
Fixpoint-Guided Abstraction Refinements

Patrick Cousot1, Pierre Ganty2, and Jean-François Raskin2

1 Département d’informatique, École normale supérieure
45 rue d’Ulm, 75230 Paris cedex 05, France

Patrick.Cousot@ens.fr
2 Département d’informatique, Université Libre de Bruxelles

Campus de la Plaine, CP212, 1050 Bruxelles, Belgium
{pganty,jraskin}@ulb.ac.be

Abstract. In this paper, we present an abstract fixpoint checking algorithm with
automatic refinement by backward completion in Moore closed abstract domains.
We study the properties of our algorithm and prove it to be more precise than the
counterexample guided abstract refinement algorithm (CEGAR). Contrary to sev-
eral works in the literature, our algorithm does not require the abstract domains
to be partitions of the state space. We also show that our automatic refinement
technique is compatible with so-called acceleration techniques. Furthermore, the
use of Boolean closed domains does not improve the precision of our algorithm.
The algorithm is illustrated by proving properties of programs with nested loops.

1 Introduction

Techniques for the automatic verification of program’s invariants is an active research
subject since the early days of computer science. Invariant verification for a program
P can be reduced to a fixpoint checking problem: given a monotone function post over
sets of program states, a set of initial states I , and a set S of states, S is an invariant of
P if and only if the reachable states

⋃
i>0 post i(I) from I that is the least fixpoint of

λX. I ∪ post(X) is a subset of S. We call this fixpoint the forward semantics of P .
For fundamental reasons (undecidability of the invariant checking problem for Tur-

ing complete models of computation), or for practical reasons (limitations of the com-
puting power of computers), the forward semantics is usually not evaluated in the do-
main of the function λX. I ∪ post(X), the so-called concrete domain, but in a simpler
domain of values, a so-called abstract domain. Abstract interpretation has been pro-
posed in [1] as a general theory to abstract fixpoint checking problems. The design of
effective abstract interpretation algorithms relies on the definition of useful abstract do-
mains and semantics. The design of good abstractions for a programming language is
a difficult and time consuming tasks. Recently, research efforts [] have been devoted
to find automatic techniques that are able to discover and refine abstract domains for a
given program. This work proposes new results in this line.

In this paper, we propose a new abstract algorithm for fixpoint checking with built-
in abstract domain refinements. The automatic refinement of abstract domains is used
to improve the precision of the algorithm when it is inconclusive. Our algorithm has
several properties that departs it from the existing algorithms proposed in the literature.

2 P. Cousot, P. Ganty, J.-F. Raskin

First, it computes not only overapproximations of least fixpoints but also overapprox-
imations of greatest fixpoints. The two analyses improve each other: the current fix-
point is limited to the values that are computed by the previous fixpoint. Second, it is
not bound to consider refinements related to spurious abstract counterexamples. The
refinement principle that we propose is guided by the abstract fixpoint computations.
Our refinement method is more robust and systematic. Third, our refinement princi-
ple is compatible with acceleration techniques: acceleration techniques can be used to
discover new interesting abstract values which can be used by subsequent abstract com-
putations. This is an important characteristic as this allows us to compute new abstract
values that are useful to capture the behavior of loops. This hinders the application of the
CEGAR approach. Fourth, in the abstract interpretation framework the subset of con-
crete values given by the abstract domain is a Moore family. Intuitively it means that the
set is closed for the meet operation of the concrete lattice. This property is weaker than
the property enforced by the use of partitions of the state space as in so-called predicate
abstractions. In the paper we show that requiring the use of partitions instead of Moore
families does not add power to our algorithm. If it terminates using partitions then it ter-
minates using Moore families. Fifth we show that whenever an invariant can be proved
using the CEGAR approach then our algorithm is able to prove the invariant as well.
And last we show that the abstract algorithm is guaranteed to terminate under various
conditions like for instance the descending chain condition on the concrete domain or
if the refinement adds a value for which the concrete greatest fixpoint is computable.

Related works. In the following pages we relate our approach with the CEGAR ap-
proach (see [2]) where the refinement is done by a backward traversal of the abstract
counterexample. Recently new refinement techniques based on the proof of unsatisfi-
ability of the counterexample emerged (see [3] and the references given there). Seen
differently, the refinement picks non deterministically the new values to add to the ab-
stract domain among a set of values defined declaratively. In our case the value is unique
and defined operationally. For this reason we think that an empirical comparison would
make more sense.

The abstract fixpoint checking algorithm we propose is an extension of the classical
combination of forward and backward static analysis in abstract interpretation ([4] as
generalized by [5]) to include abstract domain completion that is the extension of the
abstract domain to avoid loss of precision in abstract fixpoints. This abstract domain
completion is a backward completion in the classical sense of abstract interpretation [6]
but, for efficiency, restricted to reachable states stuck in the invariant to be checked. In
[7] the authors define a restricted abstract domain completion. However since we reused
all the information computed so far our completion is much more finer than theirs. In [8]
the authors consider a set of proof rules to establish invariant properties of the system
and they propose abstractions to show the premises of some rule hold. Moreover they
give a method to exclude spurious counterexamples based on acceleration techniques.

Structure of the paper. The paper is organized as follows. Sect. 2 introduces some
preliminary results that are useful for the rest of the paper. In Sect. 3, we present our
algorithm and prove its main properties related to correctness and termination, we also

Fixpoint-Guided Abstraction Refinements 3

show that our approach can be easily combined with acceleration techniques. Sect. 4
compares our algorithm to the CEGAR approach and predicate abstraction. Finally let
us mention that omitted proofs are in the appendix together with an illustration of the
behavior of the algorithm on two representative examples (viz. heapsort and bubble-
sort).

2 Preliminaries

Notations and notions of lattice theory. We use Church’s lambda notation (so that F
is λX.F (X)) and use the composition operator ◦ on functions given by (f ◦ g)(x) =
f(g(x)). Let X be any set and let f ∈ X 7→ X be a function on this set. We extend the
function f to subsets in X in a natural way: given S ⊆ X , f(S) = {f(s) | s ∈ S}.
The reflexive transitive closure f∗ of a function f such that its domain and co-domain
coincide is given by

⋃
i≥0 f

i where f0 is the identity and f i+1 = f i ◦ f . The reflexive
transitive closure R∗ of a relation R is defined in the same way. A function f on a
complete lattice is said to be additive (resp. coadditive) if f distributes the join (resp.
the meet) operator. Given two functions f, g on a poset (L,⊆), we define the pointwise
comparison ⊆̇ between functions as follows: λx. f(x) ⊆̇ λx. g(x) iff ∀y ∈ (L,⊆
) : f(y) ⊆ g(y). Given a set S, ℘(S) denote the set of all subsets of S. Sometimes we
write s instead of the singleton {s}.

We denote by lfp(f) and gfp(f), respectively, the least and greatest fixpoint, when
they exist, of a function f on a poset. The well-known Knaster-Tarski’s theorem states
that any monotone function f ∈ L 7→ L on a complete lattice 〈L,6,∧,∨,>,⊥〉 admits
a least fixpoint and the following characterization holds: lfp(f) =

∧{x ∈ L | f(x) 6
x}. Dually, f also admits a greatest fixpoint and the following characterization holds:
gfp(f) =

∨{x ∈ L | x 6 f(x)}.

Transition systems and predicate transformers. A transition system is a 3-uple T =
(C, I, T) where C is the set of states, I ⊆ C is the subset of initial states, and T ⊆
C × C is the transition relation. Often, we write s → s′ if (s, s′) ∈ T , s →∗ s′ if
(s, s′) ∈ T ∗ and s→k s′ if (s, s′) ∈ T k for k ∈ IN.

To manipulate sets of states, we use predicate transformers. The forward image op-
erator is a function that given a relation T ′ ⊆ C×C and a set of states C ′ ⊆ C, returns
the set post [T ′](C ′) = {c′ ∈ C | ∃c ∈ C ′ : (c, c′) ∈ T ′}. When the forward image
is used with the transition relation T , it is called the post operator and it returns, given
a set of states C ′ all its one step successors in the transition system, we simply write it
post(C ′). The backward image operator is a function given a relation T ′ ⊆ C ×C and
set of statesC ′ ⊆ C, returns the set p̃re[T ′](C ′) = ¬pre[T ′](¬C ′) = ¬post [T ′−1](¬C ′)
= {c ∈ C | ∀c′ : (c, c′) ∈ T ′ ⇒ c′ ∈ C ′}. When the backward image operator is used
with the transition relation T , it is called the unavoidable operator and it returns, given
a set of states C ′ all the states which have all their successors in the set C ′, we simply
write it p̃re(C ′).

Given a set I of states the set of reachable states is given by the following least fix-
point lfp⊆λX. I∪post [T](X). As shown in [9], this fixpoint coincides with post [T ∗](I)
also written post∗(I) when the transition relation is clear from the context. So a state

4 P. Cousot, P. Ganty, J.-F. Raskin

s is said to be reachable if s ∈ post∗(I). Dually, given a set S of states, the set of
states that are stuck in S (or also that cannot escape from S) is given by the following
greatest fixpoint gfp⊆λX. S ∩ p̃re[T](X). As shown in [9], this fixpoint coincides with
p̃re[T ∗](S) also written p̃re∗(S) when the transition relation is clear from the context.

Given two sets I, Z of states we call lfp⊆λX. (I∪post(X))∩Z the set of reachable
states within Z. Finally given a set S of states, the set of states that cannot escape from
S in less than 1 steps is given by S ∩ p̃re(S).

Abstract interpretation. We use abstract interpretation to abstract the semantics of
transition systems. We assume standard abstract interpretation where, concrete and ab-
stract domains,L given by℘(C) andA, are Boolean complete lattice 〈L,⊆,∩,∪, C, ∅,¬〉
and complete lattice 〈A,v,u,t,>A,⊥A〉, respectively. The two lattices are related by
abstraction and concretization maps α and γ forming a Galois connection ∀c ∈ L :
∀a ∈ A : α(c) v a⇔ c ⊆ γ(a) [4]. We write this fact as follows: 〈L,⊆〉 −−→←−−α

γ 〈A,v〉,
or simply −−→←−−α

γ
when the concrete and abstract domains are clear from the context. In

this paper, we use a family of finite abstract domains that are subset of A.

Definition 1 (Family of abstract domains). Let {Ai}i∈I be a family of finite sets such
that: (i) A =

⋃
i∈I Ai, (ii) 〈Ai,v〉 is a complete lattice, and (iii) ∃αi : 〈L,⊆〉 −−−→←−−−αi

γ

〈Ai,v〉.
Given an abstract domain Ai, we write γ(Ai) for the subset of concrete sets X ∈ L
that can be represented by abstract values in Ai.

The set γ(Ai) ⊆ L of concrete values that the abstract domain represents must be
closed by intersection if there is a Galois connection between Ai and L. Our abstract
domains are thus Moore closed. This notion, and the stronger notion of Boolean closure
are defined as follows.

Definition 2 (Moore and Boolean closure). A finite subset X ⊆ L is said to be:

– Moore closed iff ∀x1, x2 ∈ X : x1 ∧ x2 ∈ X and X contains the topmost element
of L. We define the function λX.M(X) which returns the Moore closure of its
argument, i.e. the smallest set M ⊆ L such that X ⊆M and M is Moore closed3.

– Boolean closed iff ∀x1, x2 ∈ X: (i) x1 ∧ x2 ∈ X , (ii) x1 ∨ x2 ∈ X , and (iii)
C \ x ∈ X . We define the function λX.B(X) which returns the Boolean closure of
its argument, i.e. the smallest set B such that X ⊆ B and B is Boolean closed.

Let P = {p1, p2, . . . , pn} be a set of predicates and let JpiK ⊆ C be the subset of
states that satisfy the predicate pi. The set of predicates P implicitly defines a Boolean
closed abstract domain, notedAP , such that γ(AP) ⊆ Lwhich is the smallest set which
is Boolean closed and contains the sets {JpK | p ∈ P}, i.e. AP = B({JpK | p ∈ P}).
The elements of AP are equivalent to propositional formulas build from the predicates
in P . Elements of AP can also be viewed as union of equivalence classes of states:
two states c1, c2 ∈ C are equivalent whenever they satisfy exactly the same subset of
predicates in P .

3 A Moore closed set is also called a Moore family.

Fixpoint-Guided Abstraction Refinements 5

The following Lemma contains well-known results of abstract interpretation that
we recall here so that the paper is self contained. We refer the interested reader to [10]
and the references given there for more details.

Lemma 1. Let I, S, Z ∈ L be sets of states. Given an abstract domainAi, we defineR,
resp. S, be the abstract forward, resp. backward, semantics on Ai as lfpvλX.αi((I ∪
post(γ(X))) ∩ Z), resp. gfpvλX.αi(S ∩ p̃re(γ(X))).

lfp⊆λX. (I ∪ post(X)) ∩ Z ⊆ γ(R)

gfp⊆λX. S ∩ p̃re(X) ⊆ γ(S)

}
We call this inclusion the overapprox-
imation of the abstract semantics.

The Fixed point Checking Problem. Given a transition system T = (C, I, T) and
S ⊆ C a set of states. The fixpoint checking problem asks if lfp⊆λX. I∪post(X) ⊆ S

3 Abstract Fixed-point Checking Algorithm

3.1 The algorithm

Alg. 1 has been inspired and is a generalization of what we have done previously in
[11–13]. We review here its main characteristics.

Algorithm 1: The algorithm
Data: An instance of the fixpoint checking problem such that I ⊆ S and an

abstract domain A0 such that S ∈ γ(A0)
Z0 = S1

for i = 0, 1, 2, 3, . . . do2

ComputeRi given by lfpvλX.αi
(
(I ∪ post(γ(X))) ∩ Zi

)
3

if αi(I ∪ post(γ(Ri))) v αi(Zi) then4

return OK5

else6

Compute Si given by gfpvλX.αi
(
γ(Ri) ∩ p̃re(γ(X))

)
7

if αi(I) v Si then8

Let Zi+1 = γ(Si) ∩ p̃re(γ(Si))9

Let Ai+1 be s.t. γ(Ai+1) =M({Zi+1} ∪ γ(Ai)
)

10

else11

return KO12

end13

end14

end15

6 P. Cousot, P. Ganty, J.-F. Raskin

It computes overapproximations of least and greatest fixpoints. Line 3 computes an
abstract least fixpoint. As we will see in Prop. 1, when executed on a positive instance of
the fixpoint checking problem, every set γ(Ri) overapproximates the reachable states
of the transition system. Line 7 computes an abstract greatest fixpoint. As we will see in
Lem. 2, and Lem. 3, γ(Si) underapproximates the set of states that cannot escape from
S in less than i+ 1 steps. As we can see from line 3 and line 7, the two fixpoints share
all the information that has been computed so far. In fact the abstract least fixpoint of
line 3 overapproximates the reachable states within Zi which gathers all the information
computed so far. Similarly, the abstract greatest fixpoint of line 7 starts with the least
fixpoint computed previously. Parts of the state space that have already been proved
unreachable within S or stuck in S are not explored during the next iterations.

The refinement that we propose is applied on the entire abstract fixpoint and is not
bound to individual counterexamples. The value Zi contains states that cannot escape
from γ(Si) in one step, all concrete states that are stuck within S have this property.
So, this set is interesting as it adds information about concrete states in the abstract
domain, this information will be used by subsequent abstract fixpoint computation. We
will see later in the paper that line 9 can be modified in a way to incorporate informa-
tion computed by acceleration techniques. The results that we first prove with line 9 are
still valid when accelerations are used. The possibility of combining our algorithm with
acceleration techniques is very interesting as accelerations may allow to discover inter-
esting abstract values related to loops in programs. Loops usually hinder the application
of the CEGAR approach.

In line 10 we see that the new value Zi+1 computed at line 9 is added to the set
of values the current abstract domain Ai can represent (this set is γ(Ai)). The new
abstract domain is given by Ai+1. It is worth pointing that we actually add more than
the single value Zi+1 to the abstract domain since working in the framework of abstract
interpretation requires that γ(Ai+1) is a Moore family. We will see later that Moore
closure is sufficiently powerful in the following precise sense: considering the Boolean
closure instead does not improve the precision of our algorithm. This interesting result
is established in Th. 2. This contrasts with several approaches in the literature that use
predicate abstraction which induce more complex Boolean closed domains. The most
precise abstract post operation is usually more difficult to compute on Boolean closed
domains.

Our algorithm also enjoys nice termination properties. Prop. 6 shows that our algo-
rithm terminates whenever the concrete domain enjoys the descending chain condition.
This result allows us to conclude that our algorithm will always terminate for the im-
portant class of Well-structured transition systems [14, 15], see [12, 13] for the details.
Th. 1 of Sect. 4 also shows that whenever CEGAR terminates, then our algorithm termi-
nates. We also establish in Prop. 5 that whenever our algorithm is submitted a negative
instance, it always terminates.

Finally it is worth pointing out that all the operations in the algorithm, with the
exception of the refinement operation of line 9, are abstract operations, and the only
concrete operation is used outside of any of the fixpoint computations.

Before giving a formal characterization of Alg. 1, let us give more insights by run-
ning the algorithm on a toy example.

Fixpoint-Guided Abstraction Refinements 7

Example 1. The toy example is a finite state system given at Fig. 1. The set of states
given by the initial abstract domain are given by the boxes. We submit to our algo-
rithm the following positive instance of the fixpoint checking problem where A0 =
{B1, B2, B3,>}, I = {`0}, and S = γ(B3). So note that Z0 = γ(B3) = S. In the right
side of Fig. 1 the algorithm is executed step by step. Since the fixpoints converge in
very few steps we invite the interested reader to verify them by hand.

B1

B2

�

�

�1 �3

B3

�4�2

�0

R0 = B3 line 3
α0(I ∪ post(γ(B3))) 6v Z0 (so not “OK”) line 4

S0 = B3 line 7
α0(I) v S0 (cannot say “KO”) line 8

Z1 = γ(B3) ∩ p̃re(γ(B3)) line 9
= {`0, `1, `2}

The new domain is A1 = A0 ∪ {B4, B5} line 10
with γ(B4) = Z1 and γ(B5) = Z1 ∩ γ(B2)
= {`0, `1}

R1 = B4 line 3
α1(I ∪ post(γ(B4))) v Z1 line 4
Alg. 1 terminates saying “OK”

Fig. 1. A finite state system and the result of evaluating Alg. 1 on it.

3.2 Correctness of the algorithm

In what follows we assume that Alg. 1 reaches enough iteration to compute the sets
appearing in the statements. For instance, if γ(Ri) appears in the statement then the
algorithm has not yet concluded at iteration i − 1 or if Zi+1 appears in the statement
then the algorithm has not yet concluded at iteration i.

We start with a technical lemma that states that our algorithm computes sets of states
that are decreasing.

Lemma 2. In Alg. 1 we have

Zi+1 ⊆ γ(Si) ⊆ γ(Ri) ⊆ Zi ⊆ · · · ⊆ Z1 ⊆ γ(S0) ⊆ γ(R0) ⊆ Z0 ⊆ S .

The next proposition characterizes the sets of states that are computed by the Algorithm
in the presence of positive instances.

Proposition 1. In Alg. 1, ∀i ∈ IN if post∗(I) ⊆ S then post∗(I) ⊆ γ(Ri).

8 P. Cousot, P. Ganty, J.-F. Raskin

Proof. Our proof is by induction on i.
Base case. Lem. 1 tells us that γ(R0) overapproximates the following least fixpoint
lfp⊆λX. (I∪post(X))∩S. Provided the system respects the invariant S (i.e. post∗(I) ⊆
S), this fixpoint is equal to lfp⊆λX. (I ∪ post(X)). So, post∗(I) ⊆ γ(R0).
Inductive case. By induction hypothesis, the property is true for i − 1. Suppose that
there exists s ∈ post∗(I) and s 6∈ γ(Ri). We recall Lem. 2 which shows that γ(Ri−1) ⊇
γ(Si−1) ⊇ Zi ⊇ γ(Ri). We now consider several cases.

1. s /∈ γ(Ri−1). Then by induction hypothesis, post∗(I) 6⊆ S and we are done.
2. s ∈ γ(Ri−1) and s 6∈ γ(Si−1). We conclude from Lem. 1 that γ(Si−1) overap-

proximates the states stuck in γ(Ri−1). Since s /∈ γ(Si−1) there exists a state s′

such that s→∗ s′ and s′ /∈ γ(Ri−1). First, note that as s ∈ post∗(I), we conclude
that s′ ∈ post∗(I). But as s′ /∈ γ(Ri−1), we know that post∗(I) 6⊆ γ(Ri−1) and
by induction hypothesis we conclude that post∗(I) * S.

3. s ∈ γ(Ri−1), s ∈ γ(Si−1) and s /∈ Zi. We conclude from the definition of Zi
which is given by γ(Si−1) ∩ p̃re(γ(Si−1)) that there exists s′ /∈ γ(Si−1) such
that s → s′. Either s′ /∈ γ(Ri−1) or s′ ∈ γ(Ri−1) and by the previous case,
we know that s′ →∗ s′′ and s′′ /∈ γ(Ri−1). In the two cases, we conclude that
post∗(I) 6⊆ γ(Ri−1) and by induction hypothesis that post∗(I) * S.

4. s ∈ γ(Ri−1), s ∈ γ(Si−1), s ∈ Zi, and s /∈ γ(Ri). By overapproximation of the
abstract semantics, we know that s is not reachable from I within Zi. Otherwise
stated, all paths starting form I and ending in s leaves Zi. As s is reachable from I ,
we know that there exists some s′ /∈ Zi which is reachable form I . We can apply
the same reasoning as above and conclude that post∗(I) * S. ut

We are now in position to prove that, when the algorithm terminates and returns OK,
it has been submitted a positive instance of the fixpoint checking problem, and when
the algorithm terminates and returns KO, it has been submitted a negative instance of
the fixpoint checking problem.

Proposition 2 (Correctness – positive instances). If Alg. 1 says “OK” then we have
post∗(I) ⊆ S.

Proof.

Algorithm says “OK”
⇔ αi(I ∪ post(γ(Ri))) v αi(Zi) line 4
⇔ αi(I) v αi(Zi) N αi ◦ post ◦ γ(Ri) v αi(Zi) αi additivity

⇔ I v γ ◦ αi(Zi) N post(γ(Ri)) v γ ◦ αi(Zi) −−−→←−−−αi
γ

⇔ I ⊆ Zi N post(γ(Ri)) ⊆ Zi Zi ∈ γ(Ai) line 10

Fixpoint-Guided Abstraction Refinements 9

Then,

αi((I ∪ post(γ(Ri))) ∩ Zi) v Ri def. ofRi, prop. of lfp

⇔ (I ∪ post(γ(Ri))) ∩ Zi ⊆ γ(Ri) −−−→←−−−αi
γ

⇒ I ∪ post(γ(Ri)) ⊆ γ(Ri) I ⊆ Zi N post(γ(Ri)) ⊆ Zi
⇒ lfp⊆λX. I ∪ post(X) ⊆ γ(Ri) prop. of lfp
⇒ post∗(I) ⊆ S γ(Ri) ⊆ S by Lem. 2 ut

Proposition 3 (Correctness – negative instances). If Alg. 1 says “KO” then we have
post∗(I) * S.

Proof. If at iteration i the algorithm says “KO” then we find that αi(I) 6v Si (line 8)
which is equivalent to I * γ(Si) by −−−→←−−−αi

γ
. We conclude from Lem. 2 that γ(Ri+1) ⊆

γ(Si), hence that I * γ(Ri+1) and finally that post∗(I) * S using the contrapositive
of Prop. 1. ut

Remark 1. The proofs of the above results remain correct if in line 9 of Alg. 1 instead
of λX. p̃re[T](X) we take λX. p̃re[R](X) where T ⊆ R ⊆ T ∗. This property will
be used later when we propose alternative refinement operations based on acceleration
techniques.

3.3 Termination of the Algorithm

To reason about the termination of the algorithm, we need the following technical
proposition and its corollary.

Proposition 4. In Alg. 1 the following holds:

1. if Zi+1 = Zi then post(Zi) ⊆ Zi;
2. if I * Zi then the algorithm terminates at iteration i and returns “KO”;
3. if I ∪ post(Zi) ⊆ Zi then the algorithm terminates at iteration i and return “OK”.

Corollary 1. In Alg. 1 if Zi = Zi+1 then the algorithm terminates.

Alg. 1 terminates when submitted a negative instance as proved below in Lem. 3 and
Prop. 5.

Lemma 3. In Alg. 1, γ(Ri) underapproximates the set p̃re[
⋃i
j=0 T

j](S) of states which
cannot escape from S in less than i+ 1 steps.

10 P. Cousot, P. Ganty, J.-F. Raskin

Proof. The result is shown by induction on the number i of steps. For the base case,
Lem. 2 shows that γ(R0) ⊆ S = p̃re[T 0](S). For the inductive case,

p̃re[
i+1⋃
j=0

T j](S) = p̃re[
i⋃

j=0

T j ∪
i+1⋃
j=1

T j](S) def. ∪

= p̃re[
i⋃

j=0

T j](S) ∩ p̃re[T](p̃re[
i⋃

j=0

T j](S)) def. p̃re

⊇ γ(Ri) ∩ p̃re[T](γ(Ri)) ind. hyp.
⊇ γ(Si) ∩ p̃re[T](γ(Si)) by Lem. 2
= Zi+1 by line 9
⊇ γ(Ri+1) by Lem. 2 ut

Proposition 5. If post∗(I) * S then Alg. 1 terminates.

Proof. Hypothesis shows that there exists states s, s′ and a value k ∈ IN such that s ∈ I ,
s′ /∈ S and s→k s′. Lem. 3 shows that γ(Rk−1) ⊆

⋂k
j=0 p̃re[T j](S). So we conclude

from above that I *
⋂k
j=0 p̃re[T j](S), hence that I * γ(Rk−1) by transitivity and

finally that I * Zk by Lem. 2. The last step uses Prop. 4.2 to show that the algorithm
terminates. ut

The following proposition states that our algorithm terminates under the descending
chain condition in the concrete domain.

Proposition 6. Assuming the descending chain condition holds on 〈L,⊆〉 then Alg. 1
terminates.

Proof. We prove the contrapositive. Assume the algorithm does not terminate. We thus
obtain that Z0 ⊃ Z1 ⊃ · · · ⊃ Zn ⊃ · · · by Cor. 1 and Lem. 2 which contradicts the
descending chain condition. ut

Below Prop. 7 establishes a stronger termination result of our algorithm which states
that if the algorithm computes a value Zi from which the evaluation of the greatest
fixpoint gfp⊆λX.Zi ∩ p̃re(X) terminates after a finite number of iterations then our
algorithm terminates. We use classical fixpoint evaluation techniques to compute the
set gfp⊆λX.Zi ∩ p̃re(X). First we start with the set Zi and then we remove the states
escape from Zi in 1 step. The set obtained is formally given by Zi ∩ p̃re(Zi). Then we
iterate this process until no state is removed.

Proposition 7. If in Alg. 1 there is a value for i such that gfp⊆λX.Zi ∩ p̃re(X) stabi-
lizes after a finite number of step, then Alg. 1 terminates.

3.4 Termination of the Algorithm Enhanced by Acceleration Techniques

In this section we will study a enhancement of Alg. 1 which relies on acceleration
techniques (see [16] and the references given there). Roughly speaking, acceleration

Fixpoint-Guided Abstraction Refinements 11

techniques allows us to compute underapproximations of the transitive closure of some
binary relation as, for instance the transition relation. We refer the interested reader to
the extensive literature on this topic.

Assume we are given some binary relation R such that T ⊆ R ⊆ T ∗. The en-
hancement we propose replaces line 9 (viz. Zi+1 = γ(Si) ∩ p̃re[T](γ(Si))) by the
following: Zi+1 = γ(Si) ∩ p̃re[R](γ(Si)). The definition of R suggests that the value
added using R should be at least as precise as the one given using T . A very favorable
situation is whenR equals T ∗ but Prop. 7 is not applicable at any iteration. We conclude

from Z1 = gfp⊆λX. γ(S0) ∩ p̃re(X) that post(Z1) ⊆ Z1 by −−−−→←−−−−
post

gpre
, hence that the

enhanced algorithm terminates at iteration one by Prop. 4 while the normal algorithm
might not since Prop. 7 is never applicable. Below we illustrate this situation using a
toy example.

Example 2. Fig. 2 shows a two counters automaton and its associated semantics. The
domain of the counters is the set of integers. In the automaton x, y refer to the current
value of the counters while x′, y′ refer to the next value (namely the value after firing
the transition). Transition t1 is given by a simultaneous assignment. In green are the
reachable states, which are given by {(x, y) | y 6 x N 0 6 x}. We will submit to
Alg. 1 a positive instance of the fixpoint checking problem such that I and S are given
by {(0, 0)} and {(x, y) | y 6= x + 1} respectively. Our initial abstract domain A0 is
such that γ(A0) =M(S).

It is routine to check R0, computed at line 3, is such that γ(R0) = S, hence that
the test of line 4 fails. It follows that we have to compute S0 given at line 7. Let Xδ, δ
be the sequence of iterates for λX.α0(γ(R0)∩ p̃re[T](γ(X))) which converges to S0.
First let us compute

S ∩ p̃re[t2](S)
= S ∩ ¬ ◦ pre[t2] ◦ ¬(S) def. of p̃re
= S ∩ ¬ ◦ pre[t2]({(x, y) | y = x+ 1}) def. of ¬, S
= S ∩ ¬({(x, y) | y = x+ 2}) see Fig. 2
= S ∩ {(x, y) | y 6= x+ 2}
= {(x, y) | y 6= x+ 1} ∩ {(x, y) | y 6= x+ 2} def. of S

x = 0, y = 0

t1 : y = 0→ x′ = x + 1; y′ = x + 1;

t2 : y′ = y − 1;
q0

Fig. 2. A two counters automata and its associated semantics.

12 P. Cousot, P. Ganty, J.-F. Raskin

We now turn to the evaluation of the gfp.

X0 = >
X1 = α0(γ(R0) ∩ p̃re[T](γ(X0)))

= α0(S) γ(R0) = S,> ⊆ p̃re[T](>)
= S S ∈ γ(A0)

X2 = α0(S ∩ p̃re[T](γ(X1)))

= α0

(
S ∩ p̃re[t1](γ(X1)) ∩ p̃re[t2](γ(X1))

)
def. p̃re

= α0

(
S ∩ p̃re[t2](γ(X1))

)
S ∩ p̃re[t1](S) = S

By above we find that α0(S∩p̃re[t2](S)) = S, hence that γ(S0) = S. Since the test
of line 8 succeeds the next step (line 9) is to computeZ1. We use acceleration techniques
to compute Z1 for otherwise the algorithm does not converge. Without resorting to
acceleration techniques each Zi escape from S in i+1 steps by firing transition t2. This
clearly indicates that the CEGAR approach considers counterexamples of increasing
length and thus fail on this toy example. By considering the limit instead of the Zi’s we
obtain a value that is stuck in S. That value stuck in S can obtained using acceleration
techniques as shown below.

Our candidate relation to show termination is given by t1 ∪ t∗2 which is computable
using acceleration technique. It is routine to check that T ⊆ t1 ∪ t∗2 ⊆ T ∗. Let us
compute Z1 which is given by S ∩ p̃re[t1 ∪ t∗2](S).

S ∩ p̃re[t1 ∪ t∗2](S) = def. p̃re
S ∩ p̃re[t1](S) ∩ p̃re[t∗2](S) = S ∩ p̃re[t1](S) = S

p̃re[t∗2](S) =

gfp⊆λX. S ∩ p̃re[t2](X)

The latter fixpoint evaluates to {(x, y) | y 6 x} (details are given in the appendix)
and so the new abstract domain A1 is such that γ(A1) =M(γ(A0)∪Z1). At iteration
1, we find at line 3 that γ(R1) = Z1, hence that the test of line 4 succeeds since there
is no outgoing transition of Z1 (see Fig. 2), and finally that Alg. 1 terminates with the
right answer.

It is worth pointing that the forward abstract semantics is conclusive. However al-
gorithms using acceleration techniques to compute the forward concrete semantics do
not terminate. Basically acceleration techniques identify regular expressions over the
transition alphabet and then compute underapproximation of the transitive closure of
the transition relation. For the automaton of Fig. 2 acceleration techniques fail because
there is no finite regular expression that describes all the possible executions of the
counter automaton. Additional examples can be found in the appendix. �

The rest of this section is devoted to establish some termination properties of the
enhanced algorithm. In fact, as we said in Rem. 1 our correctness proofs remains valid
for the enhancement. Thus below we focus on termination properties.

By definition of R it is routine to check that

λX. p̃re[T ∗](X) ⊆̇ λX. p̃re[R](X) ⊆̇ λX. p̃re[T](X) . (1)

Fixpoint-Guided Abstraction Refinements 13

Proposition 8. Let R2 such that T ⊆ R2 ⊆ T ∗ and gfp⊆λX. S ∩ p̃re[R2](X) stabi-
lizes after a finite number of step, then Alg. 1 when using any R1 such that R2 ⊆ R1 ⊆
T ∗ at line 9 terminates as well.

Remark 2. In Alg. 1 the fixpoint Ri and Si are defined according to the best approxi-
mation of the predicate transformer post and p̃re, respectively. For various reasons we
may be constrained to use a less precise approximation. In this context provided Lem. 2
holds all the result of Sect. 3.2, 3.3 and 3.4 remain valid.

4 Relationships with Other Approaches

4.1 Counterexample Guided Abstraction Refinement

We first recall here the main ingredients of the CEGAR approach [17, §4.2]. Given a
transition system T = (C, T, I), called the concrete transition system, and a partition of
C into a finite number of equivalence classes C = {C1, . . . Ck}, the abstract transition
system is a transition system T α = (Cα, Tα, Iα) where:

– Cα = C, i.e. abstract states are the equivalence classes;
– Tα = {(Ci, Cj) | ∃c ∈ Ci, c′ ∈ Cj : (c, c′) ∈ T}, i.e. there is a transition from

an equivalence class Ci to an equivalence class Cj whenever there is a state of Ci
which has a successor in Cj by the transition relation;

– Iα = {Ci ∈ C | Ci ∩ I 6= ∅}, i.e. a class is initial whenever it contains an initial
state.

A path in the abstract transition system is a finite sequence of abstract states related by
Tα that starts in an initial state. An abstract state Ci is reachable if there exists a path in
T α that ends in Ci. The set of states within the equivalence classes that are reachable
in the abstract transition system, is an overapproximation of the reachable states in the
concrete transition system.

An abstract counterexample to S ⊆ C is a path Ci1Ci2 . . . Cin in the abstract tran-
sition system such that Cin 6⊆ S. An abstract counterexample is spurious if it does not
match a concrete path in T . We define this formally as follows. To an abstract coun-
terexample Ci1 , . . . , Cin , we associate a sequence t1, t2, . . . , tn−1 of subsets of T (the
transition relation of T) such that tj = T ∩ (Cij × Cij+1) (the projection of T on
successive classes).

An abstract counterexample is an error trace, only if I * p̃re[t1 ◦ . . . ◦ tn−1](S)
(by monotonicity we have I * p̃re[T ∗](S)), otherwise it is called spurious and, so
I ⊆ p̃re[t1 ◦ . . . ◦ tn−1](S). Eliminating a spurious counterexample is done by splitting
a class Cj where 1 6 j 6 n. The class Cj contains bad states (written bad) that
can reach ¬S but which are not reachable from Cj−1. Accordingly the class Cj split
in Cj ∩ bad and Cj ∩ ¬bad. From the above definition, we can deduce that bad =
pre[tj ◦ . . . ◦ tn−1](¬S), hence that ¬bad = ¬ ◦ pre[tj ◦ . . . ◦ tn−1] ◦ ¬(S),
and, finally that ¬bad = p̃re[tj ◦ . . . ◦ tn−1](S). Hence the splitting of Cj is given
by Cj ∩ p̃re[tj ◦ . . . ◦ tn−1](S) and Cj ∩ ¬ ◦ p̃re[tj ◦ . . . ◦ tn−1](S). When the
spurious counterexample has been removed, by splitting an equivalence class, a new

14 P. Cousot, P. Ganty, J.-F. Raskin

abstract transition transition system, based on the refined partition, is considered and
the method is iterated.

CEGAR approach concludes when it either finds an error trace (identifying a nega-
tive instance of the fixpoint checking problem) or when it does not find any new abstract
counter example (identifying a positive instance of the fixed point problem).

We now relate the abstract model used by CEGAR with the abstract interpretation
of the system. The initial abstract domain A0, that our algorithm uses, is such that for
all equivalence classes Ci in the initial partition used by the CEGAR algorithm, there
exists an abstract value a ∈ A0 such that γ(a) = Ci.

Lemma 4. Assume that CEGAR terminates on a positive instance of the fixpoint check-
ing problem. So CEGAR produced a finite set {wi}i∈I of counterexamples such that the
following holds:

∃A ∈ γ(A0) : I ⊆ gfp⊆λX.A ∩ p̃re(X)︸ ︷︷ ︸
V

⊆ S N V = A ∩
⋂
i∈I

p̃re[wi](S) .

We need one more auxiliary result before presenting Th. 1.

Proposition 9. In Alg. 1, ∀k ∈ IN if post∗(γ(Rk)) ⊆ S then post(γ(Rk)) ⊆ Zk.

Theorem 1. Assume a positive instance of the fixpoint checking problem, if CEGAR
terminates so does Alg. 1.

Proof. Let k be the size of the longest wi for i ∈ I . Lem. 3 shows that γ(Rk+1) is an
underapproximation of the states that cannot escape S in less than k steps. Formally,
we have γ(Rk+1) ⊆

⋂k
j=0 p̃re[T j](S). This implies that

γ(Rk+1) ⊆
⋂
i∈I

p̃re[wi](S) (2)

Our next step will be to show that post [T ∗](γ(Rk+1)) ⊆ S which intuitively
says that γ(Rk+1) cannot escape S. First, note that if γ(Rk+1) can escape from S
then it cannot be with the counterexamples produced by CEGAR since γ(Rk+1) ⊆⋂
i∈I p̃re[wi](S) which is equivalent to

⋃
i∈I post [wi](γ(Rk+1)) ⊆ S by −−−−→←−−−−

post

gpre
. Let

A be defined as in Lem. 4. Our proof falls into two parts:

1. γ(Rk+1)∩A cannot escape from S, i.e. post [T ∗](γ(Rk+1)∩A) ⊆ S, as shown as
follows. From (2), we know that γ(Rk+1) ⊆

⋂
i∈I p̃re[wi](S), and by definition

of V , we have that γ(Rk+1) ∩ A ⊆ V . As V is inductive for post and V ⊆ S, we
conclude that post [T ∗](γ(Rk+1) ∩A) ⊆ S.

2. γ(Rk+1) ∩ ¬A cannot escape from S. For that, we show that γ(Rk+1) ∩ ¬A = ∅.
Prop. 1 and definition of A show that I ⊆ γ(Rk+1)∩A and so γ(Rk+1)∩A 6= ∅.
We also know that in any state s ∈ γ(Rk+1) ∩ A for post [T ∗]({s}) ∩ ¬A 6= ∅
to hold s has to be such that s /∈ ⋂i∈I p̃re[wi](S). However since γ(Rk+1) ⊆⋂
i∈I p̃re[wi](S) and since Rk+1 is given by lfp⊆λX.αk+1(I ∪ post(γ(X)) ∩

Zk+1) over Ak+1 (with γ(Ak+1) ⊆ γ(A0)) we find that γ(Rk+1) ∩ ¬A = ∅. It
follows that post [T ∗](γ(Rk+1)) ⊆ S.

Fixpoint-Guided Abstraction Refinements 15

We conclude from Prop. 9 that post(γ(Rk+1)) ⊆ Zk+1, hence that the test of line 4
succeeds by αk+1 monotonicity and I ⊆ γ(Rk+1), and finally that Alg. 1 terminates.

ut
If we consider the converse result, namely that CEGAR terminates if Alg. 1 termi-

nates we find that this does not hold for the enhanced algorithm as shown in Ex. 2.

4.2 Predicate Abstraction versus Moore Closed Abstract Domains

Below we prove that Alg. 1 does not take any advantage maintaining a Boolean closed
abstract domain instead of a Moore closed one: Moore closure is as strong as Boolean
closure.

The following Lemma shows that every “interesting” value added by the Boolean
closure is added by the Moore closure as well. By extension we obtain that (see Th. 2) if
Alg. 1 extended with the Boolean closure terminates then Alg. 1 terminates. Our result
hold basically because both Ri and Si are such that γ(Ri) ⊆ Zi and γ(Si) ⊆ Zi by
Lem. 2.

Lemma 5. Let A be a finite subset of L such that B(A) = A and let Z0, Z1, . . . , Zk
be elements of L such that Zk ⊆ · · · ⊆ Z1 ⊆ Z0. Given e ∈ B(A ∪ {Z0, Z1, . . . , Zk})
such that e ⊆ Zk we have e ∈M(A ∪ {Z0, Z1, . . . , Zk}).
Theorem 2. Provided B(γ(A0)) = γ(A0), if Alg. 1 with the Moore closure (viz.M)
replaced by the Boolean closure (viz B) terminates then Alg. 1 terminates as well.

In the context of predicate abstraction, there is no polynomial algorithm to com-
pute the best approximation. In fact the result of applying α to value V is given by the
strongest Boolean combination of predicates approximating V . Moreover the computa-
tion of the best approximation is required at each iterate of each fixpoint computation.
So in the worst case the time to compute a fixpoint is given by the height of the abstract
lattice times an exponential in the number of predicates. It is generally admitted that
this cost is not affordable and this is why approximations in time linear in the number
of predicates are preferred instead. For our algorithm the situation is pretty much better:
as shown in Lem. 5 we can compute the best approximation in time linear in the number
of predicates. However we need the initial set of predicates to be Boolean closed.

5 Conclusion and Future Works

We have presented a new abstract fixpoint refinement algorithm for the fixpoint check-
ing problem. Our systematic refinement uses the information computed so far which
is given by two fixpoints computed in the abstract domain. As a future work, we can
consider two variants of this algorithm. First, the dual algorithm for the inverted tran-
sition system T−1 can be used to discover necessary correct termination conditions. A
second dual algorithm where we use the inverted inclusion order ⊇ on states leading to
underapproximation of fixpoints. In this settings the lfp allows to conclude on negative
instances and the gfp on positive instances. Also the refinement step uses the post pred-
icate transformer instead of p̃re. Finally we will consider more complicated properties
like properties defined by nested fixpoint expressions.

16 P. Cousot, P. Ganty, J.-F. Raskin

References

1. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In: POPL ’77: Proc. 4th ACM
SIGACT-SIGPLAN Symp. on Principles of Programming Languages, ACM Press (1977)
238–252

2. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM 50(5) (2003) 752–794

3. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL ’02: Proc.
29th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, ACM
Press (2002) 58–70

4. Cousot, P.: Méthodes Itératives de construction et d’approximation de points fixes
d’opérateurs monotones sur un treillis, analyse sémantique de programmes (in French).
Thèse d’État ès sciences mathématiques, Université scientifique et médicale de Grenoble
(1978)

5. Massé, D.: Combining forward and backward analyses of temporal properties. In: PADO’01:
Programs as Data Objects, 2nd Symp. Volume 2053., Springer-Verlag (2001) 103–116

6. Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples and refinements in abstract
model-checking. In Cousot, P., ed.: SAS ’01: Proc. 8th Int. Static Analysis Symp. Volume
2126 of LNCS., Springer-Verlag (2001) 356–373

7. Ball, T., Podelski, A., Rajamani, S.K.: Relative completeness of abstraction refinement for
software model checking. In: TACAS ’02: Tools and Algorithms for the Construction and
Analysis of Systems, 8th Int. onf. Volume 2280 of LNCS., Springer-Verlag (2002) 158–172

8. Lakhnech, Y., Bensalem, S., Berezin, S., Owre, S.: Incremental verification by abstraction.
In: TACAS ’01: Proc. 7th Int. Conf. on Tools and Algorithms for the Construction and Anal-
ysis of Systems. Volume 2031 of LNCS., Springer-Verlag (2001) 98–112

9. Cousot, P., Cousot, R.: Refining model checking by abstract interpretation. Automated
Software Engineering 6(1) (1999) 69–95

10. Cousot, P.: Semantic foundations of program analysis. In Muchnick, S., Jones, N., eds.:
Program Flow Analysis: Theory and Applications. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey (1981) 303–342

11. Esparza, J., Ganty, P., Schwoon, S.: Locality-based abstractions. In: SAS ’05: Proc. 12th Int.
Symp. on Static Analysis. Volume 3672 of LNCS., Springer-Verlag (2005) 118–134

12. Ganty, P., Raskin, J.F., Van Begin, L.: A complete abstract interpretation framework for
coverability properties of WSTS. In: VMCAI ’06: Proc. Verification, Model Checking and
Abstract Interpretation. Volume 3855 of LNCS., Springer-Verlag (2006) 49–64

13. Ganty, P., Raskin, J.F., Van Begin, L.: From many places to few: Automatic abstraction
refinement for Petri nets. In: Application and Theory of Petri Nets (ATPN’07). LNCS,
Springer-Verlag (2007)

14. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems for infinite-
state systems. In: Proc. 11th Annual IEEE Symp. on Logic in Computer Science (LICS),
IEEE Computer Society (1996) 313–321

15. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theoretical
Computer Science 256(1-2) (1997)

16. Boigelot, B.: On iterating linear transformations over recognizable sets of integers. Theoret-
ical Computer Science 309(2) (2003) 413–468

17. Dams, D.: Comparing abstraction refinement algorithms. Electr. Notes Theor. Comput. Sci
89(3) (2003)

18. Henzinger, T.A., Ho, P.H., Toi, H.W.: Hytech: A model checker for hybrid systems. Int.
Journal on Software Tools for Technology Transfer 1(1-2) (1997) 110–122

19. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: Fast acceleration of symbolic transition
systems. In: CAV ’03: Proc. Int. Conf. on Computer Aided Verification. Volume 2725 of
LNCS., Springer-Verlag (2003) 118–121

20. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a
program. In: POPL ’78: Proc. 5th ACM SIGPLAN-SIGACT Symp. on Principles of Pro-
gramming Languages, ACM Press (1978) 84–97

Fixpoint-Guided Abstraction Refinements 17

21. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press and
McGraw-Hill (1990)

22. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computation 19 (2006)
31–100

18 P. Cousot, P. Ganty, J.-F. Raskin

A Missing proofs

Proof (of Lem. 2). First, we prove that

γ(Si+1) ⊆ γ(Si) ∩ p̃re(γ(Si))︸ ︷︷ ︸
Zi+1

⊆ γ(Si) .

First, consider the case γ(Si+1) ⊆ Zi+1.

Si+1 = gfpvλX.αi+1

(
γ(Ri+1) ∩ p̃re(γ(X))

)
def. of Si+1

⇒ Si+1 v αi+1 ◦ γ(Ri+1) prop. of gfp

⇒ Si+1 v Ri+1 −−−−→←−−−−
αi+1

γ

⇒ Si+1 v αi+1(Zi+1) def. ofRi+1

⇒ γ(Si+1) ⊆ γ ◦ αi+1(Zi+1) γ monotonicity
⇒ γ(Si+1) ⊆ Zi+1 Zi+1 ∈ γ(Ai+1) line 10

Second, from line 9, Zi+1 = γ(Si) ∩ p̃re(γ(Si)) ⊆ γ(Si)
Finally the result is obtained by the above reasoning, the definition ofRi, Si and Zi,

the fact that Zi ∈ γ(Ai) for any i and the inclusion Z0 ⊆ S which holds by definition
of Z0. ut
Proof (of Prop. 4). (1) By Lem. 2 and line 9, Zi+1 = Zi implies Zi+1 = γ(Si) ∩
p̃re(γ(Si)) ⊆ γ(Si) ⊆ Zi = Zi+1 so γ(Si) ∩ p̃re(γ(Si)) = γ(Si) = Zi proving
Zi ⊆ p̃re(Zi) whence post(Zi) ⊆ Zi by definition of Galois connection.
(2) The hypothesis and the monotonicity of αi show that the test of line 4 fails and the
algorithm computes Si which is such that γ(Si) ⊆ Zi by Lem. 2. Then the hypothesis
again shows that I * γ(Si) which is equivalent to αi(I) 6v Si by the Galois connection

−−−→←−−−αi
γ

and thus the test of line 8 fails and the algorithm terminates at iteration i returning
“KO”.
(3) Lem. 2 shows that γ(Ri) ⊆ Zi, so since post(Zi) ⊆ Zi we obtain that post(γ(Ri)) ⊆
Zi by monotonicity of post . Finally monotonicity ofαi shows thatαi(I∪post(γ(Ri))) v
αi(Zi) and thus the test of line 4 succeeds and the algorithm terminates. ut
Proof (of Cor. 1). The proof falls naturally into two parts. If I ⊆ Zi then it is a logical
consequence of Prop. 4.1 and 4.3; Otherwise termination follows from Prop. 4.2.

Lemma 6. If gfp⊆λX.Zi ∩ p̃re(X) is computable in k steps, so is gfp⊆λX. γ(Ri) ∩
p̃re(X). Moreover the following equality holds:

γ(Ri) ∩ gfp⊆λX.Zi ∩ p̃re(X) = gfp⊆λX. γ(Ri) ∩ p̃re(X) .

Proof. Let s be a state such that s ∈ Zi but not in the set of states stuck in Zi (recall
that this set is given by gfp⊆λX.Zi ∩ p̃re(X)). We find that there exists a state s′ /∈ Zi

Fixpoint-Guided Abstraction Refinements 19

and a value k′ 6 k such that s →k′
s′ for otherwise the set of states stuck in Zi is not

computable in k steps.
Now, let s1 be such that s1 ∈ γ(Ri) but not in the set of states stuck in γ(Ri).

Lem. 2 shows that γ(Ri) ⊆ Zi and hence that s1 ∈ Zi. We conclude from post(γ(Ri))∩
Zi ⊆ γ(Ri) that s1 escape from Zi and hence that, according to the above reasoning,
there exists s′1 /∈ Zi and k′ 6 k such that s1 →k′

s′1, and finally that gfp⊆λX. γ(Ri)∩
p̃re(X) is computable in k steps.

The proof of the equality follows from the following observation: the states of γ(Ri)
removed during the computation of gfp⊆λX. γ(Ri) ∩ p̃re(X) are also removed by the
computation of gfp⊆λX.Zi ∩ p̃re(X). ut
Proof (of Prop. 7). We conclude from the stabilization of gfp⊆λX.Zi∩ p̃re(X) at step
k (i.e. iterate k equals iterate k+1 and k ∈ IN) that gfp⊆λX. γ(Ri)∩ p̃re(X) stabilizes
at step k by Lem. 6. Then,

Zi+1 = γ(Si) ∩ p̃re(γ(Si)) def. of Zi+1

⊆ γ(Ri) ∩ p̃re(γ(Ri)) γ(Si) ⊆ γ(Ri) by Lem. 2 (3)

gfp⊆λX. γ(Ri) ∩ p̃re(X) ⊆ γ(Si) def. of Si, Lem. 1

⇒ gfp⊆λX. γ(Ri) ∩ p̃re(X) ⊆ γ(Si) ∩ p̃re(γ(Si)) prop. of gfp

⇒ gfp⊆λX. γ(Ri) ∩ p̃re(X) ⊆ Zi+1 def. of Zi+1

⇒ gfp⊆λX. γ(Ri) ∩ p̃re(X) = gfp⊆λX.Zi+1 ∩ p̃re(X) by (3) (4)

We have shown above that gfp⊆λX. γ(Ri) ∩ p̃re(X) stabilizes at step k. By (3)
and (4) we find that gfp⊆λX.Zi+1 ∩ p̃re(X) stabilizes at step k − 1.

Repeated application of the above reasoning shows that gfp⊆λX.Zi+k ∩ p̃re(X)
stabilizes at step 0. We thus obtain that

gfp⊆λX. γ(Ri+k) ∩ p̃re(X)

= γ(Ri+k) ∩ gfp⊆λX.Zi+k ∩ p̃re(X) Lem. 6
= γ(Ri+k) ∩ Zi+k stabilizes at step 0
= γ(Ri+k) γ(Ri+k) ⊆ Zi+k by Lem. 2

This property allows us to conclude that γ(Ri+k) = γ(Si+k), hence that Zi+k+1 =
γ(Ri+k) and finally that γ(Ai+k+1) = γ(Ai+k). So it is routine to check thatZi+k+1 =
Zi+k and so the algorithm terminates by Cor. 1. ut
Proposition 10. Let R be such that T ⊆ R ⊆ T ∗. If gfp⊆λX.Zi ∩ p̃re[R](X) is
computable in k steps, so is gfp⊆λX. γ(Ri) ∩ p̃re[R](X). Moreover the following
equality holds:

γ(Ri) ∩ gfp⊆λX.Zi ∩ p̃re[R](X) = gfp⊆λX. γ(Ri) ∩ p̃re[R](X) .

20 P. Cousot, P. Ganty, J.-F. Raskin

Proof. The proof of Prop. 7 can be straightforwardly generalized to any binary relation
R such that T ⊆ R ⊆ T ∗. ut
Proof (of Prop. 8). As Z0 = S, by hypothesis we have gfp⊆λX.Z0 ∩ p̃re[R2](X)
stabilizes after at most k steps (i.e. iterate k equals iterate k + 1 and k ∈ IN), hence we
deduce that gfp⊆λX. γ(R0) ∩ p̃re[R2](X) stabilizes at most after k steps by Prop. 10.
Then,

Z1 = γ(S0) ∩ p̃re[R1](γ(S0)) def. of Zi+1

⊆ γ(R0) ∩ p̃re[R1](γ(R0)) γ(S0) ⊆ γ(R0) by Lem. 2

⊆ γ(R0) ∩ p̃re[R2](γ(R0)) p̃re[R1] ⊆̇ p̃re[R2] (5)

gfp⊆λX. γ(R0) ∩ p̃re(X) ⊆ γ(S0) def. of S0, Lem. 1

⇒ gfp⊆λX. γ(R0) ∩ p̃re(X) ⊆ γ(S0) ∩ p̃re[R1](γ(S0)) def. (1), prop. of gfp

⇒ gfp⊆λX. γ(R0) ∩ p̃re(X) ⊆ Z1 def. of Z1

⇒ gfp⊆λX. γ(R0) ∩ p̃re(X) = gfp⊆λX.Z1 ∩ p̃re(X) by (5)
(6)

We have shown above that gfp⊆λX. γ(R0) ∩ p̃re[R2](X) stabilizes at step k, by
(5) and (6) we find that gfp⊆λX.Z1 ∩ p̃re[R2](X) stabilizes at step k − 1.

Repeated application of the above reasoning shows that gfp⊆λX.Zk ∩ p̃re[R2](X)
stabilizes at step 0 and so does gfp⊆λX.Zk ∩ p̃re(X). We thus obtain that

gfp⊆λX. γ(Rk) ∩ p̃re(X)

= γ(Rk) ∩ gfp⊆λX.Zk ∩ p̃re(X) Lem. 6
= γ(Rk) ∩ Zk stabilizes at step 0
= γ(Rk) γ(Rk) ⊆ Zk by Lem. 2

This property allows us to conclude that γ(Rk) = γ(Sk), hence that Zk+1 = γ(Rk)
and finally that γ(Ak+1) = γ(Ak). So it is routine to check that Zk+1 = Zk and so the
algorithm terminates by Cor. 1. ut
Proof (of Lem. 4). Let T α = (Cα, Tα, Iα) be the abstract transition system where Cα

is the partition that is obtained when the spurious counterexamples from {wi}i∈I has
been considered.

Let Fα ⊆ Cα be subset of reachable classes in T α. Let F be
⋃
Ci∈Fα Ci, i.e.

F contains the set of states that are within reachable classes in T α. As the abstract
analysis is conclusive, we know that I ⊆ F , F ⊆ S, and post(F) ⊆ F . As F is
inductive for λX. I ∪ post(X), we know that F ∩ ⋃i∈I pre[wi](¬S) is emtpy, i.e.
F ⊆ ⋂i∈I p̃re[wi](S). The classes in Cα are either classes that were present in the
initial partition (defined by A0) or classes that were refined and does not contain bad
states, so F is composed of classes of the initial partition and refined classes of the
initial partition. None of these classes intersect

⋃
i∈I pre[wi](¬S). ut

Fixpoint-Guided Abstraction Refinements 21

Proof (of Prop. 9). Our proof is by induction on k.
Base case. The result follows immediately since in Alg. 1 we have Z0 = S.
Inductive case. We show the contrapositive of the implication. We first relate Zk+1

with the set of states that cannot escape from γ(Rk) (i.e. gfp⊆λX. γ(Rk) ∩ p̃re(X))
as follows

gfp⊆λX. γ(Rk) ∩ p̃re(X) ⊆ γ(Sk) Lem. 1

⇒ gfp⊆λX. γ(Rk) ∩ p̃re(X) ⊆ γ(Sk) ∩ p̃re(γ(Sk)) fixpoint property

⇔ gfp⊆λX. γ(Rk) ∩ p̃re(X) ⊆ Zk+1 def. of Zk+1

We conclude from the contrapositive hypothesis given by post(γ(Rk+1)) * Zk+1 and
by above that post(γ(Rk+1)) * gfp⊆λX. γ(Rk)∩ p̃re(X). Intuitively this means that
some states of post(γ(Rk+1)) can escape γ(Rk) or more formally that post∗(γ(Rk+1)) *
γ(Rk). So consider the sequence s0, s1, . . . , sn such that (si, si+1) ∈ T for 1 6 i < n
and s0 ∈ γ(Rk+1) and sn /∈ γ(Rk). Since, by Lem. 2, γ(Rk+1) ⊆ γ(Rk) the se-
quence can be partitioned into a prefix (from 0 to i) where the states belong to γ(Rk)
and a suffix (from i + 1 to n) where the states does not belong to γ(Rk). We have
that {si+1} * Zk for otherwise post(γ(Rk)) ∩ Zk ⊆ γ(Rk) does not hold. Lem. 2
shows that γ(Rk+1) ⊆ γ(Rk) ⊆ Zk. We conclude from si ∈ γ(Rk), si+1 /∈ Zk
and si → si+1 that post(si) * Zk, hence that post(γ(Rk)) * Zk and finally that
post∗(γ(Rk)) * S using the induction hypothesis. Finally since, by definition of the
sequence, si+1 is reachable from γ(Rk+1) we find that post∗(γ(Rk+1)) * S. ut
Proof (of Lem. 5). We first notice that the value can be expressed in a form similar to the
Conjunctive Normal From (CNF) used in propositional logic. Moreover since e ⊆ Zk
we have that e ∩ Z0 ∩ Z1 ∩ · · · ∩ Zk = e. So e can be expressed as follows:

e =
⋂
i∈I

(a1 ∪ · · · ∪ ani) ∩
k⋂
j=0

Zj

such that the ai’s belong to A and I is a finite set since A is finite subset of L.
We now give two syntactic transformations of the above e that preserves its seman-

tics.

– Remove from e each union of the form (Zj ∪ ψ). This rule does not modify the
value of e since e ⊆ Zj ⊆ (Zj ∪ ψ).

– Replace in e any union of the form ¬Zj ∪ ψ by ψ. This rule does not modify the
value of e as shown below.

Zj ∩ (¬Zj ∪ ψ) subexpression of e
= (Zj ∩ ¬Zj) ∪ (Zj ∩ ψ) set theory
= ∅ ∪ (Zj ∩ ψ) set theory
= Zj ∩ ψ

Since e has finitely many unions expressions the two rules can be applied finitely many
times because the size of e decrease after applying any rule. It follows that the repeated
application of these two rules stabilizes after a finite number of steps.

22 P. Cousot, P. Ganty, J.-F. Raskin

Moreover after stabilization no value Z0, . . . , Zi appears in a union of 2 or more
values which means since B(A) = A that e ∈M(A). ut

In Ex. 2 let Xδ, δ be the sequences of iterates for λX. S ∩ p̃re[t2](X) which con-
verges to gfp⊆λX. S ∩ p̃re[t2](X) We have:

X0 = >
X1 = S ∩ p̃re[t2](X0) def. of the iterates

= S > ⊆ p̃re[t2](>)
= > \ {(x, y) | y = x+ 1}

X2 = S ∩ p̃re[t2](X1) def. of the iterates
= S ∩ p̃re[t2](S) X1 = S

= > \ {(x, y) | y = x+ 1 or y = x+ 2} from above
...

Xδ = {(x, y) | y 6 x}

B Examples

In this section we will show that Alg. 1 terminates on two well-known array sorting
algorithms. The property we prove are safety properties which states that the array to be
sorted is never accessed out of its bound. We do not analyze directly the program code
of those algorithms but an abstraction instead. Our abstraction forgets about the content
of the array and so we replace the tests based on array’s values by non deterministic
choices. Our model is sound in the sense that it contains at least all the behaviors of the
program. So if the abstract model satisfies the safety property so does the program. The
abstract model we use is given by counter automata where each counter corresponds to
an array index. The safety property is naturally reduced to a reachability property on
the counter automaton. Prop. 5 shows that when submitted a negative instance Alg. 1
terminates. Consequently the instances considered below are positive instances.

At the present time, no implementation of Alg. 1 is available but, as shown in the
previous sections, the algorithm is correct and moreover we identified some conditions
that, if satisfied, guarantee its termination. We thus rely on these conditions to show
that our algorithm is going to conclude with the right answer. These conditions are non
trivial but they can be evaluated using available tools. We choose to rely on the Hytech
model checker (see [18]) to prove that the condition of Prop. 7 is satisfied and hence
that Alg. 1 terminates.

Besides Hytech we also rely on the FAST tool (see [19]). FAST is a tool that uses
acceleration techniques. If the FAST tool terminates when evaluating gfp⊆λX. S ∩
p̃re[T](X) it returns an acceleration scheme R such that T ⊆ R ⊆ T ∗. Then Prop. 8 is
used to show that for any R′ such that R ⊆ R′ ⊆ T ∗ Alg. 1 terminates provided line 9
is replaced by Zi+1 = γ(Si) ∩ p̃re[R′](γ(Si)).

Fixpoint-Guided Abstraction Refinements 23

j
=

n,
n
≥ 1

t0 :
j ≥ 2→

size
:= j − 1

�4 �5 �0 �1 �2 �3

t5 : i �= max→ i := max

t 1
: i

:=
1

t2
: l :=

2i;
r :=

2i +
1

t3 : max := i

t
′
3
: l ≤

siz
e→

max
:=

l

t′4 : r ≤ size→ max := r

t6 : i = max→ j := j − 1

Fig. 3. Counters automata modeling of the Heapsort algorithm

The Heapsort Algorithm. Heapsort is a classical example in static analysis (e.g. [20]
using the polyhedral abstraction). We shall prove that the array to be sorted is never
accessed out of its bound given by 1 and n. The counter automaton is given Fig. 3.
The model has been derived manually from the code given in [21]. Since the array
is accessed through V = {`, i, r,max} we want to prove that each access is legal.
Formally the set S of states representing legal access is given by the following formulas
ψ1 to ψ4 associated to the locations with the same index.

ψ1 = ` 6 j − 1→ (1 6 ` 6 nN 1 6 i 6 n)
ψ2 = r 6 j − 1→ (1 6 r 6 nN 1 6 max 6 n)
ψ3 = i 6= max→ (1 6 i 6 nN 1 6 max 6 n)
ψ4 = 1 6 j 6 n

The set I of initial states is given by

{
j = nN n > 1 at `4
⊥ elsewhere.

Let P0 be the set of predicates appearing in the text of the program. Formally,
P0 is given by {j > 2, j = n, n > 1, i = max, i 6= max, r 6 j − 1, ` 6 j −
1, ψ1, ψ2, ψ3, ψ4}. The initial abstract domain is given by A0 =M(P0).

We are going to show that Alg. 1 terminates on the Heapsort algorithm. Hytech
terminates for

ψ′1 = ` 6 j − 1→ (1 6 `N 1 6 i 6 n)
ψ′2 = r 6 j − 1→ (1 6 r N 1 6 max 6 n)
ψ3 = i 6= max→ (1 6 i 6 nN 1 6 max 6 n)
ψ4 = 1 6 j 6 n

and thus Alg. 1 terminates by Prop. 7.
Notice that in ψ′1 and ψ′2 we do not check for ` 6 n (recall that component ` of

the array is accessed). However since j is not modified in locations `4, `0, `1, `2 and by
ψ4 we can deduce that whenever the array is accessed through `, the inequality ` 6 n
holds.

24 P. Cousot, P. Ganty, J.-F. Raskin

Now assume you do not want this ad hoc reasoning to convince yourself that the
array is never accessed out of its bounds. We can still manage this situation since FAST
terminates for

ψ1 = ` 6 j − 1→ (1 6 ` 6 nN 1 6 i 6 n)
ψ2 = r 6 j − 1→ (1 6 r 6 nN 1 6 max 6 n)
ψ3 = i 6= max→ (1 6 i 6 nN 1 6 max 6 n)
ψ4 = 1 6 j 6 n

and thus Alg. 1 terminates by Prop. 8.

The Bubble sort algorithm. The necessary termination condition n > 0 is found in
[4] by an iterated forward-backward non-relational interval analysis. ASTRÉE proves
the absence of out of array bound error in 0.8 s thanks to the octagonal abstraction [22].

We shall prove that the array to be sorted is never accessed out of its bound given
by 0 and n. Since the array is accessed through variable j only we want to prove that
0 6 j 6 n holds for each reachable state. The counter automaton given in Fig. 4 has
been extracted from [4].

i = n

t3 : j = i→ i′ = i− 1

�0 �1
t1 : i �= 0→ j′ = 0

t2 : j �= i→ j′ = j + 1

t1 : i �= 0→ j′ = 0

Fig. 4. Our two counters automata modeling the Bubblesort algorithm

In our model we have variables i and j and a non negative parameter n representing
the array’s size. Let I and S be given by {(i, j, n) | i = n} and {(i, j, n) | 0 6 j 6 n}
respectively. Let P0 be the set of predicates appearing in the text of the program plus
the formula representing S. Formally, P0 is given by {i = n, i = 0, i = j, 0 6 j 6 n}.
The abstract domain A0 is given byM(P0).

Finally we have that since the FAST tool terminates then Alg. 1 terminates by
Prop. 8.

