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Abstract
We construct a hierarchy of semantics by successive abstract interpretations. Start
ing from a maximal trace semantics of a transition system, we derive a big-step
semantics, termination and nontermination semantics, natural, demoniac and an
gelic relational semantics and equivalent nondeterministic denotational semantics,
D. Scott’s deterministic denotational semantics, generalized/conservative/liberal
predicate transformer semantics, generalized/total/partial correctness axiomatic
semantics and corresponding proof methods. All semantics are presented in uni
form fixpoint form and the correspondence between these semantics are established
through composable Galois connection.

1 Introduction

The main idea of abstract interpretation is that program static analyzers ef
fectively compute an approximation of the program semantics so that the
specification of program analyzers should be formally derivable from the spec
ification of the semantics [8]. The approximation process which is involved in
this derivation has been formalized using Galois connections and/or widening
narrowing operators [9]. The question of choosing which semantics one should
start from in this calculation based development of the analyzer is not obvi
ous: originally developed for small-step operational and predicate transformer
semantics [10], the Galois connection based abstract interpretation theory was
later extended to cope in the same way with denotational semantics [13]. In
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on Mathematical Foundations of Programming Semantics (MFPS XIII, CMU, Pittsburgh,
PA, USA, 24 March 1997) dedicated to Professor Dana S. Scott on the occasion of his 65th
birthday year. This work was supported in part by esprit atlantique , hcm network
abile and ltr project 8130 “lomaps ”.
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order to make the theory of abstract interpretation independent of the initial
choice of the semantics we show in this paper that the specifications of these
semantics can themselves be developed by the same Galois connection based
calculation process. It follows that the initial choice is no longer a burden,
since the initial semantics can later be refined or abstracted exactly without
calling into question the soundness (and may be the completeness) of the
previous semantic abstractions.

2 Abstraction of Fixpoint Semantics

2.1 Fixpoint Semantics

A fixpoint semantic specification is a pair 〈D, F 〉 where the semantic domain
〈D, �, ⊥, �〉 is a poset with partial order � , infimum ⊥ and partially defined
least upper bound (lub) � and the semantic transformer F ∈ D

m�−−→ D is
a total monotone map from D to D assumed to be such that the transfinite
iterates of F from ⊥, that is F 0 = ⊥, F δ+1 = F (F δ) for successor ordinals
δ + 1 and F λ = �

δ<λ
F δ for limit ordinals λ are well-defined (e.g. when 〈D, �,

⊥, �〉 is a directed-complete partial order or DCPO [1]). By monotony, these
iterates form an increasing chain, hence reach a fixpoint so that the iteration
order can be defined as the least ordinal ε such that F (F ε) = F ε. This specifies
the fixpoint semantics S as the �-least fixpoint S = lfp

�
F = F ε of F .

2.2 Fixpoint Semantics Transfer

In abstract interpretation, the concrete semantics S� is approximated by a
(usually computable) abstract semantics S� via an abstraction function α ∈
D� �−−→ D� such that α(S�) �� S� 1 . The abstraction is exact if α(S�) = S�

and approximate if α(S�) �� S�. When the abstraction must be exact we
can use the following fixpoint transfer theorem, which provide guidelines for
designing S� from S� (or dually) in fixpoint form [10, theorem 7.1.0.4(3)],
[14, lemma 4.3], [2, fact 2.3] (as usual, we call a function f Scott-continuous ,
written f : D c�−−→ E , if it is monotone and preserves the lub of any directed
subset A of D [1], it is ⊥-strict if f(⊥) = ⊥):

Theorem 2.1 (S. Kleene fixpoint transfer) Let 〈D�, F �〉 and 〈D�, F �〉 be
concrete and abstract fixpoint semantic specifications. If the ⊥-strict Scott-con-
tinuous abstraction function α ∈ D� ⊥,c�−−→ D� satisfies the commutation con
dition F � ◦ α = α ◦ F � then α(lfp

��

F �) = lfp
��

F �. Moreover the respective
iterates F �δ and F �δ , δ ∈ O of F � and F � from ⊥� and ⊥� satisfy ∀δ ∈ O:
α(F �δ) = F �δ and the iteration order of F � is less than or equal to that of F �.

Observe that in theorem 2.1 , Scott-continuity of the abstraction function
α is a too strong hypothesis since we only use the fact that α preserves the
1 More generally, we look for an abstract semantics S� such that α(S�) �� S� for the
approximation partial ordering �� corresponding to logical implication which may differ
from the computational partial orderings � used to define least fixpoints [13].
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lub of the iterates of F � starting from ⊥�. When this is not the case, but α
preserves glbs, we can use:

Theorem 2.2 (A. Tarski fixpoint transfer) Let 〈D�, F �〉 and 〈D�, F �〉
be concrete and abstract fixpoint semantic specifications such that 〈D�, ��,
⊥�, �, ��, ��〉 and 〈D�, ��, ⊥�, �, ��, ��〉 are complete lattices. If the ab
straction function α ∈ D� ��−−→ D� is a complete �-morphism satisfying the
commutation inequality F � ◦ α �� α ◦ F � and the post-fixpoint correspon
dence ∀y ∈ D� : F �(y) �� y =⇒ ∃x ∈ D� : α(x) = y ∧ F �(x) �� x then
α(lfp

��

F �) = lfp
��

F �.

2.3 Semantics Abstraction

An important particular case of abstraction function α ∈ D� �−−→ D� is when
α preserves existing lubs α(��

i∈
xi) = ��

i∈
α(xi). In this case there exists a unique

map γ ∈ D� �−−→ D� (so-called the concretization function [9]) such that the
pair 〈α, γ〉 is a Galois connection , written:

〈D�, ��〉 −→←−α
γ
〈D�, ��〉 ,

which means that 〈D�, ��〉 and 〈D�, ��〉 are posets, α ∈ D� �−−→ D� , γ ∈
D� �−−→ D� , and ∀x ∈ D� : ∀y ∈ D� : α(x) �� y ⇐⇒ x �� γ(y). If α is
surjective (resp. injective, bĳective) then we have a Galois insertion written

→−→←−α
γ

(resp. embedding 2 written −→←←−α
γ

, bĳection written →−→←←−α
γ

). The use of
Galois connections in abstract interpretation was motivated by the fact that
α(x) is the best possible approximation of x ∈ D� within D� [9,10]. We often

use the fact that Galois connections compose 3 . If 〈D�, ��〉 −→←−
α1

γ1 〈D�, ��〉

and 〈D�, ��〉 −→←−
α2

γ2 〈D�, ��〉 then 〈D�, ��〉 −→←−
α2◦α1

γ1◦γ2 〈D�, ��〉. Finally, to

reason by duality, observe that the dual of 〈D�, ��〉 −→←−α
γ

〈D�, ��〉 is 〈D�,

��〉 −→←−γ
α 〈D�, ��〉.

2.4 Fixpoint Semantics Fusion

The joint of two disjoint powerset fixpoint semantics can be expressed in
fixpoint form, trivially as follows:

Theorem 2.3 (Fixpoint fusion) Let D+ , Dω be a partition of D∞ and
〈℘(D+), F+〉 and 〈℘(Dω), F ω〉 be fixpoint semantic specifications. Partially

2 If α and γ are Scott-continuous then this is an embedding-projection pair.
3 contrary to Galois’s original definition corresponding to the semi-dual 〈D�, ��〉 −→←−

α

γ

〈D�,

��〉.
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define:

X+ = X ∩D+,

Xω = X ∩Dω,

F∞(X) = F+(X+) ∪ F ω(Xω),

X �∞ Y = X+ �+ Y + ∧Xω �ω Y ω,

⊥∞ = ⊥+ ∪⊥ω,

∞ = + ∪ ω,

�∞

i∈
Xi = �+

i∈
X+ ∪ �ω

i∈
Xi

ω,

�∞

i∈
Xi = �+

i∈
X+ ∪ �ω

i∈
Xi

ω .

If 〈℘(D+), �+〉 and 〈℘(Dω), �ω〉 are posets (respectively DCPOs, complete lat
tices) then so is 〈℘(D∞),�∞〉. If F+ and F ω are monotone (resp. Scott-continuous,
a complete �-morphism) then so is F∞. In all cases, lfp

�∞
F∞ = lfp

�+

F+ ∪ lfp
�ω

F ω.

2.5 Fixpoint Iterates Reordering

For some fixpoint semantic specifications 〈D, F 〉 the fixpoint semantics S =
lfp

�
F = lfp

�
F can be characterized using several different orderings � , � ,

etc. on the semantic domain D , in which case the iterates are the same but
just ordered differently:

Theorem 2.4 (Fixpoint iterates reordering) Let 〈〈D, �, ⊥, �〉, F 〉 be
a fixpoint semantic specification (the iterates of F , i.e. F 0 = ⊥, F δ+1 =
F (F δ) for successor ordinals δ+1 and F λ = �

δ<λ
F δ for limit ordinals λ , being

well-defined). Let E be a set and � be a binary relation on E , such that:

(i) � is a pre-order on E;
(ii) all iterates F δ , δ ∈ O of F belong to E;
(iii) ⊥ is the �-infimum of E;
(iv) the restriction F |E of F to E is �-monotone;
(v) for all x ∈ E , if λ is a limit ordinal and ∀δ < λ : F δ � x then

⊔
δ<λ

F δ � x.

Then lfp
�

⊥
F = lfp

�

⊥
F |E ∈ E.

3 Transition/Small-Step Operational Semantics

The transition/small-step operational semantics of a programming language
associates a discrete transition system to each program of the language that
is a pair 〈, τ 〉 where is a (non-empty) set of states 4 , τ ⊆ × is the binary
transition relation between a state and its possible successors. We write s τ s′

or τ (s, s′) for 〈s, s′〉 ∈ τ using the isomorphism ℘( × ) � ( × ) �−−→ B where
B = {tt,ff} is the set of booleans. τ̌ = {s ∈ | ∀s′ ∈ : ¬(s τ s′)} is the set of
final/blocking states.

4 We could also consider actions as in process algebra [25].
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4 Finite and Infinite Sequences

Computations are modeled using traces that is maximal finite and infinite
sequences of states such that two consecutive states in a sequence are in the
transition relation.

4.1 Sequences

Let A be a non-empty alphabet. A�0 = {�ε } where �ε is the empty sequence.
When n > 0 , A�n = [0, n − 1] �−−→ A is the set of finite sequences σ =
σ0 . . . σn−1 of length |σ| = n ∈ N over alphabet A. A�+ = ∪

n>0
A�n is the set of

non-empty finite sequences over A. The finite sequences are A�∗ = A�+ ∪ A�0

while the infinite ones σ = σ0 . . . σn . . . are A�ω = N �−−→ A. The length of an
infinite sequence σ ∈ A�ω is |σ| = ω. The sequences are A�∝ = A�∗ ∪ A�ω while
the non-empty ones are A �∞ = A�+ ∪A�ω.

4.2 Concatenation and Junction of Sequences

The concatenation of sequences η, ξ ∈ A�∝ is η · ξ = η when |η| = ω whereas it
is η · ξ = η0 . . . ηn−1ξ0ξ1 . . . when |η| = n. The empty sequence is neutral �ε · η
= η ·�ε = η. The concatenation extends to sets of sequences A and B ∈ ℘(A�∝)
by A · B = {η · ξ | η ∈ A ∧ ξ ∈ B}.

Non-empty sequences η, ξ ∈ A �∞ are joinable , written η ?
� ξ , if |η| = ω in

which case the join η � ξ is η or |η| = n and ηn−1 = ξ0 in which case the join
η�ξ is η0 . . . ηn−1ξ1ξ2 . . .. The junction of sets A and B ∈ ℘(A �∞) of non-empty
sequences is A � B = {η � ξ | η ∈ A ∧ ξ ∈ B ∧ η ?

� ξ}.

5 Maximal Trace Semantics

The maximal trace semantics τ �∞ of the transition system 〈, τ 〉 is the join
τ �∞ = τ �+ ∪ τ �ω of the infinite traces τ �ω = {σ ∈ �ω | ∀i ∈ N : σi τ σi+1} and the
maximal finite traces τ �+ = ∪

n>0
τ �n including all sets τ �n = {σ ∈ τ �̇n | σn−1 ∈ τ̌}

of traces of length n terminating with a final/blocking state in τ̌ = {s ∈ |
∀s′ ∈ : ¬(s τ s′)} where τ �̇n = {σ ∈ �n | ∀i < n − 1 : σi τ σi+1} is the set of
partial execution traces of length n.

5.1 Fixpoint Finite Trace Semantics

The finite trace semantics τ �+ can be presented in unique fixpoint form as
follows [12, example 17] (lfp

�

a
is the �-least fixpoint of F greater than or

equal to a , if it exists and dually, gfp
�

a
= lfp

	

a
is the �-greatest fixpoint of F

less than or equal to a , if it exists):

Theorem 5.1 (Fixpoint finite trace semantics) τ �+ = lfp
⊆

∅
F �+ = gfp

⊆

�+
F �+

where F �+ ∈ ℘(�+) ∪�−−→ ℘(�+) defined as F �+(X) = τ �1 ∪ τ �̇2 � X is a complete ∪-
and ∩-morphism on the complete lattice 〈℘(�+), ⊆, ∅, �+, ∪, ∩〉.
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5.2 Fixpoint Infinite Trace Semantics

The infinite trace semantics τ �ω can be presented in ⊆-greatest fixpoint form
as follows [12, example 20]:

Theorem 5.2 (Fixpoint infinite trace semantics) τ �ω = gfp
⊆

�ω
F �ω where

F �ω ∈ ℘(�ω) ∩�−−→ ℘(�ω) defined as F �ω(X) = τ �̇2 � X is a complete ∩-morphism
on the complete lattice 〈℘(�ω), ⊇, �ω, ∅, ∩, ∪〉. lfp

⊆

∅
F �ω = ∅.

5.3 Fixpoint Maximal Trace Semantics

By the fixpoint fusion theorem 2.3 and fixpoint theorems 5.1 and 5.2 , the
maximal trace semantics τ �∞ can now be presented in two different fixpoint
forms, as follows [12, examples 21 & 28]:

Theorem 5.3 (Fixpoint maximal trace semantics) τ �∞ = gfp
⊆

�∞
F �∞ =

lfp
� �∞

⊥�∞
F �∞ where F �∞ ∈ ℘( �∞) � �∞

�−−→ ℘( �∞) defined as F �∞(X) = τ �1 ∪ τ �̇2 � X is a
complete � �∞-morphism on the complete lattice 〈℘( �∞), � �∞, ⊥�∞,  �∞, � �∞, � �∞〉
with X � �∞ Y = X �+ ⊆ Y �+∧X�ω ⊇ Y �ω , X �+ = X∩ �∞ ,  �∞ = �+ , X�ω = X∩⊥�∞

and ⊥�∞ = �ω.

The non-determinism of the transition system 〈, τ 〉 may be unbounded.
Observe that this does not imply absence of Scott-continuity of the transformer
F �∞ of the fixpoint semantics τ �∞ = lfp

� �∞

⊥�∞
F �∞ , as already observed by [4] using

program execution trees.
One may wonder why, following [12], we have characterized the trace se

mantics as τ �∞ = lfp
� �∞

⊥�∞
F �∞ while τ �∞ = gfp

⊆

�∞
F �∞ is both more frequently used in

the literature (e.g. [3]) and apparently simpler. This is because τ �∞ = lfp
� �∞

⊥�∞
F �∞

may lift to further abstractions while τ �∞ = gfp
⊆

�∞
F �∞ does not. For an example,

let us consider potential termination.

5.4 Potential Termination Semantics

The potential termination semantics τ✂ of a transition system 〈, τ 〉 provides
the set of states starting an execution which may terminate, that is τ✂ =

α✂(τ �∞) where the Galois insertion 〈℘( �∞), � �∞〉 →−→←−
α✂

γ✂

〈℘(), ⊆〉 is defined by

α✂(X) = {σ0 | σ ∈ X∩ �+} and γ✂(Y ) = {σ ∈ �+ | σ0 ∈ Y }∪�ω. In fixpoint form,
we have (the left image of s ∈ by a transition relation τ ⊆ × is τJ·(s) =
{s′ | s′ τ s} while for S ⊆ , it is τ J(S) = ∪

s∈S
τJ·(s) = {s′ | ∃s ∈ S : s′ τ s}):

Theorem 5.4 (Fixpoint potential termination semantics) τ✂ = lfp
⊆

∅
F✂

where F✂ ∈ ℘() ∪�−−→ ℘() defined as F✂(X) = τ̌ ∪ τ J(X) is a complete
∪-morphism on the complete lattice 〈℘(), ⊆, ∅, , ∪, ∩〉.

In general τ✂ != gfp
⊆
F✂ (so that α✂ is not co-continuous). A counter-example
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is given by = {a} , τ = {〈a, a〉} so that τ̌ = ∅ and τ✂ = ∅ while gfp
⊆
F✂ =

{a}. Hence α✂ transfers lfp
� �∞

⊥�∞
F �∞ but not gfp

⊆

�∞
F �∞.

6 The Maximal Trace Semantics as a Refinement of the
Transition Semantics

The trace semantics is a refinement of the transition/small-step operational
semantics by the Galois insertion 〈℘( �∞), ⊆〉 →−→←−

ατ

γτ

〈℘( × ), ⊆〉 where the
abstraction collects possible transitions ατ(T ) = {〈s, s′〉 | ∃σ ∈ �
 : ∃σ′ ∈
�∝ : σ · ss′ · σ′ ∈ T} while the concretization builds maximal execution traces
γτ(t) = t �∞. In general T � γτ(ατ(T )) as shown by the set of fair traces
T = {anb | n ∈ N} for which ατ(T ) = {〈a, a〉, 〈a, b〉} and γτ(ατ(T )) =
{anb | n ∈ N} ∪ {aω} is unfair for b.

7 Relational Semantics

The relational semantics associates an input-output relation to a program [26],
possibly using D. Scott’s bottom ⊥ !∈ to denote non-termination [23]. It is an
abstraction of the maximal trace semantics where intermediate computation
states are ignored.

7.1 Finite/Angelic Relational Semantics

The finite/angelic relational semantics (also called big-step operational se
mantics by G. Plotkin [32], natural semantics by G. Kahn [22], relational
semantics by R. Milner & M. Tofte [26] and evaluation semantics by A. Pitts

[31]) is τ+ = α+(τ �+) where the Galois insertion 〈℘(�+), ⊆〉 →−→←−
α+

γ+

〈℘( × ),

⊆〉 is defined by α+(X) = {@+(σ) | σ ∈ X} and γ+(Y ) = {σ | @+(σ) ∈ Y }
where @+ ∈ �+ �−−→ ( × ) is @+(σ) = 〈σ0, σn−1〉 , for all σ ∈ �n , n ∈ N. Using
S. Kleene fixpoint transfer 2.1 and theorem 5.1 , we can express τ+ in fixpoint
form (τ̄ = {〈s, s〉 | s ∈ τ̌ } is the set of final/blocking state pairs):

Theorem 7.1 (Fixpoint finite/angelic relational semantics) τ+ = lfp
⊆

∅
F+

where F+ ∈ ℘( × ) ∪�−−→ ℘( × ) defined as F+(X) = τ̄ ∪ τ ◦ X is a complete
∪-morphism on the complete lattice 〈℘( × ), ⊆, ∅, × , ∪, ∩〉.

Observe that A. Tarski fixpoint transfer theorem 2.2 is not applicable since
α+ is a ∩-morphism but not co-continuous hence not a complete ∩-morphism.
A counter example is given by the ⊆-decreasing chain Xk = {anb | n ≥
k}, k > 0 such that ∩

k>0
α+(Xk) = ∩

k>0
{〈a, b〉} = {〈a, b〉} while ∩

k>0
Xk = ∅

since anb ∈ ∩
k>0

Xk for n > 0 is in contradiction with anb !∈ Xn+1 so that

α+( ∩
k>0

Xk) = α+(∅) = ∅.
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Fig. 1. Transition system with unbounded nondeterminism

7.2 Infinite Relational Semantics

The infinite relational semantics is τω = αω(τ �ω) where the Galois insertion

〈℘(�ω), ⊆〉 →−→←−
αω

γω

〈℘( × {⊥}), ⊆〉 is defined by αω(X) = {@ω(σ) | σ ∈ X} and
γω(Y ) = {σ | @ω(σ) ∈ Y } where @ω ∈ �ω �−−→ ( × {⊥}) is @ω(σ) = 〈σ0, ⊥〉.

By the Galois connection, αω is a complete ∪-morphism. It is a ∩-morphism
but not co-continuous. A counter-example is given by the ⊆-decreasing chain
Xk = {anbω | n ≥ k} , k > 0 such that ∩

k>0
αω(Xk) = ∩

k>0
{〈a, ⊥〉} = {〈a,

⊥〉} while ∩
k>0

Xk = ∅ since anbω ∈ ∩
k>0

Xk for n > 0 is in contradiction with

anbω !∈ Xn+1 whence αω( ∩
k>0

Xk) = αω(∅) = ∅. Using A. Tarski fixpoint trans
fer theorem 2.2 and theorem 5.2 , we get:

Theorem 7.2 (Fixpoint infinite relational semantics) τω = gfp
⊆

×{⊥}
F ω

where F ω ∈ ℘( × {⊥}) m�−−→ ℘( × {⊥}) defined as F ω(X) = τ ◦ X is a
⊆-monotone map on the complete lattice 〈℘( × {⊥}), ⊆, ∅, × {⊥}, ∪, ∩〉.

In general F ω is not co-continuous, as shown by the following example
where the iterates for gfp

⊆

×{⊥}
F ω do not stabilize at ω.

Example 7.3 (Unbounded nondeterminism) Let us consider the tran
sition system 〈, τ 〉 of figure 1 such that = {s} ∪ {sij | i, j ∈ N ∧ 0 ≤ j ≤ i}
(where s != sij != sk� whenever i != k or j != %) and τ = {〈s, si0〉 | i ∈ N}∪{〈sij,
si(j+1)〉 | 0 ≤ j < i} [36].

The iterates of F ω(X) = τ ◦ X are X0 = {〈s, ⊥〉}∪ {〈sij, ⊥〉 | 0 ≤ j ≤ i} ,
X1 = F ω(X0) = {〈s, ⊥〉} ∪ {〈sij, ⊥〉 | 1 ≤ j ≤ i} so that by recurrence Xn =
{〈s, ⊥〉}∪ {〈sij, ⊥〉 | n ≤ j ≤ i} whence Xω = ∩

n∈N
Xn = {〈s, ⊥〉}. Now Xω+1

= F ω(Xω) = ∅ = gfp
⊆

×{⊥}
F ω = τω. ✷

It follows that S. Kleene fixpoint transfer theorem 2.1 is not applicable to
prove theorem 7.2 since otherwise the convergence of the iterates of F ω would
be as fast as those of F �ω , hence would be stable at ω.
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7.3 Inevitable Termination Semantics

The possibly nonterminating executions could alternatively have been charac
terized using the isomorphic inevitable termination semantics providing the
set of states starting an execution which must terminate, that is τ✁ = α✁(τω)

where the Galois bĳection 〈℘(×{⊥}), ⊆〉 →−→←←−
α✁

γ✁

〈℘(), ⊇〉 is defined by α✁(X)

= {s | 〈s, ⊥〉 !∈ X} and γ✁(Y ) = {〈s, ⊥〉 | s !∈ Y }.
The right image of s ∈ by a relation τ ⊆ × ′ is τ·I(s) = {s′ | s τ s′}

(in particular if f ∈ �−−→ ′ then f·I(s) = {f(s)}) while for P ⊆ , τ I(P ) =
{s′ | ∃s ∈ P : s τ s′} (in particular, fI(P ) = {f(s) | s ∈ P}). The inverse of τ
is τ −1 = {〈s′, s〉 | s τ s′} so that τJ· = (τ −1)·I and τ J = (τ −1)I. The dual of a
map F ∈ ℘() �−−→ ℘(′) is F̃ = λP·¬F (¬P ). Finally, τ̃ −1I(P ) = {s′ | ∀s : s′ τ
s =⇒ s ∈ P}. Applying the semi-dual of S. Kleene fixpoint transfer theorem
2.1 to the fixpoint characterization 7.2 of the infinite relational semantics τω ,
we get the

Theorem 7.4 (Fixpoint inevitable termination semantics) τ✁ = lfp
⊆

∅
F✁

where F✁ ∈ ℘() ∪�−−→ ℘() defined as F✁(X) = τ̃ −1I(X) = τ̌ ∪ τ̃ −1I(X) is a
complete ∪-morphism on the complete lattice 〈℘(), ⊆, ∅, , ∪, ∩〉.

7.4 Natural Relational Semantics

We now mix together the descriptions of the finite and infinite executions
of a transition system 〈, τ 〉. The natural relational semantics τ∞ = τ+ ∪ τω

is the fusion of the finite relational semantics τ+ and the infinite relational
semantics τω. It is more traditional [5 ,30] to consider the product of the
finite relational semantics τ+ and the inevitable termination semantics τ✁.
The reason for preferring the infinite relational semantics to the inevitable
termination semantics 7.4 is that the fixpoint characterizations 7.1 of τ+ and
7.2 of τω fuse naturally by the fixpoint fusion theorem 2.3. This leads to a
simple fixpoint characterization of the natural relational semantics using the
mixed ordering �∞ first introduced in [12, proposition 25]:

Theorem 7.5 (Fixpoint natural relational semantics) τ∞ = lfp
�∞

⊥∞
F∞

where F∞ ∈ ℘( × ⊥) m�−−→ ℘( × ⊥) defined as F∞(X) = τ̄ ∪ τ ◦ X is a
�∞-monotone map on the complete lattice 〈℘( × ⊥), �∞, ⊥∞, ∞, �∞, �∞〉
with ⊥ = ∪{⊥} , X �∞ Y = X+ ⊆ Y +∧Xω ⊇ Y ω , X+ = X ∩∞ , ∞ = × .
Xω = X ∩ ⊥∞ and ⊥∞ = × {⊥}.

By defining α∞(X) = α+(X+) ∪ αω(Xω) , we have τ∞ = α∞(τ �∞). Neither
S. Kleene fixpoint transfer theorem 2.1 nor A. Tarski fixpoint transfer theo
rem 2.2 is directly applicable to derive that τ∞ = α∞(lfp

� �∞

⊥�∞
F �∞) = lfp

�∞

⊥∞
F∞.

Observe however that we proceeded by fusion of independent parts, using α+

to transfer the finitary part τ �+ by S. Kleene fixpoint transfer theorem 2.1 (but
A. Tarski’s one was not applicable) and the infinitary part τ �ω by A. Tarski
fixpoint transfer theorem 2.2 (but S. Kleene’s one was not applicable).

9
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7.5 Demoniac Relational Semantics

The demoniac relational semantics is derived from the natural relational se
mantics by approximating nontermination by chaos: τ ∂ = α∂ (τ∞) where
α∂ (X) = X ∪ {〈s, s′〉 | 〈s, ⊥〉 ∈ X ∧ s′ ∈ } and γ∂ (Y ) = Y so that

〈℘( × ⊥), ⊆〉 →−→←−
α∂

γ∂

〈D∂ , ⊆〉 where D∂ = {Y ∈ ℘( × ⊥) | ∀s ∈ : 〈s,
⊥〉 ∈ Y =⇒ (∀s ∈ : 〈s, s′〉 ∈ Y )}. By definition of τ ∂ , fixpoint characteri
zation of the natural relational semantics 7.5 and S. Kleene fixpoint transfer
theorem 2.1 , we derive:

Theorem 7.6 (Fixpoint demoniac relational semantics) τ ∂ = lfp
�∂

⊥∂
F ∂

where F ∂ ∈ D∂ m�−−→ D∂ defined as F ∂ (X) = τ̄ ∪τ ◦ X is a �∂ -monotone map
on the complete lattice 〈D∂ , �∂ , ⊥∂ , ∂ , �∂ , �∂ 〉 with X �∂ Y = ∀s ∈ : 〈s,
⊥〉 ∈ X ∨ (〈s, ⊥〉 !∈ Y ∧X ∩ ({s} × ) ⊆ Y ∩ ({s} × )) , ⊥∂ = × ⊥, ∂ = × ,
�∂

i∈
Xi = {〈s, s′〉 | (∀i ∈ : 〈s, ⊥〉 ∈ Xi ∧ s′ ∈ ⊥) ∨ (∃i ∈ : 〈s, ⊥〉 !∈ Xi ∧ 〈s,

s′〉 ∈ Xi)} and �∂

i∈
Xi = {〈s, s′〉 | (∃i ∈ : 〈s, ⊥〉 ∈ Xi ∧ s′ ∈ ⊥) ∨ (∀i ∈ : 〈s,

⊥〉 !∈ Xi ∧ 〈s, s′〉 ∈ Xi)}.
Moreover X �∂ Y = γg(X) �∞ γg(Y ) where γg(X) = {〈s, ⊥〉 | 〈s, ⊥〉 ∈

X} ∪ {〈s, s′〉 | 〈s, ⊥〉 !∈ X ∧ 〈s, s′〉 ∈ X} so that 〈℘( × ⊥), �∞〉 →−→←−
α∂

γg

〈D∂ ,

�∂ 〉.

Lemma 7.7 (Arrangement of the iterates of F ∂ ) Let F ∂ β , β ∈ O be
the iterates of F ∂ from ⊥∂ . For all η < ξ , s, s′ ∈ , if 〈s, s′〉 ∈ F ∂ ξ and 〈s,
s′〉 !∈ F ∂ η then ∀s′ ∈ ⊥ : 〈s, s′〉 ∈ F ∂ η.

Lemma 7.8 (Final states of the iterates of F ∂ ) Let F ∂ β , β ∈ O be the
iterates of F ∂ from ⊥∂ . ∀β ∈ O : ∀s, s′ ∈ : (〈s, s′〉 ∈ F ∂ β ∧〈s, ⊥〉 !∈ F ∂ β) =⇒
(s′ ∈ τ̌ ) ∧ (∀s′′ ∈ ⊥ : 〈s′, s′′〉 ∈ F ∂ δ =⇒ s′′ = s′).

In order to place the demoniac relational semantics τ ∂ in the hierarchy of
semantics, we will use the following:

Theorem 7.9 τω = α∂ ω(τ ∂ ) where α∂ ω(X) = X ∩ ( × {⊥}).

8 Denotational Semantics

In contrast to operational semantics, denotational semantics abstracts away
from the history of computations by considering input-output functions [33].
For that purpose, given any partial order � on ℘(D×E) , we use the right-image

isomorphism: 〈℘(D × E), �〉 →−→←←−
αI

γI

〈D �−−→ ℘(E), �̇〉 where αI(R) = RI =

λx·{y | 〈x, y〉 ∈ R} , γI(f) = {〈x, y〉 | y ∈ f(x)} and f �̇ g = γI(f) � γI(g).

8.1 Nondeterministic Denotational Semantics

Our initial goal was to derive the nondeterministic denotational semantics
of [2] by abstract interpretation of the trace semantics (in a succinct form,

10
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✏✏✏✏✏
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�����
✏✏✏✏✏

Egli-Milner ordering �EM

Fig. 2.

using transition systems instead of imperative iterative programs). Surpris
ingly enough, we obtain new fixpoint characterizations using different partial
orderings.

8.1.1 Natural Nondeterministic Denotational Semantics
The natural nondeterministic denotational semantics is defined as the right-image
abstraction τ � = αI(τ∞) of the natural relational semantics τ∞. By the fix
point characterization 7.5 of τ∞ and S. Kleene fixpoint transfer theorem 2.1 ,
we derive a fixpoint characterization of the fixpoint natural nondeterministic
denotational semantics (where ˙̌τ = λs·{s | ∀s′ ∈ : ¬(s τ s′)}):

Theorem 8.1 (Fixpoint natural nondeterministic denotational seman

tics) τ � = lfp
�̇�

⊥̇�
F � where Ḋ� = �−−→ ℘(⊥) , F � ∈ Ḋ� m�−−→ Ḋ� defined as F �(f)

= ˙̌τ ∪̇
⋃̇
fI ◦ τ·I is a �̇�-monotone map on the complete lattice 〈Ḋ�, �̇�

, ⊥̇�,
̇�, �̇�

, �̇�〉 which is the pointwise extension of the complete lattice 〈D�, ��, ⊥�,
�, ��, ��〉 with D� = ℘(⊥) , X �� Y = X+ ⊆ Y + ∧Xω ⊇ Y ω , X+ = X ∩� ,
� = , Xω = X ∩⊥� and ⊥� = {⊥}.

Lemma 8.2 (Totality of the iterates of F �) Let F �δ , δ ∈ O be the iterates
of F � from ⊥�. ∀δ ∈ O : ∀s ∈ : F �δ(s) != ∅.

8.1.2 Convex/Plotkin Nondeterministic Denotational Semantics
Unexpectedly, the natural semantic domain D� = ℘(⊥) with the mixed order
ing �� differs from the usual convex/Plotkin powerdomain with Egli-Milner
ordering �EM [19] (see figure 2). Apart from the presence of ∅ (which can be
easily eliminated), the difference is that �EM � �� which can be useful, e.g.
to define the semantics of the parallel or as [[f or g]] = λρ· [[f ]] ρ�� [[g]] ρ 5 .

We let (( c1 ? v1 || c2 ? v2 || . . . ¿ w )) be v1 if condition c1 holds else
v2 if condition c2 holds, etc. and w otherwise. Let us recall [2, fact 2.4]
that G. Plotkin convex powerdomain 〈DEM, �EM, ⊥EM, �EM〉 is the DCPO
{A ⊆ ⊥ | A != ∅} with Egli-Milner ordering A �EM B = ∀a ∈ A : ∃b ∈
B : a �D b ∧ ∀b ∈ B : ∃a ∈ A : a �D b based upon D. Scott flat ordering

5 Observe that �� is monotonic for �� which is not in contradiction with [6] since by lemma
8.2 failure is excluded i.e. would have to be explicitly denoted by !∈ .
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∀x ∈ ⊥ : ⊥ �D x �D x such that A �EM B ⇐⇒ ((⊥ ∈ A ? A \ {⊥} ⊆ B ¿
A = B )) , with infimum ⊥EM = {⊥} and lub of increasing chains �EM

i∈
Xi =

(∪
i∈
Xi \ {⊥}) ∪ {⊥ | ∀i ∈ : ⊥∈ Xi}. Applying the fixpoint iterates reordering

theorem 2.4 to theorem 8.1 , we get [2]:

Corollary 8.3 (G. Plotkin fixpoint nondeterministic denotational se

mantics) τ � = lfp
�̇EM

⊥̇EM
F � where F � is a �̇EM-monotone map on the pointwise

extension 〈ḊEM, �̇EM
, ⊥̇EM, �̇EM〉 of G. Plotkin convex powerdomain 〈DEM,

�EM, ⊥EM, �EM〉.

8.1.3 Demoniac Nondeterministic Denotational Semantics
The demoniac nondeterministic denotational semantics is the right-image ab
straction τ � = αI(τ ∂ ) of the demoniac relational semantics τ ∂ .

In order to place the demoniac nondeterministic denotational semantics τ �

in the hierarchy of semantics, we will use the following:

Theorem 8.4 (Denotational demoniac abstraction) τ � = α�(τ �) where
α�(f) = λs· f(s) ∪ {s′ ∈ | ⊥ ∈ f(s)} and γ�(g) = g satisfies 〈 �−−→ ℘(⊥),

⊆̇〉 →−→←−
α�

γ�

〈 �−−→ (℘() ∪ {⊥}), ⊆̇〉.

Let us recall the properties of lifting:

Lemma 8.5 (Lifting) Given a complete lattice 〈D, �, ⊥, , �, �〉 (respec
tively poset 〈D, �, �〉 , DCPO 〈D, �, ⊥, �〉), the lift of D by ⊥- !∈ D is the
complete lattice (resp. poset, DCPO) 〈D⊥- ,�,⊥- ,,

∐
,
∏
〉 with D⊥- = D∪{⊥-} ,

x � y = (x = ⊥- ) ∨ (y ∈ D ∧ x � y) , infimum ⊥- , supremum  , join∐
i∈
Xi = ((∀i ∈ : Xi = ⊥- ? ⊥- ¿ �{Xi | i ∈ ∧ Xi != ⊥-} )) and the meet is

∏
i∈
Xi = ((∃i ∈ : Xi = ⊥- ? ⊥- ¿ �{Xi | i ∈ ∧Xi != ⊥-} )).

By the fixpoint characterization 7.6 of τ ∂ and S. Kleene fixpoint transfer
theorem 2.1 , we get:

Theorem 8.6 (Fixpoint demoniac nondeterministic denotational se

mantics) τ � = lfp
�̇�

⊥̇�
F � where F �(f) = ˙̌τ ∪̇

⋃̇
fI ◦ τ·I is a �̇�

-monotone map
on the pointwise extension 〈Ḋ�, �̇�

, ⊥̇�, ̇�, �̇�
, �̇�〉 of the lift 〈D�, ��, ⊥�, �,

��, ��〉 of the complete lattice 〈℘(), ⊆, ∅, , ∪, ∩〉 by the infimum ⊥.

Lemma 8.7 (Totality of the iterates of F �) Let F �δ , δ ∈ O be the iterates
of F � from ⊥̇�. ∀δ ∈ O : ∀s ∈ : F �δ(s) != ∅.

From theorem 8.6 , lemma 8.7 and the fixpoint iterates reordering theorem
2.4 , we deduce another fixpoint characterization of F �(f) with a different
partial ordering:

Corollary 8.8 (Reordered fixpoint demoniac nondeterministic deno

tational semantics) τ � = lfp
�̇�

⊥̇�
F � where F �(f) = ˙̌τ ∪̇

⋃̇
fI ◦ τ·I is a

12
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Fig. 3.

�̇�-monotone map on the pointwise extension 〈Ḋ�, �̇�

, ⊥̇�, ̇�, �̇�, �̇�〉 of
the complete lattice 〈D�, ��, ⊥�, �, ��, ��〉 where D� = (℘() \ {∅})∪{⊥�} ,
⊥� = ⊥ and X �� Y = (X = ⊥�) ∨ (X ⊆ Y ).

8.1.4 Upper/Smyth Nondeterministic Denotational Semantics
Unforeseenly, the demoniac semantic domain D� with the demoniac ordering
�� differs from the usual upper powerdomain with M. Smyth ordering [19] �S

(see figure 3). Let us recall [2, fact 2.7] that M. Smyth upper powerdomain
〈DS, �S, ⊥S, �S, �S〉 is DS = {A ⊆ | A != ∅} ∪ {⊥} ordered by the superset
ordering A �S B = A ⊇ B which is a poset with infimum ⊥S = ⊥ , the glb of
nonempty families Xi , i ∈ always exist being given by �S

i∈
Xi = ∪

i∈
Xi and if

Xi , i ∈ has an upper bound, its lub exists and is �S

i∈
Xi = ∩

i∈
Xi. By applying

the fixpoint iterates reordering theorem 2.4 to 8.6 , we get [2]:

Corollary 8.9 (M. Smyth fixpoint nondeterministic denotational se

mantics) τ � = lfp
�̇S

⊥̇S
F � where F � is a �̇S-monotone map on the pointwise

extension 〈ḊS, �̇S
, ⊥̇S, �̇S

, �̇S〉 of M. Smyth upper powerdomain 〈DS, �S, ⊥S,
�S, �S〉.

8.1.5 Minimal Demoniac Nondeterministic Denotational Semantics
M. Smyth ordering �̇S is not minimal since, for example on figure 3 , {a} and
{a, b} need not be comparable by lemma 7.7. This leads to:

Theorem 8.10 (Flat powerdomain fixpoint nondeterministic deno

tational semantics) τ � = lfp
�̇P

⊥̇P
F � where F � is a �̇P-monotone map on the

DCPO 〈ḊP, �̇P, ⊥̇P, �̇P〉 which is the restriction of the pointwise extension of
the flat DCPO 〈DP, �P, ⊥P, �P〉. with DP = (℘() \ {∅})∪ {⊥P} and infimum
⊥P = ⊥ to ḊP = {f ∈ �−−→ DP | ∀s, s′ ∈ : (s′ ∈ f(s) ∧ f(s) != ⊥P) =⇒ (s′ ∈
τ̌ ∧ f(s′) = {s′}).

The poset 〈ḊP, �̇P〉 is minimal for the fixpoint nondeterministic denota
tional semantics, in that:

Theorem 8.11 (Minimality of 〈ḊP, �̇P〉) Let 〈E, �〉 be any poset such

13
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that ⊥̇P is the �-infimum of E , F �[[τ ]] = λf· ˙̌τ ∪̇
⋃̇
fI ◦ τ·I ∈ E

m�−−→ E is
�-monotone and ∀τ : τ � = lfp

4

⊥̇P
F �[[τ ]] then ḊP ⊆ E and �̇P ⊆ �.

Reciprocally, we have:

Theorem 8.12 (General fixpoint demoniac nondeterministic denota
tional semantics) Let 〈E, �〉 be a poset such that ḊP ⊆ E , �̇P ⊆ � , ⊥̇P
is the �-infimum of E , the �-lub of �̇P

-increasing chains f δ, δ ∈ λ in ḊP is
�̇P
δ<λ

f δ and F � = λf· ˙̌τ ∪̇
⋃̇
fI ◦ τ·I ∈ E

m�−−→ E is �-monotonic. Then τ � =

lfp
4

⊥̇P
F �.

8.1.6 Angelic/Lower/C.A.R. Hoare Nondeterministic Denotational Seman
tics

The angelic nondeterministic denotational semantics is the right-image ab
straction τ � = αI(τ+) of the finite/angelic relational semantics τ+. We also
have τ � = α(τ �) where α(f) = λs· f(s) ∩ . By theorem 7.1 and S. Kleene
fixpoint transfer theorem 2.1 , we get:

Corollary 8.13 (C.A.R. Hoare fixpoint nondeterministic denotational
semantics) τ � = lfp

⊆̇

∅̇
F � where F � = λf· ˙̌τ ∪̇

⋃̇
fI ◦ τ·I is a complete

∪̇-morphism on the complete lattice 〈 �−−→ ℘(), ⊆̇, ∅̇, λs· , ∪̇, ∩̇〉 which is
the pointwise extension of the powerset 〈℘(), ∅〉.

Observe that the angelic semantic domain 〈 �−−→ ℘(), ⊆̇〉 is exactly the
pointwise extension of the usual lower/C.A.R. Hoare powerdomain [19].

8.2 Deterministic Denotational Semantics

In the deterministic denotational semantics the nondeterministic behaviors
are ignored.

8.2.1 Deterministic Denotational Semantics of Nondeterministic Transition
Systems

For nondeterministic transition systems, the nondeterministic behaviors are
abstracted to chaos . We let α�(∅) = α�({⊥}) = ⊥, ∀s ∈ : α�({s}) =
α�({s,⊥}) = s and α�(X) =  when X ⊆ ⊥ has a cardinality such that
|X \ {⊥}| > 1. Observe that α� ignores inevitable nontermination in the
abstraction of nondeterminism. By letting ∀ζ ∈ ⊥ : γ�(ζ) = {ζ,⊥} and

γ�() = ⊥ , we get the Galois insertion 〈℘(⊥), ⊆〉 →−→←−
α�

γ�

〈�⊥ , ��〉 where ��

is given by ⊥�� ζ �� ζ ��  for ζ ∈ �
⊥ = ∪ {⊥,}.

We define α̇� = λs·α�(f(s)) pointwise so that τ� = α̇�(τ �). By theorem
8.1 and S. Kleene fixpoint transfer theorem 2.1 , we get:

Theorem 8.14 (D. Scott fixpoint deterministic denotational seman

tics (complete lattices and continuous functions)) τ� = lfp
�̇�

⊥̇
F� where

F� ∈ ( �−−→ �
⊥) �−−→ ( �−−→ �

⊥) defined as F�(f) = λs·(( ∀s′ ∈ : ¬(s τ s′) ?

14
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s ¿ ��{f(s′) | s τ s′} )) is a complete �̇�-morphism on the complete lattice
〈 �−−→ �

⊥ , �̇
�
, ⊥̇, ̇, �̇�

, �̇�〉 which is the pointwise extension of the complete
lattice 〈�⊥ , ��, ⊥, , �� , ��〉 with �� such that ∀ζ ∈ �

⊥ : ⊥�� ζ �� ζ �� .

Observe that we have got a complete lattice as in the original work of
D. Scott [34] by giving the top element  the obvious meaning of abstraction
of nondeterminism by chaos (so as to restrict to functions).

8.2.2 D. Scott Deterministic Denotational Semantics of Locally Determinis
tic Transition Systems

For locally deterministic transition systems 〈, τ 〉 (i.e. ∀s, s′, s′′ ∈ : s τ s′ ∧ s τ
s′′ =⇒ s′ = s′′) the top element  can be withdrawn from the semantic
domain:

Lemma 8.15 (Iterates of F� for deterministic transition systems)
For locally deterministic transition systems 〈, τ 〉 , ∀s ∈ : τ�(s) != .

It follows that we can define τD = τ� ∩( �−−→ ⊥). By the fixpoint iterates
reordering theorem 2.4 and theorem 8.14 , we infer:

Theorem 8.16 (D. Scott fixpoint deterministic denotational seman

tics (CPOs and continuous functions)) τD = lfp
�̇D

⊥̇
F D where F D ∈ ( �−−→

⊥) �−−→ ( �−−→ ⊥) defined as F D(f) = λs·(( s τ s′ ? f(s′) ¿ s )) is a Scott-continuous
map on the DCPO 〈 �−−→ ⊥, �̇

D
, ⊥̇, �̇D〉 which is the pointwise extension of

DCPO 〈⊥, �D, ⊥, �D〉 where the Scott-ordering �D is such that ∀ζ ∈ ⊥ : ⊥�D

ζ �D ζ.

9 Predicate Transformer Semantics

A predicate is a set of states may be augmented by ⊥ to denote nontermination.
A predicate transformer is a map of predicates to predicates. A backward
predicate transformer maps a predicate called the postcondition to a predicate
called the precondition. A forward predicate transformer maps a precondition
to a postcondition.

9.1 Correspondences Between Denotational and Predicate Transformers Se
mantics

Various correspondences between denotational and predicate transformer se
mantics can be considered using the following maps (D , E are sets):

α−1 =λf ∈ D �−−→ ℘(E)· λs′·{s | s′ ∈ f(s)}
γ−1 =λf ∈ E �−−→ ℘(D)· λs·{s′ | s ∈ f(s′)}
α� =λf ∈ D �−−→ ℘(E)· λP ∈ ℘(D)·{s′ | ∃s ∈ P : s′ ∈ f(s)}
γ� =λ ∈ ℘(D) ∪�−−→ ℘(E)·λs· ({s})
α∪ =λ ∈ ℘(D) ∪�−−→ ℘(E)·λQ ∈ ℘(E)·{s | ({s}) ∩Q != ∅}
γ∪ =λ ∈ ℘(E) ∪�−−→ ℘(D)·λP ∈ ℘(D)·{s′ | ({s′}) ∩ P != ∅}
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α∼ =λ ∈ ℘(D) ∪�−−→ ℘(E)·λP ∈ ℘(D)·¬((¬P ))
γ∼ =λ ∈ ℘(E) ∩�−−→ ℘(D)·λP ∈ ℘(D)·¬((¬P ))
α∩ =λ ∈ ℘(D) ∩�−−→ ℘(E)·λQ ∈ ℘(E)·{s | (¬{s}) ∪Q = E}
γ∩ =λ ∈ ℘(E) ∩�−−→ ℘(D)·λP ∈ ℘(D)·{s′ | (¬{s′}) ∪ P = D}

Following [11], the correspondences between denotational and predicate trans
formers semantics are given as follows:

Theorem 9.1 (Denotational to predicate transformer Galois connec
tion commutative diagram)
〈D �→ ℘(E), ⊆̇〉 →−→←←−

α�

γ�

〈℘(D) ∪�−−→ ℘(E), ⊆̇〉 →−→←←−
α∼

γ∼

〈℘(D) ∩�−−→ ℘(E), ⊇̇〉

α−1

↓↓

↑↑

γ−1 α∪

↓↓

↑↑

γ∪ α∩

↓↓

↑↑

γ∩

〈E �→ ℘(D), ⊆̇〉 →−→←←−
α�

γ�

〈℘(E) ∪�−−→ ℘(D), ⊆̇〉 →−→←←−
α∼

γ∼

〈℘(E) ∩�−−→ ℘(D), ⊇̇〉

After [21], we define (f ∈ D �−−→ ℘(E)):

gsp[[f ]] =α�[f ] ∈ ℘(D) ∪�−−→ ℘(E)
= λP ∈ ℘(D)·{s′ ∈ E | ∃s ∈ P : s′ ∈ f(s)}

gspa[[f ]] =α∼ ◦ α�[f ] ∈ ℘(D) ∩�−−→ ℘(E)
= λP ∈ ℘(D)·{s′ ∈ E | ∀s ∈ D : s′ ∈ f(s) =⇒ s ∈ P}

gwp[[f ]] =α∼ ◦ α� ◦ α−1[f ] ∈ ℘(E) ∩�−−→ ℘(D)
= λQ ∈ ℘(E)·{s ∈ D | ∀s′ ∈ E : s′ ∈ f(s) =⇒ s′ ∈ Q}

gwpa[[f ]] =α� ◦ α−1[f ] ∈ ℘(E) ∪�−−→ ℘(D)
= λQ ∈ ℘(E)·{s ∈ D | ∃s′ ∈ Q : s′ ∈ f(s)}

Combined with the natural τ � , angelic τ � and demoniac τ � denotational se
mantics, we get twelve predicate transformer semantics, some of which such
as E. Dĳkstra [15] weakest precondition 6 wp(τ �∞, Q) = gwp[[τ �]]Q and weak
est liberal precondition wlp(τ �∞, Q) = gwp[[τ �]]Q of postcondition Q ⊆ are
well-known. E. Dĳkstra postulated healthiness conditions of predicate trans
formers [15] indeed follow from gwp[[τ �]] ∈ ℘() ∩�−−→ ℘() (Conjunctivitis) and
gwp[[τ �]] ∅ = ∅ since τ � is total by theorem 8.1 and lemma 8.2 (Excluded Mir
acle).

In order to establish the equivalence of forward and backward predicate
transformers and proof methods, we observe [7 ,16] that gsp[[f ]]P ⊆ Q if and
only if ∀s′ ∈ E : (∃s ∈ P : s′ ∈ f(s)) =⇒ s′ ∈ Q hence ∀s ∈ P : (∀s′ ∈ E :
s′ ∈ f(s) =⇒ s′ ∈ Q) that is P ⊆ gwp[[f ]]Q , and reciprocally, proving for all
f ∈ D �−−→ ℘(E) that:

6 E. Dĳkstra’s notation is wp(C, Q) where C is a command and Q is a postcondition so
that we use τ �∞ which should be understood as the maximal trace semantics of the command
C.
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Lemma 9.2 (Correspondence between pre- and postcondition seman

tics) If f ∈ D �−−→ ℘(E) then 〈℘(D), ⊆〉 −→←−
gsp[[f ]]

gwp[[f ]]
〈℘(E), ⊆〉.

9.2 Generalized Weakest Precondition Semantics

The generalized weakest precondition semantics is τ gwp = gwp[[τ �]]. It com
bines the expressive power of the conservative and liberal weakest precondi
tions since for Q ⊆ , we have τ gwp[[Q]] = wp(τ �∞, Q) and τ gwp[[Q ∪ {⊥}]] =
wlp(τ �∞, Q). Applying S. Kleene transfer theorem 2.1 to the fixpoint natural
nondeterministic denotational semantics 8.1 with the correspondence 〈αgwp,
γgwp〉 where αgwp = gwp = α∼ ◦ α� ◦ α−1 and γgwp = γ−1 ◦ γ� ◦ γ∼ which,
according to theorem 9.1 , is a Galois bĳection, we derive 7 :

Theorem 9.3 (Fixpoint generalized weakest precondition semantics)
τ gwp = lfp

�gwp

⊥gwp F
gwp where F gwp ∈ Dgwp m�−−→ Dgwp defined as F gwp() = λQ·(¬τ̌∪

Q) ∩̇ gwp[[τ·I]] ◦ = λQ·(Q ∩ τ̌ ) ∪̇wp[[τ·I]] ◦ where wp[[f ]]Q = {s ∈ | ∃s′ ∈
: s′ ∈ f(s) ∧ ∀s′ ∈ f(s) : s′ ∈ Q} is a �gwp-monotone map on the complete
lattice 〈Dgwp, �gwp, ⊥gwp, gwp, �gwp, �gwp〉 with Dgwp = ℘(⊥) ∩�−−→ ℘() , �gwp

= ∀Q ⊆ : (Q ∪ {⊥}) ⊆ (Q ∪ {⊥}) ∧ () ⊆ () , ⊥gwp = λQ·((⊥∈ Q ? ¿ ∅ )) and
�gwp

i∈ i = λQ· ∩
i∈ i(Q ∪ {⊥}) ∩ ((⊥ !∈ Q ? ∪

i∈ i() ¿ )).

Lemma 9.4 (Final states of the iterates of F gwp) Let F gwpδ

, δ ∈ O be
the iterates of F gwp from ⊥gwp. ∀δ ∈ O : ∀Q ⊆ ⊥ : F gwpδ

(Q \ {⊥}) ⊆ F gwpδ

(τ̌ ).

Total correctness is the conjunction of partial correctness and termination
in that ∀Q ⊆ : τ gwp[[Q]] = τ gwp[[Q ∪ {⊥}]]∩ τ gwp[[]] since τ gwp is a complete
∩-morphism. We have τ̌ ⊆ so τ gwp[[τ̌ ]] ⊆ τ gwp[[]] by monotony and τ gwp[[]] ⊆
τ gwp[[τ̌ ]] by lemma 9.4 and theorem 9.3 so that by antisymmetry: ∀Q ⊆ :
τ gwp[[Q]] = τ gwp[[Q ∪ {⊥}]]∩ τ gwp[[τ̌ ]].

9.3 E. Dĳkstra Weakest Conservative Precondition Semantics

E. Dĳkstra’s weakest conservative precondition semantics [15] is τwp = αwp(τ gwp)
(traditionally written λQ ∈ ℘()·wp(τ �∞, Q)) where the abstraction αwp = λ· |℘()
satisfies:

Lemma 9.5 (Weakest conservative precondition abstraction) 〈Dgwp,

⊇̇〉 →−→←−
αwp

γwp

〈Dwp, ⊇̇〉 where Dwp = ℘() ∩�−−→ ℘() and γwp() = λQ·((⊥ !∈ Q ?
(Q) ¿ ∅ )).

Dĳkstra’s weakest conservative precondition semantics τwp is an abstrac
tion of the demoniac denotational semantics [2]:

Lemma 9.6 (Abstraction of the demoniac nondeterministic denota
tional semantics) τwp = αwp(gwp[[τ �]]).
7 Observe that �gwp coincides with the partial ordering � of [28] except that the explicit
use of ⊥ to denote nontermination dispenses with the handling of two formulae to express
τgwp in terms of τwp and τwlp.
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E. Dĳkstra’s fixpoint characterization [15] of the conservative precondition
semantics τwp will be derived from theorem 8.10 , by abstraction for a given
post-condition Q ⊆ :

Lemma 9.7 If Q ⊆ E then 〈℘(E) ∩�−−→ ℘(D), ⊇̇〉 →−→←−
αQ

γQ

〈℘(D), ⊇〉 where

αQ() = (Q) and γQ(P ) = λR·((Q ⊆ R ? P ¿ ∅ )).

By composition of lemmata 9.7 , 9.6 and theorem 9.1 , we get:

Corollary 9.8 (Demoniac to weakest conservative precondition ab
straction) For all Q ⊆ , 〈 �−−→ ℘(⊥), ⊆̇〉 →−→←−

γgwp ◦ γwp ◦ γQ

αQ ◦ αwp ◦ αgwp

〈℘(), ⊇〉 where

αQ ◦ αwp ◦ αgwp = λf· gwp[[f ]]Q.

By definition of τ � and S. Kleene fixpoint transfer theorem 2.1 applied
to the fixpoint characterization of the nondeterministic demoniac semantics
semantics 8.10 with the abstraction λf· gwp[[f ]]Q for a given Q ⊆ considered
in corollary 9.8 , we now obtain [16,17]:

Theorem 9.9 (E. Dĳkstra’s fixpoint weakest conservative precondi
tion semantics) τwp = λQ· lfp⊆

∅
F wp[[Q]] where F wp ∈ ℘() �−−→ ℘() m�−−→ ℘()

defined by F wp[[Q]] = λP·(Q∩ τ̌ )∪wp[[τ·I]]P = λP·(¬τ̌ ∪Q) ∩ gwp[[τ·I]]P is
a ⊆-monotone map on the complete lattice 〈℘(), ⊆, ∅, , ∪, ∩〉.

9.4 E. Dĳkstra Weakest Liberal Precondition Semantics

E. Dĳkstra’s weakest liberal precondition semantics [15] λQ ∈ ℘()·wlp(τ �∞, Q)
is τwlp = αwlp(τ gwp) where the abstraction αwlp satisfies:

Lemma 9.10 (Weakest liberal precondition abstraction) If Dwlp = ℘()
∩�−−→ ℘() , αwlp = λ·λQ· (Q ∪ {⊥}) and γwlp() = λQ·((⊥∈ Q ? (Q) ¿ ∅ )) then

〈Dgwp, ⊇̇〉 →−→←−
αwlp

γwlp

〈Dwlp, ⊇̇〉.

Dĳkstra’s weakest liberal semantics τwlp is an abstraction of the angelic
denotational semantics [2]:

Lemma 9.11 (Abstraction of the angelic nondeterministic denota
tional semantics) τwlp = gwp[[τ �]].

By lemma 9.11 , theorem 8.13 and S. Kleene fixpoint transfer theorem 2.1 ,
we deduce [16]:

Theorem 9.12 (E. Dĳkstra’s fixpoint weakest liberal precondition
semantics) τwlp = λQ· gfp

⊆
F wp[[Q]].

10 Galois Connections and Tensor Product

The set of Galois connections between posets (respectively DCPOs, complete
lattices) 〈D�,��〉 and 〈D�,��〉 is denoted〈D�,��〉 −→←− 〈D�,��〉= {〈α, γ〉 | 〈D�,

��〉 −→←−α
γ

〈D�, ��〉}. It is a poset (resp. DCPOs, complete lattices) 〈〈D�, ��
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〉 −→←− 〈D�,��〉, �̇�×�̇�〉 for the pairwise pointwise ordering 〈α, γ〉 �̇� × �̇� 〈α′,

γ ′〉 = (α �̇�
α′) ∧ (γ �̇�

γ ′) where f �̇ g = ∀x : f(x) � g(x).
The set of complete join morphisms isD� ��−−→ D� = {α ∈ D� �−−→ D� |

∀X ⊆ D� : α(�� X) = �� αI(X)}. (also written 〈D�, ��〉 ��−−→ 〈D�, ��〉
when the considered partial orderings are not understood). Dually, the set
of complete meet morphisms isD� ��−−→ D� = {γ ∈ D� �−−→ D� | ∀Y ⊆ D� :
γ(�� Y ) = �� γI(Y )}.

The tensor product ⊗ [35] 8 is:

Definition 10.1 (Tensor product) 〈D�,��〉⊗〈D�,��〉= {H ∈ ℘(D�×D�) |
(i) ∧ (ii) ∧ (iii)} where the conditions are:

(i) (X �� X ′ ∧ 〈X ′, Y ′〉 ∈ H ∧ Y ′ �� Y ) =⇒ (〈X, Y 〉 ∈ H);
(ii) (∀i ∈ : 〈Xi, Y 〉 ∈ H) =⇒ (〈��

i∈
Xi, Y 〉 ∈ H);

(iii) (∀i ∈ : 〈X, Yi〉 ∈ H) =⇒ (〈X, ��

i∈
Yi〉 ∈ H).

Let us define the correspondences:

1(〈α, γ〉) = α HA(α) = {〈x, y〉 ∈ D� ×D� | α(x) �� y}

2(〈α, γ〉) = γ HC(γ) = {〈x, y〉 ∈ D� ×D� | x �� γ(y)}

AG(γ) = λx·��{y | x �� γ(y)} AH(H) = λx·��{y | 〈x, y〉 ∈ H}

CG(α) = λy·��{x | α(x) �� y} CH(H) = λy·��{x | 〈x, y〉 ∈ H}

Theorem 10.2 (Galois connections/tensor product commutative di
agram)

〈〈D�, ��〉 −→←− 〈D�, ��〉, �̇� × �̇�〉 →−→←←−
1

λα·〈α, CG(α)〉
〈〈D�, ��〉 ��−−→ 〈D�, ��〉, �̇�〉

2

↓↓

↑↑

λγ·〈AG(γ ), γ〉 HA

↓↓

↑↑

AH

�
�

�
�

�
�

�
�

�
��

↙↙ ↘↘

↖↖ ↗↗

�
�

�
�

�
�

�
�

�
��

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅❅

CG AG

AH×CHHC◦2
= HA◦1

〈〈D�, ��〉 ��−−→ 〈D�, ��〉, �̇�〉 →−→←←−
HC

CH 〈〈D�, ��〉 ⊗ 〈D�, ��〉, ⊇〉

11 Axiomatic Semantics

Using theorems 9.2 and 10.2 , we can define the generalized axiomatic seman
tics τ gH of a transition system 〈, τ 〉 as the element HC(τ gwp) of the tensor
product ℘()⊗℘(⊥) corresponding to the weakest precondition semantics τ gwp ,

8 This is the semi-dual version, so that Z. Shmuely original definition corresponds to 〈D�,
��〉 ⊗ 〈D�, ��〉.
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or equivalently as HA(τ gsp) corresponding to the strongest postcondition se
mantics τ gsp. Writing 〈P 〉τ 〈Q〉 for 〈P, Q〉 ∈ τ gH , we have 〈P 〉τ 〈Q〉 if and only
if P �gwp τ gwp(Q) if and only if τ gsp(P ) �gwp Q. Condition (i) of definition 10.1
is the consequence rule of C.A.R. Hoare logic [20]. Conditions (ii) and (iii) are
also valid for the classical presentation of C.A.R. Hoare logic [20] but have to
be derived from the deduction rules by structural induction on the syntactic
structure of programs.

11.1 R. Floyd/C.A.R. Hoare/P. Naur Partial Correctness Semantics

R. Floyd [18], C.A.R. Hoare [20] & P. Naur [27] partial correctness semantics
is τ pH = HC(τwlp). We get R. Floyd & P. Naur’s partial correctness verifi
cation conditions [18 ,27] using E. Dĳkstra’s fixpoint characterization 9.12 of
the weakest liberal precondition semantics τwlp and D. Park fixpoint induction
[29]:

Lemma 11.1 (D. Park fixpoint induction) If 〈D, �, ⊥, , �, �〉 is a
complete lattice, F ∈ D

m�−−→ D is �-monotone and L ∈ D then lfp
�

⊥
F � P

⇐⇒ (∃I : F (I) � I ∧ I � P ).

Theorem 11.2 (R. Floyd & P. Naur partial correctness semantics)
τ pH = {〈P, Q〉 ∈ ℘()⊗℘() | ∃I ∈ ℘() : P ⊆ I ∧ I ⊆ gwp[[τ·I]] I ∧ (I∩τ̌ ) ⊆ Q}.

The condition I ⊆ gwp[[τ·I]] I is given by C.A.R. Hoare [20] while R. Floyd
& P. Naur partial correctness verification condition [18 ,27] corresponds more
precisely to gsp[[τ·I]] I ⊆ I which, by lemma 9.2 , is equivalent.

Writing C.A.R. Hoare triples {P}τ �∞{Q} for 〈P, Q〉 ∈ τ pH , {P}τ{Q} for
P ⊆ gwp[[τ·I]]Q and using a rule-based presentation of τ pH , we get a set
theoretic model of C.A.R. Hoare logic:

Corollary 11.3 (C.A.R. Hoare partial correctness axiomatic seman
tics) {P}τ �∞{Q} if and only if it derives from the axiom:

{gwp[[τ·I]]Q}τ {Q} (τ )

and the following inference rules:
P ⊆ P ′, {P ′}τ �∞{Q′}, Q′ ⊆ Q

{P}τ �∞{Q}
(⇒)

{Pi}τ �∞{Q}, i ∈
{∪

i∈
Pi}τ �∞{Q}

(∨)

{P}τ �∞{Qi}, i ∈
{P}τ �∞{∩

i∈
Qi}

(∧)
{I}τ{I}

{I}τ �∞{I ∩ τ̌}
(τ �∞)

11.2 R. Floyd Total Correctness Semantics

R. Floyd [18] total correctness semantics is τ tH = HC(τwp). We get R. Floyd’s
verification conditions using E. Dĳkstra’s fixpoint characterization 9.9 of τwp

and the following induction principle:

Lemma 11.4 (Lower fixpoint induction) If 〈D, �, ⊥, �〉 is a DCPO ,
F ∈ D

m�−−→ D is �-monotone, ⊥- ∈ D satisfies ⊥- � F (⊥- ) and P ∈ D then
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P � lfp
�

⊥- F ⇐⇒ (∃ε ∈ O : ∃I ∈ (ε + 1) �−−→ D : I0 � ⊥- ∧ ∀δ : 0 < δ ≤ ε =⇒
Iδ � F ( �

ζ<δ
Iζ) ∧ P � Iε).

Theorem 11.5 (R. Floyd total correctness semantics) τ tH = {〈P, Q〉 ∈
℘() ⊗ ℘() | ∃ε ∈ O : ∃I ∈ (ε + 1) �−−→ ℘() : ∀δ ≤ ε : Iδ ⊆ (¬τ̌ ∪ Q) ∩
gwp[[τ·I]]( ∪

β<δ
Iβ) ∧ P ⊆ Iε}.

The verification condition is better recognized as R. Floyd’s verification
condition in the equivalent form:

∀s ∈ Iδ : ∀s′ : ¬(s τ s′) ∧ s ∈ Q
∨
∃s′ : s τ s′ ∧ ∀s′ : s τ s′ =⇒ (∃β < δ : s′ ∈ Iβ)

where the ordinal δ encodes the value of R. Floyd’s variant function [17].
Writing Z. Manna/A. Pnueli triples [P ]τ �∞[Q] for 〈P, Q〉 ∈ τ tH , [P ]τ [Q]

for P ⊆ gwp[[τ·I]]Q and using a rule-based presentation of τ tH , we get a set
theoretic model of Z. Manna/A. Pnueli logic [24]:

Corollary 11.6 (Z. Manna/A. Pnueli total correctness axiomatic se
mantics) [P ]τ �∞[Q] if and only if it derives from the axiom (τ ) , the inference
rules (⇒) , (∧) , (∨) and the following:

I0 ⊆ Q ∩ τ̌ ,
ε
∧

δ=1
Iδ ⊆ ¬τ̌ ∪Q,

ε
∧

δ=1
[Iδ]τ [ ∪

β<δ
Iβ]

[Iε]τ �∞[Q]
(τ �∞)

12 Lattice of Semantics

A preorder can be defined on semantics τ � ∈ D� and τ � ∈ D� when τ � = α�(τ �)

and 〈D�, ≤〉 −→←−
α�

γ�

〈D�, �〉. The quotient poset is isomorphic to M. Ward

lattice [37] of upper closure operators γ� ◦ α� on 〈D �∞, ⊆〉 , so that we get a
lattice of semantics which is part of the lattice of abstract interpretations of
[9, sec. 8], a sublattice of which is illustrated in figure 4.

13 Conclusion

We have shown that the classical semantics of programs, modeled as transition
systems, can be derived from one another by Galois connection based abstract
interpretations. All classical semantics of programming languages have been
presented in a uniform framework which makes them easily comparable and
better explains the striking similarities and correspondences between semantic
models. Moreover the construction leads to new reorderings of the fixpoint se
mantics. Our presentation uses abstraction which proceeds by omitting some
aspects of program execution but the inverse operation of semantic refinement
(traditionally called concretization) is equally important 9 . This suggests con
9 For example, the maximal trace semantics τ �∞ can be refined into transfinite traces so
that e.g. while true do skip; X:=1 would have semantics {sωs′s′[X ← 1] | s, s′ ∈ } thus
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Fig. 4. The lattice of semantics

sidering hierarchies of semantics which can describe program properties, that
is program executions, at various levels of abstraction or refinement in a uni
form framework. Then for program analysis of a given class of properties there
should be a natural choice of semantics in the hierarchy [8].
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