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Abstract. In order to contribute to the solution of the software reliabil
ity problem, tools have been designed to analyze statically the run-time
behavior of programs. Because the correctness problem is undecidable,
some form of approximation is needed. The purpose of abstract interpre
tation is to formalize this idea of approximation. We illustrate informally
the application of abstraction to the semantics of programming languages
as well as to static program analysis. The main point is that in order to
reason or compute about a complex system, some information must be
lost, that is the observation of executions must be either partial or at a
high level of abstraction.
In the second part of the paper, we compare static program analysis
with deductive methods, model-checking and type inference. Their foun
dational ideas are briefly reviewed, and the shortcomings of these four
methods are discussed, including when they should be combined. Alter
natively, since program debugging is still the main program verification
method used in the software industry, we suggest to combine formal with
informal methods.
Finally, the grand challenge for all formal methods and tools is to solve
the software reliability, trustworthiness or robustness problems. A few
challenges more specific to static program analysis by abstract interpre
tation are briefly discussed.

1 Introductory Motivations

The evolution of hardware by a factor of 106 over the past 25 years has lead
to the explosion of the size of programs in similar proportions. The scope of
application of very large programs (from 1 to 40 millions of lines) is likely to
widen rapidly in the next decade. Such big programs will have to be designed
at a reasonable cost and then modified and maintained during their lifetime
(which is often over 20 years). The size and efficiency of the programming and
maintenance teams in charge of their design and follow-up cannot grow in similar
proportions. At a not so uncommon (and often optimistic) rate of one bug per
thousand lines such huge programs might rapidly become hardly manageable in
particular for safety critical systems. Therefore in the next 10 years, the software
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reliability problem is likely to become a major concern and challenge to modern
highly computer-dependent societies.

In the past decade a lot of progress has been made both on thinking/method-
ological tools (to enhance the human intellectual ability) to cope with complex
software systems and mechanical tools (using the computer) to help the pro
grammer to reason about programs.

Mechanical tools for computer aided program verification started by execut
ing or simulating the program in as much as possible environments. However
debugging of compiled code or simulation of a model of the source program
hardly scale up and often offer a low coverage of dynamic program behavior.

Formal program verification methods attempt to mechanically prove that
program execution is correct in all specified environments. This includes deduc
tive methods, model checking, program typing and static program analysis.

Since program verification is undecidable, computer aided program verifica
tion methods are all partial or incomplete. The undecidability or complexity is
always solved by using some form of approximation. This means that the me
chanical tool will sometimes suffer from practical time and space complexity
limitations, rely on finiteness hypotheses or provide only semi-algorithms, re
quire user interaction or be able to consider restricted forms of specifications or
programs only. The mechanical program verification tools are all quite similar
and essentially differ in their choices regarding the approximations which have
to be done in order to cope with undecidability or complexity. The purpose of
abstract interpretation is to formalize this notion of approximation in a unified
framework (36; 43).

2 Abstract Interpretation

Since program verification deals with properties, that is sets (of objects with
these properties), abstract interpretation can be formulated in an application
independent setting, as a theory for approximating sets and set operations as
considered in set (or category) theory, including inductive definitions (52). A
more restricted understanding of abstract interpretation is to view it as a theory
of approximation of the behavior of dynamic discrete systems (e.g. the formal
semantics of programs or a communication protocol specification). Since such
behaviors can be characterized by fixpoints (e.g. corresponding to iteration),
an essential part of the theory provides constructive and effective methods for
fixpoint approximation and checking by abstraction (46; 50).

2.1 Fixpoint Semantics

The semantics of a programming language defines the semantics of any program
written in this language. The semantics of a program provides a formal math
ematical model of all possible behaviors of a computer system executing this
program in interaction with any possible environment. In the following we will
try to explain informally why the semantics of a program can be defined as the
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solution of a fixpoint equation. Then, in order to compare semantics, we will
show that all the semantics of a program can be organized in a hierarchy by ab
straction. By observing computations at different levels of abstraction, one can
approximate fixpoints hence organize the semantics of a program in a lattice
(41).

2.2 Trace Semantics

Our finer grain of observation of program execution, that is the most pre
cise of the semantics that
we will consider, is that of a
trace semantics (41; 46), a
model also frequently used
in temporal logic. An ex
ecution of a program for
a given specific interaction
with its environment is a se
quence of states, observed
at discrete intervals of time,
starting from an initial state,
then moving from one state
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Fig. 1. Examples of Computation Traces

to the next state by executing an atomic program step or transition and either
ending in a final regular or erroneous state or non terminating, in which case
the trace is infinite (see Fig. 1).

2.3 Least Fixpoint Trace Semantics

Introducing the computational partial ordering (41), we define the trace seman
tics in fixpoint form (41), as the least solution of an equation of the form
X = F(X) where X ranges over sets of finite and infinite traces.

More precisely, let Behaviors be the set of execution traces of a program,
possibly starting in any state. We denote by Behaviors+ the subset of finite
traces and by Behaviors∞ the subset of infinite traces.

A finite trace a•−−−. . .−−−z• in Behaviors+ is either reduced to a final state
(in which case there is no possible transition from state a• = z•) or the initial state
a• is not final and the trace consists of a first computation step a•−−−b• after which,
from the intermediate state b• , the execution goes on with the shorter finite trace
b•−−−. . .−−−z• ending in the final state z•. The finite traces are therefore all well
defined by induction on their length.

An infinite trace a•−−−. . .−−−. . . in Behaviors∞ starts with a first computa
tion step a•−−−b• after which, from the intermediate state b• , the execution goes
on with an infinite trace b•−−−. . .−−−. . . starting from the intermediate state
b•. These remarks and Behaviors = Behaviors+ ∪ Behaviors∞ lead to the
following fixpoint equation:
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Behaviors = {a• | a• is a final state}
∪ {a•−−−b•−−−. . .−−−z• | a•−−−b• is an elementary step &

b•−−−. . .−−−z• ∈ Behaviors+}
∪ {a•−−−b•−−−. . .−−−. . . | a•−−−b• is an elementary step &

b•−−−. . .−−−. . . ∈ Behaviors∞}

In general, the equation has multiple solutions. For example if there is only one
non-final state a• and only possible elementary step a•−−−a• then the equation is
Behaviors = {a•−−−a•−−−. . .−−−. . . | a•−−−. . .−−−. . . ∈ Behaviors}. One solution
is {a•−−−a•−−−a•−−−a•−−−. . .−−−. . .} but another one is the empty set ∅. Therefore,
we choose the least solution for the computational partial ordering (41):

« More finite traces & less infinite traces » .

2.4 Abstractions & Abstract Domains

A programming language semantics is more or less precise according to the
considered observation level of program execution. This intuitive idea can be
formalized by Abstract interpretation (41) and applied to different languages ,
including for proof methods.

The theory of abstract interpretation formalizes this notion of approximation
and abstraction in a mathematical setting which is independent of particular
applications. In particular, abstractions must be provided for all mathemati
cal constructions used in semantic definitions of programming and specification
languages (46; 50).

An abstract domain is an abstraction of the concrete semantics in the form
of abstract properties (approximating the concrete properties Behaviors) and
abstract operations (including abstractions of the concrete approximation and
computational partial orderings, an approximation of the concrete fixpoint trans
former F , etc.). Abstract domains for complex approximations of designed by
composing abstract domains for simpler components (46), see Sec. 2.10.

If the approximation is coarse enough, the abstraction of a concrete seman
tics can lead to an abstract semantics which is less precise, but is effectively
computable by a computer. By effective computation of the abstract semantics,
the computer is able to analyze the behavior of programs and of software before
and without executing them (42). Abstract interpretation algorithms provide ap
proximate methods for computing this abstract semantics. The most important
algorithms in abstract interpretation are those providing effective methods for
the exact or approximate iterative resolution of fixpoint equations (43).

We will first illustrate formal and effective abstractions for sets. Then we will
show that such abstractions can be lifted to functions and finally to fixpoints.

The abstraction idea and its formalization are equally applicable in other ar
eas of computer science such as artificial intelligence e.g. for intelligent planning,
proof checking, automated deduction, theorem proving, etc.
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2.5 Hierarchy of Abstractions

As shown in Fig. 2 (from (41), where Behaviors , denoted τ �∞ for short, is the
lattice infimum), all abstractions of a semantics can be organized in a lattice
(which is part of the lattice of abstract interpretations introduced in (46)). The
approximation partial ordering of this lattice formally corresponds to logical im
plication, intuitively to the idea that one semantics is more precise than another
one.
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Fig. 2. The Hierarchy of Semantics

Fig. 3 illustrates the derivation of a relational semantics (denoted τ∞ in Fig.
2) from a trace semantics (denoted τ �∞ in Fig. 2). The abstraction αr from trace
to relational semantics consists in replacing the finite traces a•−−−. . .−−−z• by the
pair 〈a, z〉 of the initial and final states. The infinite traces a•−−−b•−−−. . .−−−. . .
are replaced by the pair 〈a, ⊥〉 where the symbol ⊥ denotes non-termination.
Therefore the abstraction is:

αr(X) = {〈a, z〉 | a•−−−. . .−−−z• ∈ X} ∪ {〈a, ⊥〉 | a•−−−b•−−−. . .−−−. . . ∈ X} .

The denotational semantics (denoted τ � in Fig. 2) is the isomorphic representa
tion of a relation by its right-image:

αd(R) = λ a · {x | 〈a, x〉 ∈ R}.

The abstraction from relational to big-step operational or natural seman
tics (denoted τ+ in Fig. 2) simply consists in forgetting everything about non-
termination, so αn(R) = {〈a, x〉 ∈ R | x = ⊥} , as illustrated in Fig. 3.
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Fig. 3. Abstraction from Trace to Relational and Natural Semantics

A non comparable abstraction consists in collecting the set of initial and final
states as well as all transitions 〈x,y〉 appearing along some finite or infinite trace
a•−−−. . .

x•−−−
y
• . . . of the trace semantics. One gets the small-step operational or

transition semantics (denoted τ in Fig. 2 and also called Kripke structure in
modal logic) as illustrated in Fig. 4.
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Fig. 4. Transition Semantics

A further abstraction consists in collecting all states appearing along some
finite or infinite trace as illustrated in Fig. 5. This is the partial correctness
semantics or the static/collecting semantics for proving invariance properties of
programs.

All abstractions considered in this paper are “from above” so that the ab
stract semantics describes a superset or logical consequence of the concrete
semantics. Abstractions “from below” are dual and consider a subset of the
concrete semantics. An example of approximation “from below” is provided by
debugging techniques which consider a subset of the possible program executions
or by existential checking where one wants to prove the existence of an execu
tion trace prefix fulfilling some given specification. In order to avoid repeating
two times dual concepts and as we do usually, we only consider approximations
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Fig. 5. Static / Collecting / Partial Correctness Semantics
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Fig. 6. Non-relational Abstractions

“from above”, knowing that approximations “from below” can be easily derived
by applying the duality principle (as found e.g. in lattice theory).

2.6 Effective Abstractions

Numerical Abstractions Assume that a program has two integer variables
X and Y. The trace semantics of the program (Fig. 1) can be abstracted in the
static/collecting semantics (Fig. 5). A further abstraction consists in forgetting
in a state all but the values x and y of variables X and Y. In this way the trace
semantics is abstracted to a set of points (pairs of values), as illustrated in the
plane by Fig. 6(a).

We now illustrate informally a number of effective abstractions of an [in]finite
set of points.
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Fig. 7. Relational Abstractions

Non-relational Abstractions The non-relational, attribute independent or
cartesian abstractions (46 , example 6.2.0.2) consists in ignoring the possible
relationships between the values of the X and Y variables. So a set of pairs is
approximated through projection by a pair of sets. Each such set may still be
infinite and in general not exactly computer representable. Further abstractions
are therefore needed.

The sign abstraction (46) illustrated in Fig. 6(b) consists in replacing integers
by their sign thus ignoring their absolute value. The interval abstraction (42)
illustrated in Fig. 6(c) is more precise since it approximates a set of integers by
it minimal and maximal values (including −∞ and +∞ as well as the empty
set if necessary).

The congruence abstraction (82) (generalizing the parity abstraction (46)) is
not comparable, as illustrated in Fig. 6(d).

Relational Abstractions Relational abstractions are more precise than non
relational ones in that some of the relationships between values of the program
states are preserved by the abstraction.

For example the polyhedral abstraction (60) illustrated in Fig. 7(b) approxi
mates a set of integers by its convex hull. Only non-linear relationships between
the values of the program variables are forgotten.

The use of an octagonal abstraction illustrated in Fig. 7(a) is less precise
since only some shapes of polyhedra are retained or equivalently only linear
relations between any two variables are considered with coefficients +1 or -1 (of
the form ±x ± y ≤ c where c is an integer constant).
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Fig. 8. Binary Decision Graphs

Fig. 9. Tree Schemata

A non comparable relational abstraction is the linear congruence abstraction
(83) illustrated in Fig. 7(c).

A combination of non-relational dense approximations (like intervals) and
relational sparse approximations (like congruences) is the trapezoidal linear con
gruence abstraction (110) as illustrated in Fig. 7(d).

Symbolic Abstractions Most structures manipulated by programs are sym
bolic structures such as control structures (call graphs), data structures (search
trees, pointers (66; 67; 136; 142)), communication structures (distributed & mo
bile programs (71; 87; 141)), etc. It is very difficult to find compact and expressive
abstractions of such sets of objects (sets of languages, sets of automata, sets of
trees or graphs, etc.). For example Büchi automata or automata on trees are
very expressive but algorithmically expensive.

A compromise between semantic expressivity and algorithmic efficiency was
recently introduced by (111) using Binary Decision Graphs and Tree Schemata
to abstract infinite sets of infinite trees as illustrated in Fig. 8 & 9.

2.7 Information Loss

Any abstraction introduces some loss of information. For example the abstrac
tion of the trace semantics into relational or denotational semantics loses all
information on the computation cost since all intermediate steps in the execu
tion are removed.
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Fig. 10. Is 1/(X+1-Y) well-defined?

All answers given by the abstract semantics are always correct with respect to
the concrete semantics. For example, if termination is proved using the relational
semantics then there is no execution abstracted to 〈a,⊥〉 , so there is no infinite
trace a•−−−b•−−−. . .−−−. . . in the trace semantics, whence non termination is
impossible when starting execution in initial state a.

However, because of the information loss, not all questions can be definitely
answered with the abstract semantics. For example, the natural semantics can
not answer questions about termination as can be done with the relational or
denotational semantics. These semantics cannot answer questions about con
crete computation costs.

The more concrete is the semantics, the more questions it can answer. The
more abstract semantics are simpler. Non comparable abstract semantics (such
as intervals and congruences) answer non comparable sets of questions.

To illustrate the loss of information, let us consider the problem of deciding
whether the operation 1/(X+1-Y) appearing in a program is always well defined
at run-time. The answer can certainly be given by the concrete semantics since
it has no point on the line x + 1 − y = 0, as shown in Fig. 10(a).

In practice the concrete abstraction is not computable so it is hardly usable
in a useful effective tool. The dense abstractions that we have considered are
too approximate as is illustrated in Fig. 10(b).

However the answer is positive when using the relational congruence abstrac
tion, as shown in Fig. 10(c).

2.8 Function Abstraction

We now show how the abstraction of complex mathematical objects used in the
semantics of programming or specification languages can be defined by compos
ing abstractions of simpler mathematical structures.
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For example knowing abstractions of the
parameter and result of a monotonic function
on sets, a function F can be abstracted into
an abstract function F � as illustrated in Fig.
11 (46). Mathematically, F � takes its parame
ter x in the abstract domain. Let γ(x) be the
corresponding concrete set (γ is the adjoined,
intuitively the inverse of the abstraction func
tion α). The function F can be applied to get
the concrete result ◦ F ◦ γ(x). The abstrac
tion function α can then be applied to approx
imate the result F �(x) = α ◦ F ◦ γ(x).
In general, neither F , α nor γ are computable
even though the abstraction α may be effec

�xxx F

F

Concrete domain

Abstract domain
�

α
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Fig. 11. Function Abstraction

tive. So we have got a formal specification of the abstract function F � and an
algorithm has to be found for an effective implementation.

2.9 Fixpoint Abstraction

A fixpoint of a function F can often be obtained as the limit of the iterations of
F from a given initial value ⊥. In this case the abstraction of the fixpoint can
often be obtained as the abstract limit of the iteration of the abstraction F � of
F starting from the abstraction α(⊥) of the initial value ⊥. The basic result is
that the concretization of the abstract fixpoint is related to the concrete fixpoint
by the approximation relation expressing the soundness of the abstraction (46).
This is illustrated in Fig. 12.
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Fig. 12. Fixpoint Abstraction lfpF � γ(lfpF �)

Often states have some finite component (e.g. a program counter) which can
be used to partition into fixpoint system of equations by projection along that
component. Then chaotic (44) and asynchronous iteration strategies (36) can be
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used to solve the equations iteratively. Various efficient iteration strategies have
been studied , including ones taking particular properties of abstractions into
account and others to speed up the convergence of the iterates (51).

2.10 Composing Abstractions

Abstractions hence abstract interpreters for static program analysis can be de
signed compositionally by stepwise abstraction, combination or refinement (75;
39).

An example of stepwise abstraction is the functional abstraction of Sec. 2.8.
The abstraction of a function is parameterized by abstractions for the function
parameters and the function result which can be chosen later in the modular
design of the abstract interpreter.

An example of abstraction combination is the reduced product of two abstrac
tions (46) which is the most abstract abstraction more precise than these two
abstractions or the reduce cardinal power (46) generalizing case analysis. Such
combination of abstract domains can be implemented as parameterized modules
in static analyzer generators (e.g. (104)) so as to partially automate the design
of expressive analyses from simpler ones.

An example of refinement is the disjunctive completion (46) which completes
an abstract domain by adding concrete disjunctions missing in the abstract
domain. Another example of abstract domain refinement is the complementation
(34) adding concrete negations missing in the abstract domain.

2.11 Sound and Complete Abstractions

Abstract interpretation theory has mainly been concerned with the soundness of
the abstract semantics/interpreter, relative to which questions can be answered
correctly despite the loss of information (43). Soundness is essential in practice
and leads to a formal design method (46).

However completeness , relative to the formalization of the loss of information
in a controlled way so as to answer a given set of questions, has also been
intensively studied (46; 75), including in the context of model checking (40).

In practice complete abstractions, including a most abstract one, always
exist to check that a given program semantics satisfies a given specification.
Moreover any given abstraction can be refined to a complete one. Nevertheless
this approach has severe practical limitations since, in general, the design of
such complete abstractions or the refinement of a given one is logically equiva
lent to the design of an inductive argument for the formal proof that the given
program satisfies the given specification, while the soundness proof of this ab
straction logically amounts to checking the inductive verification conditions or
proof obligations of this formal proof (40). Such proofs can hardly be fully auto
mated hence human interaction is unavoidable. Moreover the whole process has
to be repeated each time the program or specification is modified.
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Instead of considering such strong specifications for a given specific program,
the objective of static program analysis is to consider (often predefined) spec
ifications and all possible programs. The practical problem in static program
analysis is therefore to design useful abstractions which are computable for all
programs and expressive enough to yield interesting information for most pro
grams.

3 Static Program Analysis

Static program analysis is the automatic static determination of dynamic run-
time properties of programs.

3.1 Foundational Ideas of Static Program Analysis

Given a program and a specification, a pro
gram analyzer will check if the program seman
tics satisfies the specification (Fig. 13). In case
of failure, the analyzer will provide hints to un
derstand the origin of errors (e.g. by a backward
analysis providing necessary conditions to be sat
isfied by counter-examples).

The principle of the analysis is to compute an
approximate semantics of the program in order

�xxx
Program analyzer

Program Specification

Diagnosis

Fig. 13. Program Analysis
to check a given specification. Abstract interpretation is used to derive, from a
standard semantics, the approximate and computable abstract semantics. The
derivation can often be done by composing standard abstractions to fit a partic
ular kind of information which has to be discovered about program execution.
This derivation is itself not (fully) mechanizable but static analyzer generators
such as PAG (108), GENA (69)and others can provide generic abstractions to
be composed with problem specific ones.

In practice, the program analyzer contains a generator reading the pro
gram text and producing equations or constraints whose solution is a com
puter representation of the program abstract semantics. A solver is then used
to solve these abstract equations/constraints. A popular resolution method is
to use iteration. Of the numerical abstractions considered in Sec. 2.6 , only
the sign and simple congruence abstractions ensure the finite convergence of
the iterates. If the limit of the iterates is inexistent (which may be the case
e.g. for the polyhedral abstraction) or it is reached after infinitely many it
eration steps (e.g. interval and octagonal abstractions), the convergence may
have to be ensured and/or accelerated using a widening to over estimate the
solution in finitely many steps followed by a narrowing to improve it (36; 43;
51).
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In abstract compilation, the gen
erator and solver are directly com
piled into a program which directly
yields the approximate solution.

This solution is an approxima
tion of the abstract semantics which
is then used by a diagnoser to check
the specification. Because of the loss
of information, the diagnosis is al
ways of the form “yes”, “no”, “un
known” or “irrelevant” (e.g. a safety
specification for unreachable code).
The general structure of program an
alyzers is illustrated in Fig. 14. Be
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Program Specification
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analyzer
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Fig. 14. Principle of Program Analysis

sides diagnosis, static program analysis is also used for other applications in
which case the diagnoser is replaced by an optimiser (for compile-time opti
mization), a program transformer (for partial evaluation (98)), etc.

3.2 Shortcomings of Static Program Analysis

Static program analysis can be used for large programs (e.g. 220,000 lines of C)
without user interaction. The abstractions are chosen to be of wide scope with
out specialization to a particular program. Abstract algebras can be designed
and implemented into libraries which are reusable for different programming
languages. The objective is to discover invariants that are likely to appear in
many programs so that the abstraction must be widely reusable for the program
analyzer to be of economic interest.

The drawback of this general scope is that the considered abstract specifi
cations and properties are often simple, mainly concerning elementary safety
properties such as absence of run-time errors. For example non-linear abstrac
tions of sets of points are very difficult and very few mathematical results are
of practical interest and directly applicable to program analysis. Checking ter
mination and similar liveness properties is trivial with finite state systems, at
least from a theoretical if not algorithmic point of view (e.g. finding loops in fi
nite graphs). The same problem is much more difficult for infinite state systems
because of fairness (111) or of potentially infinite data structures (as consid
ered e.g. in partial evaluation) which do not amount to finite cycles so that
termination or inevitability proofs require the discovery of variant functions on
well-founded sets which is very difficult in full generality.

Even when considering restricted simple abstract properties, the semantics of
real-life programming languages is very complex (recursion, concurrency, modu
larity, etc.) whence so is the corresponding abstract interpreter. The abstraction
of this semantics, hence the design of the analyzer is mostly manual (and beyond
the ability of casual programmers or theorem provers) whence costly. The con
sidered abstractions must have a large scope of application and must be easily
reusable to be of economic interest.
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From a user point of view, the results of the analysis have to be presented in
a simple way (for example by pointing at errors only or by providing abstract
counter-examples, or less frequently concrete ones). Experience shows that the
cases of uncertainty represent 5 to 10 % of the possible cases. They must be
handled with other empirical or formal methods (including more refined abstract
interpretations).

3.3 Applications of Static Program Analysis

Among the numerous applications of static program analysis, let us cite data
flow analysis (130; 57); program optimization and transformation (including par
tial evaluation and program specialization (98) and data dependence analysis
for the parallelisation of sequential languages); set-based analysis (55); type in
ference (38) (including undecidable systems and soft typing); verification of
reactive (86; 93), real-time and (linear) hybrid systems including state space
reduction; cryptographic protocol analysis; abstract model-checking of infinite
systems (57); abstract debugging, testing and verification ; cache and pipeline
behavior prediction (70); probabilistic analysis (115); communication topology
analysis for mobile/distributed code (71; 87; 141); automatic differentiation of
numerical programs; abstract simulation of temporal specifications; Semantic
tattooing/watermarking of software (59); etc.

Static program analysis has been intensively studied for grammars and poly
nomial systems (37), term graph rewriting (79), sequent calculi (2), typesetting
languages (96), procedural languages (16; 45) (for alias analysis (142), pointer
analysis (66; 67), parameter boxing/unboxing (80), copy elimination (131), de
pendence analysis (109), exception analysis (129), constant propagation (102),
(linear) equality or inequality relationships analysis (60) etc.), parallel proce
dural languages (61; 78), functional languages (for binding time analysis (140),
strictness analysis (21; 53; 117), inverse image analysis (68), projection analysis
(20), comportment analysis (54), dependency analysis (12), path/trace analysis
(32), closure analysis (120), control flow analysis (134), value flow analysis (13),
compile-time garbage collection (97), stackability and escape analysis (10), data
structures and abstract data type analysis (106), heap shape analysis (99; 136),
exception analysis (143), polymorphic function analysis (4), kind/sort analysis
(84), typing (38), effect systems (100), termination analysis (121), time com
plexity analysis (127), parallelization (138), etc.), parallel functional languages
(62), data parallel languages (25), logic languages including Prolog (49; 64)
(for mode (112) and type analysis (95) and their combination (17), finiteness
analysis (8), relational argument size analysis (132), dependency analysis (116),
detecting determinate/functional computations (76), mutually exclusive rules
detection (124), occur check reduction (135), WAM code optimization (3), copy
avoidance (74), groundness analysis (35), sharing analysis (33), freeness analysis
(30) and their combinations (31), termination analysis (101), time complexity
and cost analysis (65), parallelisation (18), etc.) including its search rule and the
cut (73) and database programming languages (1), concurrent logic languages
(22), functional logic languages (88), constraint logic languages (9), concurrent
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constraint logic languages (144), specification languages (77), synchronous lan
guages (86) (such as lustre (24)), concurrent/parallel languages (48), commu
nicating and distributed languages (47; 113) and more recently object-oriented
languages (11).

Abstract interpretation based static program analyses have been used for the
static analysis of the embedded ADA software of the Ariane 5 launcher1 and
the ARD2 (103). The static program analyser aims at the automatic detection
of the definiteness , potentiality , impossibility or inaccessibility of run-time errors
such as scalar and floating-point overflows, array index errors, divisions by zero
and related arithmetic exceptions, uninitialized variables, data races on shared
data structures, etc. The analyzer was able to automatically discover the Ariane
501 flight error. The static analysis of embedded safety critical software (such
as avionic software (126)) is very promising (58).

3.4 Industrialization of Static Analysis by Abstract Interpretation

The impressive results obtained by the static analysis of real-life embedded
critical software (103; 126) is quite promising for the industrialization of abstract
interpretation.

This is the explicit objective of AbsInt Angewandte Informatik GmbH
created in Germany by R. Wilhelm and C. Ferdinand in 1998 commercial
izing the program analyzer generator PAG and an application to determine
the worst-case execution time for modern computer architectures with memory
caches, pipelines, etc (70).

Polyspace Technologies was created in France by A. Deutsch and D.
Pilaud in 1999 to develop and commercialize ADA and C program analyzers.

Other companies like Connected Components Corporation created in
the U.S.A. by W.L. Harrison in 1993 use abstract interpretation internally e.g.
for compiler design (92).

4 Abstract Formal Methods

No automatic formal method can ultimately find all errors in a software system
nor can their combinations. We will briefly review the automatic formal methods
for computer-aided program verification, discussing their principles, advantages
and shortcomings. Since static program analysis has already been discussed, we
now consider typing, model-checking, deductive methods and their combination.

4.1 Typing

Polymorphic typing and type inference (114) was a definite step in the design of
programming languages and compilers (91). The question for the next decade
seems to be to scale to more expressive properties.
1 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000

lines of Ada code).
2 Atmospheric Reentry Demonstrator.

http://www.absint.com
http://www.absint.com
http://www.polyspace.com
http://www.polyspace.com
http://www.concmp.com/index.html
http://www.concmp.com/index.html
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Foundational Ideas of Typing Typing is based on decidable program analy
ses. This approach is always possible by restricting both on specifications (al
lowed types) and on programs, as shown when considering types as abstract
interpretations (38). In theory, type systems have a clean presentation of the
type analysis (inference algorithm (114)) through an equivalent logical formal
system (type verification (63)). Monomorphic typing (94) was extended to poly
morphism (114), complex data structures, references (89), exceptions and sepa
rate modules (90) in a way that scales up for very large programs. It is nicely
integrated in the compiler and the certification can go down to the generated
code (proof-carrying code (118), certified compiler (137)).

Shortcomings of Typing Type systems (e.g. with subtle subtyping) can be
very complex to understand for the casual user. One difficulty is that typing is
compositional but not fully abstract (e.g. the same polymorphic code can type
differently in different utilization contexts). The interaction with the user is often
crude (no hint is given to understand why wrong programs do not type well).
It is hardly possible for the user to provide hints to help the typing process.
The logical specification of the type system is often inexistent in the reference
manual, not equivalent to the type inference algorithm or so inextricable that
it is useless both to the programmer and the compiler designer. The programs
considered in type theory are both complex (higher-order modules) and too re
stricted (mainly functional languages). The most severe restrictions are on the
considered properties (arithmetic, out of range array indexing, null pointer deref
erencing, … errors are checked at run-time, all liveness properties are ignored).
These restrictions and the difficulty to generalize to more expressive properties
mainly follow from the encoding of types as terms/formulæ and from the one
iterate fixpoint approximation.

4.2 Deductive Methods

Foundational Ideas of Deductive Methods Deductive methods use a (man
ually designed abstraction of) the program semantics to obtain minimal verifica
tion conditions to prove program correctness. These verification conditions can
be derived from the program trace semantics by abstract interpretation (41).
Then a theorem prover (119) or a proof assistant (122) is used to check the
verification conditions.

Shortcomings of Deductive Methods Deductive methods use the schema
of Fig. 14 but for the fact that the solver is replaced by a verifier or checker thus
avoiding fixpoint computations. So the constraints or equations corresponding to
the verification conditions are not solved. This means that an inductive argument
(e.g. invariant, variant function) has to be provided, generally by the user. Since
the implication involved in the verification condition is itself undecidable, the
proof verification can only be partially automatized, even though the solution to
the equations/constraints is provided. Therefore interaction of the programmer
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with the prover is ultimately needed. This (wo)man/prover interaction is hard
if not despairing, in particular because the size of the proof is often exponential
in the program size. Therefore debugging an unsuccessful proof (because of a
program error or a prover weakness) can be as complex as (if not much more
complex than) debugging the program itself.

An alternative (105) consists in restricting the form of predicates considered
by the prover, (which is an abstract interpretation (46, Sec. 5)). This can go up
to unsound verification condition simplifications, essentially to make the verifier
simpler (e.g. modular arithmetic).

Because theorem provers are driven by unformalized heuristics, and these
heuristics and their interactions are changed over time for improving proof
strategies, theorem provers are often unstable over time (e.g. proof strategies
get changed so that old proofs no longer work). Another weakness which makes
interaction with other formal methods somewhat difficult is the uniform encod
ing of properties as syntactical terms/formulæ (so that e.g. BBDs are hardly
efficiently encodable). It follows that the theorem prover has ultimately to be
extended with program analyzers, model checkers, typing, among others (133),
often without supporting theory, in particular for mechanizing and combining
abstractions.

4.3 Model Checking

Model checking (26; 125) has been very successful for the verification of hardware
(7), communication protocols (29), cryptographic protocols (5), and real-time
(23) or probabilistic (139) processes. As far as software systems are concerned,
the question for the next decade is whether model checking can be extended to
the verification of very large real-life programs.

Foundational Ideas of Model Checking First a model of the program (i.e.
manually designed abstraction of the program semantics) must be designed (in
the form of a transition system similar to a small step operational semantics).
Then a specification of the program must be provided by the user in a very
expressive temporal logic (123). A model checker can then check the specification
by exhaustive search/symbolic exploration of the state space.

The spectacular success of model checking followed from the clever design of
data structures (e.g. BDDs or QDDs (14)) and algorithms (e.g. minimal state
graph generation (15), fixpoint computation (107) or SAT (6)) for representing
very large sets of booleans and their transformations.

The approximation is that the model must be finite-state or some form of
abstract interpretation must be used (28; 81) to reduce the verification problem
to finite state, including symmetries (27), etc. Also clever semantics of concur
rent systems have been considered, e.g. to avoid the combinatorial explosion of
interleaving (29).

Another trend in infinite-state model checking is to consider safety proper
ties only and polyhedral abstractions, with variants (e.g. Presburger arithmetic
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(19)). This is a direct application of polyhedral static program analysis (60),
including the use of widenings. This allows e.g. for the analysis of reactive (72),
real-time (85) and hybrid systems (86).

Shortcomings of Model Checking Although model checking gained a factor
of 100 in 10 years, it is very difficult to scale up because of the state explosion
problem. So, the necessary restriction to available computer resources often re
duces the model checker from formal verification to debugging on part of the
state space. Since the model must ultimately be finite (to allow for exhaustive
search/symbolic exploration), abstraction is mandatory, which is a very difficult
task to do manually and/or is left informal. Moreover, some forms of abstrac
tions (such as interval (43) or polyhedral (60) abstractions) do not abstract
concrete transition systems into abstract transition systems so that the model
checker may not be reusable in the abstract. One can use abstraction for model
checking which are complete in that there always exists a program specific ab
straction into a finite model to prove a given specification correct (see (40) for
safety properties) but none will be complete for all programs, even for simple
properties as considered in static program analysis (51). It follows that complete
abstractions are difficult and not reusable, hence not cost effective.

5 Combining Program Verification Methods

Since no single formal method can ultimately solve the verification problem, a
current trend is to combine formal methods.

For example, one can rely on a user designed abstraction and derive a finite
abstract model of the program semantics by abstract interpretation, prove the
correctness of the abstraction by deductive methods and later verify the abstract
model by model-checking (128).

A fundamental limitation (40) is that the abstraction discovery and the
derivation of the abstract semantics are respectively logically equivalent hence
practically as difficult as invariant discovery and invariant verification in a for
mal proof. So we have the feeling that the combination of tools might simplify
formal proofs but still will ultimately not solve the program verification problem.

6 Combining Empirical and Formal Methods

Formal methods have made a lot of progress in the last decade. Nevertheless
there are few automatic light weight tools to apply them in practice. Integration
of such tools is difficult and cannot ultimately solve all verification problems.

It follows that the only mechanical tool for verifying programs is still de
bugging, despite its well-known defaults, incompleteness and cost. There again
progress was slow, in particular because theory never took debugging seriously.
The main advantage of debugging is that a debugger is a light weight tool which
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is very easily understood by all programmers. Because of its well-known incred
ible cost for weak results, debugging may not scale up in the next decade for
very large or safety critical software.

An alternative which still remains to be investigated is the combination of
informal methods like debugging with verification tools. Let us consider for ex
ample abstract testing (56).

The classical debugging methodology consists in running the program on test
data, checking if the execution satisfies informal specifications. This process is
repeated by providing more tests until reaching a satisfactory coverage.

By an easily understandable analogy, the abstract testing methodology (56)
consists in computing the abstract semantics for a finitary or infinitary abstrac
tion chosen by the programmer among a predefined palette (not user defined,
which would be too difficult). The abstract semantics is then checked against
user-provided abstract assertions or the abstraction of a formal specification.
This process is repeated with more refined abstractions until enough assertions
are proved or no predefined abstraction can do.

Observe that one can prove the absence of (some categories of) bugs, not
only their presence. Moreover, abstract evaluation can range from an analogy
to program execution to the application of proof methods (using e.g. forward
as well as backward reasonings providing abstract counter-examples) without
attempting to make a one-shot complete formal proof of the specification.

7 Conclusions on the Past Decade

Full program verification by formal methods (e.g. model checking/deductive
methods), which requires user interaction (for discovering an abstraction or in
ductive argument) is very costly in human resources, hence is not likely to scale
up for very large software. Abstraction is mandatory for program verification,
but difficult, hardly automatizable and beyond the common capabilities of most
programmers.

Partial program verification by static analysis (with typing being considered
as a particular and successful case) is cost-effective3 because no user interven
tion is mandatory for performing the analysis and universal abstractions are
reusable, hence commercializable.

For large and complex programs, complete verification by formal methods is
not likely to be viable at low cost. Program debugging is still and will probably
remain for some time the prominent industrial program “verification” method.

In this context, abstract interpretation based static program analysis can
be extended to abstract program testing. Abstract interpretation based methods
offer powerful techniques which, in the presence of approximation, can be viable
alternatives or complements both to the exhaustive search of model-checking
and to the partial exploration methods of classical debugging.

3 e.g. less than 0.25$ per program line costing 50 to 80$.
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8 Grand Challenge for the Next Decade

We believe that in the next decade the software industry will certainly have to
face its responsibility imposed by a computer-dependent society, in particular
for safety critical systems. Consequently, Software reliability4 will be a grand
challenge for computer science and practice.

The grand challenge for formal methods, in particular abstract interpretation
based formal tools, is both the large scale industrialization and the intensifica
tion of the fundamental research effort.

General-purpose, expressive and cost-effective abstractions have to be devel
oped e.g. to handle floating point numbers, data dependences (e.g. for paralleliza
tion), liveness properties with fairness (to extend finite-state model-checking to
software), timing properties for embedded software, probabilistic properties, etc.
Present-day tools will have to be enhanced to handle higher-order compositional
modular analyses and to cope with new programming paradigms involving com
plex data and control concepts (such as objects, concurrent threads, distrib
uted/mobile programming, etc.), to automatically combine and locally refine
abstractions in particular to cope with “unknow” answers, to interact nicely
with users and other formal or informal methods.

The most challenging objective might be to integrate formal analysis by
abstract interpretation in the full software development process, from the initial
specifications to the ultimate program development.
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