. for Program
' [onstruction

Tools and notions
for program construction

An advanced course

Edited by
D. NEEL

Institute National de Recherche en Informatique et en
Automatique

Cambridge University Press
Cambridge
London New York New Rochelle

Melbourne Sydney

INDUCTION PRINCIPLES FOR PROVING INVARIANCE
PROPERTIES OF PROGRAMS

Patrick COUSOT® & Radhia COUSOT™

ABSTRACT : We propose sixteen sound and complete induction
principles for proving program invariance properties. We
study their relationships and show that they can be derived
from each others by commuting mathematical transformations.
Only five of these induction principles correspond to already
known invariance proof methods. We choose a non-conventional
induction principle and construct corresponding partial
correctness, non-termination and clean behavior proof methods.
When constructing these new proof methods, we informally apply
Cousot & Cousot[80b] mathematical approach. This essentially
consists in decomposing the global inductive invariant invelved
in the induction principle into an equivalent set of local
invariants and in deriving the corresponding verification
conditions.

1.” INTRODUCTION

! In an introductory series of examples, we explore a number of partial
correctness proo? methods including the so-celled intermediate assertion method
of Floya[s?}~NauF[88], the subgpal induction method of Morris & Wegbreitl77],
their contraﬁosifive versions and a number of variants (Ch.2).

When informally’ explained using examples, the essence of these proof
methods is difficult to capture. Therefore we present an abstract model for
the study, comparison and systematic contruction of program proof methods.

We illustate our approaéh using a sequential iterative language which
had to be chosen simple enough in order to avoid lengthy formal computations.
However our approach is independent from any particular programming language
and has been, for example, applied to parallel programs (Cousot % Cousot[B0al,
[80b], Cousot R.[81]1). This is because we use discrete state transition systems

(Cousot P.[79]) as abstract models of programs (Ch.3).

* Université de Metz, Faculté des Sciences, Ile du Saulcy, 57000 Metz, France.
** Attaché de Recherche au CNRS, CRIN-Nancy, France.

Cousot & Cousot: Induction Principles 76

We consider in this paper, an important class of program properties
called invariance properties. This class of properties includes partial
correctness, non-termination, clean-behavior [absence of run-time errors),
etc. (Ch.4).

We show how the essence of a proof method can be captured as a basic
induction principle (Ch.5].

We propose sixteen sound and complete induction principles for proving
invariance properties of programs which we classify as relational or
assertional, predictive or deductive., forward or backward énd,positive or: =
contrapositive. 0Only five of these induction principles correspond tu_alréedv
known proof methods. We show that these induction principles can be derived
from each other using mathematical transformations. Other kind of relationships
between the induction principles (and hence the corresponding proof methods)
include equivalence in the sense that a proof by either of these methqdé

can be used to produce a proof by any other method (Ch.B).

In Cousot & Cousot[B0b] we have studied a mathematical method for construc-
ting proof methods. This essentially consists in dé?ﬁning the operational
semantics of the programming language, choosing an induction principle for the
considered class of properties, choosing a decomposition of the global inductive
invariant involved in the induction principle into an equivalent set of local
invariants and finally deriving the verification conditions corresponding to
that decomposition from the induction principle. This mathematical method for
constructing program proof methods is informally reviewed in Ch.7.

We next define the semantics of cur example programming language (Ch.8).
choose a non-conventional induction principle and construct sound and complete
methads for proving non-termination [Ch.8), clean-behavior (Ch.10) and global

invariants (Ch.11) of programs.

We conclude (Ch.412) that complementary methods should be used for praving
all usual different invariance properties of a program. Here complementary
means that a single set of invariant assertions can be used for each of the
properties which are considered for the program. We show that this is the
case of the induction principle underlying Floyd's method but not Morris &
Wegbreit's subgoal induction methods. In our opinion this explains the

relative success of Floyd's partial correctness proof method.

Cousot & Cousot: Induction Principles 17

2. PROVING THE PARTIAL CORRECTNESS OF AN INTRODUCTORY EXAMPLE
BY SEVERAL DIFFERENT METHODS

We illustrate a series of different partial correctness proof methods
using the following program fragment which computes the gquotient g and remainder
r of two integers x and y [so that x=g#*y+r and r<y). This example has been
chosen naive and well-known enough so that it is simple to understand and its
partial correctness is obwvious. Therefore the reader can easily concentrate on
studying the various partial correctness proof methods which will be illustrated.
i
Zt
2 i
4

R
B:

[Variables are implicitly declared as integer variables, without bounds on
their possible values. The "input" variables X and Y are assumed to be initia-
lized. Labels have been used so that program points can easily be designated].

Proving that this program is partially correct consists in showing that if
execution starts at program point 1 with initial values x.y for the variables
¥,Y and terminates with final values X,y.q,r of the variables X,Y,Q.R then at
termination point 7 we have [§=5_A§£i_nx=a¥l+;'n;<1].

2.1 ASSERTIONAL FORWARD DEDUCTIVE POSITIVE METHOD (i)

In Floyd[67]1-Naur[66]"s.method one associates an intermediate assertion
Pi with each program point i,i=1,...,7. The meaning of an assertion Pilx,y,q,r)
iz that it describes [a superset of) the possible values x,y.g,r of the
variables X,Y,Q,R whenever control reaches program point i :
Pilx,y,q,r) = true
Palx,y,g,r) = Lg=01
Pilx,y.a,r) = [g=0 Ar=x]
Pylx,y.g0,r) = [x=g*y+r]
Pslx,y.g.r) = [x=gry+(r-yl]
Pelx,y,g,r) = [x=g*y+r]
Palx,y,g,r) = [x=gry+r Ar<y]
These intermadiate assertions must be shown to satisfy the following

verification conditions :

Cousot & Cousot: Induction Principles i 78

[iE] Pilx,vsq.r] <= true

(i2) Palx,y,q.r) < [3g'IP1(x,y.q".r) Ag=0]

(i3) Palx.y.g.r) <= [3r'|P2lx,y,q.r') Ar=x]

(is) Pylx,y.g,r) <= L(Palx,y,q,0)vPs(X,y,q,0)Alc2y)]
(is) Ps(x,y,q,r) <=[3q'|Py(x.v.q’,T) Ag=g'+1]

(ig] Pslx,y.g.r) <= [3r'|Ps(x.y,q.r") Ar=r'-y]

(iz) Prlx,y.q.v) <= L(Falx,y,q,r) VPg(x,y,q,r)) Alr<y]]

(i1 [x=gry+r Ar<yl <= P;(x,y,q,r)

As a simple exercise, we leave to the care of the reader the proof that
for all possible values of x,y,q.r., the intermediate assertions satisfy these
verification conditions. Then according to Floyd-Naur's method the partial
correctness proof is finished.

In order to understand why, notice that the verification conditions have been

defined so that :

- Pilx,y,q,r)] must be trus when execution begins.

- Whenever execution reaches some program point i which is immediately
followed by program point j, then the assumption tpat FPilx,¥.g.,r) 1s true
when control is at point 1 implies that Filx,y,q.r) must then be true when
control reaches program point j.

For example, if execution reaches program point 3 with Pylx.y.g.r) assumed
to hold, then either rzy and control will reach program point 4 with Py (x,y,q,r)
holding (because of verification condition i,) or r<y and control will reach
point 7 with P7(x,y.q,r] holding [(because of verification condition i4).

The same way, if execution reaches pfogram point 4 with P, (x',y'.,q',r')
assumed to hold where x',y',q',r' are the values of the variables X,Y,Q.R at
this point. Then control goes to program point 5 with new values x,y,g,r of
the variables such that x=x' Ay=y' Ag=g'+1 Ar=r’ AP4(x',y',g’',r") that is
Py(x,y.q'.r) A g=q'+1. Then because of verification condition is we can
conclude that Ps(x,y.qg.,r) is true.

Now the program has been shown to be partially correct because the veri-
fication conditions allow us to conclude that whenever control reaches some
program point i then Pj(x.y,g.r) must be true (therefore in particular upon
termination at program point 7). The proof is by induction on the number n of
computation steps since the computation started at program point 1. For the
basis, that is after n=0 computation steps, control is at program point 1 and
Py(x,y,0,r) holds by verification condition ie' For the induction, after n
computation steps either program execution is terminated and we have done ar
control is at some program point i, i#7. By induction hypufﬂesis we can assume

that P; holds. The n+1-th computation leads to some immediately following

Cousot & Cousot: Induction Primciples 79

program point j. Then Py must hold when control reaches program point j
because Py is true by induction hypothesis and Pj satisfies verification can-

dition ij.

2.2 ASSERTIONAL FORWARD PREDICTIVE POSITIVE METHOD ()

Hoarel691's partial correctness proof method is similar to Floyd-Naur's
method in that the same intermediate assertions are used. Also, the proof that
Hoare's method is sound is similar to the one of Floyd's method, since one
must prove that whenever control reaches some program point i then Pilx,y.q.r)

is true. However, the verification conditions are somewhat different :

Pilx.y,g.r) == true

Pilx,y,g,r) == Palx,y,0,r)

Pz (x,¥,0,r) => P3lx,v,q.x)

Pslx,y.g.r) => [(Py(x,y,q,r) ArzylvIP;(x,y,q,r) Ar<yl]
Pulx,y,g,r] = Pslx,y.q+1.r)

Ps(x,¥,9,T] = Pglx,y:q,T-y)

Pels,y,q.7),= [IP4(x,y,q.r) ArzylviPyix,y,q,T] ATyl]

[x=g*y+r Ar<y] <= P;7(x,y,q,r)

The above presentation of Hoare's method is somewhat unfaithfull. The
main reason is that we have not defined the verification conditions by induction
on the syntax of programs. Another reason is that we used a predictive form for
a1l verification conditions as opposed to Hoare who introduced a predictive
verification condition for assignment but used Floyd's deductive verification
conditions for conditional and while commands.

Both deductive and predictive forward verification conditions guarantee
that whenever execution reaches scme program point i (with values x.y.q.r for
variables X,Y,U0,R) which is immediately followed by program point j (where the
values %',y',g'.r" of X,Y.Q,R are related to the values of the variables at
point j by say tij[x,y,q,r,x',y',q',r']] then the assumption that P;(x,y.q.r)

is true when control is at point i implies that P,(x',y',q'.r') must be true

when control reaches program point j. :
In the deductive verification condition, one assumes that Pi[x.y,q,r]
holds and deduces the strongestconsequence at point j and this conseguence
(i.e. Pi[x,y,q,rl Atij[x,y,q,r,x',y',q',r‘]l must imply Pj[x',y'.q',r'].
In the predictive verification condition, one predicts at program point
i what is the weakest condition for P,(x',y',q',r') to hold when control goes
from i to j, and the assumption that Pi[x,y,q,r] holds must imply this

predicted condition (i.e.tjj(x,y.q.r.x',y'.g’,r’) APJ(x'.y',q‘.r'D.

Cousot & Cousot: Induction Principles 80

2,3 RELATIONAL FORWARD DEDUCTIVE POSITIVE METHOD (I)

fhe partial correctness of the following program cannot be expressed as
an assertion upon the final values of the variables (because the initial value

of X is not memorized)

;: Q:=0;

é: while X2Y do
4: Q:=0+1;
5; Kri=¥-Y;
6: oc

In order to use Floyd-Naur's partial ﬁnrrectness proof method, one must
introduce an auxiliary variable XI which is assigned the value of X on program
entry and never modified afterwards :

XI:=X; @:=0; while X2Y do Q:=0+1; X:=X-Y; od

so that upon termination we can prove that [xi=g#y+x Ax<yl.

Such a trick can be avoided by using Mannal71]'s partial correctness proof
method. The method is-similar to Floyd's method except that the intermediate
assertion Pi associated with program point i expresses a relationship between
the initial values x,y of variables X and Y and the current values x,y,g of
these wvariables X,Y,Q which is true whenever control reaches program point i

Pilx:ysx,y,q) = [x=x Ay=y]
Palx,ys%.¥.q) = [x=§_Ay=!_quD]
Palx,yax,v.q) = [y=y Ax=gry+x]
Pulx,y.%,¥,9) = Ey=i_hzf[q—1]*xfx]
Psx:¥s%,y,q) = [y=y Ax=qry+x]
Pelx,y.%¥.9) = [i=q*i+x Ax<y r.y=l]
The verification conditions are similar to the ones of Floyd-Naur's method

except for the entry intermediate assertion

PL(x,¥,%,¥,0) <= [x=x Ay=y]

Pa(x,¥,%,y.q) <= [dq' [P1(x,y,%,y,q") Ag=0]
Palx,y.%,y,q) <= [(Pa(x,y,%,¥,q) YPs(x,¥,%,y,q)) A x2y]
Pu(x,¥,%y,q) <= [dg' |P3(x,y,x,y,q') Ag=q'+1]
Ps(x,y,%,y,aq) < [3Ix' [Py (x,v.x',y,q) Ax=x"-y] :
Pelx,ya%,y,g) <= [(P2(x,¥,%,y,0) VPs(X,¥.%:¥,9)) A x<y i

[ﬁ:q*l{-;(f\x<l Ay:y-] <= Ps[i,ilx,y,q]

Cousot & Cousot: Induction Principles 81
2.4 RELATIONAL FORWARD PREDICTIVE POSITIVE METHOD (T)

The above deductive verification conditions are equivalent to the follo-

wing predictive ones :

[x=x Ay=y] => P1(X,¥,X,V,q)

Pilx.y.%:¥,9) => Palx,y.%,y,0)

Pa2(x,v,%,v,q) = L(Ps (oY% ¥,q) AxEyIVIPG (X, v, %,y¥,q) Ax<yl]
P3(x, YoXoyaq) = Pulx,y,x,y,q+1)

Pu[x,g,x ¥.q) = Pslx,y.%x-y.y.ql

Pslx.y.%:y,q) = [(Pa(x,y,%,v.q) Ax2y)v(Pe(x,y,%,y,q) Ax<y)]

Pelxs¥,%:y,a) => [x=geyrx Ax<y Ay=y]

2.5 RELATIONAL BACKWARD DEDUCTIVE POSITIVE METHOD (1°1')

In Morris &Wegbreit[77]'s partial correctness method so-called subgoal
induction, the assertion Pi associated with program point i relates the values
Xx:¥,q of the variables X,Y,Q with the wvalues ;,a of X,H on termimation. There-
fore instead of describing what has been done by the program from the entry
point up to program point i, the intermediate assertion Pi describes what
remains to be done from program point i up to the end of execution

P1(x,y,q,%,0) = [x=gry+x aAx<y]
P2(x,y,0,%,9) = [x=(g-gl*y+x Ax<y]
Palx,y,q0.%,4) = [x=(q gl*yrx “X‘L]
Pulx,y,g.x.q) = [x=(g-g+1)*y+x Ax<y]
Pslx,y.q,%,9) = [x=(g-gl*y+x Ax<y]
Felx,y.q.%,q) = [x=x Ag=q]

The meaning of intermediate assertion Fi[x.y.q,?,?] is that if control
reaches program point i with“values %,¥,q for the variables x,Y,0Q and if
afterwards the execution of the program terminates with final values ;la for

X and @, then PiEX.y,q,EZE] must be true.

The deductive verification conditions which ensure this property are the

following :

(I2') [x=gxy+x aAX<y] <= P(x,v,9,%,q)

(I11') Pilxy.q.%0) < P2(x,y,0,%,9)

(Iz1) Palx.y,q.%,q) <= [(Parx Vo0, %,0) AxzylVIPe(x,y,g,%,q) Ax<y)]
(I3H Palx,y,0,%,0) <= Py(x,y,q+1,%,9)

(Izh) Pulx,¥,0,%,9) <= Pslx-y,y,q9.%,9]

(I3 Pslx,v,0,%,q) <= [(P3lx,y,q,%,q) Ax2yIVIPe(x,v,q,%,q) Ax<y)]

[I;ll Pelx,y,q,%,q) <= [x=x Aq=g]

Cousot & Cousot: Induction Principles 82

When the intermediate assertions have been shown to satisfy these veri-
fication conditions, the partial correctness proof is finished.

In order to understand why, notice that the verification conditions have
been defined so thst :

- Pelx,y,q.%x,q) must be true when execution ends.

- Whenever execution reaches some program point j which was immediately
preceded by program point i, then the assumption that P,[x,y,q,;,aj holds
[between the wvalues x,y,g of X,Y.,Q at point j and §,E'oi X,0 upon termina-
tion) must imply that Pi[x,y,q,;,aj was holding (between the values x,y,q
of X,Y,0 at point i and ;;a of X,0 upon termination) when control reached
program point i.

For exemple if execution reaches program point 3 with P3(X,y.0.%,0) assumed
to hold, then execution came either from program point 2 and Fz[x,y»ﬂ,;,al Was
true (because of verification condition I3') or from program point 5 and
Pslx,y,0,%,0) was true (because of verification conditian It

The same way if exscution reaches program point 4 with x',y',q' as values
of the wvariables X,Y¥,0J at that program point 4. Thén execution came from
program point 3 where the values x,y,q of the variables X,Y,Q were such that
xh=x, yl=ys gl=gels CLE Fu[x',y',q',i,aj isassumed to hold at program point 4,
then Fu[x.y.q+1.§,a] holds at program point 3. Then because of verification
condition I3' we can conclude that Pa(%,y,0,%,0) was holding when control was

at program point 3.

MNow the program has been shown to be partially correct because the veri-
fication conditions allow us to conclude that whenever controcl reaches some
program point i with X=x, Y=y and Q=q and afterwards execution terminates with
X=x and U¥§ then Pi[x,y,q,;laj was true (therefore in particular, when
execution began at program point 1). The proof is by induction on the number
n of computation steps until the computation halts at program point B. For
the basis, that is when n=0 computation steps remain before termination,
control is at program point B and Pelx,y,0,%,0) holds by verification condition
I;l. For the inducticn, when n computation steps remain either program execu-
tion is starting and we have done or control is at some program point j, j=1.
By induction hypdthesis, we can assume that PJ holds. When n+1 computation
steps were remaining, control was at some program point 1 immediately preceding
point j. Then Pi had to hold when control reached program point i because P,

is true by induction hypothesis and Fi satisfies verification condition IE‘.

Cousot & Cousot: Induction Principles
2.6 RELATIONAL BACKWARD PREDICTIVE POSITIVE METHOD :IT‘]

The deductive verification conditions of [orris &Wepbreit's subgoal

induction method are equivalent to the following predictive ones :

[x=g*y+x Ax<y] <= P (x,v,0.%.q)

Palx.y.q.x.q) => [4q' [Py (x.y.q" ,%.q) Ag=0]
Palx,y.q:%,3) => [(Palx,y,q.%,q) ¥Ps(x,y.q, X, gllalxsy)l
Pulx,¥.9.%,9) => [3g'|Pilx.v.q .x,q] Ag=g'+1]
Pslx,y.q,%,g) = [3x' IPu(x',y,q,x gl Ax=x'-y]
Pelx,y,q0,%,q) = [(Pa2(x,y,0,%.0) VPslx,y,0.x, gl a(x>y)]

Pe(3,y, 0, %,q) <= [x=x Ay=y]

Both deductive and predictive forward verification conditions guarantee
that whenever execution reaches some program point j (with x',y'.g' as values
for variables X,Y,Q) which was immediately preceded by program point i (with
X,¥,q as values for variables X,Y,Q such that say t [x ¥v.g.x",y',q"]) then
the assumption that F gt s q] holds at pDJnt J must imply that

P [x,y,q, X, q] was holdlng when control reached program point i.

83

In the deductive verification condition, one assumes that F.[x',y',q',?,al

holds and deduces the strongest consequence at point i and this conseguence
[i.E. tij(x,y.q.x‘.y',q'] AFj[x',y',q',;.ET!must imply Pi[x,y,q,;;aj.

In the predictive verification condition, one predicts at program point
j what is the weakest condition for Pi[x',y'.q',E;al to hold when cantrol goes
from i to j, and the assumption that P _(x',y',g’,x,q) holds must imply this

predicted condition (i.e. Pi[x,y.q,;,aj Atij[x,y,q,x'.y',q'ﬂ.

2.7 ASSERTIONAL BACKWARD DEDUCTIVE POSITIVE METHOD (i)

This partial correctness proof method is & special case of lorris &
Wegbreit's subgoal induction where final values of variables are not used.
Then relationships betweeninitial and final values of variables cannot be
directly expressed. One can only prove that if the program terminates then
the initial values of the variables had to satisfy some condition (notice
that this cocndition is necessary for termination but not sufficient].

For example, we can prove that if the program

2. Qe=0;
' while XY do
- Q:=0+1;
4 s
5. Xo=X=X3

od;

Cousot & Cousot: Induction Principles 84

terminates then necessarily (x<y)v(xzy Ay20)

The intermediate assertions are :

Pilx,y,a) = [lxzyl=>(y=0]]
Palx,y,g) = [(xzyl=>(y=0]]
Pilx.,y.q) = [(x22+y)=>(y20]]
Pylx,y.gq) = [(x22#y)=>(y20]]
Ps(x,y,g) = [(xzyl=>(y=0)]
Pelx,¥.q) = true

and the verification conditions are :

[lx<ylvixzy Ay20)] <= P;(x,y.q)

Pi1lx,y,g) <= Pz(x,y,0)

Paolx,y,g) <= [(Palx,y,q) Axzy)V(Pslx,y,q) Ax<yl]
P3(x,y,q) <= Pulx,y,q+1)

Pulx,y,g) <= Pslx-y.y,ql

Psx,y,g)l <= [(Palx,y,q) Axzylv(Pelix,y,q) Ax<yl]

Pelx,y,9) <= true

When the definition of partial correctness of a program involves a
relationship between initial and final values of the variables, we have
mentionned that Floyd's method can be used on an eguivalent program which is
the original one transformed by an assignment on entry of the initial wvalues
of variables to auxiliary variables. A similar idea for the assertional
backward positive method would consist in memorizing the final values of X and
Q by an assignment to auxiliary variables XF and QF on program exit. This
does not work. In fact the backward symmetric of the forward trick consists
in terminating the program by while (XF#X or QF#Q) do skip;od. This trans-
formed program is equivalent to the original one with respect to partial

correctness. The intermediate assertions would be :

{xf=x agf=q} while (XF#X orQFzQ) do {xf=x agf=q} skip; {xf=x agf=q} od {true}.

It is clear that the relational proof method should be prefered to such a trick!

2.8 ASSERTIONAL BACKWARD PREDICTIVE POSITIVE METHOD (')

The predictive version of the above deductive verification conditions is
left to the reader.

Cousot & Cousot: Induction Principles 85
2.9 RELATIONAL FORWARD DEDUCTIVE CONTRAPOSITIVE METHOD (17)

This partial correctness proof method is contrapositive, in that the

following intermediate assertions describe what will not happen during progran

execution :
Di[x,y,q.;,gl = [{x=azy+;§=>£;éy]]
Palx,y,q,%x,0) = [[x=(g-gl*y+x)=>(x2y)]
Palx.y,a,x.9) = [(x=(g-g)*y+x)=>(x2y)]
Pulx,y,0,%,0) = [(x=(g-g+1)xy+x)=>(xzy]]
Pslx,v.q,x%,3) = [lx= (q_q}*y+x]‘°(x>y]]
Pelx,y,0.%,0) = [((x=(g-g)lxy+x)=>(xzyDAalx<y)]

Let x,y.q and :.;)E- be the initial and final values of the program
variables X,Y,{. If the program were not partially correct then
“[x=54y+;-ﬁ§?y] would hold and F}[x,y,q,;,a} would be true. This follows from

the first verification condition
P1lx,y,0,%,q) <= “[x=gry+x Ax<y]

Then by induction on the number n of computation steps during program execu-
tion, the hypothesis that Py(x,y.g,x ,q} holds and the following verification

conditions would imply that P [x,y.q.x.q] holds for i=1,...,6

i

Fz[x,y,q,g,il <= [dq" Py [x.v.q" ,%,0) Ag=0]
Palx,y.q,x,q) <= [(P2(x,y,q,x .q) YPs(x,y,q9.%,q)Alxsy]]
Pulx,y.0,%,0) <= Lﬂq'IPg[x) ,x,q] Ag=q'+1]
Pslx,y.q,%,g) <= [Ix"|Pu(x’,y.g.%x.q) Ax=x'-y]
Pelx,y.q.%x,g) <= [(P2(x,y,q,% X,0) VPs(x,y,g, %,y Aalxzy)]

If moreover, we assume that execution of the program terminates, then the last

verification condition :
P, y,0,%,9) <= [x=x a'd=q]

would ensure that Pﬁ{x,y,q,?,al is not true. Since termination would lead
to a contradiction we have proved by reductio ad absurdum that the program is

partially correct.

2.10 RELATIONAL FORWARD PREDICTIVE CONTRAPOSITIVE METHOD (I~7)

The reader is now familiar with the fact that the above deductive veri-

ficaticn conditions are eguivalent to the following predictive ones :

Cousot & Cousot: Induction Principles BA

—[x=gey+x Ax<y]l => P;(x,y,q.%,q)
P1(x,y,0,%,8) = Pz(x.y.0,%,0)
Pa(x.y,0.%.9) = [(P3lx,y.q, f_q] AxzyIVIPe (%, y,0.%,q) Ax<y)]
Palx,y,g,x,9) = Py {x v.g+1
¥od,%,0) = Pslx-y,y.q,
0,%,0)

2 %0
2%.0
=> [(P3(x,y,q.%,

]
)
q) AxzyIVIPeIx,y,q,%.q) Ax<yl]
[x=x Ag=q] => “Pelx,y,q.%,q)

2.11 RELATIONAL BACKWARD DEDUCTIVE CONTRAPOSITIVE METHOD (T)

This partial correctness proof method is also contrapositive, in that the

following intermediate assertions describe what has not happened during program

execution

Pilx,y,x.v,q) = [lx=x)=>(y=y]]

Palx,y,%.v,q) = [(x=x Ag= 0)=>(y=y])]

Palx,Y,%,y,0) = [(x=gry+x]=>(y=y]]

Py (%, ¥,%,y,0) = [[x=(g-1)*yrx)=>(y=y)]

Ps(x,¥,%:v,0) = [x=gry+x)=>(y=y]]

Pel(x,V,%.y,q) = [(x=gry+x Ax<yl=>(y=zy]]

Let x,y.q and x,y,q be the initial and final values of the program

variables X,Y,Q. If the program were not partially correct then
“[x=g*y+x Ax<y Ay=y] would hold and Pglx,y,x,y,q) would be true. This follows
from the last verification conditionm :

Psf}_:i:X:Y:q) <= ﬂ[izq*in(Ax<y Ay=y]

Then, by induction on the number of computation steps until the computation
halts at program point B, the hypothesis that Psfﬁii.x.y.q}.hnldé and the
following verification conditions would imply that if program execution started
with initial wvalues x,y of X,Y next reaches some program point i with x,y,q as
current values of X,Y,Q and subsequently terminates then Fi{ﬁ,xjx,yfq] would
hold :

Fll[x YaXalis q] i PZ(XOYD JY:D}

Po (6, Y%, y,q) <= LIP30y, % y,a) AxzyIV(Pe(x,y,x,¥,q) Ax<y)]
Py0GY.%ay.0) <= Py(X,V,X,y,q+1)

Py (X, ¥, %, .v.ql <= P5(X,y,x-¥,¥,a)

Ps (X, ¥, %,y.0) <= L(P3(X,¥.%:¥,9) Ax2yIVIPe(X,y,%,y,q) Ax<y)]

If moreover we assume that execution of the program terminates then the first

verification condition :

TP1X,¥s%s¥,g) <= [x=x Ay=y]

Cousot & Cousot: Induction Principles 87

would ensure that Py(x,y,%,¥,q) is not true. Since termination would lead to
a contradiction we have proved by reductio ad absurdum that the program is

partially correct.

2.12 RELATIONAL BACKWARD PREDICTIVE CONTRAPOSITIVE METHOD E??

The predictive version of the above deductive verification conditions
i

P1lx,¥,%,¥,0) <= [x=x Ay=y]

Palx,y,%,y,9) => [Ig’ |P1(x,y.x.y.q") ag=0]
Pa(x,¥.%:¥,9) => [(P2(x,y,x,y,q) VPs(x,y,x,v,q))Alx2y] |
Pulx.y.%,¥,q)] = [Jq'lPaLi,x,x,y,qﬁ Ag=q'+1]
Ps(x,¥,%,¥,0] = [dx' IPy(x,y,x",y,q) Ax=x'-y]

Pe (X, ¥, %sy,q) => [(P2(x,¥,%,¥,q) VPs(x,y,%,y,q))a(x<y)]

Pe(x,y,%,y,q) <= “x=qry+x Ax<y Ay=y]

2.13 ASSERTIONAL CONTRAPOSITIVE METHODS

The reader can easily conceive the assertional counterparts of the rela-
tional contrapositive methods.
Contrapositive methods are not well-suited for proving positive properties of
programs but sometimes turn out to be guite natural for proving negative

properties such as non-termination.

3. PROGRAMS AS TRANSITION RELATIONS ON STATES

An essential step in understanding invariance proof methods consists in
considering a model of programs where all properties of programs which are
not relevant to the proof methods cen be left out. For this purpose we will
forget everything about programs except that a2 program P defines a set S[FI
of states and a transition relation tIFle (SCFIx SCP1) »~{tt,ff}). Moreover
the initial states will be specified by a characteristic predicate
el Fle(SCPD +{tt,ff}), whereas the final states are characterized by
ollPle(SCPD +{tt,ff}).

Cousot & Cousot: Induction Principles 88

Let us consider our example program :
Y Bi=0G
while XzY do
Q:=0+1;
X1=X-Y;
od;

MU r =

The states <c,m> of this program consist of a control state c (i.e. a
program point) and a memory state (i.e. a function m which defines the value
m(X],m(Y),m(Q) of the variables X,Y.Q) :

= {1,2.3,4,5,86}

E
M= {X.v.Q} =z where #Z is the set of integers
S = BxM

The initial states s of the program correspond to program point 1 with

arbitrary values for the variables :

els) = [HweMls=<1,m>]

and the final states s to program point B :
als) = [dmeM|s=<6,m>]

The transition relation te((SxS) +{tt,ff}) is true between a state and its
possible successor during program execution. More precisely t(<i,m>,<j.m'>]
is true if and only if whenever, during program execution, controcl is at
program point i in memory state m then after the next computation step, control

can be at program point.j in memory state m'.

Let us now define the transition relation corresponding to the above
5 t % i

program. We will write <i,m> +<j,m'> whenever t(<i,m>,<j,m'>) is true,
distinguishing between several cases according to the value of i. Moreover
(x,v.,q) stands for the function m such that m(%)=x, m(Y)=y and m(G)l=q and
these values of program variables X,Y,0 are implicitly universally gquantified
over integers :
<2,(x,y,0)>
<3, [(x,v,ql)> iff xzy
<B,(x,y,q)> 1ff x<y
<4,[x,y,gr1)>
<5, [x~v,y.q)>

<3, (x,y,ql> 1iff xzy
<B.0(x,vunlz. Iff x<y

<1, (x,y,q)>
<2, (x,y,ql>
<2,(x,y,ql>
<35 [lelq}>
<4, (x,y.ql)>
<5, (x,y,ql>
<5, (x,y.q)>

Fetdetdotdotdet ot por

The reflexive transitive closure t* of t is defined as follows :

Cousot & Cousot: Induction Principles 89

tl (a5 = (=5
tN*1(s,s") = [ds"e5|tM(s,8") Atls”,5')] when n20
t=0e,5°) = [An20)t™s.s")]

*
sc that t (s,s') is true iff s' is & program state which can be reached froi:

state s after n20 computation steps as defined by t.

Let us define :
Ulx,y,0:%,v,0) = [x=gry+x A<y Ay=y]
U(s,8) = [31,3€C, x,¥,0.%.V,0¢ Z|s=<1, (x,y,q)> As=<j, (x,y,q)> AT, ¥.0.%,v,q]]
then when we said that the programn was partially correct we meant :

vs,Ses, [els) At (s,8) Aa(S)] = Y(s.5)

4, INVARIANCE PROPERTIES OF PROGRAMS

Partial correctness is a special case of invariance property. llore
generally, if ee(S +{tt,ff}) characterizes initial states, oe(S+{tt,ff})
characterizes final states, te((SxS) +{tt,ff} is a transition relation then
e ((SxS) +{tt.ffH is said to be invariant for t with respect to € and 0 iff
by definition :

[els) At'(s,5) Aa(3)] = Y(s,5)

4,1 PARTIAL CORRECTNESS

Partial correctness is an invariance property where g characterizes entry
states, 0 characterizes exit states and Y is the relation between entry and
exit states. Notice that the fact that an exit state s can be reached when
execution is started with an entry state s is an hypothesis which must be true
for ¢[3.§3 to hold, so that termination is not implied. This definition of
partial correctness also covers the cases when the program is not partially
correct for all initial values of the variables. For example we might have

chosen :

Yix,y,q.%.y,q) = [(x=20 AX}D}=°[5fE4i+;lADs;ki_ﬂ§=iJ]

Cousot & Cousot: Induction Principles ¢ I 90
“ 4,2 NON-TERMINATION

Non=-termination is also an invariance property where e characterizes entry
states, O is identically true, w[g,;) is true iff s is not an exii state.
Far example, we can choose for our program
elg) = [3 x,y,0 € Z|s=<1, (x,¥,9)> s (x2y]) A (y=0)]
als) = trie = -
Pis,s) = [dieC, meM|s=<i,m> Aiz6]
When we claim that the program does not terminate when Y is initially zerao and

X positive, we mean :
* —_ —_— =
Lels] AT (s,s) AO(s)] => Yls,s)

that is no exit state can be reached during execution.

4.3 CLEAN BEHAVIOR

If our program is to be implemented on a machine then integer variables
can only have values between two bounds say "min” and "max". The transition
relation for this program would then be :

<1, (X.¥.0)> v <2,[(x,y,0)> 4iff minsOsmax

<2,[x.y.gl> <3, [x,y,gl> iff xz2y

<2, (x,y.,q)> i <B, [x,y,0)> iff x<y

<3, [x,y.g)> + <4, [x,y,g+1)> 4iff minzg+1smax

<4, [x,y,q]> 5 <5, (x-y,y,gl> 1ff mingx-y<max

<5, (x,y.,ql)> i <3, (X, ¥,q)> iff x2y

<5, [(x,y.gl> % <B, (%, y.gl> Liff x<y
where x,y,q are universally guantified over integers included between min and
max.

When we claim that execution &f the program does not lead to a run-time
error when the initial value of X is positive and that of Y is strictly
positive we mean :

* — — e
Lefs) At (s.5) AC(s)] = Wls,s)
where
els) = [3x,y.q¢ Z|s=<1,(x,y,3q]> ADsx=smax A O<ysmax]
o(3) = [dieC, mel|F=<i,m> Ai26]
Yis,s) = [ds’e S|tls,s')]
that is whenever a state is reached during execution, which is not an exit

state, then a well-defined computation step is possible.

Cousot & Cousot: Induction Principles 91

4.4 GLOBAL INVARIANCE

When we claim that execution of the program leaves (y=y) invarient, we
mean that no operation of the program can modify the truth of this predicate,
that is

e il =
[e(s) At [s.8) Ad(s)] => Ul(s,s)
where
els) = [dmen|s=<1.m>]

a(5) = true b, iy S S Mgl
$(s,5) = [4jeC, X.y.4,%,¥,9e Z|s=<1.(x.y.gl> As=<j,[x,y,ql> Ay=y]

5. DISCOVERING THE INDUCTION PRINCIPLE UNDERLYING AN
INVARIANCE PROOF METHOD

We have given an abstract definitien of invariance properties of prograns.
We now want to single out a few properties cf invariance proof methods in order
to omit from consideration a lot of details which can only obscure our under-
standing of these proof methods.
We start from the partial correctness proof of the program considered at
paragraph 2.3 using the relational forward deductive positive method (I).
Our first abstraction consists in notieing that the intermediate assertions
Pi associated with program point i, i=1,....B6, can be understood as a relation
I on states. We had :
Pilx,y.%.¥:q) = [x=x Ay=y]
P2(x,y,%,y,q) = [x=x Ay=y Ag=0]
Palx,y.x:y,q) = Ly=y Ax=gxy+x]
Pulx,y,%:¥,0) = Ly=y Ax=(g-1)xy+x]

Pslx,y.x,y,q) = Ly=y aAx=qgry+x]
Polx,y.x.y,0) = [x=q*y+x Ax<y Ay=y]

so that Ie((Sx8) +{tt.ff] is
I(s,s) = [4jeC, x,y.q.%,y,qe Zls=<1,(x,y,q)> As=<j.(x.y.q)> ﬁpjfﬁgl-xay»q]J

Our second abstraction consists in understanding the verification
conditions on the Pi. i=1,...,6 in term of eguivalent verification conditions.
involving I and our abstract definitions of the program and its partial correct-

ness (that is in term of S,t,e,0,Y as defined at paragraph 3].
= The first verification condition was :

[x=x Ay=y]l => P1lx,¥.%.v,q)

Cousot & Cousot: Induction Principles

that is P;(x,¥.x,y,g) which is equivalent to Vs, €ls)=>I(s,5] since

[3(x.y.q)eM|s=<1, (x.,y.g)>]1=>1(s,s) is equivalent to I[<1,[_><_,i,3}>.<‘l,[ﬁ;i;5

that is

= The verification conditions 2 to

§ :

[dg’ [P1{x,¥.%.¥,q") Aq=0]=>Po(x,¥,X,¥,q)
LOP2(x.y.%.y.9) VPs(X,y, %, y,gl)Aalx2y)] =>P3(x,y,%,¥,q)
C3g' [Palx,y.x.v.q") Ag=g’'+1]1=>Py (x.¥,%,¥,q)

CIx' [Py (X, ¥.%"5y.0) Ax=x"-y]l=>Ps(X,y,%,y,q)
LP20x,y.%.y,q) VPs(x, ¥, % y,qllAlx<y)] =>Pg(x,y,%,¥.q)

are equivalent to :

L3, yha1Py (%, y, xhvhal) Ax=x'Ay=y'Aq=0]=>P, (x,y,%,y.q)

L3, v P2 (3, x5 VS GIALXEYD A X=X A y=y' A q=gT = P3 (%, ¥, X,¥,q)
Cdx, v, glPs (x, v, x5 vl gl A (xByD) Ax=x'Ay=y'Ag=gl=P3(x,y.%.¥,q]
LI, % 1P 3 (x, v, %% yh) Ax=x'Ay=y'Ag=q+1] =>Py (X, ¥,%:¥,0)
Cdxt, v, gl Pu (x, v, 6, v g A x=xty'Ay=y'Ag=q] =>Ps5(x,¥,%,¥.q]
[Ix, v, qlP2 (x, y, x5 v, QO ATXKY) A x=x'Ay=y' A q=q=>Fs (x,V,%,v,q)
Cdxh v, q'lP s (x, v, X!, v g9 A [xky) Ax=x'Ay=y'Aq=gT=>Pstx,y, %, ¥.q)

Using I, £, m=(x,y,q), m=(x,y,gl, and m=(x,y,q) this can be written as :
MEEX Va0 ¥

[I(<t,mz.<1,m>) Atl<t,mb>,<2,m>)]
[I0<1,m>,<2,m>) At(<2,m>,<3,m>)]
LI(<1,m>,<5,m>) At(<5,m>,<3,m>)]
[I(<1,m>,<3,m5) At(<3,m>,<4,m>)]
[I(<1,m>,<4,m>) Atl<d,m>,<5,m>)]
[I(<1,m>,<2,m>] At(<2,n>,<6,m>]]
[I(<1,m>,<5,m>) At(<5,n>,<6,m>)]

that is

=5
=
=
=
=
=

I(<1,m>,<2,m>)
I(<1,m>,<3,m>)
I(<1,m>,<3,m>)
I(<1,m>,<4,m>)
1(<1,m>,<5,m>)
I(<1,m>,<2,m>)
I(<1,m>, <6,m>)

¥ec',ceC, [I(<1,m>,<eim>) Atl<chm>,<c,m>}] => I(<1,m>,<c,m>)

which is eguivalent to :

vs,s',s, [e(s) Alls,s') Atls',s)1=> I(s,s)

- The last verification condition was :

Ps (Y, %,Y,q) = [x=gey+X AX<y AV=y]

that is
I(<1,m>, <B,m>) => Y(<1,m>,<6,m>)

or

vs,s, [e(s) AI(s,8) Ac(s)] = Y(s,s)

Therefore, we have shown that the proof method I essentially consist in

discovering an invariant I and proving that :

)

92

>)

Cousot & Cousot: Induction Principles 93

[{VEES. els) == I(s,s))
AlYs,s,ses, [els) Alls,s) Atls,s)]=>1(s,s))
AlYs,TeS, [els) Alls,5) Ac(E)]=y(s,5)]

from which we conclude :

¥s,5es, [e(s) At'(s,3) AC()1=>U(s,5)

This abstraction from an example will now allow us to explain in the same
way the sixteen proof methods which have been considered for our introductory
example and to generalize these proof methods to invariance properties other

than partial correctness.

6. INDUCTION PRINCIPLES FOR INVARIANCE PROOFS AND
THEIR RELATIONSHIPS

6.1 RELATIONAL FORWARD DEDUCTIVE POSITIVE METHOD (I)

The induction principle underlying proof method T has just been shown

to be :

[4Te(s* > {tt,ff}) |Vs,s,5¢8,

(I.e) e(s) =>1I(s,s)
(I1.i] , [ds'eslels) Alls,s') Atls',s]]=>1(s,s)
(1.0) [e(s) AL(S,T) AG(R)] =Y(5,5)]

L=

[vs,Ses, [e(s) At'(s,®) AOE)I=>V(s, 8] —

(1)

The soundness proof (=>) which was given at paragraph Z.3 for a particular
example can easily be genafaiizad. By recurrence on n, we first show that
[Vs,seS,¥n20,le(s) At"(s,8)1=>I(s,s)]. We use (I.e) for the basis n=0 and
{I.i) for the induction step n>0. From this lemma we conclude that

Le(s) At*[i,;] AG(5)]1=>[els) AIls,s) Ac(s]] which according to (I.0) implies
Wis,s).

The completeness proof (<=) is also very simple since we can choose I(g,s)=
o

t (s,s).so that (I.€) and {1.i) follow from immediate properties of the

reflexive transitive closure whersas (I1.0) follows from the hypothesis

[e(s) nt*Eg_,;) hU[;]]=>¢[E.E]-

A1l other induction principles will be deduced from this one, using

simple transformations.

Cousot & Cousot: Induction Principles 94
6.2 RELATIOMAL FORWARD PREDICTIVE POSITIVE METHOD [:1.:]'

The verification condition (I.i)
[Vs,seS, [ds'eslel(s) Alls,s'") Atls',s)]1=>1I(s,5)]
is equivalent to :

[¥s.s',seS, [els) Alls,s I]=>[t[5',5]=>1[5,5]]]
<> [Vs,s'eS, [e(s)AIls,5']1]=>[V¥ses, tls',s] = 1I(s,s)1]
<= [HD seS, [els) Al[a,b]]-—>*f4 'eSltls,s') A™I(s,s')]

Therefore from 6.1, we derive the equivalent induction principle T

[3Ie(5? +{tt,#F})|Vs,s, 565,

(T.e) |, els)>1Ils.s)
Ef.a) 0 CefsT Il 5)]=>-[3s"eS|t(s,s") A~I(s,s")] (1)
(T.0) [e(s) A1(s,3) Ac(E)]=y(s,5)]

<m=

[‘u‘_s_,;es, [els) At (E';) AU[E]]=>L]J(E.§J]

6.3 RELATIONAL BACKWARD DEDUCTIVE POSITIVE METHOD (I7')

If we want to prove that :

[vs,ses, [e(s) At’(s,5) A0(3)] =Y(s,5)]
we can reason on inverse relations lbqli-s-,ilﬂ[.r[i.?] and (t*[g._'a_]]_} =t*[E,E] and
prove :

[vs,5eS, [e(s) A (t (5,80 7! ac(2) 1= (5,s)]
Renaiming the dummy wvariables s and s respectively as s and s and using the
commutativity of the conjunction A we get :

[vs,seS, [o(s) Alt (5,507 Ae(5)1 =y (s,5)
Since [t*[gjgﬁ)_l =t_1*[EJ;] we can rewrite this as :

[v¥s,5es, [0(s) At~ ¥(s,5) ae(5)]1 =y (5,5)
This can be proved using induction principle T where €,t,0,y are respectively
chosen as 0,t Y,e,0”! so that we get the verification conditions :

[3Te(s® +{tt,ff})|v¥s,s,8e5,
ol(s) =>1I(s,s)

N [3s €S|o(E8)AIls,8') AtT (s’,8)]=>1(s,s)
[o(s) AL(E,5) AE(E)] =y” 1[5,531

Let J be the inverse I~} of I. These verification conditions are eguivalent
to :

[4Je(s? » {tt,ff}) |Vs,s,TeS,
o(s) =>J(g.38)
[3s'es|t"1(s',8) Al(s',s) Ac(s)] =>1(s,s)
[e(8) AJ(T,s) AC(s)1=>T ! (s,T)]

Cousot & Cousot: Induction Principles

95

Renaming the dummy variables _5,; respectively as .g.g_, we get equivalently :

[dJe(s? +{tt,ff}1|Vs,s,se5,
a(s) => J(5,3)
[ds'es|t™'(s',8] AJ(s',5] ACIB)]=>J(s,5)
[els) AJ(s,5) A0S]=1"'(5,s5)]

Using the definition of inverse relations, we have just proved that the

proof method 17! is sound and complete :

[4Je(s? +{tt,FF})|V¥s,s,Bes,

(=) A O(E) = J(E,5)
It A L3s’esltls,s’) Ad(s',5) Ao(m)]=>1(s,5)
(I-'.e) Le(s) AJ(s.®) AG(E]] =>(s,5)]

<=

[v¥s,Ses, [els) At (s,3) Ac(E)] = Y(s,5)]

6.4 RELATIONAL BACKWARD PREDICTIVE POSITIVE METHOD [IT’J

This proof method is equivaient to I-! since

[vs,5es, [ds'es|tls,s') Adls’,5) Acls)]=>1(s,s)]
[vs,5eS, [J(s,5) Agis)]l="[3s5'eS|™I(5",5) At(s’,s]]

[d3e(8® »{tt,7F} |¥s,5,Fes,
(1Zho) | o3 =5
fz=t.a) A [is,5) ro(E)]="[3s"e5|~1(s",5) At(s',s])]
(I~'.el [els) Ad(s,5) AO(E)]=Y(s,F)]

<=

[vs,5eS. [els) At™(5,5) AC(E)] = 1(s,B)]

6.5 RELATIONAL FORWARD DEDleTIVE CONTRAPOSITIVE METHOD (I°')

Using the property that ——J=J, we can rewrite the verification

conditions I7! as :

[3Je(5? +{tt,ff]1)|V¥s,5.56¢S,
[els) A™J(s,5) Ao[?]]—>¢4[5)
[I5'eS|tle,e') A™1(s',B] AglE]]=>—"J(s5,5)
g(E) =>-=1(%,5]]

(171

If we let J be —J in the above condition and use the fact that (P=0) iff

(-0 =>"P) we notice that it is eguivalent to :

[3Te(S? »{tt,ff})|Vs,s',FeS,
[els) AT¥(s,T) Ac[s]]—DJ[s 5)
[3s ¢ eSIJ[s T Atls,s') Ac(E)]1=1T(s'.5)
a(5) =~1(5,35)]

Cousot & Cousot: Induction Principles

from which we conclude that the induction principle 17! is equivalent to I°%,

hence sound and complete :

[93e(s? > {tt,F¥}1I¥s,8,5es,

) Lels) ATW(5,5) AC(E]]=>T(s,F)
R [ds7es|I(s",5) Atls’,s) aa(s)]1=>T(5,5) ”_—'1"-].
O] o(5) =~I(%,3)]

<=

[vs,5es, [els) At7(5,5) AO(E)] = yls,5)]

6.6 RELATIONAL FORWARD PREDICTIVE CONTRAPOSITIVE METHOD (171

The deductive verification condition (I7'.i) can be given a predictive
form using the transfarmation of [[4x'|P(x') Atlx',x)]=>0(x)] into the

eguivalent form [P(x) =>"03x'|tl(x,x') A™Q(x")]1] :

[37e(s? » {tt, 7} |vs,s,5es,
(I'.e) , [els) A™0(s,5) ACIE)]=T(s,F)
(17'.4) , [J(s,3) Acls)]=>-[ds'eSItls,5') AJ(s',5)]

(.ol o(5) =~1(8,3)]
=> -
[vs,SeS, [els) At (8,3) ac(E)]=>1Y(s,5]]

L

6.7 RELATIONAL BACKWARD DEDUCTIVE CONTRAPOSITIVE METHOD (T)

The same way that we obtained the contrapositive version I°!' of 17!, we

can obtain the contrapositive version I of I which leads to : =

[3Te(s? »{tt,Ff}) I¥s,s,Fes,

(T.o) , [e(s) A9(s,5) AC(S)]=>T(s,8) _
(I.i) [ds’eS|els) at(s,s') ALls,s')]1=>1I(s,s) (T)
(T.e) els) =>7I(s,s)]

<

[vs,es, [els) At (5,5) AC(E)]=>Y(s,5)]

6.8 RELATIONAL BACKWARD PREDICTIVE CONTRAPOSITIVE METHOD (%]

The predictive form of the above induction principle is :

Cousot & Cousot: Induction Principles 97

[3Te(s? »{tt,ff}) |¥s,8,Tes,

I.00 , [e(s) A~¥(s,5) A0(E)]=>T(g,T)
: A L[El8) AT(s,s)]=>"[ds'eS|"T(s,s') Aatls’,s)] T

iL.e) els) =>"TI(s,s)]

o=

[Vs,SeS, [els) At™(s,5) Aa(5)]=y(s,5)]

6.9 RELATIONSHIPS BETWEEN THESE INDUCTION PRINCIPLES

We started from induction principle I which was proved sound and complete.
All other induction principles were obtained from I using three transformations
~, =1 and — which preserved the soundness and completeness properties so that
we had not to repeat the soundness and completeness proofs for all of them.

We can represent these derivations as follows

Forward Backward

Predictive 1 T Positive

Contrapositive

I=Relation:Present(s)-Future(s) I=Relation:Past(s)-Present(s]

Cousot & Cousot: Induction Principles 98

The reader can check that further applications of the transformations
~, =1 or — to the above induction principles do not lead to a new induction

principle. More generally, the following diagram commutes

1 -1 1=%
Pt T i
5 = na
| .t .
1 £ ._.." 1—1 Shis
g TR (AETIRITY [ERRTRRTRTRRITE 5
3 - =] I
oy A -1 4
T = i

6.10 THE INDUCTION PRINCIPLES ARE EQUIVALENT

In theory all induction principles are equally powerful since they are

all sound and complete. Moreover they are all equivalent in the sense that a
proof by either of these methods can be used to produce a proof by any other
method. This means that if a proof has been done using a method M (that is
we have discovered an invariant I satisfying the verification conditions VC),
and M" is any other method which requires to discover an invariant I’ satisfy-
ing VC', then we can formally define I' as a function of I so that VC(I) implies
VC'(I'). This function is defined as follows

- If M'=M then I'=I

- If M'=M then I'="I

- If M'=M~! and M is a past-present positive method then I'(s,s) =

[¥seS, (e(s) Al(s.s)) =y(s,5)]
=SE: M'=M"! and M is a past-present contrapositive method then I'(s,s) =

[dseSlels) ATls,s) A-p(s,5)]

Cousot & Cousot: Induction Principles

- If M'=M"! and M is a present-futﬁre positive method then I'(s,s) =
[¥seS, (Ils,s) Aa(s)) = (s,s)]

- If M'=M"! and M is a present-future contrapositive method then I'(sis) =
[Ises|I(s,s) Aa(s) A-y(s,s)]

6.11 ASSERTIONAL INDUCTION PRINCIPLES

When the relation Y which has to be proved invariant is an assertion on
initial states or on final states, then the inductive invariant I which is
used in the above induction principles does not need to be a relation and
can be chosen as an assertion [see examples 2.1, 2.2, 2.7, 2.8). We can

classify the corresponding induction principles as follows :

Backward

Predictive 4 Positive

7z

seoessend

sasassnsasssnernl

Deductive 4

Contrapositive
[R RN NN RN RN

VU Assertion on initial states Y Assertion on final states

99

Cousot & Cousot:

Induction Principles . 100

We have summarized these induction principles in the following table :

vs,3e8,lEls) A" (s,5) AC()] => ¥ ()
<=

vs,T,[e(s) AL (5,5) AG(5)]=>U(s)

(

o~

() [3ie(S+{tt,ff})|¥s,s.5es,

A Els)=>i(s)

T [dskS|ils) Atis,s)]l=1ils)
Li(z) ra(m)]1=u(5)]

<=

Crml

(471) [3ie(S +{tt,fF})|¥s,s,Tes,
g(F) = i(T) =
[dskSit(s,s) Ail(st1]=>1i(s)
Lels) Adls)I=W(s)]

(4] [3ie(S+{tt,ff})|¥s,s,5e5,
els) =>ils) =
i(s)] =-[JskS|tls,s) A—ilsT]
[ifz] aa(E)]=y(E)]

<=>

="

[£71) [die(s~+{tt,fF})|Vs,s,5es,
o(5) = i(3)
ils) =>~[3skS|~ils) Atlshs)]
Le(s) nils)]=>y(s)]

[Z) [3ie(s+{tt,ff})|vs,s,5es,
A [TU(E) Ac(B)] =>1i(3)
» [IseS|t(s,s Ai(s9]1=>1(s)
elsl=>"i(s,s)]

<=

<=

[471) [die(S +{tt,ff})|¥s,s,5es,
A LEls) A=U(s) 1 =>4 (5)
o [3sES[i(s) atlsts)T=>ils)
agls) = —-1i(m)]

(€) [Jiels +{tt,ff})lvs,s,5es,
A CUS) AC(8)]=i(F)
aedits] =>=[dskS5il(s] Atls,s)]
els) =>~i(s]]

=T

(€71) [3ie(s +{tt,ff})|Vs,s, Tes,
Lels) Ampls)I=>1i(s)
ils] =>-[dsks|t(s,s] A~ils0]
al®) =>"1i(3)]

An induction principle (m] is derived from (M) by defining ils] =

[dseSlels) Alls,s)] (or i(s)=[35es|I(s,7) Aa(s)]).

When ¥ is an assertion,

(M) is equivalent to (m) since one can choose I(s,s)=[e(s) Ails)] (or

I1(s,5)=li(s) Ac(E1]).

Notice however that all relational methods are equivalent but assertional

methods serve different purposes, only those in the same column beeing

equivalent.

7. CONSTRUCTING AN INVARIANCE PROOF METHOD FOR A PROGRAMMING

LANGUAGE

Starting from an introductory example which illustrated the various

methods which can be used to prove the partial correctness of a program, we

abstracted the underlying induction principles and shown that they can be

used for proving any invariance property of programs.

Cousot & Cousot: Induction Principles 101

We now study the symmetrical problem that is starting from an abstract
induction principle, how can we derive the corresponding method for proving
invariance properties of programs written in a particular programming
language?

Since we want to design invariance proof methods for a programming
language but not only for a particular program, and for esch program P the
proof method will clearly depend upon the corresponding set of states sLrPl
and transition relation tLPll, we will have to proceed by induction on the
syntax of programs. Except for this generalization, the process will exactly
be the reverse of the one illustrated at paragraph 5. Since it is not
possible to consider all programming language features in such a short paper,
we will only pay attention to while-programs with simple variables. It is
out of the guestion to examine in detail all possible invariance properties
and all sixteen induction principles for that language since their combi-
nations lead to too many different proof methods. Instead, we will give a
mathematically constructive method for designing all these invariance proof
methods. Our approach will be illustrated for a few induction principles
applied to a few classes of invariance properties. The remaining cases will
be left to the reader.

The construction of such an invariance proof method first consists in
defining the syntax and semantics of the programming language, next choosing
an induction principle, then choosing an assertion language, defining its
semantics, constructing sound verification conditions and finally checking

their completeness.

7.1 CHOICE OF AN INDUCTIdN PRINCIPLE

Considering a particular class of invariance properties (such as partial
correctness, clean-behavior, non-termination,...) consists in definipg special
forms for £, 0 and ¢ in the formula

[¥s,Ses, [els)-At (s,5) AG(E)]=>y(s,5)]
The form of & (i.e. relation w[gﬂgj, assertion on initial states Y(s) or on
final states Y(T)) will determine whether relational or assertional induction
principles should be used for that classes of invariance properties. Then an
induction principle can be selected (see 6.9 and 6.11), the choice beeing
" between forward and backward inductions, positive or contrapositive inductive

invariants and deductive or predictive verification conditions.

Cousot & Cousot: Induction Principles 102

7.2 CHOICE OF AN ASSERTION LANGUAGE

Once an induction principle has been chosen, the verification condition

for a program P will be of the form :
[3Te ALPTIVELFD (e, a)(y)I)]

where the assertion language ALFD is (SCPI* +{tt,#f}) for relational
induction principles and (SLPI +{tt,ff})] for assertional ones and the veri-
fication condition VCILPD is a conjunction of three conditions depending upon
tCPT, €, 0 and WU.

In practice, the inductive invariant I on the program states will not
be expressed as an element of A[LPll. The proof method has to provide for a
way of expressing I in an eguivalent but more convenient form. Let KEFB be

the set of such eguivalent forms f {7 75

Lxample : Coming back at paragraph 5, we had for the program P :

Q:=0;

while X=Y do
Bi=0+1;
Xr=X-Y3

od;

[n 5 01 6 o I R o B O [

I

i a5 6 contrul states
{x.¥.q0t> 2z memory states
S Dl states

=0
]

An invariant Ie ALPD = (S* +{tt,ff}) was expressed as a vector
T=(P1,...,Pe) where Pie(Z° »{tt,ff}), i=1,...,6. Therefore ALPI =
I (2z%+{tt,ff}). End of Example.

ceC

7.3 DEFINITION OF THE MEANING OF THE ASSERTION LANGUAGE

The meaning of Te ALP] can be defined by giving the equivalent Ie ALPI,
that is the equivalent assertion or relation on program states. For that
purpose we introduce a pair of functions pLPle(ALPD + ALPD) and pLPI e
{ ALPI -+ ALPI) such that pEPI(E] is the meaning of Te ALFT and EEP][IJ is
the representation of Ie ALFI.

Example (Cont'd) : The meaning of f={P;,....P5} is I=p(I) such that I(s,s)=
[3ieC, x,¥,9.%,¥.qe Z|s=<1, (x,y,q)>As=<1, [x,y,q)> APy (x,¥,%,¥,q)].

Cousot & Cousot: Induction Principles - 103

This formalizes the fact that Pj(x.y.%.y,q) is true between the initial
values x,y and current values x,y.g of the program variables X.Y.0D when
contrcl reaches program point i.

Reciprocally, an invariant Ie ALPI=(S2% +{tt,ff}) can be represented by
BLI)=(P1,++..Pg)e ALPT such that for i=1,...,6, Py(x,y,%,y,q) =
[dge Z|T(<1, (x,y,0)>.<1. (x.y,q)>)]. End of Example.

In Cousot &Cousot[80b], we study properties of the pair [E,p} which
ensure that the definition of the semantics of R‘with respect to A will be

non-ambiguous, expressive, stc.

7.4 DESIGN OF A SOUND INVARIANCE PROOF METHOD

The induction principles studied at paragreph-6 are of the form :

[31e ALPD| veLPD (e, a)(p)1)]

<=
o : ey e X il
[¥s,Se SLPI,Le(s) A tLPI (s,8) Ac(E)]=>§(s.5)]
In practice, the inductive invariant Ie ALFll is expressed by a more convenient

Te ALP] so that the proof is of the form :
[3Te ALPI| VEIPD (e, (YXT)]

where VC is the verification condition corresponding to VC. This proof

method is sound if and only if :

[3Te ALPT| VCLFD (e, 03X T)]=> Vs, 5e SLFD,[e(s) A tIPI (s,) ACIS)]=>Y(s,5]]
or equivalently : o
[3Te ALLPD| VCLFD (e,0)(YXT) 1 =>[3Te ALPT| VELPI(e,0)(Y)1)]

If moreover, we require I to be the meaning of E, then a sufficient soundness

condition is
¥Te ALFD, VCEPI(e,o)(WXT) => VCLFI(e,c)(b) pLFI(I))

Therefore VCLPI(e,0)(y) can be chasen as VCLPI(e,ol(y)eplPl. By algebraic
manipulations this condition can be expressed as a conjunction of simpler
conditions defined by induction on the syntax of program P. Moreover
algebraic simplifications are allowed since implication and not equality

is reguired.

R A N NDREERDAAC————————————

Cousot & Cousot: Induction Principles 104

7.5 VERIFICATION OF THE COMPLETENESS OF THE INVARIANCE
PROOF METHOD

Once a proof method has been designed, i.e. ALFI and VCLPI have been
defined for all programs F in the considered language, we can check that the

method is complete, that is

L¥s,Se STPD,[e(s) A tLPD"(5,5) A0(5)]=>y(s,5) 1= [ATe ATFI| VELFI (e,0)(yXT)]
or equivalently :
L31e ALPII VCIPI (e,0) (WX 1)1 = [3Te ALPT| VCLPD (e, 0)(uXT)]

If moreover we reguire I to be the representation of I, we obtain the following

sufficient completeness condition :

¥Ie ALPT, VCIFI(e,0)(XI) => VELFI(e,o)yX SLFI(LY)

8. SYNTAX AND OPERATIONAL SEMANTICS OF THE EXAMPLE PROGRAMMING
LANGUAGE

Before applying our opproach to a few examples, we have to define the

programming language which will be used for these examples.

8.1 SYNTAX

A program consists of a list of sequentially executed commands. Commands
can be null, assignment, conditional or iteration commands. Each command is
preceded and followed by unigue labels the only purpose of which is to

designate program points.

Let L,V,E and B be respectively given sets of labels, simple variables,
expressions and boolean expressions; (Lnl =2). The following context-free
grammar then defines the set P of programs (command lists) and C of commands

P o= LyiCiseneslniCrslog,: (n21)
€= Skip|Vi=E|if B then P, else P, filwhile B do P od

Given a terminal string N deriving from the non-terminal N we write
NEulNl...anNnan+1 to state that there exist may be empty terminal strings oy
and non-empty terminal strings Ny such that N is of the form 01Ny v e ONROG,

Cousot & Cousot: Induction Principles 105

and each string Nj derives from the non-terminal N; (more formally we have

* *
N + oagNyeocopNoney & oNpeo o OpNROne; = N

For example, if labels are integers and P is the string 1:skip;2:skip;3:
then P=a1:C;B is true since choosing o empty and B=2:s5kip;3: we have
*
P 3 4:Ci2:skips3: = 01:C38 + al:skip;B = P.
This notation will be used to express context-sensitive properties of

programs such as, for example, that labels can only appear once in a progran
(WPeP, [PZaly:Bla:yl=>[L,;=L.1)

8.2 OPERATIONAL SEMANTICS

8.2.1 States

The states <L,m> of a program PeP consist of a control state L (i.e. &
program point) and a memory state i.e. a partial function m which defines the
value mlv) of the program variables v. This value, whenever it exists,
belongs to some domain D which will be left unspecified. Formally, for a
program PeP we define :

cfPFD = {LelL|P=xL:B8}, the set of labels which appear in program P
VIPD = {velV|P=avR}, the set of variables which appear in program P

MCPD = (VIFD »P), the set of memory states
SIF] = cOPD x MIPI, the set of states

8.2.2 Transition Relation..

The transition relation t[PJ] between a state <L,m> of program P and its
only (if any) possible successor <L,m> is considered as a binary function on

states with boolean result :
tLPD e (SCFI? »{tt,ff})

<L%m> is a successor of state <L,m> if and only if when executing the
command designated by label L in memory state m, control goes to the program
point designated by label L' (i.e. tclPI(L,m,L) holds) and memory state m is
changed to m' = tmLPI(L,m] :

LRI (<L, m>,<L%m>) = [telPI(L,m,L0A(m = tmLFPI(L,m))]

Cousot & Cousot: Induction Principles 106

Memory states can only be changed by assignment commands v:=E. Let
Ee(E+(MIPT +D)) be a given semantic function, such that ELEDN(m) is the
value of expression E in memory state m. The effect of an assignment v:=E;
is to evaluate expression E and assign its value to variable v. No other

variable is modified since side-effects are disallowed
tmLPI(L,m) = if (P=ol:v:=E;R) then mlv/IELEN(m)] else m
where mLu/d]{w)=mlw) when we VIPT-{v} and mlv/d]1(v)=d.

The transition relation tclPD(L,m,L7 between a control state L and its

successor L' in memory state m is defined by cases as follows :

telPI(L,m,L") =

[
L v PEal:skipsL':B
v PSGl:else P' Fi;l':p
o P=ab:fisL 'R
P=al:v:=E;L":8 A medom[IELED)
]
M
L
[% PZol:if B then L':B
v Peol:while B do L':B
P=owhile B do L':Cys...:ln:Ch;l:od;B
)
A
(medom(BILED) A BLED(m)=tt)
G

{ v PsoL:if B then P' else L':B
4 P=al:while B do P' od;L":f

P=twhile B do Ly:Cise.esln:CosliodsL’:B

)
" (medom (BILED) A BLED (m) =££)
]

For example, if control is at point L before executing a while loop or
after executing its body, then control goes to paoint L' designating the
first command of its body if the test is well-defined and true, control exits
the loop if the test is well-defined and false and program execution stops (at
L which has no possible successor) if the test is ill-defined [that is its

evaluation leads to a run-time error).

Cousot & Cousot: Induction Principles 107

9. EXAMPLE : DESIGN OF A METHOD FOR PROVING NON-TERMINATION
OF PROGRAMS

9.1 NON-TERMINATION AS AN INVARIANCE PROPERTY

Let PeP be a program, and ¢el MLPD +{tt,ff}) be a characterization of the
possible values of the program variables on entry. FProgram F does not properly

terminate if and only if no reachable state during execution is an exit state,

that is :

[Vs,e SIPD, [e(s) A tEPI*(s,5) A0(E)]=>yY(3)]
where

e(<L,m>) = [(P=L:a) A¢(m)]

o(<L,m>) = tt

Pl<L,m>) = [~(P=aL:]]

9.2 CHOICE OF AN INDUCTION PRINCIPLE '

Since ¢ is an assertion upon final states, paragraph 6.11 indicates that
induction principles (£), (%), (T) or {f} can be used. We choose (Z) as example |
since this inducticn principle is not at all conventional. [%l is of the form:
[31e ALPD| VCLFI (e,0)0$X 1] ‘
where ‘

ALFD = (SLCPD +{tt,ff})

VCLFD (e,0)(YPAT) = VCqLFD(b,0)(I3a VC;LPI(I) A VCeLPN(el(T)
VeGP (V,0)(I) = [vse SLPD,[-Y(E) A0(E)]=>1(5]]

vey[FI(I) = [Wse SLFN, Ils)=>-[3s'e SLFI|~I(s') A tIFI(s’',s)1]
VCeLPD(e)(I) = [¥se SCPT, e(s) =>"I(s)]

9.3 CHOICE OF AN ASSERTION LANGUAGE

We decide to represent an assertion Ie A[LPI by a vector T of assertions
on memory states attached to each program point. Therefore

ATPD = | _ E[D:P]] (MCPD ~+ {tt,F7]})

The meaning of this vector of assertions is that the assertion T(L)(m)
attached to program point L holds on the memory state m of all program states
<L,m> having L as control state. More formally :

o[FI ¢ ALFI + ALFD
o PI(TI(<L,m>) = I(LXm)

Cousot & Cousot: Induction Principles 108

Reciprocally, an assertion Ie ALPI is represented by pLPI(I)e ALFI, that is a
vector T of assertions on memory states m such that :

yLe COPD, T(L)m) = I(<L,m>)

9.4 DESIGN OF SOUND VERIFICATION CONDITIONS

We have to define GEEP], such that :
VCIPI(e,0)(WXT) = VCEPD(e,a)(yX pLFI(T))

Since VCIF] is a conjunction of three verification conditions, we choose
VCLPD to be of the same form, that is :
VELPD (e, 0)(4XT) = VCoLPI(,0)(T) A VC;LPI(T) A VEIPI(e)(T)

In order to ensure the above soundness condition we will simply choose :

VCGLPT (y,01(T) = VCGIPI(W,0)(pLPI(T))
YC;PTI(T) = VC;IPDC pLPI(IN
VCeLFD(e)(T) = v LRI (el (pLFI(T))

9.4.1 Basis

VEGLPI (4,03(T)

= VCgEFI (W, o) pLPICTY
= [VSe SCPD, [~u(E) Aro(E)]= oLPI(TI(E)]

Using the fact that S[IPI=cIPlx MLFPD :

= [¥Le COPD, me MIPT, [~0(<L,m>) Ac(<L,m>)]=> pLPI(TI(<L,m>)1 1]
Replacing Y,0 and p by their definitions :

= [WLe COFD, me MIPD, (P=al:)=>T(L)(m)]
There is one and only one exit label for program P :

= [(Pzol:)A(¥me MIFT, T(L)(mD]

9.4.2 Induction Step

Ve [PICI)
ve; [PIC pLPI(TI),
[¥se SIPI, pLPI(I)(s)=> ~[3'€SLFT| —p[PI(T)() A tIPD(s4s)]]
[¥se SOPD, pLPI(T)(s)=> [Vs'eSLPI, t[PI(s,s) = pLPI(TI(£]1]]
[¥Le CLFD, me MIFI, I(LI(m)=> [¥YL'«CLPI,m eMLFI, =

K t[PI(<L,mb, <L,m>) => T (L) 1]
[¥me MLPI, I(L)(m)=> [VL'eCLPT,m eMLFI, "

{ telPI(L,m, L) Am= tmlPT(L,mI)=> I(L9(md)]]

[I R]

- A
Le CLPD

Cousot & Cousot: Induction Principles 109

We have a conjunction of wverification conditicns, one for each program point
Le CCPI, of the form :

T(L)m) => [YL'eCLPT, m eMLPD, [tolPl(Lym, L) Am= tmLPI(LYm) 1 => T(LI(r)]
This condition can be further refined according to the various cases corres-

ponding to the definition of tclFl :

{a) - If PZL:o that is L designates the program entry point, then YL'ecLFl,
meMIPl, tclPI(L,n!,L) is false sou that the verificaticn condition is
identically true.

(b) - If P=ol' :skip;L:B or PZol':else P'fi;L:8 or P=al’ :fi;L:f then
telPI(L,m, L) is true and tmLFPI(L,m)I=m" so that the verification condition
can be simplified into :

T(L)m) = T(L*I(m)

(c) - If P=aL':v:=E;L:B then we must verify that :
T(L)m) => [V MLPL, ' edom(ELEN) Am=m'[v/ECED (m)] => T (LIt]
Notice that m' must be of the form mlv/d] where del is the value of v before
the assignment. Therefore this condition can be simplified into :
T(L)m) = [YdeD, Cmlv/dledom(ELED) Am(v)=ELEN(mlv/d])]=>T(LI(m(v/d1)]

(d) - PZoL':if B then L:B or P=olL':while B do L:B or
P=owhile B do L:Cys...5Ln:Cpsl”:odsB
T(L)(m) —> [(medom (BLEN) A BLED(M)=tt) = T(L')(m)]

(e) - P=aL':if B then P' else L:R or PSolL':while B do P’ od:;L:B8 or
PEawhile B do Ly:Cys...3LniCpsl’sodsL:p
TeL)tm) = [(medom(BLED) ABLETD (m)=££) => T (L')(m)]

9.4.3 Contradiction

\}“cgttp]](e)[i'l

VEEH:P]][E](pi[P]](I]]

[Vse SLFl,e(s) => —pLPI(T)(s)]

[Wle CLFD,me MLPI, L[(PEL:a) Adp(m)] =>=T(L)(m)]
[(P=L:a) A (¥me MLPT, ¢ (m) =>-T(L)(mD]

9,5 INFORMAL SUMMARY OF THE VERIFICATION CORDITIONS

Using informal mnemonic notations, we can recapitulate the above verifi-

cation conditions as follows (Fi is the assertion on the program variables

Cousot & Cousot: Induction Principles 110

attached to program point Li)

- Basis :

ily Pi

- Induction step :
« Null command :

sealymskipilataaa P2 =>Pq

« Assignment command

1 {1
weslatvi=Esls:i... P2‘=>[VU'.[V=E|:]=’>F'1l:]

« Conditional command

<aabyiif B then

Lat Pz=[B=>pP;]1
Lgi
else
Ly Py =>[-B=>P;]
Esrmia
fi;
e s T Ps=>[P3 APs]

. Iteration command

«salijzwhile B _d_O_

Lz Pz=>[B=>(P; AP3]]
Las®"
od;
Liytens Py =>[-B=> (P, AP3)]
= Contradiction :
Liz... b ==P,

9.6 EXAMPLE OF PROOF USING THE DESIGNED METHOD

Let us prove that the following program :

: Q:=0;

. while X=Y do
Q:=Q+1;
Xi=X-Y;

[Sa T R S I

B: ads

does not terminate cleanly when the initial values X,y of variables X,Y are
such that x=0 Ay=0. We assume that the domain D of value of each variable

is the set of integers between two bounds min and max. These bounds are

Cousot & Cousot: Induction Principles 111

chosen such that min<0O<max.
The verification conditions (after trivial simplifications] are the following
(where x,y,qg elmin,max])

Pglx,y.q)

Pel(x.y,q) == [Ix<y) == (Fa(x,y.q) APs(x,y.g))]
Pelx,y.ql == Pylx+y,v.q]

Pulx.v.g) = Palx,v.qg-1]

Palx.y,q) => [ixzy) => [P2(x,y,q) APs(x,y,gl)]
Palx,v,q) = [¥g'elmin,max], (g=0) =>P;(x,y,q'1]

[(Dsxsmax)A(y=0)] => =P, (x,y.q)

Intuitively, by reductio ad absurdum, if y=0 the program could terminate
only if x<0, in contradiction with the hypothesis on the initial value of x.
This can be proved formally using the following invariants :

Pilx,y.q) = [ly=0)=>(x<0)] for i=1,...,5
Pelx,y,t)] = tt

9.7 COMPLETENESS CHECK

According to paragraph 7.5 we have to check that
YIe ALFD, VCILFI(e,ol(QNI] = \?EI[P]](E.G]W](E;l[P:I][I]]
Using the fact that VCLPID(e,o)(yXT)= VCLPFI(e,0)(p)X oLPI(T)) it is sufficient
to check that pLPI(PLPI(I)=I, which is trivial.

In fact, pLPI is a bijection between ALFD and ALPI (and PLFI is its
inverse). VCEPI could have been chosen weak enough not to be complete. Such
a case of incompleteness is not fundamental since GEEP] could be strengthened
enough in order to be equivelent to VCLPll. Then, as above, the only
difference betwsen VCILPI and VCLPD is that the invariants I and I are
dissimilar but isomorphic descriptions of sets of states.

In general ALPD and ALPD are not isomorphic and ALFI may not be
expressive enough in order to describe all possible sets of states during
execution (e.g. Wand[78]1). This choice can lead to a fundamental incomplete-
ness result, in the sense that for that choice of ALFI, no complete verifi-

cation condition VCLPI might exist (e.g. Clarke[771).

Cousot & Cousot: Induction Prineciples

10. EXAMPLE : DESIGN OF A METHOD FOR PROVING THE CLEAN
BEHAVIOR OF PROGRAMS

Let PeP be a program, and ¢e(MLPI +{tt,ff}) be a characterization of
the possible initial values of the program variables. Execution of program P
does not lead to & run-time error if and only if any reachable state during
execution which is not an exit state has a possible successor state, that is
[V¥s,Se SIPD, [e(s) A tEPD™(5,5) AG(E)]=>Y(E)]
where

e(<L,m>) = [[PZL:a) A¢(m)]
ol<L,m>) = [=(PzaL:1]
Pl<L,m>) = [3L'e CLPD.m'e MOPD| tLPD(<L,m>,<L.m>)]

Notice that the only difference with paragraph 9.1 is ¢ and ¢. Therefore
choosing the induction principle and assertion language considered at para-
graph 8, the verificaticn conditions will be those of 9.4, except for the
basis

Vg PD (W, 0)(T) N
= VCGLPD (Y,0)(pLFL (1] -
= [vse SIPD,[~Y(E) ac(E)]=> pllPI(I)(E)
= [¥Le CLPT,me MLPT,[~(P=aL:)A(YL'e CLFll,m'e MLPI,
- tLFI (<L, m>,<L,me) 1 =>T(L)(m)

Therefore for all labels L of program P but the exit one, we must prove :
YL’ eCLPT, m ML PT, ~ tEPD (<L, m>, <Lms)] => T (L)(m)
This condition can be further refined according to the wvarious cases corres-

ponding to the'definiticon of tLFI
(a) - If PEal:skip;L':B or P=aL:else P' fi;L’:B or P=al:fi;L":B then the
left hand side is false and the verification condition is identically true.
(b) - PSoL:vi=E;L":R
[médom(ELCED) 1 =>T(L)(m)

(c) - PSaL:if B then B or P=al:while B do B or
P=awhile B E ey ..-;Ln:Cn;L:EE_hB
Cmédom(BIED) 1 =>T(L)(m)

We can recapitulate the verification conditions as follows :
= Null command :

cocbyiskipilotess P2 =>F,

Cousot & Cousot: Induction Principles

- Assignment command :

erelyivi=Eslgi,.. ~dom(E) =P, ., 4
F'z=>[\=’v',[u=E|U] ='->P1IV 1

- Conditional command :

«..L1:if B then ~dom(B) =>F,
L2 P, =>LB=>P;]1
fgsnt

else
[E5G Py=>[-B=>p,]
Ls
Fi;
bLgitiane Pe=>[P3A Psl

- Iteration command :

.+alyiwhile B do ~dom(B) =>P;
Lz:. Py =>[B=> (Py AP3}]
Lzl
od;
Lytous Py =>["B=> (P AP3)]

- Entry point :
Litaea §===F,

For our example program :

Q:=0;

while X2Y EE’.
Q:=Q+1;
Xi=X=Y;

[np R R R

. ods

we can prove that no run-time error is possible whenever the initial values

X,y of X and Y are such that xz0 A!?U and D=[min,max].

The verification conditions (after trivial simplifications) are :

[(g+1)>max] =>Palx,v,q)
[((x-y)<min)v@x-y)>max)]=>P4lx,vy.q)

Pelx,yv,g) = [lx<y) => [P2lx,y,q) APs(x,y,q))]
Ps(x,y.q) => Pu(x+y,y,q)

Pu(x,¥.q) => P3(x,y,g-1)

P3lx,y,q) = [(x2y) => (P2(x,y,q) APs(x,y,q))]
Palx,y,q) => [¥g'elmin,max], (g=0) =>P1(x.y,q')]

[x20 A y>0] => =P1(x,y,q)
Intuitively, if initially x20 and y>0 the only possible run-time error is an
overflow in statement 3:0:=0+1;. Since Q remains positive, this can happen

Cousot & Cousot: Induction Principles 114

only if the initial value x of X (that is g*y+x in term of the current values
of wariables) is greater than max, in contradiction with the fact that

xeD=[min,max].

This reasoning is formalized by showing that the following assertions
satisfy the above verification conditions [where x,y.Q e [min,max])

Pilx,y,q) = [=i{x=0 ay=0)]

Palx,y,q) = Ps(x,y,q) = [(x20 Ay>0 Ag=20) => (gxy+x >max]]
Pilx,v.q) = [(x=2y>0 Agz0) = (gry+x >max)]

Pulx,y,0) = [lx2y>0 Agz1) = ((g-1)*y+x> max)]

Pelx.y.g1 = FFf

11. EXAMPLE : DESIGN OF A METHOD FOR PROVING GLOBAL
INVARIANTS OF PROGRAMS

Let PeP be a program. A global invariant of program P is an assertion
Se (MLFD = {tt,ff}) on the values of the variahles.which is always true during
program execution. This means that :
[vs,Te SIFI, [els) A tIP1"(s,5) A0(E)1=>P(E)]

where
el<L,m>) = [(P=L:a) Adp(m)]
o(<L,m>) = tt
Yi<L,m>) = &(m)

Choosing the induction principle and assertion language considered at
paragraphs 9.1 and 10, the verification conditions will be those of 9.4,

except for the basis

VCILPI (¥,0)(1] >
= VCGLFI(y,0)(pLPI(I)) h..
= [wsSe SLPT,[-P(E) ac(E1]= pLPI(I)(E]]
= [WLe CLPD,me MEFD, =6 (m) =>T(L)(m)]

so that for all program labels L we have to prove that :

=&(m) =>T(L)(m)

For our example program :

Q=0

while X2Y do
Q:=0+1;
Xe=X=Y;

od;

M B wn =

Cousot & Cousot: Induction Principles 115

the verification conditions are the following (where x,y,qelmin,max])
=60, y,q) => P (x,y.0) BT (- L

Pg(x,v,g) == [(x<y) == (Palx,v,q) APs(x,y,ql)]
Ps(x,y,q] == Py (x+y,y,q]

PulX,¥,q) =>Ps(x,¥.q-1]

Pilx,y,q) = [lxzy) == (Pa(x,y,q) APs(x,y,q))]
Palx,y,gq) =>[¥g'elmin,max], (g=0) =P (x,y.q"')]

dlx,y.q) ==-Pilx.v.q)
In order to prove that ¢(x,y.,g)l=(x20 Ay>0 Ag=0) is a global invariant of this
program we can choose the following assertions

P1lx,y,9)=P2 (x,y,q)=Ps(x,y,q)=[x<0 v y=0 vg<0]
Palx,y,ql=Py (x,y,q)=[(x2y) => (x<0 vy<0 vg<0l]
Pe(x,y,q)=[{x<y) = (x<0 vy=0 vg<0)]

12. CONCLUSION : CHOOSING COMPLEMENTARY METHODS FOR PROVING
DIFFERENT INVARIANCE PROPERTIES OF PROGRAMS

If different invariance properties have to be proved about a program
(e.g. global invariance, clean behavior and partial correctness] it is usually
recommended to prove these properties in turn in order to separate concerns.
For example, in order to prove :

vs,5e SR, [e(s) A tIPD"(s,5) A0(E)]=> [, (3) AV, (3) AYs(s,5)]
where

el<L,m>)=C(P=L:a) Ag(m)] (characterizes entry states)
g(<T, 7)=tt
Py (<L,m>)= &(m) [6 is globally invariant)
Vo (<T,m>) =[-(P=al:]) => (L"e CLFD, m'e MLPD [tLPI(<T,m>,<L",m’*>)]
(clean behavior)
Y3 (<L, m>, <C,f>) =L (P=al:) => Y (m,m)] (partial correctness)

we can prove successively that :
¥s,s eSlPD, [els) A tl[PIl*(s Bl Ao(E)] =21, (E)
Vs.'s esFD, [EES] A tIFT, (5,5) A0(8)]=> Y, (E)
Hs s es[CPI, [E(s] A tLPl (s,5) AC(E1] =>ysl(5,5)
Since the proofs are independent, we can use for each of these properties
a different invariance proof method, that is basically, a different induction
principle. However, although the proofs have been separated, it is better to
use proof methods which avoid duplications, that is such that :
- The verification conditions for all proofs will be the same [egcapt for
those conditions which depend upon the particular property Y; which is
proved invariant),

- A common inductive invariant will exist for all proofs.

Cousot & Cousot: Induction Principles 116

In the case of global invariance, clean behavior and partial correctness,
these requirements are fulfilled by Floyd-Naur-Hoare's method and in our
opinion this partly explains its success.

If induction principle (I} (or (7)) is used for all three proofs, the
verification conditions (I.e) and (I.i] are common to all proofs and only
(I.0) depends upon the particular property Y; which is proved invariant.
Moreover, there exists common inductive invariants for all proofs, namely
I(s,s)=[e(s]) A t[Pj*[i.S]J is the strongest one.

These requirements are not fulfilled by Morris &Wegbreit's subgoal
induction method. At first, this is surprising, since the above argument
which was used for (I) can be repeated for (I7'). However the strongest
common invariant for all proofs is now I(s,s)=[tEP]*(S,E} Ao(s)]. Since
o(s)=tt, this invariant characterizes all possible ascendants s of all
possible states s of the program! (Whereas for Floyd-Naur-Hoare's method,
the invariant characterizes all possible descendants s of only the entry
states s of the program). Since this is often untrgctahle, several remedies

can be proposed, but none of them is without defects :

- Following Morris &Wegbreit[77], we can choose a smaller set of final states.
For example, for partial correctness, we can prove :

vs,se SIPD, [e(s) A tPD"(s,5) AG(S)]=>Y3(s,5)
where

el<L,m>) = [[F'EL:C;) Ap(m)]

o(<C ™) = [P=al 2
Y3 (<L, m>,<C,m> Y(m,m)

The defect is now that, in general, the invariant can no longer be used for

proving: global invariance and clean behavior.

- An alternative consists in using a more precise invariant I(s,s) which,
instead of characterizing all possible ascendants s of possible states s of
the program (i.e. I(s,s)=[tCPI" (s,5) A0(s)] where o(s)=tt), will characterize
only those states s which are also possible descendants of the entry states.
The strongest invariant with this property is :

I(s,5) = [[3se SCPDle(s) A t*[FI(s,s)1=>[t'LPI(s,5) AG(s)1]
The defect is now that the inductifs invariant contains as a subpart the

invariant of Floyd-Naur-Hoare's method in the shape of an hypothesis.

— The above two ideas can be combined. On one hand we can use an invariant
I(s,s) 3 la Floyd-Naur-Hoare which satisfies (1.e) and (I.i) . Then
Le(s)r tEP]*{g.S]}=>I(E,s}. I(s,s) describes what has happened up to now and

Cousot & Cousot: Induction Principles 117

can be used for proving global invariance and clean behavior. On the other
hand, for partial correctness we can use another invariant J(s,s), which
describes what remains to be done until the end of the program and such that
[[dse SLPI|I(s,s)]1=>1(s,5)] satisfies (I"'.0] and (I-'.1) where o(<L,m>) =
[Pzal:]. ;

The defect is now that we have a redundant description of what the program
does (i.e. at each program point we describe the past (by Ilggs)l and the
future (by J(s,5)). Also, the proof is given twice. However, this defect can
turn out to be an advantage since readers of the program will get a better
description of its behavior while redundant but different proofs can be useful

to avoid errors.

We illustrate this last approach on our example program. At each program
point i, we have interleaved a comment {P;(x,V.x.v,q.X,y,q)} which is of the
form {[Bj(x,y,%,y,q)] ~> [A;(x,v,9.%,y,q)1}. Bj describes the relationship
between the entry and current values of the variables, while A; describes the

relationship between the current and exit values of the variables.
1: {[x=x Ay=y Ax20 Ay>01~>[x=gry+x Ay=y A O<x<yl}
Q:=0;
2: {[x=x Ay=y Ax20 Ay>0 A g=0]~>[x=g*y+x Ay=y AO<x<yl}
while X=Y do

a: {[x=q#y+x Ay=y Ay>0 Axzy Ag20]~>[x= (q-g)*y+x Ay=y AO<x<y1}
Q:=Q+1;
4: {[x=(a-1)*y+x Ay=y Ay>0 Axzy Agz1l~>[x=(g-g+1)*y+X Ay=y AOsx<yl}
Xi=X-Y;
5: {[x=qry+x Ay=y Ay>0 Ax20 Aga1l~>[x=(g-ql*y+x Ay=y A O<x<yl}
od;

6: {[x=g*y+x Ay=y Ax20 Ay>D AD<x<y Aq201~>[x=X Ay=y Ag=q]}

The comments are clearly redundant as far as the proof is concerned.
However, in our opinion, this redundancy is useful to the program reader, who
given only By or Aj, has to guess the other one in order to understand the

program.

The verification conditions are the following :
- Bylx,y,x,y,q) satisfies :

I3 (x,¥s%s¥5g) <=[x=x Ay=y Ax=0 Ai?ﬂ]
T5(X,¥,%y¥,q) <=[3q’elmin,max]|I1(x,y,*.¥,q') Ag=0]
I3(X,y,%,v,q) <=L(I2(x,¥,x,y,9) VIs(x,¥,%:¥.q))A x2y]

Cousot & Cousot: Induction Principles 118

Iu(x,y,%:¥.q) <=[dq'elmin,max]|Is(x,y.%x,y.q") Ag=Eq'+1]
Is(x,y,%,¥,0) <=[3x’elmin,max]|Ty(x,y,x",y,q] Ax=x"-y]
Te (x,¥,%,y,9) <=L(T20x,¥,%.y,q) VIs(x,y,%y,q)lA x<y]

= [3x,yelmin,max11B; (x,y.x,y.q)] ﬁ“ﬁi(x.y,q,;1§)aj satisfies

J1(%,y,9,%,¥,q) <=J2(x,y,0,%.¥,q)

J2 0,y 0,%Y,0) =0(J310¢yv,q,.%.7,0) Ax2y)V(iJelx,v,0,%y,q) Ax<yll
J3(x%,y,0,%,¥,q) <=[(g<max) AJy(x,y,0¢1,%,v,5) 1

Ju(%,y,0,%,v,0) <[Iminsx-y<max) A Js(x-y,y,0.,%X,V,q)]

Js (%Y, 0%, V,0) <=L J3(xy,q.%.¥,0) Axzy)IVIiJelx,y,q,%,v,T) Ax<yll
Je (%, ¥,9,%,V,T) <[x=X ay=y Ag=T]

(Notice that it is sufficient to prove that the above verification conditions
are satisfied by Ai[x,y.q,;]§)ad. However, in general, an invariant of the
form By =>A; is more natural since if the input satisfies certain constraints
B; then the output is to have certain properties specified by A4, whereas if
the input contraints Bi are violated we can leave the output unspecified

because such inputs can never occur in program operation).

- For proving that (x20 Ay>0 Aq20) is invariant at program points 2 to 6, we
must verify that :

B; [X,¥,%,¥.q) => (x20 Ay>0 Ag20) for i=2,....6

- For proving the absence of run-time errors, we must verify that :

Bal(x,y.%,y,q) == [g<max]
Bu (x,¥,%,¥,0) => [minsx-y<max)

- For proving partial correctness we must prove that :

Be (x.¥.%.y.q) = Ulx,¥.%,¥.q)
or
A (%, v,0,%.y.0) = P(x,y,%,¥,q)
where
Yix,y,%,7,G) = [(x20 Ay>0) = [x=G+7+X Ay=y A0<x<y)]

13. REFERENCES

Apt K.R.[1881], Ten years of Hoare's logic : A survey, ACM-TOPLAS, Vol.3,
Nb.4, (Oct.1881), 431-483. :

Clarke E.M.[1977], Programming language constructs for which it 18 impossible
to obtain "good" Hoare-like axiom systems, Conf. Rec. 4th ACM Symp. on
Principles of Prog. Lang., (Jan.1877), 10-20.

Cousot P.[1979], Analysis of the behavior of dynamic discrete systems, Research
Report 161, IMAG, Grenoble University, France, (Jan.1979).

Cousot P.[1981], Semantic foundations of program analyeis, in "Program Flow
Analysis : Theory and Applications”, Muchnick S.S. &Jones N.D. (Eds.), Ch.10
Prentice Hall Inc., (1981), 303-342.

Cousot & Cousot: Induction Principles 119

Cousot R.[1981], Proving invariance properties of parallel programs by
backward induction, Research Report, CRIN-81-P02E, Nancy, France. (March
19811,

Cousot P. &Cousot R.[1980al, Semantic analysis of communicating sequential
processes, Automata, Languages and Programming, 7th Collog., Noordwijkerhout
Lecture Notes in Comp. Sci. 85, Springer-Verlag, (July 1880}, 118-133.

Cousot P. &Cousot R..1980b1, Reasoning about imvariance proof methods, Proc.

Int. Workshop on Program Construction, Chateau de Bonas, France, Tome 1,
INRIA ed., (Sept. 198CJ.

Floyd R.W.[1967], Assigning meaning to programs, Prac. Symp. in Applied Math.
Vol.19, AMS, Providence, R.I., (1867), 19-32.

Hoare C.A.R.[1969], An axiomatic basis for computer programming, CACM 12,
10(0ct. 1969), 576-580,583.

King J.C.[1879], Program correctness : on inductive assertion methods,
RJ2525, Comp. Sci. Dept., IBM Research, San Jose,CA, (Aug.1879), 44p.

Manna Z.[19711, Mathematical theory of partial correctness, J.Comp. Syst.
Sci. 5, 3[June 1971), 2389-253.

Naur P.[186B1, Proof of algorithms by general smapshots, BIT 6, (1966),
310-316.

Morris J.H. &Wegbreit B.[1977], Subgoal induction, CACM 20, 4(April 1877],
209-222,

Wand M.[1978], A new incompleteness result for Hoare's system, JACM 25,
1(Jan. 1878]), 168-175. ’

