
Abstract Interpretation Based Formal Methods
and Future Challenges
(Electronic Version)

Patrick Cousot

École normale supérieure, Département d’informatique,
45 rue d’Ulm, 75230 Paris cedex 05, France

Patrick.Cousot@ens.fr http://www.di.ens.fr/˜cousot/

Abstract. In order to contribute to the solution of the software reliabil
ity problem, tools have been designed to analyze statically the run-time
behavior of programs. Because the correctness problem is undecidable,
some form of approximation is needed. The purpose of abstract interpre
tation is to formalize this idea of approximation. We illustrate informally
the application of abstraction to the semantics of programming languages
as well as to static program analysis. The main point is that in order to
reason or compute about a complex system, some information must be
lost, that is the observation of executions must be either partial or at a
high level of abstraction.
In the second part of the paper, we compare static program analysis
with deductive methods, model-checking and type inference. Their foun
dational ideas are briefly reviewed, and the shortcomings of these four
methods are discussed, including when they should be combined. Alter
natively, since program debugging is still the main program verification
method used in the software industry, we suggest to combine formal with
informal methods.
Finally, the grand challenge for all formal methods and tools is to solve
the software reliability, trustworthiness or robustness problems. A few
challenges more specific to static program analysis by abstract interpre
tation are briefly discussed.

1 Introductory Motivations

The evolution of hardware by a factor of 106 over the past 25 years has lead
to the explosion of the size of programs in similar proportions. The scope of
application of very large programs (from 1 to 40 millions of lines) is likely to
widen rapidly in the next decade. Such big programs will have to be designed
at a reasonable cost and then modified and maintained during their lifetime
(which is often over 20 years). The size and efficiency of the programming and
maintenance teams in charge of their design and follow-up cannot grow in similar
proportions. At a not so uncommon (and often optimistic) rate of one bug per
thousand lines such huge programs might rapidly become hardly manageable in
particular for safety critical systems. Therefore in the next 10 years, the software

Patrick.Cousot@ens.fr
http://www.di.ens.fr/~cousot/

2

reliability problem is likely to become a major concern and challenge to modern
highly computer-dependent societies.

In the past decade a lot of progress has been made both on thinking/method-
ological tools (to enhance the human intellectual ability) to cope with complex
software systems and mechanical tools (using the computer) to help the pro
grammer to reason about programs.

Mechanical tools for computer aided program verification started by execut
ing or simulating the program in as much as possible environments. However
debugging of compiled code or simulation of a model of the source program
hardly scale up and often offer a low coverage of dynamic program behavior.

Formal program verification methods attempt to mechanically prove that
program execution is correct in all specified environments. This includes deduc
tive methods, model checking, program typing and static program analysis.

Since program verification is undecidable, computer aided program verifica
tion methods are all partial or incomplete. The undecidability or complexity is
always solved by using some form of approximation. This means that the me
chanical tool will sometimes suffer from practical time and space complexity
limitations, rely on finiteness hypotheses or provide only semi-algorithms, re
quire user interaction or be able to consider restricted forms of specifications or
programs only. The mechanical program verification tools are all quite similar
and essentially differ in their choices regarding the approximations which have
to be done in order to cope with undecidability or complexity. The purpose of
abstract interpretation is to formalize this notion of approximation in a unified
framework (36; 43).

2 Abstract Interpretation

Since program verification deals with properties, that is sets (of objects with
these properties), abstract interpretation can be formulated in an application
independent setting, as a theory for approximating sets and set operations as
considered in set (or category) theory, including inductive definitions (52). A
more restricted understanding of abstract interpretation is to view it as a theory
of approximation of the behavior of dynamic discrete systems (e.g. the formal
semantics of programs or a communication protocol specification). Since such
behaviors can be characterized by fixpoints (e.g. corresponding to iteration),
an essential part of the theory provides constructive and effective methods for
fixpoint approximation and checking by abstraction (46; 50).

2.1 Fixpoint Semantics

The semantics of a programming language defines the semantics of any program
written in this language. The semantics of a program provides a formal math
ematical model of all possible behaviors of a computer system executing this
program in interaction with any possible environment. In the following we will
try to explain informally why the semantics of a program can be defined as the

3

solution of a fixpoint equation. Then, in order to compare semantics, we will
show that all the semantics of a program can be organized in a hierarchy by ab
straction. By observing computations at different levels of abstraction, one can
approximate fixpoints hence organize the semantics of a program in a lattice
(41).

2.2 Trace Semantics

Our finer grain of observation of program execution, that is the most pre
cise of the semantics that
we will consider, is that of a
trace semantics (41; 46), a
model also frequently used
in temporal logic. An ex
ecution of a program for
a given specific interaction
with its environment is a se
quence of states, observed
at discrete intervals of time,
starting from an initial state,
then moving from one state

�xxx

Initial states
Final states of the
 finite tracesIntermediate states

Infinite
traces

0 1 2 3 4 5 6 7 8 9 discrete time

a b c d

e f

g h

i j

k

Fig. 1. Examples of Computation Traces

to the next state by executing an atomic program step or transition and either
ending in a final regular or erroneous state or non terminating, in which case
the trace is infinite (see Fig. 1).

2.3 Least Fixpoint Trace Semantics

Introducing the computational partial ordering (41), we define the trace seman
tics in fixpoint form (41), as the least solution of an equation of the form
X = F(X) where X ranges over sets of finite and infinite traces.

More precisely, let Behaviors be the set of execution traces of a program,
possibly starting in any state. We denote by Behaviors+ the subset of finite
traces and by Behaviors∞ the subset of infinite traces.

A finite trace a•−−−. . .−−−z• in Behaviors+ is either reduced to a final state
(in which case there is no possible transition from state a• = z•) or the initial state
a• is not final and the trace consists of a first computation step a•−−−b• after which,
from the intermediate state b• , the execution goes on with the shorter finite trace
b•−−−. . .−−−z• ending in the final state z•. The finite traces are therefore all well
defined by induction on their length.

An infinite trace a•−−−. . .−−−. . . in Behaviors∞ starts with a first computa
tion step a•−−−b• after which, from the intermediate state b• , the execution goes
on with an infinite trace b•−−−. . .−−−. . . starting from the intermediate state
b•. These remarks and Behaviors = Behaviors+ ∪ Behaviors∞ lead to the
following fixpoint equation:

4

Behaviors = {a• | a• is a final state}
∪ {a•−−−b•−−−. . .−−−z• | a•−−−b• is an elementary step &

b•−−−. . .−−−z• ∈ Behaviors+}
∪ {a•−−−b•−−−. . .−−−. . . | a•−−−b• is an elementary step &

b•−−−. . .−−−. . . ∈ Behaviors∞}

In general, the equation has multiple solutions. For example if there is only one
non-final state a• and only possible elementary step a•−−−a• then the equation is
Behaviors = {a•−−−a•−−−. . .−−−. . . | a•−−−. . .−−−. . . ∈ Behaviors}. One solution
is {a•−−−a•−−−a•−−−a•−−−. . .−−−. . .} but another one is the empty set ∅. Therefore,
we choose the least solution for the computational partial ordering (41):

« More finite traces & less infinite traces » .

2.4 Abstractions & Abstract Domains

A programming language semantics is more or less precise according to the
considered observation level of program execution. This intuitive idea can be
formalized by Abstract interpretation (41) and applied to different languages ,
including for proof methods.

The theory of abstract interpretation formalizes this notion of approximation
and abstraction in a mathematical setting which is independent of particular
applications. In particular, abstractions must be provided for all mathemati
cal constructions used in semantic definitions of programming and specification
languages (46; 50).

An abstract domain is an abstraction of the concrete semantics in the form
of abstract properties (approximating the concrete properties Behaviors) and
abstract operations (including abstractions of the concrete approximation and
computational partial orderings, an approximation of the concrete fixpoint trans
former F , etc.). Abstract domains for complex approximations of designed by
composing abstract domains for simpler components (46), see Sec. 2.10.

If the approximation is coarse enough, the abstraction of a concrete seman
tics can lead to an abstract semantics which is less precise, but is effectively
computable by a computer. By effective computation of the abstract semantics,
the computer is able to analyze the behavior of programs and of software before
and without executing them (42). Abstract interpretation algorithms provide ap
proximate methods for computing this abstract semantics. The most important
algorithms in abstract interpretation are those providing effective methods for
the exact or approximate iterative resolution of fixpoint equations (43).

We will first illustrate formal and effective abstractions for sets. Then we will
show that such abstractions can be lifted to functions and finally to fixpoints.

The abstraction idea and its formalization are equally applicable in other ar
eas of computer science such as artificial intelligence e.g. for intelligent planning,
proof checking, automated deduction, theorem proving, etc.

5

2.5 Hierarchy of Abstractions

As shown in Fig. 2 (from (41), where Behaviors , denoted τ �∞ for short, is the
lattice infimum), all abstractions of a semantics can be organized in a lattice
(which is part of the lattice of abstract interpretations introduced in (46)). The
approximation partial ordering of this lattice formally corresponds to logical im
plication, intuitively to the idea that one semantics is more precise than another
one.

Hoare
logics

weakest
precondition
semantics

denotational
semantics

relational
semantics

trace
semantics

transition
semantics

equivalence
abstraction✲

restriction

infinite
demoniac

deterministic
naturalangelic

τ�!

τ∂

τEM

τD

τ�τS τ♦τ �τ �

τ�

τwp

τ tHτpH

τwlp

τ
�+

τ+ τω

τ �ω

τ gH

τ gwp

τ�?

τ �

τ∞

τ �∞

τ

✟✟✯
�

✘✘✘✘✘✘✘✿ �

�

�

✡
✡✡✣

�

� � �

�

✻

✻ ✻
✏✏✶

�

�

�

�✟✟✟✟✯

✟✟✟✟✯

✟✟✟✟✯

❍❍❍❍

❍❍❍❍

❍❍❍❍

❍❍❍❍

�❍❍❍❍
�

�

�

�

�

��

�

�

�

�

✏✏✏✏✏✏

✏✏✏✏✏✏✶

✏✏✏✏✶

Fig. 2. The Hierarchy of Semantics

Fig. 3 illustrates the derivation of a relational semantics (denoted τ∞ in Fig.
2) from a trace semantics (denoted τ �∞ in Fig. 2). The abstraction αr from trace
to relational semantics consists in replacing the finite traces a•−−−. . .−−−z• by the
pair 〈a, z〉 of the initial and final states. The infinite traces a•−−−b•−−−. . .−−−. . .
are replaced by the pair 〈a, ⊥〉 where the symbol ⊥ denotes non-termination.
Therefore the abstraction is:

αr(X) = {〈a, z〉 | a•−−−. . .−−−z• ∈ X} ∪ {〈a, ⊥〉 | a•−−−b•−−−. . .−−−. . . ∈ X} .

The denotational semantics (denoted τ � in Fig. 2) is the isomorphic representa
tion of a relation by its right-image:

αd(R) = λ a · {x | 〈a, x〉 ∈ R}.

The abstraction from relational to big-step operational or natural seman
tics (denoted τ+ in Fig. 2) simply consists in forgetting everything about non-
termination, so αn(R) = {〈a, x〉 ∈ R | x = ⊥} , as illustrated in Fig. 3.

6

�
x
x
x
§
x

a d

e f

g h

i j

k

⊥
⊥

a d

e f

g h

i j

α α

0 1 2 3 4 5 6 7 8 9 discrete time

a b c d

e f

g h

i j

k

Initial states
Intermediate states Final states of

 finite traces

Infinite
traces

Final states
Initial states

Trace
semantics

Relational
semantics

Natural
semantics

Fig. 3. Abstraction from Trace to Relational and Natural Semantics

A non comparable abstraction consists in collecting the set of initial and final
states as well as all transitions 〈x,y〉 appearing along some finite or infinite trace
a•−−−. . .

x•−−−
y
• . . . of the trace semantics. One gets the small-step operational or

transition semantics (denoted τ in Fig. 2 and also called Kripke structure in
modal logic) as illustrated in Fig. 4.

Transitions

Initial states Final states

a b c d

e f

g h

i j

k

a

e

g

i

k

d

f

h

j

b

Fig. 4. Transition Semantics

A further abstraction consists in collecting all states appearing along some
finite or infinite trace as illustrated in Fig. 5. This is the partial correctness
semantics or the static/collecting semantics for proving invariance properties of
programs.

All abstractions considered in this paper are “from above” so that the ab
stract semantics describes a superset or logical consequence of the concrete
semantics. Abstractions “from below” are dual and consider a subset of the
concrete semantics. An example of approximation “from below” is provided by
debugging techniques which consider a subset of the possible program executions
or by existential checking where one wants to prove the existence of an execu
tion trace prefix fulfilling some given specification. In order to avoid repeating
two times dual concepts and as we do usually, we only consider approximations

7

�
x
x
x
§
x

Reachable states

Initial states Final states

a

e

g

i

k

d

f

h

j

a b c d

e f

g h

i j

k

Fig. 5. Static / Collecting / Partial Correctness Semantics

x

y {. . . , 〈5, 7〉, . . . ,
〈13, 21〉, . . .}

(a) [In]finite Set of Points

x

y
{

x ≥ 0
y ≥ 0

(b) Sign Abstraction

x

y
{

x ∈ [3, 27]
y ∈ [4, 32]

(c) Interval Abstraction

x

y
{

x = 5 mod 8
y = 7 mod 9

(d) Simple Congruence Ab
straction

Fig. 6. Non-relational Abstractions

“from above”, knowing that approximations “from below” can be easily derived
by applying the duality principle (as found e.g. in lattice theory).

2.6 Effective Abstractions

Numerical Abstractions Assume that a program has two integer variables
X and Y. The trace semantics of the program (Fig. 1) can be abstracted in the
static/collecting semantics (Fig. 5). A further abstraction consists in forgetting
in a state all but the values x and y of variables X and Y. In this way the trace
semantics is abstracted to a set of points (pairs of values), as illustrated in the
plane by Fig. 6(a).

We now illustrate informally a number of effective abstractions of an [in]finite
set of points.

8

�
x
x
x
§
x

x

y

3 ≤ x ≤ 7
x + y ≤ 8
4 ≤ y ≤ 5
x − y ≤ 9

(a) Octagonal Abstraction

x

y
{

7x + 3y ≤ 5
2x + 7y ≥ 0

(b) Polyhedral Abstraction

x

y
{

3x + 5y = 8 mod 7
2x − 9y = 3 mod 5

(c) Relational Congruence Abstrac
tion

x

y
{

3x + 7y ∈ [2, 7] mod 8
2x − 5y ∈ [0, 9] mod 4

(d) Trapezoidal Congruence Abstrac
tion

Fig. 7. Relational Abstractions

Non-relational Abstractions The non-relational, attribute independent or
cartesian abstractions (46 , example 6.2.0.2) consists in ignoring the possible
relationships between the values of the X and Y variables. So a set of pairs is
approximated through projection by a pair of sets. Each such set may still be
infinite and in general not exactly computer representable. Further abstractions
are therefore needed.

The sign abstraction (46) illustrated in Fig. 6(b) consists in replacing integers
by their sign thus ignoring their absolute value. The interval abstraction (42)
illustrated in Fig. 6(c) is more precise since it approximates a set of integers by
it minimal and maximal values (including −∞ and +∞ as well as the empty
set if necessary).

The congruence abstraction (82) (generalizing the parity abstraction (46)) is
not comparable, as illustrated in Fig. 6(d).

Relational Abstractions Relational abstractions are more precise than non
relational ones in that some of the relationships between values of the program
states are preserved by the abstraction.

For example the polyhedral abstraction (60) illustrated in Fig. 7(b) approxi
mates a set of integers by its convex hull. Only non-linear relationships between
the values of the program variables are forgotten.

The use of an octagonal abstraction illustrated in Fig. 7(a) is less precise
since only some shapes of polyhedra are retained or equivalently only linear
relations between any two variables are considered with coefficients +1 or -1 (of
the form ±x ± y ≤ c where c is an integer constant).

9

Fig. 8. Binary Decision Graphs

Fig. 9. Tree Schemata

A non comparable relational abstraction is the linear congruence abstraction
(83) illustrated in Fig. 7(c).

A combination of non-relational dense approximations (like intervals) and
relational sparse approximations (like congruences) is the trapezoidal linear con
gruence abstraction (110) as illustrated in Fig. 7(d).

Symbolic Abstractions Most structures manipulated by programs are sym
bolic structures such as control structures (call graphs), data structures (search
trees, pointers (66; 67; 136; 142)), communication structures (distributed & mo
bile programs (71; 87; 141)), etc. It is very difficult to find compact and expressive
abstractions of such sets of objects (sets of languages, sets of automata, sets of
trees or graphs, etc.). For example Büchi automata or automata on trees are
very expressive but algorithmically expensive.

A compromise between semantic expressivity and algorithmic efficiency was
recently introduced by (111) using Binary Decision Graphs and Tree Schemata
to abstract infinite sets of infinite trees as illustrated in Fig. 8 & 9.

2.7 Information Loss

Any abstraction introduces some loss of information. For example the abstrac
tion of the trace semantics into relational or denotational semantics loses all
information on the computation cost since all intermediate steps in the execu
tion are removed.

10

�
x
x
x
§
x

x

y

(a) yes

x

y

(b) unkown

x

y

(c) yes

Fig. 10. Is 1/(X+1-Y) well-defined?

All answers given by the abstract semantics are always correct with respect to
the concrete semantics. For example, if termination is proved using the relational
semantics then there is no execution abstracted to 〈a,⊥〉 , so there is no infinite
trace a•−−−b•−−−. . .−−−. . . in the trace semantics, whence non termination is
impossible when starting execution in initial state a.

However, because of the information loss, not all questions can be definitely
answered with the abstract semantics. For example, the natural semantics can
not answer questions about termination as can be done with the relational or
denotational semantics. These semantics cannot answer questions about con
crete computation costs.

The more concrete is the semantics, the more questions it can answer. The
more abstract semantics are simpler. Non comparable abstract semantics (such
as intervals and congruences) answer non comparable sets of questions.

To illustrate the loss of information, let us consider the problem of deciding
whether the operation 1/(X+1-Y) appearing in a program is always well defined
at run-time. The answer can certainly be given by the concrete semantics since
it has no point on the line x + 1 − y = 0, as shown in Fig. 10(a).

In practice the concrete abstraction is not computable so it is hardly usable
in a useful effective tool. The dense abstractions that we have considered are
too approximate as is illustrated in Fig. 10(b).

However the answer is positive when using the relational congruence abstrac
tion, as shown in Fig. 10(c).

2.8 Function Abstraction

We now show how the abstraction of complex mathematical objects used in the
semantics of programming or specification languages can be defined by compos
ing abstractions of simpler mathematical structures.

11

For example knowing abstractions of the
parameter and result of a monotonic function
on sets, a function F can be abstracted into
an abstract function F � as illustrated in Fig.
11 (46). Mathematically, F � takes its parame
ter x in the abstract domain. Let γ(x) be the
corresponding concrete set (γ is the adjoined,
intuitively the inverse of the abstraction func
tion α). The function F can be applied to get
the concrete result ◦ F ◦ γ(x). The abstrac
tion function α can then be applied to approx
imate the result F �(x) = α ◦ F ◦ γ(x).
In general, neither F , α nor γ are computable
even though the abstraction α may be effec

�xxx F

F

Concrete domain

Abstract domain
�

α

F � = α ◦ F ◦ γ

Fig. 11. Function Abstraction

tive. So we have got a formal specification of the abstract function F � and an
algorithm has to be found for an effective implementation.

2.9 Fixpoint Abstraction

A fixpoint of a function F can often be obtained as the limit of the iterations of
F from a given initial value ⊥. In this case the abstraction of the fixpoint can
often be obtained as the abstract limit of the iteration of the abstraction F � of
F starting from the abstraction α(⊥) of the initial value ⊥. The basic result is
that the concretization of the abstract fixpoint is related to the concrete fixpoint
by the approximation relation expressing the soundness of the abstraction (46).
This is illustrated in Fig. 12.

�
x
x
x
§
§

F

F
�

Concrete domain

Abstract domain

α

F F F F F
FF

F

F
� F

� F
�

F
�

F
F

α α α α Approximation
relation �

⊥

⊥�

Fig. 12. Fixpoint Abstraction lfpF � γ(lfpF �)

Often states have some finite component (e.g. a program counter) which can
be used to partition into fixpoint system of equations by projection along that
component. Then chaotic (44) and asynchronous iteration strategies (36) can be

12

used to solve the equations iteratively. Various efficient iteration strategies have
been studied , including ones taking particular properties of abstractions into
account and others to speed up the convergence of the iterates (51).

2.10 Composing Abstractions

Abstractions hence abstract interpreters for static program analysis can be de
signed compositionally by stepwise abstraction, combination or refinement (75;
39).

An example of stepwise abstraction is the functional abstraction of Sec. 2.8.
The abstraction of a function is parameterized by abstractions for the function
parameters and the function result which can be chosen later in the modular
design of the abstract interpreter.

An example of abstraction combination is the reduced product of two abstrac
tions (46) which is the most abstract abstraction more precise than these two
abstractions or the reduce cardinal power (46) generalizing case analysis. Such
combination of abstract domains can be implemented as parameterized modules
in static analyzer generators (e.g. (104)) so as to partially automate the design
of expressive analyses from simpler ones.

An example of refinement is the disjunctive completion (46) which completes
an abstract domain by adding concrete disjunctions missing in the abstract
domain. Another example of abstract domain refinement is the complementation
(34) adding concrete negations missing in the abstract domain.

2.11 Sound and Complete Abstractions

Abstract interpretation theory has mainly been concerned with the soundness of
the abstract semantics/interpreter, relative to which questions can be answered
correctly despite the loss of information (43). Soundness is essential in practice
and leads to a formal design method (46).

However completeness , relative to the formalization of the loss of information
in a controlled way so as to answer a given set of questions, has also been
intensively studied (46; 75), including in the context of model checking (40).

In practice complete abstractions, including a most abstract one, always
exist to check that a given program semantics satisfies a given specification.
Moreover any given abstraction can be refined to a complete one. Nevertheless
this approach has severe practical limitations since, in general, the design of
such complete abstractions or the refinement of a given one is logically equiva
lent to the design of an inductive argument for the formal proof that the given
program satisfies the given specification, while the soundness proof of this ab
straction logically amounts to checking the inductive verification conditions or
proof obligations of this formal proof (40). Such proofs can hardly be fully auto
mated hence human interaction is unavoidable. Moreover the whole process has
to be repeated each time the program or specification is modified.

13

Instead of considering such strong specifications for a given specific program,
the objective of static program analysis is to consider (often predefined) spec
ifications and all possible programs. The practical problem in static program
analysis is therefore to design useful abstractions which are computable for all
programs and expressive enough to yield interesting information for most pro
grams.

3 Static Program Analysis

Static program analysis is the automatic static determination of dynamic run-
time properties of programs.

3.1 Foundational Ideas of Static Program Analysis

Given a program and a specification, a pro
gram analyzer will check if the program seman
tics satisfies the specification (Fig. 13). In case
of failure, the analyzer will provide hints to un
derstand the origin of errors (e.g. by a backward
analysis providing necessary conditions to be sat
isfied by counter-examples).

The principle of the analysis is to compute an
approximate semantics of the program in order

�xxx
Program analyzer

Program Specification

Diagnosis

Fig. 13. Program Analysis
to check a given specification. Abstract interpretation is used to derive, from a
standard semantics, the approximate and computable abstract semantics. The
derivation can often be done by composing standard abstractions to fit a partic
ular kind of information which has to be discovered about program execution.
This derivation is itself not (fully) mechanizable but static analyzer generators
such as PAG (108), GENA (69)and others can provide generic abstractions to
be composed with problem specific ones.

In practice, the program analyzer contains a generator reading the pro
gram text and producing equations or constraints whose solution is a com
puter representation of the program abstract semantics. A solver is then used
to solve these abstract equations/constraints. A popular resolution method is
to use iteration. Of the numerical abstractions considered in Sec. 2.6 , only
the sign and simple congruence abstractions ensure the finite convergence of
the iterates. If the limit of the iterates is inexistent (which may be the case
e.g. for the polyhedral abstraction) or it is reached after infinitely many it
eration steps (e.g. interval and octagonal abstractions), the convergence may
have to be ensured and/or accelerated using a widening to over estimate the
solution in finitely many steps followed by a narrowing to improve it (36; 43;
51).

14

In abstract compilation, the gen
erator and solver are directly com
piled into a program which directly
yields the approximate solution.

This solution is an approxima
tion of the abstract semantics which
is then used by a diagnoser to check
the specification. Because of the loss
of information, the diagnosis is al
ways of the form “yes”, “no”, “un
known” or “irrelevant” (e.g. a safety
specification for unreachable code).
The general structure of program an
alyzers is illustrated in Fig. 14. Be

�xxx (Approximate) solution

Diagnoser

Diagnosis

Solver

Generator

Program Specification

Program
analyzer

System of fixpoint equations/constraints

Fig. 14. Principle of Program Analysis

sides diagnosis, static program analysis is also used for other applications in
which case the diagnoser is replaced by an optimiser (for compile-time opti
mization), a program transformer (for partial evaluation (98)), etc.

3.2 Shortcomings of Static Program Analysis

Static program analysis can be used for large programs (e.g. 220,000 lines of C)
without user interaction. The abstractions are chosen to be of wide scope with
out specialization to a particular program. Abstract algebras can be designed
and implemented into libraries which are reusable for different programming
languages. The objective is to discover invariants that are likely to appear in
many programs so that the abstraction must be widely reusable for the program
analyzer to be of economic interest.

The drawback of this general scope is that the considered abstract specifi
cations and properties are often simple, mainly concerning elementary safety
properties such as absence of run-time errors. For example non-linear abstrac
tions of sets of points are very difficult and very few mathematical results are
of practical interest and directly applicable to program analysis. Checking ter
mination and similar liveness properties is trivial with finite state systems, at
least from a theoretical if not algorithmic point of view (e.g. finding loops in fi
nite graphs). The same problem is much more difficult for infinite state systems
because of fairness (111) or of potentially infinite data structures (as consid
ered e.g. in partial evaluation) which do not amount to finite cycles so that
termination or inevitability proofs require the discovery of variant functions on
well-founded sets which is very difficult in full generality.

Even when considering restricted simple abstract properties, the semantics of
real-life programming languages is very complex (recursion, concurrency, modu
larity, etc.) whence so is the corresponding abstract interpreter. The abstraction
of this semantics, hence the design of the analyzer is mostly manual (and beyond
the ability of casual programmers or theorem provers) whence costly. The con
sidered abstractions must have a large scope of application and must be easily
reusable to be of economic interest.

15

From a user point of view, the results of the analysis have to be presented in
a simple way (for example by pointing at errors only or by providing abstract
counter-examples, or less frequently concrete ones). Experience shows that the
cases of uncertainty represent 5 to 10 % of the possible cases. They must be
handled with other empirical or formal methods (including more refined abstract
interpretations).

3.3 Applications of Static Program Analysis

Among the numerous applications of static program analysis, let us cite data
flow analysis (130; 57); program optimization and transformation (including par
tial evaluation and program specialization (98) and data dependence analysis
for the parallelisation of sequential languages); set-based analysis (55); type in
ference (38) (including undecidable systems and soft typing); verification of
reactive (86; 93), real-time and (linear) hybrid systems including state space
reduction; cryptographic protocol analysis; abstract model-checking of infinite
systems (57); abstract debugging, testing and verification ; cache and pipeline
behavior prediction (70); probabilistic analysis (115); communication topology
analysis for mobile/distributed code (71; 87; 141); automatic differentiation of
numerical programs; abstract simulation of temporal specifications; Semantic
tattooing/watermarking of software (59); etc.

Static program analysis has been intensively studied for grammars and poly
nomial systems (37), term graph rewriting (79), sequent calculi (2), typesetting
languages (96), procedural languages (16; 45) (for alias analysis (142), pointer
analysis (66; 67), parameter boxing/unboxing (80), copy elimination (131), de
pendence analysis (109), exception analysis (129), constant propagation (102),
(linear) equality or inequality relationships analysis (60) etc.), parallel proce
dural languages (61; 78), functional languages (for binding time analysis (140),
strictness analysis (21; 53; 117), inverse image analysis (68), projection analysis
(20), comportment analysis (54), dependency analysis (12), path/trace analysis
(32), closure analysis (120), control flow analysis (134), value flow analysis (13),
compile-time garbage collection (97), stackability and escape analysis (10), data
structures and abstract data type analysis (106), heap shape analysis (99; 136),
exception analysis (143), polymorphic function analysis (4), kind/sort analysis
(84), typing (38), effect systems (100), termination analysis (121), time com
plexity analysis (127), parallelization (138), etc.), parallel functional languages
(62), data parallel languages (25), logic languages including Prolog (49; 64)
(for mode (112) and type analysis (95) and their combination (17), finiteness
analysis (8), relational argument size analysis (132), dependency analysis (116),
detecting determinate/functional computations (76), mutually exclusive rules
detection (124), occur check reduction (135), WAM code optimization (3), copy
avoidance (74), groundness analysis (35), sharing analysis (33), freeness analysis
(30) and their combinations (31), termination analysis (101), time complexity
and cost analysis (65), parallelisation (18), etc.) including its search rule and the
cut (73) and database programming languages (1), concurrent logic languages
(22), functional logic languages (88), constraint logic languages (9), concurrent

16

constraint logic languages (144), specification languages (77), synchronous lan
guages (86) (such as lustre (24)), concurrent/parallel languages (48), commu
nicating and distributed languages (47; 113) and more recently object-oriented
languages (11).

Abstract interpretation based static program analyses have been used for the
static analysis of the embedded ADA software of the Ariane 5 launcher1 and
the ARD2 (103). The static program analyser aims at the automatic detection
of the definiteness , potentiality , impossibility or inaccessibility of run-time errors
such as scalar and floating-point overflows, array index errors, divisions by zero
and related arithmetic exceptions, uninitialized variables, data races on shared
data structures, etc. The analyzer was able to automatically discover the Ariane
501 flight error. The static analysis of embedded safety critical software (such
as avionic software (126)) is very promising (58).

3.4 Industrialization of Static Analysis by Abstract Interpretation

The impressive results obtained by the static analysis of real-life embedded
critical software (103; 126) is quite promising for the industrialization of abstract
interpretation.

This is the explicit objective of AbsInt Angewandte Informatik GmbH
created in Germany by R. Wilhelm and C. Ferdinand in 1998 commercial
izing the program analyzer generator PAG and an application to determine
the worst-case execution time for modern computer architectures with memory
caches, pipelines, etc (70).

Polyspace Technologies was created in France by A. Deutsch and D.
Pilaud in 1999 to develop and commercialize ADA and C program analyzers.

Other companies like Connected Components Corporation created in
the U.S.A. by W.L. Harrison in 1993 use abstract interpretation internally e.g.
for compiler design (92).

4 Abstract Formal Methods

No automatic formal method can ultimately find all errors in a software system
nor can their combinations. We will briefly review the automatic formal methods
for computer-aided program verification, discussing their principles, advantages
and shortcomings. Since static program analysis has already been discussed, we
now consider typing, model-checking, deductive methods and their combination.

4.1 Typing

Polymorphic typing and type inference (114) was a definite step in the design of
programming languages and compilers (91). The question for the next decade
seems to be to scale to more expressive properties.
1 Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000

lines of Ada code).
2 Atmospheric Reentry Demonstrator.

http://www.absint.com
http://www.absint.com
http://www.polyspace.com
http://www.polyspace.com
http://www.concmp.com/index.html
http://www.concmp.com/index.html

17

Foundational Ideas of Typing Typing is based on decidable program analy
ses. This approach is always possible by restricting both on specifications (al
lowed types) and on programs, as shown when considering types as abstract
interpretations (38). In theory, type systems have a clean presentation of the
type analysis (inference algorithm (114)) through an equivalent logical formal
system (type verification (63)). Monomorphic typing (94) was extended to poly
morphism (114), complex data structures, references (89), exceptions and sepa
rate modules (90) in a way that scales up for very large programs. It is nicely
integrated in the compiler and the certification can go down to the generated
code (proof-carrying code (118), certified compiler (137)).

Shortcomings of Typing Type systems (e.g. with subtle subtyping) can be
very complex to understand for the casual user. One difficulty is that typing is
compositional but not fully abstract (e.g. the same polymorphic code can type
differently in different utilization contexts). The interaction with the user is often
crude (no hint is given to understand why wrong programs do not type well).
It is hardly possible for the user to provide hints to help the typing process.
The logical specification of the type system is often inexistent in the reference
manual, not equivalent to the type inference algorithm or so inextricable that
it is useless both to the programmer and the compiler designer. The programs
considered in type theory are both complex (higher-order modules) and too re
stricted (mainly functional languages). The most severe restrictions are on the
considered properties (arithmetic, out of range array indexing, null pointer deref
erencing, … errors are checked at run-time, all liveness properties are ignored).
These restrictions and the difficulty to generalize to more expressive properties
mainly follow from the encoding of types as terms/formulæ and from the one
iterate fixpoint approximation.

4.2 Deductive Methods

Foundational Ideas of Deductive Methods Deductive methods use a (man
ually designed abstraction of) the program semantics to obtain minimal verifica
tion conditions to prove program correctness. These verification conditions can
be derived from the program trace semantics by abstract interpretation (41).
Then a theorem prover (119) or a proof assistant (122) is used to check the
verification conditions.

Shortcomings of Deductive Methods Deductive methods use the schema
of Fig. 14 but for the fact that the solver is replaced by a verifier or checker thus
avoiding fixpoint computations. So the constraints or equations corresponding to
the verification conditions are not solved. This means that an inductive argument
(e.g. invariant, variant function) has to be provided, generally by the user. Since
the implication involved in the verification condition is itself undecidable, the
proof verification can only be partially automatized, even though the solution to
the equations/constraints is provided. Therefore interaction of the programmer

18

with the prover is ultimately needed. This (wo)man/prover interaction is hard
if not despairing, in particular because the size of the proof is often exponential
in the program size. Therefore debugging an unsuccessful proof (because of a
program error or a prover weakness) can be as complex as (if not much more
complex than) debugging the program itself.

An alternative (105) consists in restricting the form of predicates considered
by the prover, (which is an abstract interpretation (46, Sec. 5)). This can go up
to unsound verification condition simplifications, essentially to make the verifier
simpler (e.g. modular arithmetic).

Because theorem provers are driven by unformalized heuristics, and these
heuristics and their interactions are changed over time for improving proof
strategies, theorem provers are often unstable over time (e.g. proof strategies
get changed so that old proofs no longer work). Another weakness which makes
interaction with other formal methods somewhat difficult is the uniform encod
ing of properties as syntactical terms/formulæ (so that e.g. BBDs are hardly
efficiently encodable). It follows that the theorem prover has ultimately to be
extended with program analyzers, model checkers, typing, among others (133),
often without supporting theory, in particular for mechanizing and combining
abstractions.

4.3 Model Checking

Model checking (26; 125) has been very successful for the verification of hardware
(7), communication protocols (29), cryptographic protocols (5), and real-time
(23) or probabilistic (139) processes. As far as software systems are concerned,
the question for the next decade is whether model checking can be extended to
the verification of very large real-life programs.

Foundational Ideas of Model Checking First a model of the program (i.e.
manually designed abstraction of the program semantics) must be designed (in
the form of a transition system similar to a small step operational semantics).
Then a specification of the program must be provided by the user in a very
expressive temporal logic (123). A model checker can then check the specification
by exhaustive search/symbolic exploration of the state space.

The spectacular success of model checking followed from the clever design of
data structures (e.g. BDDs or QDDs (14)) and algorithms (e.g. minimal state
graph generation (15), fixpoint computation (107) or SAT (6)) for representing
very large sets of booleans and their transformations.

The approximation is that the model must be finite-state or some form of
abstract interpretation must be used (28; 81) to reduce the verification problem
to finite state, including symmetries (27), etc. Also clever semantics of concur
rent systems have been considered, e.g. to avoid the combinatorial explosion of
interleaving (29).

Another trend in infinite-state model checking is to consider safety proper
ties only and polyhedral abstractions, with variants (e.g. Presburger arithmetic

19

(19)). This is a direct application of polyhedral static program analysis (60),
including the use of widenings. This allows e.g. for the analysis of reactive (72),
real-time (85) and hybrid systems (86).

Shortcomings of Model Checking Although model checking gained a factor
of 100 in 10 years, it is very difficult to scale up because of the state explosion
problem. So, the necessary restriction to available computer resources often re
duces the model checker from formal verification to debugging on part of the
state space. Since the model must ultimately be finite (to allow for exhaustive
search/symbolic exploration), abstraction is mandatory, which is a very difficult
task to do manually and/or is left informal. Moreover, some forms of abstrac
tions (such as interval (43) or polyhedral (60) abstractions) do not abstract
concrete transition systems into abstract transition systems so that the model
checker may not be reusable in the abstract. One can use abstraction for model
checking which are complete in that there always exists a program specific ab
straction into a finite model to prove a given specification correct (see (40) for
safety properties) but none will be complete for all programs, even for simple
properties as considered in static program analysis (51). It follows that complete
abstractions are difficult and not reusable, hence not cost effective.

5 Combining Program Verification Methods

Since no single formal method can ultimately solve the verification problem, a
current trend is to combine formal methods.

For example, one can rely on a user designed abstraction and derive a finite
abstract model of the program semantics by abstract interpretation, prove the
correctness of the abstraction by deductive methods and later verify the abstract
model by model-checking (128).

A fundamental limitation (40) is that the abstraction discovery and the
derivation of the abstract semantics are respectively logically equivalent hence
practically as difficult as invariant discovery and invariant verification in a for
mal proof. So we have the feeling that the combination of tools might simplify
formal proofs but still will ultimately not solve the program verification problem.

6 Combining Empirical and Formal Methods

Formal methods have made a lot of progress in the last decade. Nevertheless
there are few automatic light weight tools to apply them in practice. Integration
of such tools is difficult and cannot ultimately solve all verification problems.

It follows that the only mechanical tool for verifying programs is still de
bugging, despite its well-known defaults, incompleteness and cost. There again
progress was slow, in particular because theory never took debugging seriously.
The main advantage of debugging is that a debugger is a light weight tool which

20

is very easily understood by all programmers. Because of its well-known incred
ible cost for weak results, debugging may not scale up in the next decade for
very large or safety critical software.

An alternative which still remains to be investigated is the combination of
informal methods like debugging with verification tools. Let us consider for ex
ample abstract testing (56).

The classical debugging methodology consists in running the program on test
data, checking if the execution satisfies informal specifications. This process is
repeated by providing more tests until reaching a satisfactory coverage.

By an easily understandable analogy, the abstract testing methodology (56)
consists in computing the abstract semantics for a finitary or infinitary abstrac
tion chosen by the programmer among a predefined palette (not user defined,
which would be too difficult). The abstract semantics is then checked against
user-provided abstract assertions or the abstraction of a formal specification.
This process is repeated with more refined abstractions until enough assertions
are proved or no predefined abstraction can do.

Observe that one can prove the absence of (some categories of) bugs, not
only their presence. Moreover, abstract evaluation can range from an analogy
to program execution to the application of proof methods (using e.g. forward
as well as backward reasonings providing abstract counter-examples) without
attempting to make a one-shot complete formal proof of the specification.

7 Conclusions on the Past Decade

Full program verification by formal methods (e.g. model checking/deductive
methods), which requires user interaction (for discovering an abstraction or in
ductive argument) is very costly in human resources, hence is not likely to scale
up for very large software. Abstraction is mandatory for program verification,
but difficult, hardly automatizable and beyond the common capabilities of most
programmers.

Partial program verification by static analysis (with typing being considered
as a particular and successful case) is cost-effective3 because no user interven
tion is mandatory for performing the analysis and universal abstractions are
reusable, hence commercializable.

For large and complex programs, complete verification by formal methods is
not likely to be viable at low cost. Program debugging is still and will probably
remain for some time the prominent industrial program “verification” method.

In this context, abstract interpretation based static program analysis can
be extended to abstract program testing. Abstract interpretation based methods
offer powerful techniques which, in the presence of approximation, can be viable
alternatives or complements both to the exhaustive search of model-checking
and to the partial exploration methods of classical debugging.

3 e.g. less than 0.25$ per program line costing 50 to 80$.

21

8 Grand Challenge for the Next Decade

We believe that in the next decade the software industry will certainly have to
face its responsibility imposed by a computer-dependent society, in particular
for safety critical systems. Consequently, Software reliability4 will be a grand
challenge for computer science and practice.

The grand challenge for formal methods, in particular abstract interpretation
based formal tools, is both the large scale industrialization and the intensifica
tion of the fundamental research effort.

General-purpose, expressive and cost-effective abstractions have to be devel
oped e.g. to handle floating point numbers, data dependences (e.g. for paralleliza
tion), liveness properties with fairness (to extend finite-state model-checking to
software), timing properties for embedded software, probabilistic properties, etc.
Present-day tools will have to be enhanced to handle higher-order compositional
modular analyses and to cope with new programming paradigms involving com
plex data and control concepts (such as objects, concurrent threads, distrib
uted/mobile programming, etc.), to automatically combine and locally refine
abstractions in particular to cope with “unknow” answers, to interact nicely
with users and other formal or informal methods.

The most challenging objective might be to integrate formal analysis by
abstract interpretation in the full software development process, from the initial
specifications to the ultimate program development.

Acknowledgements I thank Radhia Cousot and Reinhard Wilhelm for their
comments on a preliminary version of this paper. This work was supported by
the daedalus (58) and tuamotu (59) projects.

4 other suggestions were “trustworthiness” (C. Jones) and “robustness” (R. Leino).

References

[1] G. Amato, F. Giannotti, and G. Mainetto. Data sharing analysis for
a database programming language via abstract interpretation. In R.
Agrawal, S. Baker, and D.A. Bell, editors, Proc. 19th Int. Conf.
VLDB ’93 , Dublin, IE, pages 405–415. Morgan Kaufmann Pub. , 24–27
août 1993.

[2] G. Amato and G. Levi. Abstract interpretation based semantics of sequent
calculi. In J. Palsberg, editor, Proc. 7th Int. Symp. SAS ’2000 , Santa
Barbara, CA, USA, LNCS 1824, pages 38–57. Springer-Verlag, 29 juin
– 1 juil. 2000.

[3] D. Baldan and G. Filé. Abstract interpretation for improving WAM code.
In P. Van Hentenryck, editor, Proc. 4th Int. Symp. SAS ’97 , Paris, 8–10
sept. 1997, LNCS 1302, page 364. Springer-Verlag, 1997.

[4] G. Baraki and R.J.M. Hughes. Abstract interpretation of polymorphic
functions. In K. Davis and J. Hughes, editors, Functional Program
ming, Glasgow 1989 , Proc. 1989 Glasgow Workshop, Fraserburgh, UK.
Springer-Verlag and BCS, 31–40 août 1989.

[5] A. Biere. µcke - efficient µ-calculus model checking. In O. Grumberg, edi
tor, Proc. 9th Int. Conf. CAV ’97 , Haifa, IL, LNCS 1254, pages 468–471.
Springer-Verlag, 22–25 juil. 1997.

[6] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, and Y. Zhu. Symbolic model
checking using SAT procedures instead of BDDs. In Proc. 36th Conf.
DAC ’99 , La Nouvelle Orléans, LA, USA, pages 317–320. ACM Press,
21–25 juin 1999.

[7] A. Biere, E.M. Clarke, R. Raimi, and Y. Zhu. Properties of a power PC
microprocessor using symbolic model checking without BDDs. In N.
Halbwachs and D. Peled, editors, Proc. 11th Int. Conf. CAV ’99 , Trente,
IT, LNCS 1633, pages 60–71. Springer-Verlag, 6–10 juil. 1999.

[8] P.A. Bigot, S.K. Debray, and K. Marriott. Understanding finiteness analy
sis using abstract interpretation. In K.R. Apt, editor, Proc. JICSLP ’92 ,
Washington, DC, USA, pages 735–749. MIT Press, nov. 1992.

[9] S. Bistarelli, P. Codognet, and F. Rossi. An abstraction framework for soft
constraints and its relationship with constraint propagation. In B.Y.
Choueiry and T. Walsh, editors, Proc. 4th Int. Symp. SARA ’2000 ,
Horseshoe Bay, TX, USA, LNAI 1864, pages 71–86. Springer-Verlag,
26–29 juil. 2000.

[10] B. Blanchet. Escape analysis: Correctness proof, implementation and ex
perimental results. In 25th POPL , pages 25–37, San Diego, CA, USA,
19–21 jan. 1998. ACM Press.

[11] B. Blanchet. Escape analysis for object-oriented languages: Application to
Java. In Proc. ACM SIGPLAN Conf. OOPSLA ’99. ACM SIGPLAN
Not. 34(10) , pages 20–34, Denver, CO, USA, 1–5 nov. 1999.

23

[12] M. Blume. Dependency analysis for Standard ML. TOPLAS ,
21(4):790–812, juil. 1999.

[13] R. Bodík and S. Anik. Path-sensitive value-flow analysis. In 25th POPL ,
pages 237–251, San Diego, CA, USA, 19–21 jan. 1998. ACM Press.

[14] B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of QDDs
(extended abstract). In P. Van Hentenryck, editor, Proc. 4th Int. Symp.
SAS ’97 , Paris, 8–10 sept. 1997, LNCS 1302, pages 172–186. Springer-
Verlag, 1997.

[15] A. Bouajjani, J.-C. Fernandez, N. Halbwachs, P. Raymond, and C.
Ratel. Minimal state graph generation. Sci. Comput. Programming,
18:247–269, 1992.

[16] F. Bourdoncle. Interprocedural abstract interpretation of block structured
languages with nested procedures, aliasing and recursivity. In P. De
ransart and J. Małuszyński, editors, Proc. Int. Work. PLILP ’90 ,
Linköping, SE, LNCS 456, pages 307–323. Springer-Verlag, 20–22 août
1990.

[17] M. Bruynooghe and G. Janssens. An instance of abstract interpretation
integrating type and mode inferencing (extended abstract). In R. Kowal
ski and K. Bowen, editors, Proc. 5th Int. Conf. & Symp. on Logic Pro
gramming, Volume 1 , Seattle, WA, USA, pages 669–683. MIT Press,
15–19 août 1988.

[18] F. Bueno, M.J. García de la Banda, and M.V. Hermenegildo. Effectiveness
of abstract interpretation in automatic parallelization: A case study in
logic programming. TOPLAS , 21(2):189–239, mars 1999.

[19] T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of infi
nite state systems using presburger arithmetic. In O. Grumberg, editor,
Proc. 9th Int. Conf. CAV ’97 , Haifa, IL,LNCS 1254, pages 400–411.
Springer-Verlag, 22–25 juil. 1997.

[20] G.L. Burn. A relationship between abstract interpretation and projection
analysis (extended abstract). In 17th POPL , pages 151–156, San Fran
cisco, CA, 1990. ACM Press.

[21] G.L. Burn, C.L. Hankin, and S. Abramsky. Strictness analysis of
higher-order functions. Sci. Comput. Programming, 7:249–278, nov.
1986.

[22] M.-M. Corsini C. Codognet, P. Codognet. Abstract interpretation for con
current logic languages. In S.K. Debray and M.V. Hermenegildo, edi
tors, NACLP 1997 , Austin, TX, USA, pages 215–232. MIT Press, 29
oct. – 1 nov. 1990.

[23] S.V.A. Campos, E.M. Clarke, and M. Minea. The Verus tool: A quanti
tative approach to the formal verification of real-time systems. In O.
Grumberg, editor, Proc. 9th Int. Conf. CAV ’97 , Haifa, IL,LNCS 1254,
pages 452–455. Springer-Verlag, 22–25 juil. 1997.

[24] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: a declarative
language for programming synchronous systems. In 14th POPL , Mu-
nich, DE, 1987. ACM Press.

24

[25] S. Chatterjee, B.E. Blelloch, and A.L. Fisher. Size and access inference
for data-parallel programs. In Proc. ACM SIGPLAN ’91 Conf. PLDI.
ACM SIGPLAN Not. 26(6) , pages 130–144, Toronto, Ontario, CA,
26–28 juin 1991.

[26] E.M. Clarke and E.A. Emerson. Synthesis of synchronization skeletons
for branching time temporal logic. In IBM Workshop on Logics of Pro
grams, Yorktown Heights, NY, USA, LNCS 131. Springer-Verlag, mai
1981.

[27] E.M. Clarke, E.A. Emerson, S. Jha, and A.P. Sistla. Symmetry reduc
tions in model checking. In A.J. Hu and M.Y. Vardi, editors, Proc. 10th

Int. Conf. CAV ’98 , Vancouver, BC, CA,LNCS 1427, pages 147–158.
Springer-Verlag, 28 juin – 2 juil. 1998.

[28] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstrac
tion. In 19th POPL , pages 343–354, Albuquerque, NM, 1992. ACM
Press.

[29] E.M. Clarke, S. Jha, and W.R. Marrero. Partial order reductions for se
curity protocol verification. In S. Graf and M.I. Schwartzbach, editors,
Proc. 6th Int. Conf. TACAS ’2000 , Berlin, DE, 25 mars – 2 avr. 2000,
LNCS 1785, pages 503–518. Springer-Verlag, 2000.

[30] M. Codish, D. Dams, G. Filè , and M. Bruynooghe. Freeness analysis for
logic programs – and correctness? In D.S. Warren, editor, Proc. 10th

ICLP ’93 , Budapest, HU, pages 116–131. MIT Press, 21–25 juin 1993.
[31] M. Codish, H. Søndergaard, and P.J. Stuckey. Sharing and groundness

dependencies in logic programs. TOPLAS , 21(5):948–976, sept. 1999.
[32] C. Colby and P. Lee. Trace-based program analysis. In 23rd POPL , pages

195–207, St. Petersburg Beach, FL, 1996. ACM Press.
[33] A. Cortesi and G. Filé. Sharing is optimal. J. Logic Programming,

38(3):371–386, 1999.
[34] A. Cortesi, G. Filé, R. Giacobazzi, C. Palamidessi, and F. Ranzato.

Complementation in abstract interpretation. TOPLAS , 19(1):7–47, jan.
1997.

[35] A. Cortesi, G. Filé , and W.H. Winsborough. Optimal groundness analysis
using propositional logic. J. Logic Programming , 27(2):137–167, 1996.

[36] P. Cousot. Méthodes itératives de construction et d’approximation de
points fixes d’opérateurs monotones sur un treillis, analyse sémantique
de programmes. Thèse d’État ès sciences mathématiques, Université
scientifique et médicale de Grenoble, Grenoble, 21 mars 1978.

[37] P. Cousot. Constructive design of a hierarchy of semantics of a
transition system by abstract interpretation. ENTCS , 6, 1997.
http://www.elsevier.nl/locate/entcs/volume6.html, 25 pages.

[38] P. Cousot. Types as abstract interpretations, papier invité. In 24th POPL ,
pages 316–331, Paris, jan. 1997. ACM Press.

[39] P. Cousot. The calculational design of a generic abstract interpreter. In
M. Broy and R. Steinbrüggen, editors, Calculational System Design ,

http://www.elsevier.nl/locate/entcs/volume6.html

25

volume 173, pages 421–505. NATO Science Series, Series F: Computer
and Systems Sciences. IOS Press, 1999.

[40] P. Cousot. Partial completeness of abstract fixpoint checking, papier in-
vité. In B.Y. Choueiry and T. Walsh, editors, Proc. 4th Int. Symp.
SARA ’2000 , Horseshoe Bay, TX, USA, LNAI 1864, pages 1–25.
Springer-Verlag, 26–29 juil. 2000.

[41] P. Cousot. Constructive design of a hierarchy of semantics of a transition
system by abstract interpretation. Theoret. Comput. Sci. , À paraître
(Version préliminaire dans (37)).

[42] P. Cousot and R. Cousot. Static determination of dynamic properties of
programs. In Proc. 2nd Int. Symp. on Programming , pages 106–130.
Dunod, 1976.

[43] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints. In 4th POPL , pages 238–252, Los Angeles, CA, 1977. ACM
Press.

[44] P. Cousot and R. Cousot. Automatic synthesis of optimal invariant asser
tions: mathematical foundations. In ACM Symposium on Artificial In
telligence & Programming Languages, Rochester, NY, ACM SIGPLAN
Not. 12(8):1–12, 1977.

[45] P. Cousot and R. Cousot. Static determination of dynamic properties of
recursive procedures. In E.J. Neuhold, editor, IFIP Conf. on Formal
Description of Programming Concepts, St-Andrews, N.B., CA , pages
237–277. North-Holland, 1977.

[46] P. Cousot and R. Cousot. Systematic design of program analysis frame
works. In 6th POPL , pages 269–282, San Antonio, TX, 1979. ACM
Press.

[47] P. Cousot and R. Cousot. Semantic analysis of communicating sequential
processes. In J.W. de Bakker and J. van Leeuwen, editors, 7th ICALP ,
LNCS 85, pages 119–133. Springer-Verlag, juil. 1980.

[48] P. Cousot and R. Cousot. Invariance proof methods and analysis tech
niques for parallel programs. In A.W. Biermann, G. Guiho, and Y.
Kodratoff, editors, Automatic Program Construction Techniques, chap
ter 12, pages 243–271. Macmillan, 1984.

[49] P. Cousot and R. Cousot. Abstract interpretation and application to logic
programs. J. Logic Programming , 13(2–3):103–179, 1992. (The editor of
J. Logic Programming has mistakenly published the unreadable galley proof.
For a correct version of this paper, see http://www.di.ens.fr/˜cousot.).

[50] P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Logic
and Comp. , 2(4):511–547, août 1992.

[51] P. Cousot and R. Cousot. Comparing the Galois connection and widen
ing/narrowing approaches to abstract interpretation, papier invité.
In M. Bruynooghe and M. Wirsing, editors, Proc. 4th Int. Symp.
PLILP ’92 , Louvain, BE, 26–28 août 1992, LNCS 631, pages 269–295.
Springer-Verlag, 1992.

http://www.di.ens.fr/~cousot

26

[52] P. Cousot and R. Cousot. Inductive definitions, semantics and abstract
interpretation. In 19th POPL , pages 83–94, Albuquerque, NM, 1992.
ACM Press.

[53] P. Cousot and R. Cousot. Galois connection based abstract interpreta
tions for strictness analysis, papier invité. In D. Bjørner, M. Broy, and
I.V. Pottosin, editors, Proc. FMPA , Akademgorodok, Novosibirsk, RU,
LNCS 735, pages 98–127. Springer-Verlag, 28 juin – 2 juil. 1993.

[54] P. Cousot and R. Cousot. Higher-order abstract interpretation (and ap
plication to comportment analysis generalizing strictness, termination,
projection and PER analysis of functional languages), papier invité.
In Proc. 1994 ICCL , pages 95–112, Toulouse, 16–19 mai 1994. IEEE
Comp. Soc. Press.

[55] P. Cousot and R. Cousot. Formal language, grammar and set-constraint-
based program analysis by abstract interpretation. In Proc. 7th FPCA ,
pages 170–181, La Jolla, CA, 25–28 juin 1995. ACM Press.

[56] P. Cousot and R. Cousot. Abstract interpretation based program testing.
In Proc. SSGRR 2000 Computer & eBusiness International Conference ,
Compact disk paper 248, L’Aquila, Italy, 31 juil. – 6 août 2000. Scuola
Superiore G. Reiss Romoli.

[57] P. Cousot and R. Cousot. Temporal abstract interpretation. In 27th

POPL , pages 12–25, Boston, MA, jan. 2000. ACM Press.
[58] P. Cousot, R. Cousot, A. Deutsch, C. Ferdinand, É. Goubault, N. Jones,

D. Pilaud, F. Randimbivololona, M. Sagiv, H. Seidel, and R. Wilhelm.
DAEDALUS: Validation of critical software by static analysis and ab
stract testing. Project IST-1999-20527 of the european 5th Framework
Programme (FP5), oct. 2000 – oct. 2002.

[59] P. Cousot, R. Cousot, and M. Riguidel. TUAMOTU: Tatouage électron
ique sémantique de code mobile Java. Project RNRT 1999 n◦ 95, oct.
1999 – oct. 2001.

[60] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In 5th POPL , pages 84–97, Tucson, AZ,
1978. ACM Press.

[61] R. Cridlig. Semantic analysis of shared-memory concurrent languages us
ing abstract model-checking. In Proc. PEPM ’95 , La Jolla, CA, 21–23
juin 1995. ACM Press.

[62] R. Cridlig and É. Goubault. Semantics and analysis of Linda-based lan
guages. In P. Cousot, M. Falaschi, G. Filé , and A. Rauzy, editors, Proc.
3rd Int. Work. WSA ’93 , Padoue, IT, LNCS 724, pages 72–86. Springer-
Verlag, 22–24 sept. 1993.

[63] L. Damas and R. Milner. Principal type-schemes for functional programs.
In 9th POPL , pages 207–212, Albuquerque, NM, jan. 1982. ACM Press.

[64] S.K. Debray. Formal bases for dataflow analysis of logic programs. In G.
Levi, editor, Advances in Logic Programming Theory , Int. Schools for
Computer Scientists, section 3, pages 115–182. Clarendon Press, 1994.

27

[65] S.K. Debray, P. López-García, M.V. Hermenegildo, and N.-W. Lin. Lower
bound cost estimation for logic programs. In J. Małuszyński, editor,
Proc. Int. Symp. ILPS ’1997 , Port Jefferson, Long Island, NY, USA,
pages 291–305. MIT Press, 13–16 oct. 1997.

[66] A. Deutsch. Semantic models and abstract interpretation techniques for in
ductive data structures and pointers, papier invité. In Proc. PEPM ’95 ,
pages 226–229, La Jolla, CA, 21–23 juin 1995. ACM Press.

[67] N. Dor, M. Rodeh, and M. Sagiv. Checking cleanness in linked lists. In J.
Palsberg, editor, Proc. 7th Int. Symp. SAS ’2000 , Santa Barbara, CA,
USA, LNCS 1824, pages 115–134. Springer-Verlag, 29 juin – 1 juil.
2000.

[68] P. Dybjer. Inverse image analysis generalises strictness analysis. Inform.
and Comput. , 90:194–216, 1991.

[69] C. Fecht. GENA – a tool for generating Prolog analyzers from specifica
tions. In A. Mycroft, editor, Proc. 2nd Int. Symp. SAS ’95 , Glasgow,
UK, 25–27 sept. 1995, LNCS 983, pages 418–419. Springer-Verlag, 1995.

[70] C. Ferdinand, F. Martin, R. Wilhelm, and M. Alt. Cache behavior pre
diction by abstract interpretation. Sci. Comput. Programming, Special
Issue on SAS’96 , 35(1):163–189, September 1999.

[71] J. Feret. Confidentiality analysis of mobile systems. In J. Palsberg, editor,
Proc. 7th Int. Symp. SAS ’2000 , Santa Barbara, CA, USA, LNCS 1824,
pages 135–154. Springer-Verlag, 29 juin – 1 juil. 2000.

[72] J.-C. Fernandez. Abstract interpretation and verification of reactive sys
tems. In P. Cousot, P. Falaschi, G. Filé , and A. Rauzy, editors, Proc.
3rd Int. Work. WSA ’93 , Padoue, IT, LNCS 724, pages 60–71. Springer-
Verlag, 22–24 sept. 1993.

[73] G. Filé and S. Rossi. Static analysis of Prolog with cut. In A. Voronkov,
editor, Proc. 4th Int. Conf. LPAR ’93 , pages 134–145, St. Petersbourg,
RU, LNCS 698, 13–20 juil. 1993. Springer-Verlag.

[74] I.T. Foster and W.H. Winsborough. Copy avoidance through compile-time
analysis and local reuse. In K. Ueda V.A. Saraswat, editor, Proc. 1991
Int. Symp. ISLP ’91 , San Diego, CA, USA, pages 455–469. MIT Press,
28 oct. – 1 nov. 1997.

[75] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpreta
tions complete. J. ACM , 47(2):361–416, 2000.

[76] R. Giacobazzi and L. Ricci. Detecting determinate computations by bot
tom-up abstract interpretation. In B. Krieg-Brückner, editor, Proc. 4th

ESOP ’92 , Rennes, LNCS 582, pages 167–181. Springer-Verlag, 26–28
fév. 1992.

[77] F. Giannotti and D. Latella. Gate splitting in LOTOS specifications using
abstract interpretation. Sci. Comput. Programming , 23((2-3)):127–149,
1994.

[78] É. Goubault. Schedulers as abstract interpretations of higher-dimensional
automata. In Proc. PEPM ’95 , La Jolla, CA, pages 134–145. ACM
Press, 21–23 juin 1995.

28

[79] É. Goubault and C. Hankin. A lattice for the abstract interpretation of
term graph rewriting systems. In R. Sleep, R. Plasmeijer, and van
M. Eekelen, editors, Term Graph Rewriting: Theory and Practice, chap
ter 10, pages 131–140. Wiley & S. , 1993.

[80] J. Goubault. Generalized boxings, congruences and partial inlining. In B.
Le Charlier, editor, Proc. 1st Int. Symp. SAS ’94 , Namur, BE, 20–22
sept. 1994, LNCS 864, pages 147–161. Springer-Verlag, 1994.

[81] S. Graf and C. Loiseaux. A tool for symbolic program verification and
abstraction. In C. Courcoubetis, editor, Proc. 5th Int. Conf. CAV ’93 ,
Elounda, GR, LNCS 697, pages 71–84. Springer-Verlag, 28 juin –1 juil.
1993.

[82] P. Granger. Static analysis of arithmetical congruences. Int. J. Comput.
Math. , 30:165–190, 1989.

[83] P. Granger. Static analysis of linear congruence equalities among variables
of a program. In S. Abramsky and T.S.E. Maibaum, editors, Proc. Int.
J. Conf. TAPSOFT ’91, Volume 1 (CAAP ’91) , Brighton, GB, LNCS
493, pages 169–192. Springer-Verlag, 1991.

[84] C.A. Gunter, E.L. Gunter, and D.B. MacQueen. Computing ML
equality kinds using abstract interpretation. Inform. and Comput. ,
107(2):303–323, déc. 1993.

[85] N. Halbwachs. Delays analysis in synchronous programs. In C. Cour
coubatis, editor, Proc. 5th Int. Conf. CAV ’93 , Elounda, GR, LNCS
697, pages 333–346. Springer-Verlag, 28 juin –1 juil. 1993.

[86] N. Halbwachs. About synchronous programming and abstract interpreta
tion. Sci. Comput. Programming, 31(1):75–89, mai 1998.

[87] R.R. Hansen, J.G. Jensen, F. Nielson, and H. Riis Nielson. Abstract inter
pretation of mobile ambients. In A. Cortesi and G. Filé, editors, Proc.
6th Int. Symp. SAS ’99 , Venise, IT, 22–24 sept. 1999, LNCS 1694,
pages 134–138. Springer-Verlag, 1999.

[88] M. Hanus. Towards the global optimization of functional logic programs.
In P.A. Fritzson, editor, Proc. 5th Int. Conf. CC ’94 , Édimbourg, UK,
LNCS 786, pages 68–82. Springer-Verlag, avr. 1994.

[89] R. Harper. A simplified account of polymorphic references. Inf. Process.
Lett. , 54(4):201–206, 1994.

[90] R. Harper, R. Milner, and M. Tofte. A type discipline for program modules.
In H. Ehrig, R. Kowalski, G. Levi, and U. Montanari, editors, Proc. Int.
J. Conf. TAPSOFT ’87, Volume 2 (AFISD/CFLP) , Pise, IT, LNCS
250, pages 308–319. Springer-Verlag, 23–27 mars 1987.

[91] R. Harper and J.C. Mitchell. On the type structure of Standard ML.
TOPLAS , 15(2):211–252, 1993.

[92] W.L. Harrison. Can abstract interpretation become a main stream com
piler technology? (abstract). In P. Van Hentenryck, editor, Proc. 4th Int.
Symp. SAS ’97 , Paris, 8–10 sept. 1997, LNCS 1302, page 395. Springer-
Verlag, 1997.

29

[93] T.A. Henzinger, R. Majumbar, F. Mang, and J.-F. Raskin. Abstract inter
pretation of game properties. In J. Palsberg, editor, Proc. 7th Int. Symp.
SAS ’2000 , Santa Barbara, CA, USA, LNCS 1824, pages 220–239.
Springer-Verlag, 29 juin – 1 juil. 2000.

[94] R. Hindley. The principal type-scheme of an object in combinatory logic.
Trans. Amer. Math. Soc. , 146:29–60, 1969.

[95] K. Horiuchi and T. Kanamori. Polymorphic type inference in Prolog by
abstract interpretation. In K. Furukawa, H. Tanaka, and T. Fujisaki,
editors, Proc. 6th Conf. on Logic Programming ’87 , Tokyo, JP, LNCS
315, pages 195–214. Springer-Verlag, juin 1987.

[96] N.R. Horspool and J. Vitek. Static analysis of PostScript code. Comput.
Lang. , 19(2):65–78, 1993.

[97] S. Hughes. Compile-time garbage collection for higher-order functional lan
guages. J. Logic and Comp. , 2(4):483–464, août 1992.

[98] N.D. Jones. Combining abstract interpretation and partial evaluation
(brief overview). In P. Van Hentenryck, editor, Proc. 4th Int. Symp.
SAS ’97 , Paris, 8–10 sept. 1997, LNCS 1302, pages 396–405. Springer-
Verlag, 1997.

[99] N.D. Jones and S.S. Muchnick. Flow analysis and optimization of LISP-like
structures. In 6th POPL , pages 244–256, San Antonio, TX, 1979. ACM
Press.

[100] P. Jouvelot and D.K. Gifford. Algebraic reconstruction of types and effects.
In 18th POPL , pages 303–310, Orlando, FL, 1991. ACM Press.

[101] T. Kanamori, K. Horiuchi, and T. Kawamura. Detecting termination of
logic programs based on abstract hybrid interpretation. Rap. tech. 398,
ICOT, Tokyo, JP, 1987.

[102] G. Kildall. A unified approach to global program optimization. In 1st

POPL , pages 194–206, Boston, MA, oct. 1973. ACMpress.
[103] P. Lacan, J.N. Monfort, L.V.Q. Ribal, A. Deutsch, and G. Gonthier. The

software reliability verification process: The Ariane 5 example. In Pro
ceedings DASIA 98 – DAta Systems In Aerospace , Athènes, GR. ESA
Publications, SP-422, 25–28 mai 1998.

[104] B. Le Charlier and P. Van Hentenryck. Experimental evaluation of a
generic abstract interpretation algorithm for Prolog. In Proc. 1992
ICCL , Oakland, CA, pages 137–146. IEEE Comp. Soc. Press, 20–23
avr. 1992.

[105] K.R.M. Leino and G. Nelson. An extended static checker for Modula-3. In
K. Koskimies, editor, Proc. 7th Int. Conf. CC ’98 , Lisbone, PT, LNCS
1383, pages 302–305. Springer-Verlag, 28 mars – 4 avr. 1998.

[106] Y.A. Liu and S.D. Stroller. Eliminating dead code on recursive data. In A.
Cortesi and G. Filé, editors, Proc. 6th Int. Symp. SAS ’99 , Venise, IT,
22–24 sept. 1999, LNCS 1694, pages 179–193. Springer-Verlag, 1999.

[107] D.E. Long, A. Browne, E.M. Clarke, S. Jha, and W.R. Marrero. An im
proved algorithm for the evaluation of fixpoint expressions. Theoret.
Comput. Sci. , 178(1-2):237–255, 1997.

30

[108] F. Martin. Generating Program Analyzers. Pirrot Verlag, Sarrebruck, DE,
1999.

[109] F. Masdupuy. Using abstract interpretation to detect array data depen
dencies. In Proc. Int. Symp. on Supercomputing, pages 19–27, Fukuoka,
JP, nov. 1991. Kyushu U. Press.

[110] F. Masdupuy. Semantic analysis of interval congruences. In D. Bjørner, M.
Broy, and I.V. Pottosin, editors, Proc. FMPA , Akademgorodok, Novosi
birsk, RU, LNCS 735, pages 142–155. Springer-Verlag, 28 juin – 2 juil.
1993.

[111] L. Mauborgne. Tree schemata and fair termination. In J. Palsberg, editor,
Proc. 7th Int. Symp. SAS ’2000 , Santa Barbara, CA, USA, LNCS 1824,
pages 302–321. Springer-Verlag, 29 juin – 1 juil. 2000.

[112] C.S. Mellish. Abstract interpretation of Prolog programs. In E. Shapiro,
editor, 3rd ICLP ’86 , Londres, GB, LNCS 225, pages 463–474. Springer-
Verlag, 14–18 juil. 1986.

[113] N. Mercouroff. An algorithm for analyzing communicating processes. In
S. Brookes, M. Main, A. Melton, M. Mislove, and D. Schmidt, editors,
Proc. 7th Int. Conf. on Mathematical Foundations of Programming Se
mantics, Pittsburgh, PA, pages 312–325. Springer-Verlag, 25–28 mars
1991.

[114] R. Milner. A theory of polymorphism in programming. J. Comput. System
Sci. , 17(3):348–375, déc. 1978.

[115] D. Monniaux. Abstract interpretation of probabilistic semantics. In J. Pals
berg, editor, Proc. 7th Int. Symp. SAS ’2000 , Santa Barbara, CA, USA,
LNCS 1824, pages 322–339. Springer-Verlag, 29 juin – 1 juil. 2000.

[116] K. Muthukumar and M. Hermenegildo. Compile-time derivation of vari
able dependency using abstract interpretation. J. Logic Programming,
13(2–3):315–347, juil. 1992.

[117] A. Mycroft. Abstract Interpretation and Optimising Transformations for
Applicative Programs. Ph.D. Dissertation, CST-15-81, Department of
Computer Science, University of Edinburgh, Édimbourg, UK, déc. 1981.

[118] G.C. Necula. Proof-carrying code. In 24th POPL , pages 106–119, Paris,
jan. 1997. ACM Press.

[119] S. Owre, N. Shankar, and D.W.J. Stringer-Calvert. PVS: An experience
report. In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann, ed
itors, PROC Applied Formal Methods - FM-Trends’98, International
Workshop on Current Trends in Applied Formal Method , Boppard, DE,
LNCS 1641, pages 338–345. Springer-Verlag, 7–9 oct. 1999.

[120] J. Palsberg. Closure analysis in constraint form. TOPLAS , 17(1):47–62,
jan. 1995.

[121] S.E. Panitz and M. Schmidt-Schauß. TEA: Automatically proving termi
nation of programs in a non-strict higher-order functional language. In
P. Van Hentenryck, editor, Proc. 4th Int. Symp. SAS ’97 , Paris, 8–10
sept. 1997, LNCS 1302, pages 345–360. Springer-Verlag, 1997.

31

[122] C. Paulin-Mohring and B. Werner. Synthesis of ML programs in the system
Coq. J. Symbolic Logic , 15(5/6):607–640, 1993.

[123] A. Pnueli. The temporal logic of programs. In Proc. 18th FOCS , pages
46–57, Providence, RI, nov. 1977.

[124] K. Post. Mutually exclusive rules in logic programming. In M. Bruynooghe,
editor, Proc. Int. Symp. ILPS ’1994 , Ithaca, NY, USA, pages 472–486.
MIT Press, 13–17 nov. 1994.

[125] J.-P. Queille and J. Sifakis. Verification of concurrent systems in Cesar. In
Proc. Int. Symp. on Programming , LNCS 137, pages 337–351. Springer-
Verlag, 1982.

[126] F. Randimbivololona, J. Souyris, and A. Deutsch. Improving avionics soft
ware verification cost-effectiveness: Abstract interpretation based tech
nology contribution. In Proceedings DASIA 2000 – DAta Systems In
Aerospace , Montreal, CA. ESA Publications, 22–26 mai 2000.

[127] B. Reistad and D.K. Gifford. Static dependent costs for estimating execu
tion time. In Proc. ACM Conf. Lisp & Func. Prog. , Orlando, FL, USA,
pages 65–78. ACM Press, 27–29 juin 1994.

[128] S. Saïdi. Model checking guided abstraction and analysis. In J. Palsberg,
editor, Proc. 7th Int. Symp. SAS ’2000 , Santa Barbara, CA, USA,
LNCS 1824, pages 377–396. Springer-Verlag, 29 juin – 1 juil. 2000.

[129] C.F. Schaefer and G.N. Bundy. Static analysis of exception handling in
Ada. Soft.–Pract. & Exp. , 23(10):1157–1174, oct. 1993.

[130] D.A. Schmidt and B. Steffen. Program analysis as model checking of ab
stract interpretations. In G. Levi, editor, Proc. 5th Int. Symp. SAS ’98 ,
Pise, IT, 14–16 sept. 1998, LNCS 1503, pages 351–380. Springer-Verlag,
1998.

[131] P. Schnorf, M. Ganapathi, and J.L. Hennessy. Compile-time copy elimina
tion. Soft.–Pract. & Exp. , 23(11):1175–1200, nov. 1993.

[132] D. De Schreye and K. Verschaetse. Deriving linear size relations for logic
programs by abstract interpretation. New Gen. Comp. , 13(2):117–154,
1995.

[133] N. Shankar. Unifying verification paradigms. In FTRTFT’96 , 1996.
[134] O. Shivers. The semantics of scheme control-flow analysis. In P. Hudak

and N.D. Jones, editors, Proc. PEPM ’91 , Yale U., New Haven, CT,
USA, 17–19 juin 1991, ACM SIGPLAN Not. 26(9), pages 190–198. ACM
Press, sept. 1991.

[135] H. Søndergaard. An application of abstract interpretation of logic pro
grams: Occur check reduction. In B. Robinet and R. Wilhelm, editors,
Proc. ESOP ’86 , Sarrebruck, DE, 17-19 mars 1986, LNCS 213, pages
327–338. Springer-Verlag, 1986.

[136] J. Stransky. A lattice for abstract interpretation of dynamic (lisp-like)
structures. Inform. and Comput. , 101(1):70–102, nov. 1992.

[137] D. Tarditi, J.G. Morrisett, P. Cheng, R. Harper, and P. Lee. TIL: A
type-directed optimizing compiler for ML. In Proc. ACM SIGPLAN ’96

32

Conf. PLDI. ACM SIGPLAN Not. 31(5) , pages 181–192, Philadephia,
PA, USA, 21–24 mai 1996.

[138] K.R. Traub, D.E. Culler, and K.E. Schauser. Global analysis for par
titioning non-strict programs into sequential threads. LISP Pointers,
5(1):324–334, jan. – mars 1992.

[139] M.Y. Vardi. Probabilistic linear-time model checking: An overview of the
automata-theoretic approach. In J.-P. Katoen, editor, Formal Methods
for Real-Time and Probabilistic Systems, 5th Int. Symp. AMAST Work
shop, ARTS ’99 , Bamberg, DE, 26–28 mai 1999, LNCS 1601, pages
265–276. Springer-Verlag, 1993.

[140] F. Védrine. Binding-time analysis and strictness analysis by abstract in
terpretation. In A. Mycroft, editor, Proc. 2nd Int. Symp. SAS ’95 , Glas
gow, UK, 25–27 sept. 1995, LNCS 983, pages 400–417. Springer-Verlag,
1995.

[141] A. Venet. Automatic determination of communication topologies in mobile
systems. In G. Levi, editor, Proc. 5th Int. Symp. SAS ’98 , Pise, IT,
14–16 sept. 1998, LNCS 1503, pages 152–167. Springer-Verlag, 1998.

[142] A. Venet. Automatic analysis of pointer aliasing for untyped programs.
Sci. Comput. Programming, Special Issue on SAS’96 , 35(1):223–248,
September 1999.

[143] Kwangkeun Yi. An abstract interpretation for estimating uncaught
exceptions in standard ML programs. Sci. Comput. Programming,
31(1):147–173, mai 1998.

[144] E. Zaffanella, R. Giacobazzi, and G. Levi. Abstracting synchronization
in concurrent constraint programming. In M.V. Hermenegildo and J.
Penjam, editors, Proc. 6th Int. Symp. PLILP ’94 , Madrid, ES, 14–16
sept. 1994, LNCS 844, pages 57–72. Springer-Verlag, 1994.

A broader bibliography is available in the extended electronic version of this
paper. �xxx

