIGPLAN symposium on Principles Of Programming Languages, 246-252.

LEVIN, G. M. & GRIES, D.
[1981] A proof technique for communicating sequential processes, Acta Informatica 15, 281-302.

LEVITT, K. N.
[1972] The application of program-proving techniques to the verification of synchronization

processes, In 1972 AFIPS Fall Joint Computer Conference, AFIPS Conference Proceedings 41,
AFIPS Press, Montvale, 33-47.

LIFSCHITZ, V.
[1984] On verification of programs with goto statements, Information Processing Letters 18, North-

Holland, Amsterdam, 221-225.
LIPTON, R. J.

[1977] A necessary and sufficient condition for the existence of Hoare Logics, In eighteenth annual
IEEE-ACM symposium on Foundations Of Computer Science, 1-6.

LŒCKX, J. & SIEBER, K.
[1984] The Foundations of program verification, Teubner - John Wiley & Sons, New York (1987).

LONDON, R. L.
[1970a] Proof of algorithms : a new kind of certification (certification of algorithm 245, TREESORT 3),

Communications of the Association for Computing Machinery 13 (6), 371-373.
[1970b] Proving programs correct: some techniques and examples, BIT 10, 168-182.

LONDON, R. L., GUTTAG, J. V., HORNING, J. J., LAMPSON, B. W., MITCHELL, J. G. & POPEK, G. J.
[1978] Proof rules for the programming language Euclid, Acta Informatica 10, 1-26.

LUCKHAM, D. C. & SUZUKI, N.
[1979] Verification of arrays, record and pointer operations in Pascal, ACM Transactions On

Programming Languages And Systems 1, 226-244.
MAIN, M. G. & BENSON, D. B.

[1983] Functional behavior of nondeterministic programs, In Foundations of Computation Theory, M.
Karpinski (Ed.), Lecture Notes in Computer Science 158, Springer-Verlag, Berlin - New York,
290-301.

MAJSTER-CEDERBAUM, M. E.
[1980] A simple relation between relational and predicate transformer semantics for nondeterministic

programs, Information Processing letters 11 (4, 5), North-Holland, Amsterdam, 190-192.
MAKOWSKY, J. A. & SAIN, I.

[1986] On the equivalence of weak second order and nonstandard time semantics for various program
verification systems, In Proceedings symposium on Logic In Computer Science 1986, IEEE
Computer Society Press, 293-300.

MANNA, Z.
[1969] The correctness of programs, Journal of Computer and System Sciences 3 (2), 119-127.
[1971] Mathematical theory of partial correctness, Journal of Computer and System Sciences 5 (3),

239-253.
[1974] Mathematical theory of computation, McGraw-Hill, New York.

MANNA, Z., NESS, S. & VUILLEMIN, J.
[1972] Inductive methods for proving properties of programs, SIGPLAN Notices 7 (1), 27-50.

MANNA, Z. & PNUELI, A.
[1970] Formalization of properties of functional programs, Journal of the Association for Computing

Machinery 17 (3), 555-569.
[1974] Axiomatic approach to total correctness of programs, Acta Informatica 3, 243-264.
[1984] Adequate proof principles for invariance and liveness properties of concurrent programs,

Science of Computer Programming 4, North-Holland, Amsterdam, 257-289.
[1989] Completing the temporal picture, In Sixteenth International Colloquium on Automata,

Languages and Programming, G. Ausiello, M. Dezani-Ciancaglini & S. Ronchi Della Rocca
(Eds.), Lecture Notes in Computer Science 372, Springer-Verlag, Berlin - New York, 534-558.

MANNA, Z. & WALDINGER, R.
[1978] Is ‘sometime’ sometimes better than ‘always’?, Communications of the Association for

Computing Machinery 21 (2), 159-172.
[1981] Problematic features of programming languages : a situational-calculus approach, Acta

Informatica 16, 371-426.
MASON, I. A.

[1987] Hoare's logic in the LF, LFCS report series ECS-LFCS-87-32, Laboratory for Foundations of
Computer Science, University of Edinburgh.

MARTIN, A. J.
[1983] A general proof rule for procedures in predicate transformer semantics, Acta Informatica 20,

301-313.
MAZURKIEWICZ, A.

[1977] Invariants of concurrent programs, In International Conference On Information Processing,
IFIP-INFOPOL-76, J. Madey (Ed.), North-Holland, Amsterdam, 353-372.

[1989] Basic notions of trace theory, In Linear Time, Branching Time and Partial Orders in Logics and
Models for Concurrency, J. W. de Bakker, W.-P. de Roever & G. Rozenberg (Eds.), Lecture Notes
in Computer Science 354, Springer-Verlag, Berlin - New York, 285-363.

McCARTHY, J.
[1962] Towards a mathematical science of computation, In Information Processing, Proceedings of IFIP

congress, C. M. Popplewell (Ed.), North-Holland, Amsterdam, 21-28.
[1963] A basis for a mathematical theory of computation, In Computer programming and formal

systems, P. Braffort & D. Hirschberg (Eds.), North-Holland, Amsterdam, 33-69.
MEYER, A. R.

[1986] Floyd-Hoare logic defines semantics: Preliminary version, In Proceedings symposium on Logic
In Computer Science 1986, IEEE Computer Society Press, 44-48.

MEYER, A. R. & HALPERN, J. Y.
[1980] Axiomatic definitions of programming languages, a theoretical assessment, Conference record

of the seventh ACM SIGACT-SIGPLAN symposium on Principles Of Programming Languages,
203-212 and Journal of the Association for Computing Machinery 29, (1982), 555-576.

[1981] Axiomatic definitions of programming languages, II, Conference record of the eighth ACM
SIGACT-SIGPLAN symposium on Principles Of Programming Languages, 139-148.

MEYER, A. R. & MITCHELL, J. C.
[1982] Axiomatic definability and completeness for recursive programs, Conference record of the ninth

ACM SIGACT-SIGPLAN symposium on Principles Of Programming Languages, 337-346.
[1983] Termination assertions for recursive programs : completeness and axiomatic definability,

Information and Control 56, 112-138.
MEYER, A.R. & SIEBER, K.

[1988] Towards fully abstract semantics for local variables : preliminary report, Proceedings of the
fifteenth annual ACM SIGACT-SIGPLAN symposium on Principles Of Programming Languages,
191-203.

MILNE, R.
[1978] Transforming predicate transformers, In Formal descriptions of programming concepts, E. J.

Neuhold (Ed.), North-Holland, Amsterdam, 31-65.
MILNER, R.

[1980] A calculus of communicating systems, Lecture Notes in Computer Science 92, Springer-Verlag,
Berlin - New York.

MISRA, J. & CHANDY, K. M.
[1981] Proofs of networks of processes, , IEEE Transactions on Software Engineering, SE-7 (4), 417-

426.
MORGAN, C. C.

[1988a] The specification statement, ACM Transactions On Programming Languages And Systems 10
(3), 403-419.

[1988b] Procedures, parameters, and abstraction: separate concerns, Science of Computer Programming
11, North-Holland, Amsterdam, 17-27.

[1988c] Data refinement by miracles, Information Processing Letters 26, 243-246.
MORRIS, F. L. & JONES, C. B.

[1984] An early program proof by Alan Turing, Annals of the History of Computing 6 (2), 139-143.
MORRIS, J. H.

[19??] Comments on "procedures and parameters", (undated and unpublished manuscript).
MORRIS, J. H. & WEGBREIT, B.

[1977] Subgoal induction, Communications of the Association for Computing Machinery 20 (4), 209-
222.

MORRIS, J. M.
[1982] A general axiom of assignment, In Theoretical foundations of programming methodology, M.

Broy & G. Schmidt (Eds.), D. Reidel, 25-34.
[1987a] Varieties of weakest liberal preconditions, Information Processing Letters 25, 207-210.
[1987b] A theoretical basis for stepwise refinement and the programming calculus, Science of Computer

Programming 9, North-Holland, Amsterdam, 287-306.
MURAKAMI, M.

[1988] Proving partial correctness of guarded Horn clauses programs, In Logic Programming ’87,
Proceedings of the sixth Conference, K. Furukawa, H. Tanaka & T. Fujisaki (Eds.), Lecture Notes
in Computer Science 315, Springer-Verlag, Berlin - New York, 215-235.

MURTAGH, T. P.
[1987] Redundant proofs of non-interference in Levin-Gries CSP program proofs, Acta Informatica 24,

145-156.
NAUR, P.

[1966] Proof of algorithms by general snapshots, BIT 6, 310-316.
NAUR, P. (Ed.)

[1960] Report on the algorithmic language Algol 60, Communications of the Association for
Computing Machinery 3, 5, 299-314; Revised report on the algorithmic language Algol 60,
Communications of the Association for Computing Machinery 6 (1), 1-17;

NELSON, G.
[1983] Verifying reachability invariants of linked structures, Conference record of the tenth annual

ACM SIGACT-SIGPLAN symposium on Principles Of Programming Languages, 38-47.
[1987] A generalization of Dijkstra's calculus, DIGITAL SRC Research Report 16, System Research

Center, Palo Alto.
NÉMETI, I.

[1980] Nonstandard runs of Floyd-provable programs, In Logics of programs and their applications, A.
Salwicki (Ed.), Lecture Notes in Computer Science 148, Springer-Verlag, Berlin - New York,
186-204.

NEUHOLD, E. J.
[1971] The formal description of programming languages, IBM System Journal 2, 86-112.

NEWTON, G.
[1975] Proving properties of interacting processes, Acta Informatica 4, 117-126.

O'DONNELL, M. J.
[1982] A critique of the foundations of Hoare style programming logic, Communications of the

Association for Computing Machinery 25, 12, 927-935.
OLDEROG, E.-R.

[1980] General equivalence of expressivity definitions using strongest postconditions, resp. weakest
preconditions, Institut für Informatik und praktische Mathematik, Kiel Universität, Bericht
8007.

[1981] Sound and complete Hoare-like calculi based on copy rules, Acta Informatica 16, 161-197.
[1983a] On the notion of expressiveness and the rule of adaptation, Theoretical Computer Science 24,

North-Holland, Amsterdam, 337-347.
[1983b] Hoare's logic for programs with procedures - what has been achieved?, In Logics of programs,

Ed. Clarke & D. Kozen (Eds.), Lecture Notes in Computer Science 164, Springer-Verlag, Berlin -
New York, 385-395.

[1983c] A characterization of Hoare's logic for programs with Pascal-like procedures, Proceedings of the
fifteenth annual ACM Symposium on Theory Of Computing, 320-329.

[1984] Correctness of programs with PASCAL-like procedures without global variables, Theoretical
Computer Science 30, North-Holland, Amsterdam, 49-90.

OLDEROG, E.-R. & HOARE C. A. R.
[1986] Specification-oriented semantcs for communicating processes, Acta Informatica 23, 9-66.

OPPEN, D. C. & COOK, S. A.
[1975] Proving assertions about programs that manipulate data structures, Proceedings of the seventh

annual ACM Symposium on Theory Of Computing, 107-116.
OWICKI, S. S.

[1975] Axiomatic proof techniques for parallel programs, Ph.D. Thesis, TR 75-251, Comp. Sci.,
Cornell U., U.S.A.

[1978] Verifying concurrent programs with shared data classes, In Formal Description of Programming
Concepts, E. J. Neuhold (Ed.), North-Holland, Amsterdam, 279-299.

OWICKI, S. S. & GRIES, D.
[1976a] An axiomatic proof techniques for parallel programs I, Acta Informatica 6, 319-340.
[1976b] Verifying properties of parallel programs : an axiomatic approach, Communications of the

Association for Computing Machinery 19 (5), 279-285.
PANDYA, P. & JOSEPH, M.

[1986] A structure-directed total correctness proof rule for recursive procedure calls, The Computer
Journal 29 (6), 531-537.

PARK, D. M. R.
[1969] Fixpoint induction and proofs of program properties, Machine intelligence 5, B. Meltzer & D.

Michie (Eds.), Edinburgh University Press, 59-78.

[1981] A predicate transformer for weak fair iteration, In Proceedings of the sixth IBM symposium on
Mathematical Foundations of

Computer Science, Logical Aspects of Programs, Corporate & Scientific Program, IBM Japan,
259-275.

PLAISTED, D. A.
[1986] The denotational semantics of nondeterministic recursive programs using coherent relations, In

Proceedings symposium on Logic In Computer Science 1986, IEEE Computer Society Press,
163-174.

PLOTKIN, G. D.
[1976] A powerdomain construction, SIAM Journal on Computing 5, 452-487.
[1981] A structural approach to operational semantics, Research report DAIMI FN-19, Computer

Science Department, Aarhus University, Denmark.
PNUELI, A.

[1977] The temporal logic of programs, eighteenth annual IEEE-ACM symposium on Foundations Of
Computer Science, 46-57.

[1985] In transition from global to modular temporal reasoning about programs, In Logics and Models
of Concurrent Systems, K. R. Apt (Ed.), NATO ASI Series, Vol. F13, Springer-Verlag, Berlin -
New York, 123-144.

PONSE, A.
[1989] Process expressions and Hoare's logic, Research report CS-R8905, Centrum voor Wiskunde en

Informatica, Amsterdam, 19 p.
PRATT, V. R.

[1976] Semantical considerations on Floyd-Hoare logic, seventeenth annual IEEE-ACM symposium on
Foundations Of Computer Science, 109-121.

[1979] Process logic : preliminary report, Conference record of the sixth ACM SIGACT-SIGPLAN
symposium on Principles Of Programming Languages, 93-100.

PRAWITZ, D.
[1965] Natural deduction, a proof-theoretic study, Almqvist & Wiksell, Stockholm.

PRESBURGER, M.
[1929] Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die

Addition als einzige Operation hervortritt, Comptes rendus du premier congrès des
mathématiciens slaves, Warszawa, 92-101.

PRITCHARD, P.
[1976] A proof rule for multiple coroutine systems, Information processing letters 4 (6), 141-143.
[1977] Program proving - expressions languages, In Information Processing 77, North-Holland,

Amsterdam, 727-731.
RABIN, M. O.

[1977] Decidable theories, In Handbook of mathematical logic, J. Barwise (Ed.), North-Holland,
Amsterdam (1978), 595-629.

RASIOWA, H.
[1979] Algorithmic logic and its extensions, a survey, In Fifth Scandinavian Logic Symposium,

Aalborg University Press, 163-174.
REPS, T. & ALPERN, B.

[1984] Interactive proof checking, Conference record of the eleventh ACM SIGACT-SIGPLAN
symposium on Principles Of Programming Languages, 36-45.

REYNOLDS, J. C.
[1978] Syntactic control of interference, Conference record of the fifth ACM SIGACT-SIGPLAN

symposium on Principles Of Programming Languages, 39-46.
[1981] The craft of programming, Prentice-Hall, Englewood Cliffs.
[1982] Idealized Algol and its specification logic, In Tools & notions for program construction, D.

Néel (Ed.), Cambridge University Press, 121-162.
[1989] Syntactic control of interference, Part 2, In Sixteenth International Colloquium on Automata,

Languages and Programming, G. Ausiello, M. Dezani-Ciancaglini & S. Ronchi Della Rocca
(Eds.), Lecture Notes in Computer Science 372, Springer-Verlag, Berlin - New York, 704-722.

RODRÍGUEZ-ARTALEJO, M.
[1985] Some questions about expressiveness and relative completeness in Hoare's logic, Theoretical

Computer Science 39, North-Holland, Amsterdam, 189-206.
ROGERS, H. Jr.

[1967] Theory of recursive functions and effective computability, McGraw-Hill, New York.

SAIN, I.
[1985] A simple proof for the completeness of Floyd's method, Theoretical Computer Science 35,

North-Holland, Amsterdam , 345-348.
SALWICKI, A.

[1970] Formalized algorithmic languages, Bulletin de l'Académie Polonaise des Sciences, Série des
Sciences Mathématiques, Astronomiques et Physiques 18 (5), 227-232.

SCHNEIDER, F. B. & ANDREWS, G. R.
[1986] Concepts for concurrent programming, In Current Trends in Concurrency, Overviews and

Tutorials, J. W. De Bakker, W. P. De Roever & G. Rozenberg (Eds.), Lecture Notes in Computer
Science 224, Springer-Verlag, Berlin - New York, 670-716.

SCHWARTZ, R. L.
[1979] An axiomatic treatment of ALGOL 68 routines, In Sixth International Colloquium on Automata,

Languages and Programming, H. A. Maurer (Ed.), Lecture Notes in Computer Science 71,
Springer-Verlag, Berlin - New York, 530-545.

SCHWARTZ, R. L. & BERRY, D. M.
[1979] A semantic view of ALGOL 68, Computer Languages 4, 1-15.

SCOTT, D. S. & DE BAKKER, J. W.
[1969] A theory of programs, Seminar on programming, IBM research center, Vienna (unpublished

manuscript).
SCOTT, D. S. & STRACHEY, C.

[1972] Toward a mathematical semantics for computer languages, In Computers and automata, J. Fox
(Ed.), Wiley, New York, 19-46.

SHOENFIELD, J. R.
[1977] Axioms of set theory, In Handbook of Mathematical logic, J. Barwise (Ed.), North Holland ,

Amsterdam (1978), 321-344.
SIEBER, K.

[1985] A partial correctness logic for procedures, In Logics of Programs, R. Parikh (Ed.), Lecture Notes
in Computer Science 193, Springer-Verlag, Berlin - New York, 320-342.

SITES, R. L.
[1974] Proving that computer programs terminate cleanly, Research report STAN-CS-74-418,

Computer Science Department, Stanford University, 139 p.
SKOLEM, T.

[1934] Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich
vieler Aussagen mit ausschliesslich Zahlenvariablen, Fund. math. 23, 150-161.

SMORYNSKI, C.
[1977] The incompleteness theorems, In Handbook of Mathematical Logic, J. Barwise (Ed.), North-

Holland, Amsterdam (1978), 821-865.
SOBEL, A. E. K. & SOUNDARARAJAN, N.

[1985] A proof system for distributed processes, In Logics of Programs, R. Parikh (Ed.), Lecture Notes
in Computer Science 193, Springer-Verlag, Berlin - New York, 343-358.

SOKOLOWSKI, S.
[1976] Axioms for total correctness, Acta Informatica 9, 61-71.
[1977] Total correctness for procedures, Proceedings of the sixth symposium on the Mathematical

Foundations of Computer Science, J. Gruska (Ed.), Lecture Notes in Computer Science 53,
Springer-Verlag, Berlin - New York, 475-483.

[1984] Partial correctness: the term-wise approach, Science of Computer Programming 4, North-
Holland, Amsterdam, 141-157.

[1987] Soundness of Hoare's logic: an automated proof using LCF, ACM Transactions On Programming
Languages And Systems 9 (1), 100-120.

SOUNDARARAJAN, N.
[1983] Correctness proofs of CSP programs, Theoretical Computer Science 24 , North-Holland,

Amsterdam, 131-141.
[1984a] A proof technique for parallel programs, Theoretical Computer Science 31, North-Holland,

Amsterdam, 13-29.
[1984b] Axiomatic semantics of communicating sequential processes, ACM Transactions On

Programming Languages And Systems 6 (4), 647-662.
STIRLING, C.

[1986] A compositional reformulation of Owicki-Gries's partial correctness logic for a concurrent while
language, In Thirteenth International Colloquium on Automata, Languages and Programming, L.

Kott (Ed.), Lecture Notes in Computer Science 226, Springer-Verlag, Berlin - New York, 408-
415.

[1988] A generalization of Owicki-Gries's Hoare logic for a concurrent while language, Theoretical
Computer Science 58, North-Holland, Amsterdam, 347-359.

TARSKI, A.
[1955] A lattice theoretic fixpoint theorem and its applications, Pacific Journal of Mathematics 25 (2),

285-309.
TAUBENFELD, G. & FRANCEZ, N.

[1984] Proof rules for communication abstraction, In Foundations of Software Technology and
Theoretical Computer Science, M. Joseph & R. Shyamasundar (Eds.), Lecture Notes in Computer
Science 181, Springer-Verlag, Berlin - New York, 444-465.

TAYLOR, R. N.
[1983] A general-purpose algorithm for analyzing concurrent programs, Communications of the

Association for Computing Machinery 26 (5), 362-376.
TENNENT, R. D.

[1976] The denotational semantics of programming languages, Communications of the Association for
Computing Machinery 19 (8), 437-453.

[1985] Semantical analysis of specification logic, In Logics of Programs, R. Parikh (Ed.), Lecture
Notes in Computer Science 193, Springer-Verlag, Berlin - New York, 373-386.

TIURYN, J.
[1985] A simple programming language with data types: semantics and verification, In Logics of

Programs, R. Parikh (Ed.), Lecture Notes in Computer Science 193, Springer-Verlag, Berlin -
New York, 387-405.

TRAKHTENBROT, B. A., HALPERN, J. Y. & MEYER, A. R.
[1983] From denotational to operational and axiomatic semantics for Algol-like languages: an

overview, In Logics of programs, Ed. Clarke & D. Kozen (Eds.), Lecture Notes in Computer
Science 164, Springer-Verlag, Berlin - New York, 474-500.

TURING, A. M.
[1936] On computable numbers, with an application to the Entscheidungsproblem, Proc. London Math.

Soc., Ser. 2, 42, 230-265. A correction, ibid. 43 (1937), 544-546.

[1937] Computability and λ-definability, Journal of Symbolic Logic 2, 153-163.
[1949] On checking a large routine, In Report of a conference on high-speed automatic calculating

machines, University Mathematics Laboratory, Cambridge, 67-69.
URZYCZYN, P.

[1983] A necessary and sufficient condition in order that a Herbrand interpretation be expressive
relative to recursive programs, Information and Control 56, 212-219.

VAN LAMSWEERDE, A. & SINTZOFF, M.
[1979] Formal derivation od strongly correct concurrent programs, Acta Informatica 12, 1-31.

VERJUS, J.-P.
[1987] On the proof of a distributed algorithm, Information Processing Letters 25 (3), 145-147.

WAGNER, E. G.
[1986] A categorical view of weakest liberal preconditions, Lecture Notes in Computer Science 240,

Springer-Verlag, Berlin - New York, 198-205.
WAND, M.

[1978] A new incompleteness result for Hoare's system, Journal of the Association for Computing
Machinery 25 (1), 168-175.

[1980] Induction, recursion and programming, North-Holland, Amsterdam.
WANG, A.

[1976] An axiomatic basis for proving total correctness of goto-programs, BIT 16, 88-102.
WANG, A. & DAHL, O.-J.

[1971] Coroutine sequencing in a block structured environment, BIT 11, 425-449.
WECHLER, A.

[1983] Hoare algebras versus dynamic algebras, In Algebra, Combinatorics and Logic in Computer
Science, Vol. I, II (Györ, Hungary, 1983), 835-847, Colloquia Mathematica Societatis János
Bolyai 42, North-Holland, Amsterdam, 1986.

WEGBREIT, B.
[1974] The synthesis of loop predicates, Communications of the Association for Computing

Machinery 17, 102-112.
WIRTH, N.

[1971] The programming language PASCAL, Acta informatica 1 (1), 35-63.

YEH, R. T.
[1976] Verification of nondeterministic programs, Technical report TR-56 (revised 1977), Department

of Computer sciences, University of Texas, Austin.
ZHOU CHAO CHEN & HOARE, C. A. R.

[1981] Partial correctness of communicating sequential processes, In Proceedings of the Second
International Conference on Distributed Computing Systems, IEEE Computer Society Press, 1-
12.

ZWIERS, J.
[1989] Compositionality, concurrency and partial correctness, proof theories for networks of processes

and their relationship, Lecture Notes in Computer Science 321, Springer-Verlag, Berlin - New
York, 272 p.

ZWIERS, J., DE BRUIN, A. & DE ROEVER, W. P.
[1983] A proof system for partial correctness of dynamic networks of processes, In Logics of programs,

Ed. Clarke & D. Kozen (Eds.), Lecture Notes in Computer Science 164, Springer-Verlag, Berlin -
New York, 513-527.

ZWIERS, J., DE ROEVER, W. P. & VAN EMDE BOAS, P.
[1985] Compositionality and concurrent networks: soundness and completeness of a proof system, In

twelfth International Colloquium on Automata Languages and Programming, W. Brauer (Ed.),
Lecture Notes in Computer Science 194, Springer-Verlag, Berlin - New York, 509-519.

185 P. COUSOT

