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1. INTRODUCTION

The problem of discovering invariant assertions
of programs is explored in light of the fixpoint
approach in the static analysis of programs, Cousot
[1977a], Cousot[1977b].

In section 2 we establish the lattice theoric foun-
dations upon which the synthesis of invariant asser-
tions is based. We study the resolution of a fixpoint
system of equations by Jacobi's successive approxi-
mations method.Under continuity hypothesis we show
that any chaotic iterative method converges to the
optimal solution. In section 3 we study the deductive
semantics of programs. We show that a system of logi-
cal forward equations can be associated with a pro-
gram using the predicate transformer rules which de-
fine the semantics of elementary instructions. The
resolution of this system of semantic equations by
chaotic iterations leads to the optimal invariants
which exactly define the semantics of this program.
Therefore these optimal invariants can be used for
total correctness proofs (section 4). Next we show
that usually a system of inequations is used as a
substitute for the system of equations. Hence the
solutions to this system of inequations are approxi-
mate invariants which can only be used for proofs of
partial correctness (section 5). In section 6 we

show that symbolic execution of programs consists in
fact in solving the semantic equations associated
with this program. The construction of the symbolic

execution tree corresponds to the chaotic successive
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approximations method. Therefore symbolic execution
permits optimal invariant assertions to be discove-
red provided that one can pass to the limit, that is
consider infinite paths in the symbolic execution
tree. Induction principles can be used for that pur-
pose. In section 7 we show how difference equations
can be utilized to discover the general term of the
sequence of successive approximations so that opti-
mal invariants are obtained by a mere passage to the
1limit. In section 8 we show that an approximation of
the optimal solution to a fixpoint system of equa-
tions can be obtained by strengthening the term of a
chaotic iteration sequence. This formalizes the syn-
thesis of approximate invariants by heuristic methods.
Various examples provide a helpful intuitive support

to the technical sections.

2. RESOLUTION OF A FIXPOINT SYSTEM OF EQUATIONS BY
CHAOTIC ITERATIONS

We denote by (L,&5,1,T,U,[1,ILI) a complete lat-
tice with respect to the partial ordering €. We use
the symbols U,M,lI,[1 for the finite and infinite
lattice operations of join and meet. The Znfimum 1
and supremum T of the lattice are defined by 1=[lL
and 7=UL, (Birkhoff{19671]).

A function ®eL+L of L into L is<sotone (syno-
nymously, order-preserving or monotone) if and only
if {vx,yel, (x2y) = (P(x)c=e(y))}.

We define the limit of a chain % exle... K

(2]
S... to be its least upper bound, lim xk: U x
k> o k=0

n

A function ®eL~>L is continuous if and only if
for any chain xk, k=0,1,... we have ]}im ¢(xk) =
>0
¢( 1im xk). Note that a continuous function is neces-
k>

sarily isotone.



We denote by L" the set of all vectors
X=(X1,...,Xn) the components of which belong to L.
(Ln;§,¢,T,U,FLELﬁ) is a complete lattice with the
{{xe v} <>

Xy =

usual "componentwise" definitions
{¥ie[1,n], X, = Y-}}, {3=(0,. .50,
((X LJY ), (X LJY N}, etc.

A functlon of several variable feL"~1L is said
to be isotone (continuous) in the variables jointly
if and only if it is isotone (continuous) in the
variables separately.

Hereafter we will consider a system of conti-
nuous equations with n variables of the form

X FI(XI,...,Xn)

1

LN SO SETERPL
This system can be abbreviated by a flaxpoint equa-
tion X=F(X) where X is the vector (X, "Xn) and T
a continuous function of type IR

is a fimpoint of FeLP>L"
if and only if F(X)=X. The least fixpoint Lfp(F) of
F is such that

{({F(fp(F))=1fp(F)} and {¥xeL", {F (X)X} =

{1fp(F)=X}}}.

An element X of L

THEOREM (Tarski[1955]) Any monotone map F of a com-
plete lattice L®

defined by : ILfp(F) = [1{XeL"

into itself has a least fixpoint

F(x)<=X}.

In practice this theorem is not constructive
since in general the set {xeL™:F(X)€ X} of post-
fixpoints of F is infinite and cannot be easily cha-
racterized. Yet, when F is continuous Kleene[1952 ]
and Tarskil1955] suggest that the least fixpoint of
F can be obtained as the limit of a sequence of
successive approximations x%=p, x'=F(x%),...,

Wop KTy, L that is pr(F):liEDFk(¢) where FX
denotes the k-fold compositionkof F with itself.
This is nothing else than Jacobi's method of succes-
sive approximations

k k-1 k-1 k

Xy = F (X)X s XSTH
1 n

) (k=1,2,...)

i =1l..n
We now generalize this result by showing that any
chaotic iteration method converges to the least
fixpoint of F. Otherwise stated this signifies that
one can arbitrarily determine at each step which are
the components of the system of equations which will
evolve and in what order (as long as no component is

forgotten indefinitely).

Let J be a non-empty subset of {1,...,n}. We
denote by F; the map L">L" defined by FJ(Xl""’Xn)
= (Yl,...,Yn) where ¥iel[1l,n] we have Yi:if_ieJ then
Fi(Xl""’Xn) else Xi fi.

DEFINITION 2.1 A chaotic iteration corresponding to
the operator F and starting with a given vector x°
such that X°€F(X°)e Lfp(F) is a sequence Xk,

k=0,1,
X=F ey (X6
subsets of {1,
vk20, elo,ml : ied

. of vectors of L" defined recursively by
-1 .
) where Jk, k=0,1, is a sequence of

.,n} such that {3m>0 {¥iel1,n],

k+2/}} i

00
THEOREM 2.2 The limit X of a chaotic iteration

k Jk+1

X0, X TL,X ,... is equal to Lfp(F).

k - Xk+1 pr(F)}

Lemma 2.2.1 {¥k20, X = F(X%) <
Proof : Let us first remark that whenever XE F(X)<
1fp(F) we have WJe{l,...,n}, X< Fi(X)eF(X)eLfp(F).
Indeed ¥iel1l,nl], XiEZFi(X) therefore if ieJ then

X, Fi(X)=FJ(X)i F.(X).

Since by hypothesis x%< F(x°)< Ifp(F) this im-
plies X° CF o(x)=xe r(x®)e Lfp(F).
tion step let us assume that X 1‘ZX < F(X
Lfp(F) for some k>0. then XE-F (X e
P () s 1fp(F);

Otherwise ing_

otherwise Xi=FJ(X)iE

For the induc-
k- 1

If ied7?

since Xk l-E:X t:pr(F)and Fy is isotone

' and then Xk'Xk e Fi(X
tion hypothesis and e (Xk 1)EF(X )CZfb(F)
tony. In both cases Vlefl nT, Xk cF. (X ) lep(F)
therefore XX ¢:F(X )e Lfp(F) prov1ng that Xk-cXk+1

FJk(X )"EF(X Y Ifp(F). End of Proof.

) by induc-
by iso-

Lemma 2.2.2 {3qel0,m] : ¥k=0, F(Xk) < xk+q}.
Proof
suppose that {¥qe[O,m], k=0
= {¥qelo,ml, Te0 @ (x9

parable with x<T9)3,

The proof is by reductio ad absurdum. Let us
: not(F(Xk) < Xk+q)}
< F(Xk)) 9{_(F(Xk) not com-

case 1 : Suppose that ¥qel0O,m], 3k=0 such that F(Xk)

k+ .
is not comparable with X 9, This must be true for
q=0 which contradicts lemma 2.2.1.

case 2 : Suppose now that ¥qe[O,m], 3k20 such that

Xk+q€:F(Xk), that is to say by definition of the
k k.
strict inequality < we have Xk+q1;F(X ) and Xk+q¢P(X X

This implies that for some component ie{l,n] we have
X?+qﬂ:Fi(Xk), while for the other components the ine-

quality is not necessarily strict. By definition of



chaotic iterations {3m=0 {vi, ¥k, 32el0,m[

eJk+2}} therefore Xkﬂz'+1 Fl(Xk+Q . But lemma 2.2.1

implies by translt1v1ty that Xkc:Xk i
Fs (X )EF. (Xk+£) which implies F, (X YeEX;

Ch0051ng q=%+1 we have Jk such that F (Xk)!=X "9 and
k+q

thus by isotony
k+£+1

also by hypothesis such that X cF, (X ), whlch is

impossible. This contradlctlon proves the truth of

lemma 2.2.2. End of Proof.

Proof of theorem 2.2
Part 1 : Let us prove that X € F(X ).
k

lemma 2.2.1 we have ¥k20, X E;F(Xk),

According to
hence passing
to the limit we get lim XkE.lim F(Xk). The sequence

k »o0 k>w
of chaotic iterations is an increasing chain (lemma
2.2.1) and T is continuous, hence }}im F(Xk)=
- 00

. K oos . o Gl
F(lim X') hence by transivity 1lim XK=X <F(X ).
k> k>

Part 2 : Let us now prove that F(X™)€ X" . By defini-
tion X~ is llm Xk' lunX *q since Xk k=0,1, .is a
k> k>

chain. But accordlng to lemma 2.2.2 ¥k20, F(X )<=

%9 hence lim F(X = lim x<*ta by ow definition of
k > k >0

limits as least upper bounds.

kllm F(X )= F(llmX ) proving that FX)eX

F being continuous
Conclusion : By antisymmetry we conclude X F(X )
and X
®©_ . k
that X =1imX < Ifp(F).
k>

is a fixpoint of F. Also lemma 2.2.1 implies
Since the least fixpoint of
F is unique we conclude szlfp(F). End of Proof.

Our definition of limits as least upper bounds
imposes to take Ifp(F) to be the Jjoin Rgxk of all
terms of the chaotic iteration sequence. In practice
we can overcome this difficulty thanks to the follo-
wing theorem :

THEOREM 2.3 Let m be the maximum number of steps
which are necessary for any component to evolve in
chaotic iterations (2.1). There exists an ordinal k
of cardinality less than or equal to that of L” such

that ¥zkm implies Zf'p(F):Xg

Let k,220 such that k#2& then {(Zfp(F)=
3 = (KMt

lemma 2.3.1
M) on (1fp(F) = X0

Proof : We prove that ka:XRm implies pr(F):ka
k<? (since the case k>{ is symmetric).
lemma 2.2.1 and 2.2.2 we have kaE F(ka)'EX
lerxk prov1ng that X< 'F(X ™) and since kaslfp(F)

"=1fp(F). End of Proof.

According to
km+m
<

we have X

Proof of theorem 2.3 (k<L™)

2
and (22km = Ifp(F)=X")} is by reductio ad absurdum.
(}*>L™) or (£2km and

: The proof that {3k

Indeed, suppose that {vk
pr(F)zXZ)}. Let o be the least ordinal of cardina-
lity strictly greater than ™. Wk<a we must have
(22km and pr(F)zxﬁ), that is Lfp(F)=x"
sing £ to be km. Let us define Y e o1 by W(k):ka

Vk k €0 such that k,zk,

when choo-

(with eventuaily (X, =a)
exclu31ve or (k,=a)) we have (pr(F)¢X 1™y op
(1fp(F)=X 2m) hence lemma 2.3.1 imply that Xklmzxkzm
proving that ¥ is a one to one correspondence of Q
into L". Therefore 0 is of cardinality less or equal
to that of L™ which is the desired contradiction.

End of Proof.

3. DEDUCTIVE SEMANTICS OF PROGRAMS

The deductive semantics of a program defines
the logical invariant assertions associated with
each program point. Once determined these assertions
can be used to verify the program with respect to a

specification or to prove that the programis errored.

3.1. LOGICAL ASSERTIONS

We consider the set L of logical first order
predicates P(X,X) over the set X of program variables
and the set X of initial values of these program va-
riables. X and X are the free variables in the predi-
cate P. The assertion Pi(X,X) associated with a point
i of the program describes the values of the program
variables at program point i during an execution
starting with an initial state X of the program va-
riables. The set of predicates P(X,X) forms a com-

plete lattice (=,1,T,U,M,U,[1) by choosing respecti-

3.2. SYSTEM OF LOGICAL FORWARD EQUATIONS

We use the notation {P(X,X)} S {Q(X,X)} to mean
that for every X,X, if P(X,X) holds prior to execu-
tion of the statement S then Q(X,X) is the strongest
post condition such that the statement S faultless
executes and properly terminates leaving the program
variables in a final state satisfying Q (Dijkstra
[1976]). The deductive semantics of a programming
language defines the rules which can be used to
associate a system of equations with a sequential

program.



Program entry point j :
P.(X,%3) = {(x,=X)), i=1..m}
j il
The respective initial values of the variables
X=(X1,...,Xm) are the symbols §J=(23,...,§;) (We may
eventually have (Xi=Q) when the variable Xi is not

initialized).

Assignment statements :

- v v
X .= : =
{P(x,X)} X; 1=E(X) {3v Pxiand X; Exi}
v oo_ - -
where PXi = P(X1""’Xi—l’v’xi+1""’xm’xx""’Xm)
v p—
By, = E(X aevusXs 5VaXo  hunnX )

i
The above rule must be enriched if one wants to take
account of the fact that the execution of the assi-
gnement statement may fail, (e.g. the expression E

might overflow).

Test statements :
{P(x,X)} if Q(X) then {P(X,X) and Q(X)} ...
else {P(X,X) and not Q(X)} ... fi ;

Go to statements and labels :
L : OR P.(X,?)} where pred(L) denotes
. == i —
iepred (L)
the set of program points going to L sequentially

or by jumps.

3.3. EXAMPLE

We illustrate the application of the above rules
to a very simple program (over the set II of integers

augmented by Q).

B ys% 9 e ey do
{P,(x,y,%,9)} '"”;TEX:Y-"—
{P3(X9Y9§9§’)} od: ) Vs
{p, (x,y,%,5)} 2

Rewritting this program segment with branch and
test primitives, and applying the rules of the deduc-
tive semantics we get a system of equations which

can be simplified as follows :

Pl (X,y,i,?) (X:R)é_n_d_(y:}_’)

Pz(XaYﬁ?,?) = (Pl(X,y,i,?) gr_‘Ps(X,y,i,?))and
(xzy)

{QVEH:Pz(V,y,E,i)ggg(x=v—y)}

P3 (X,y,i,?)

Pb(x,y,i,y) (Pl(X,y,i,Y)gE:Pa(X,y,i,?))and

(x<y)

(Hereafter we will write P, instead of Pi(x,y,i,y)

in order to simplify the notations).

3.4. OPTIMAL INVARIANTS

According to Tarski's theorem the above system
of equations of the form P=F(P) has a least solution
Popt

pOPt

(least for ordering « that is 2 ). We call
the set of optimal imvariants since they imply
any other solution to the system of equations, (for
all other sets of invariants P such that PZF(P),POpt
is a lower bound therefore POptt>P). The optimal
invariants are the limit of any chaotic iterations
starting from the infimum false (theorem 2.2). Let

us choose Gauss-Seidel's method

K k-1 k-1
P reel T s

K K kK k-1 k-1
Py = F(Py  5.eeyPi_ 5Py heenPl) (KF1,2,00)
PN = PPN el pX PN

n 1 n-1 n

(Coming back to 2.1, this consists in choosing
J ={(imodulon)+1)} for i=0,1,... a step k summari-

zing n primitive iterations).

Initialization :
P! = false (i=1..u4)
| 1 —
Step 1 :
- 1 -
P, = (x=X%) and (y=y)
P; = (%2y) and (x=%) and (y=§)
P, = (%23) and (x=%-y) and (y=¥)
Pi = (%<¥) and (x=X) and (y=y)
Step 2

P} = (x=%) and (y=¥)

= [(®29) and (x=%) and (y=y)]
2
[ (%2%) and (X22¥) and (x=%X-7) and (y=¥)]

P? = [(%27) and (x=%-F) and (y=7)]

or

TL(%2y) and (X22¥) and (x=%~25) and (y=¥)]
P = [(%<¥y) and (x=X) and (y=3)]

or
" [(%2¥) and (R<2¥) and (x=%-¥) and (y-¥)]

By computing these first few terms we seek to disco-

i
ver the general term P~ of the sequence :

Step 1
r i — —
P = (x=X%) and (y=¥y)
i A3 = (ins -
P, = OR (AND (%2k¥) and (x=%-(j-1)¥)and (y=¥))
=1 k31
i i 3] _
p. = OR (AND (X2k¥) and (x=%-j¥) and (y=3))
PogE kA
i A g = = (s 1=
P, = OR (AND (X2ky) and (¥ j¥) and (x=%-(3-1)3)
L j=1 k=1 and (y=9)}



This general term Pi of the chaotic iterations is
proved to be correct by mathematical induction
Basis : P' and P? are of the form specified by Pi
for i=1 and i=2. Induction step : assuming Pi to be
correct and substituting in the righthand side of
the equations we show that after simplifications

we obtain Pi+l. Then according to theorem 2.3 the

optimal invariants are obtained by P opt =1lim P

l—>oo
we get
(PP = (x=%) and (y=3)
ngt = {3j21:(¥kel1,31,%2ky) and (x=%-(3-1)¥) and
(y=)}
OPY = {3921:(¥kel1,31,%2KF) and (x=%-37) and (y=9)}
Pipt = {3j=1:(¥kel1,j-11, x>ky) and (%<jy) and
| (x=%-(3-1)3) and (y=3)}

4. PROOFS OF TOTAL CORRECTNESS

If for any input values X, there exists a halt-

point h where the set S, of possible states of va-

riables is not empty (i?e. (JY:?eSh)) the program
must terminate at the haltpoint h (with a final
state Y of the variables X). Since the set of opti-
mal invariants describes precisely the exact domain
of the variables at each program point, the termi-
PPN}

Assume now that the intended behaviour of the

nation condition is {¥X,3h,3Y :

program is specified by means of an input specifi-
cation ¢ and an output specification Y. The intention
is that for any initial values X of the variables
satisfying the input specification ¢(X) the program
terminates with final values Y of the variables
satisfying Y(Y,X). Therefore the partial correctness
condition is {(¥X:0(X)), ¥h, 3I¥ Opt(?,i) =
Y(¥,X)}.

since {PYPT(T.,%) and (BYP(T, %) = W(T, XN} is
equivalent to {Pip (Y,X)Eggiw(Y,i)} the total cor-
: {(¥X:9(X)), In, ¥ :

opt

rectness condition is
Opt(Y %) and ¥(Y,%)}.

: The input condition guaranteeing the ter-
mination of the simple program 3.3 is : ¢(X,y) =
{Ix,y : PP (x,y,%,5)} = {3321 & (¥kel1,3-11,%2ky)
and (x<j§)} = {(0<y) or (X<y<0)}. End of Example.

Example

5. SYSTEMS OF IMPLICATIONS, APPROXIMATE INVARIANTS
AND PROOQFS OF PARTIAL CORRECTNESS

Most program verification methods use inequali-
ties of the form P <% F(P) whereas we used equalities
P=F(P). For example instead of {x>0} x:=x+2 {x>2}
one can legally write less precise assertions such
as {x>0} x:=x+2 {x>1} since the strongest post-
condition resulting from the pre-condition {x>0} is
{x>2} which implies {x>1}.

According to Tarski's theorem pOPt-

AND{P:P <t F(P)}, hence {V¥P:P<= F(P)} we have P°P' =P,
A proof of partial correctness consists in proving
that {(¥:0(R)), ¥h, W : PPO(T,0) =0T, D).
the programmer can provide a set of approximate in-
variants P (eventually the loop invariants only
since the remaining can be deduced by a simple propa-
gation in the recursive equations) and if it can be
verified that P <t F(P) then the proof that {¥h,
P (Y,X) = P(Y,X)} constitutes a proof of partial cor-
rectness31ncewehaveshownthat Php (¥, X)=>P (Y,X).
Hence the program is partially correct with respect
to ¢ and P if and only if
{(3P:P<= F(P)), (VX:6(X)), ¥h, V¥, P, (¥,X)= (Y,X)}
which is the condition given in Katz & Manna[1976].
Example : Suppose we want to prove the partial cor-
rectness of the program 3.3 with respect to the in-
put specification ¢(¥,¥)={(%20) and (y20)} and the
output specification Y(x,y,%,5)={y>x>0}. Choosing
the loop invariant P, to be
P, = (x2y)and (y=y)
and propagating in the equations we get
P, = (x20) and (y=y)

= (x<y)and (y=y) and [ (x=x)} or (x20)]
It is easy to verify that {(PlgglPs)gﬂg(ny)}=>P2
so that P is a correct approximate loop invariant.
Finally (Vx>0) we have P (X, VX, 7)DP(X:7,X,7) s
(although the program does not terminate for y=0).
End of Example.

The termination condition {(¥X:¢(X)),3h,3Y
ngt(?,i)) can be expressed using approximate inva-
riants. Since POPY = AND{P : P <= F(P)} we can write :

{(¥&:6(X)),3n,37 : AND{P (¥,X) : P<ETF(P)}]
= {(¥P : P<= F(P)),(¥X:¢(X)),3n, 37 : P (V,X)}
which is the termination condition of Katz & Manna
[1976]. They observed that this condition is not
utilizable in practice since it is expressed in

terms of the infinitely many approximate invariants



satisfying P<* F(P). This is not surprising since
this condition is based on Tarski's theorem which
does not provide an algorithmic construction of the

least fixpoint of F.

6. SYMBOLIC EXECUTION

The purpose of this section is to show that
symbolic execution of a program consists in solving
the semantic equations associated with this program

by chaotic iterations.

6.1. SYMBOLIC CONTEXTS

Observe (3.4) that the invariant Pi associated
with a program point i can be expressed in the nor-
mal form P,=OR p. where each p. is of the form

1 ﬂ J
(Q.and (X =E”.)and ...and (X _=E_.)). Each p. descri-
j— "1 1] —— ——""m “mj 3
bes a program path which may lead to the point i.
For each program path pj an assertion Qj states the
condition which had to be satisfied in order for
that path to be executed. At point i on that path
1 (k=1..m) is

is a formal expression depending

the value of the program variable X
given by Ekj' Ekj
on the initial values X of the variables on program
entry. No Xk can appear as a free variable neither

in Qj nor in the Ekj. Slightly changing the notations
we will call P, a symbolic context and rewrite itas

.=ip.:jelA .=<Q. PR >,
Pl {pj Je } where pj Q],Elj, ’Em]

6.2. SYSTEM OF SYMBOLIC FORWARD EQUATIONS

Using now the notation of symbolic contexts
the rules of the deductive semantics (3.2) must be
adapted so that they transform an input predicate
in normal form into an output predicate in normal
form. For example, the output predicate correspon-
ding to the input predicate

< >
{ Qj’Elj""’Em] : jeA}
= { OR(Q. and (X :El.)and ..
jeh ! J
after the assignment statement X

.and (X_=E_.))}
— *m mj

k:=E(X1,...,Xm) is
: . =E . . =E. . d ...
{3v: OR (Q. and (X1 El]) and and (v Ek]) an

T T (X =B ) and X = E(X. 4evusVy..aX )}
" "m Tmj’ —— 1 m

k
Eliminating the free variables in E as well as the

intermediate bound variable v we get

{gnz(Q.and ...and (Xk=E(E1j,...,Ekj,...,Emj))
J€ and ...and (X =E_.))}
_— —— m mj

= >Z'
{<Qj,E1j,...,E(Elj,...,Emj),...,Emj jeA}

We will denote this rule by the shorthand notation :
= <« “en

(P} X=E(X ,...X ) {P(X < E(P(X ), »P(X )}
However, when there is no ambiguity on which context
must be used to evaluate the expression E we will
write more simply

{p} X FTEX X ) {P(xk<~E(xl,...,xm))}.
The other rules can be deduced in the same way. In
particular, the operation |ldescribes the union PLiQ
of two symbolic contexts P={p1,...,pr} and
QI{ql,...,qg'that is the set {pl,...,pr,ql,...,qs}
where superfluous equivalent program paths are eli-
minated whereas inaccessible paths (the path condi-

tion of which is false) are removed.

6.3. EXAMPLE

Using again the example 3.3

{o}
loop: {1} .
> h
(o) 2577y e
e E)
{3} go to loop;
fup s

we have the system of equations
= {<true,%,y>}

= PDLJP3

0

-

= Pland(xzy)

Pz(x+(x-y))

‘v ‘9 ' v 9
w
I

Pland(x<y)

6.4. SYMBOLIC EXECUTION TREE

As in 3.4 we solve these equations using chao-

tic iterations with a Gauss-Seidel policy

Initialization
[0 = ¢ (i=0..4)
Step 1

Py = {<true .5}

Pl = PLUPY = {<true,%,7>}

, true,
p; = Piand (xzy) = {<(29),%,5>}
pl = P;(Xé_(x_y)) = {<(229),%-7,7>}

pl = Pi and (x<y) = {<(X<9),%,>}



Step 2

rpi = {<true,%,7>}

P2 = {<true,%,7>,<(%2¥),%-¥,5>}

By = {<(x29),%,5>,<(%29) and (X227),%-5,7>}
P2 = {<(%2¥),%-¥,7>,<(%2¥) and (%22¥) ,%-27,7>}

P2 = {<(X<¥),X,y>,<(X>¥) and (¥<2§),%-¥,7>}
L

So that at iteration 2 we have built the following

symbolic execution tree (Hantler & King[19761])

<(§Z_}7) 5>_<_§&.37>

<(%2y)and(%22¥),%-¥,y>
<(x2y)and(X<2¥),%-y,y>
<(%2)and (%225),%-27,7>
We have represented the symbolic context Pi associa-
ted with program point i by the set of paths asso-
ciated with each of the nodes labelled i in the
above execution tree. Equivalently we could have
represented the symbolic context associated with
program point i1 by the maximal subtree (of the above
symbolic tree) the leaves of which are labelled 1i.
Then the union U} of symbolic contexts performed at
junction of program paths would be the merging of
symbolic execution trees.

It is clear that the computation of the next
terms of the sequence of chaotic iterations would
cause the symbolic execution tree to grow. We can
make the tree to grow in whatever direction we want,
the result will be the same (2.2). Without particu-
lar hypothesis on X and § this process would conver-
ge to the optimal invariants in infinitely many
steps (2.3). Therefore we must be able either to
reason about the limit without knowing it (6.4) or

to directly pass to the limit (7).

6.5. VERIFICATION OF PROPERTIES OF OPTIMAL SYMBOLIC
CONTEXTS

Coming back to the notations of §2.3 in order
to prove a property P(Xm) of the solution to the
system of equations X=F(X) we can prove by induction
that all terms ka of a chaotic iteration sequence

have this property :

(k+1)m)}} -

P 1imx ™)}

k>

{{P(x®) or P(x™} and {¥i,P (X™) =P (x

(Yet P must be an admissible predicate chosen in
order to remain true when passing to the limit.
Rigorously we should apply the second principle of
transfinite induction).

Example : Let us prove the trivial fact that
{vael1,(%-x)/y], ®X2ay} at point 3 of program 6.3.
Basts

{Vael1,11,x2ay}.

: For the single path of P; we have

Induction step : We assume that at step k the symbo-

lic context PE is equal to {<pi,xi,yi> ieD} with
the induction hypothesis {VieD,{Vae[l,(E—xi)/yi],

izayi}}. The equations 6.3 allow the computation of
k+1

Py
PX = {<p,.x >:1eD}

3 pi’ i,yi N

k+1 - = .
P, = {<true,x,y>,<pi,xi,yi>:1eD}
P - {<(®29),%,5>,<(p.'and x> '

2 - X2Y )X 3¥Y7 pian Xi—yi),xi,yi>:1eD}

k+1 —am=y = = = .
P, = {<(x2y),x—y,y>,<(piand xiZyi),xi—yi,yi>:1€D}

We must show that the hypothesis holds for all paths
of P§+1. This is trivial for the path <(X2y),X-y,y>.
Otherwise we must show that {VieD,{Vae[l,(i—xi)/yi+l],
izayi}}. According to the induction hypothesis, this
condition is true Vae[l,(?—xi)/yi]. Finally for
a=(§—xi)/yi+l, the path condition X2y, implies
iZayi.

This approach for reasoning about the limit of
chaotic iterations is implicitly used in the techni-
que of "cut-trees'" of Hantler & Kingl[1976]. Indeed

the induction step can be understood as consisting

in reasoning on the cut tree for {3}
<p.,X,,y:>:ieD
(<py 1y >5ieD)

{<true,%,y>,

<P, X.,Y.>:1eD
P;>¥;»y;>:1eD}

{<(22§)5§’§>5

<pi_and (xizyi),xi,yi>:ieD}

{<(29),2-7,5>

<piand (xizyi),xi-yi,yi>:ieD}

End of Example.



7. SYNTHESIS OF OPTIMAL INVARIANT ASSERTIONS : THE
USE OF DIFFERENCE EQUATIONS

7.1. DISCOVERY OF OPTIMAL SYMBOLIC CONTEXTS

The equations of example 6.3 can be written as:

P =P U (P1 and x2y)(x <« x-y)

they are of the form :

P, = £,(P)UE,(P)

The resolution by successive approximatioms was

0 _
P, = 4

i

1 -
L= £ (POUE () = £ (P)

ae}
[N}
n

fl(Po)LJf2f1(Po)
P} = £ (P, U £, (£, (P)LE,E (P))

= £, (PO UE,E (POUEE (Py)

since £, is distributive over lU. (This comes from
the fact that f, is the composition of elementary
functions as defined in 6.2. Setting apart the dif-
ference in notations they are similar to the predi-
cate transformers of the deductive semantics (3.2).
Since the set of predicates form a complete boolean
lattice the infinite distributive laws holds for OR
and AND).

The general term of the approximation sequence is

k:l N
P, = igo fzfl(Po)

since .
k+1 _ !
P1 = fx(Po)Lsz(fgo £

T oele e = O e )
271 g T 3Zp 210
. .. ©_ L i
Passing to the limit we get P = U f f (P ). This re-
1 §j=0 21 o
sult can be obtained directly since the graph of de-

pendence between P, and P : P
0

can be considered as (in general a non-deterministic)
finite automaton which recognizes the Kleene's lan-
guage flf:. We have obtained a symbolic formulation
of the desired solution, but it remains to give the
explicit formulation of the function fiofl. This can

be done by solving the difference equations

ir

P
0

£%f£ (P )
271 9
i+l _ i
£, of (P) = fz(fzofl(Po))
We have :
fgofl(Pﬁ) = {<true,%,7}
: = {<p0j9x0j’y0j>:]‘6{l}}
Let fZOfl(Po) be {<pij,xij,yij>:]€Di}, we have

i+l .
£, of (By) = fz({<pij’xij’yij>'JeDi})

< A SR RS Pt e
{ Py and X; 12V, 5aX; 57V 50V g
jeD, }
i
First of all, we can determine the domain of j which
indexes the possible paths. Since D ={1} and D,,,=D;
we have Diz{l} (because there is a single path within
the loop). Therefore we can simply ignore the path
index and solve the difference equations (in the or-
der of dependence)
Yo=Y

XX,

Yitn Vi
Eien %174

p,=true, pi+1:pi229(xi2yi)
These recurrence relations can be solved directly
(e.g.Coha}&KatcoffD976])yieldingyi:yo,xi=xo-iy0,
and iince p,=true and pi+1:pi§§¥1xoz(i+l)yo we get
pi=§g?(xo—jyg) = {Vjefl,i],(XOijo)}. Finally the

optgﬁal loop invariant of program 6.3 is :

P, = T {<(¥5el1,i1,x 23y ),x -i >}
y U el 2% 20y )% ThY oY

The "difference equations method" was introdu-
ced by Elspas, Green, Levitt & Waldinger{ 19721,
Elspas[1974]. It is further used in Greif &Waldinger
[1975], Katz & Mannal19761 (algorithmic approach),
Cheatham & Townley[1976]. It has also been used in
determining symbolic expression of program complexi-
ty (Wegbreit[19751). However, the technique was un-
derstood with respect to an operational semantics,
i.e. by reasoning on (dummy) loop counters and on
approximate invariants. In fact a reasoning in terms
of denotational semantics clearly shows that (at
least in theory) optimal invariants can be discove-
red and consequently program termination can be pro-

ved or disproved.

7.2. REMARK

We have proved that in theory all chaotic ite-
ration sequences lead to the optimal solution to the
system of equations. However, in practice a major
difficulty consists in finding a form of the general
term of the approximation sequence which is suitable
for establishing the difference equations. Consider
for example a system of equations with the following

dependence graph



J

We can express PD: by the following equivalent forms :

P? :ﬂgo(fuofao(feofsofa)iofz)jofl(Po)

j=0
(i and j correspond to individual counters for the
loops)
PT 2}(];'0(4‘_:1 (Po yu f“ofao((fzof“ L stfS)Ofs )kcfzcof1 (PO)
(k is a common counter for the two loops).
Although these two forms of PT are equivalent one of
them will be more suitable for generating the diffe-
rence equations and the choice depends on the seman-

tics of the considered program.

7.3. EXAMPLE

Let us consider the following program (taken

from King{19691) (+ is integer division with trun-

cation)
z:1=1;
{o}
Loop: %;1 if y#0 then
{3} i_f gﬁ(y) then
{4} Z1ZZ2*X
{5} B
{6} (y,x):=(y+2,x7);
go to loop;
{7} £

The system of equations associated with this program
is

P = {<m_,x=a,y=b,z=l>}

P, = PyLIP

P, = P, and (P, (y)=0)

P = Pz_an_do_dg(Pz(y))

P, = P,(z% P (2)*P,(x))

P, = (P, and even(P,(y)))UP,

P, = P (y*P_(y)#2,x+ (P (x))?)

P, = P, and (P, (y)=0)

Since P,(y)=P,(y), P,(z)=P,(2), P,(x)=P,(x),
P.(y)=P,(y) and P (x)=P,(x) we can simplify as

follows
P, = P
U

(P, and P (y)¢O£1_<1even(Pl (yIN(y=« Ps(y)%z,x<~
(Py(x))%,2< P, (2))

0

u
(P, and P, (y)#0 and odd (P, (y) ) (y« P (y)32,x*

(Ps(x))%,2% Py (2)*Py (%))

Since the two alternatives differ only with respect
to z we can factorize as follows

P, = P U (P, and y#0) (x+ x*,y < yi2,z+ z*(even(y) > 1Ll

odd(y) »x))

P UE(P))
This formulation uses the conditional expressions of
Sintzoff[1975]
- (true>v U Q->v') = vU(Q>Vv")
- (false~»v |J Q>v') = (Q>v")
- QUQ" = Qor Q'
- Q»Q" = Qand Q'
- Ul-(Qi—>V) = (Oi_RQi-> v)
- Q> v.) = Q+Uv,
i L i1
-Q>(Q'»v) = (Q>Q')»>v

- f(v-l,...,gwi,...,vn) = Tin(vl,...,wi,...,vn)
- f(vl,...,(Q—>w),...,vn) = (Q—»f(v!,,..,w,...,vn))
- etc.

The general form of the solution for the equation de-
fining P, is Pl:igofi(Po). For determining fi(Po)
we use the difference equations :
£9%P,) = <true,a,b,1>
= CQgsXgsYg2Zg”
Po) = £,(<qpax;y;55247)
= <qiﬂ(yi¢O),x§,yi%2,zi*(§7_8§_(yi) + 14

odd(yi) +xi)>

<q. . . Z., >
Q1% 1412V 1412 %10

The formal resolution proceeds as follows

_ i
3}{0 -a = x.za’
L2 i
X. = X2
1+1 l‘
3y0 =b = y b2’
Vit - Y372
2o =1 ) . i
- .~1 enl 2
z. = z.*x(even(b+27) > 1Uodd(b:27)+a* )
1+1 1 —."—' —_— .
1-1 -] | 23
>z, = ,ﬂo(even(bTQ )>1 U odd(bi27)+a"")
j=0 —— —
q, = true
- Loi
UGy Y amfl fb-2 )20
i- .
=>q, = AND(b+2320)
j=0 .
:qi = (b%21_le) when {(i>0)



Finally the optimal output invariant of the program
is

P, =P and (y=0)

90<_ = >
igb q; and (y,70),x,,y,-2;

<b=0,x=a,y=b,z=1>
u i-1 i
<(3i>0:(b+2~ #0) and (b327=0)),

1
x=a? ,

y:(b%Qi) >

_i 3 iy, 2]
z-.ﬂo(even(bTZ ) > 1l odd(b+2”)>a* )>
jzo SR ogd

Since the path condition at the haltpoint {7}
(b=0) or (3i>0 : (627720 and (b2 =0)

is true for any input value b of y, the program
always terminates.

It remains to show that P7(z)=aIbl

to prove total
correctness. In the non-cbvious case b#0, we have
to know that every number b can be expressed in
binary form
b= ((3i: (b#27 '20) and (b+2720))~

i-1

sign(b)*jgo(even(b%2])A'OLJodd(b+2])"*2]))
Evaluating a‘bl using the property that
%0, a.
al Izraq t
i
we get

albl = ((31 : (b%Qi_1 zo)gggi(b%zi = 0))~> .
i1 (even(bi2)) »a® U odd(bi27)»a%’))

which is the desired result.

8. SYNTHESIS OF APPROXIMATE INVARIANTS

Let us consider a system of equations X=F(X)
associated with a given program.We have seen that a set
P of approximate invariants must satisfy Lfp(F)=P,
that is Ifp(F)< P with lattice notations. We can
obtain such a P by "strengthening" the terms of a

chaotic iteration sequence.

DEFINITION 8.1 A strengthened chaotic iteration
corresponding to the continuous operator FeL" 1"
and starting with a given vector X® such that

x%e F(x°) is a sequence Xk, k=0,1,... of vectors of
L" defined recursively by Xk+1:fk(Xk) where {¥k=0,
Viel1l,n],

if (10 and P (X ex5) or (145°) then

10

?k(xk).:x5
101
else

CUF () & BN,
1 1 1

£i)
and Jk, k=0,1,... is a sequence of subsets of
{1,...,n} such that {3m20 : {¥ie[1,n1,%=20,3%e[0,ml

1edy,

DEFINITION 8.2 A strengthened chaotic iteration is
said to stabilize after s steps if and only if
{3520 : (x5*M=x%) and (¥r<s, x°7M2x%)}.

Notice that stabilization can always be enforced.
Proof : take X!'=T (but this choice is of no practi-

cal interest).

THEOREM 8.3 The limit %% of a chaotic iteration
sequence XO,...,Xk,... which stabilizes after s

steps is such that Ifp(F)< x5,

Proof : Let us first prove that a chaotic iteration
sequence is an increasing chain.
Basis : since X% F(X°), we have X< FJO(XO)E
Fo(x®)=x".

. k_ Jk+1
Induction step : suppose that X €X . We have

= . . k
Xk+2:Fk+1(Xk+1). Vie[1,n], if (1€Jk+1 and F. (X +1)
< X?+1) or (ifJ

1
+ + k+
k+1) then X?+ ? ' else X% = Xs '
1
UFi(Xk+ )E X§+2 proving that X<l Xk+2. Hence by
k

k+1 .
recurrence on k : {¥k20, X €X ' }. According to

2_y

the definition of a chaotic iteration which stabili-

. 1 +
zes we have XSZXS+m and since XSE XS+ <€ ...< XS m
this implies XS:XS+1:...=XS+m. Let us now prove that
. ’ . 2
F(XS)Q x5 . ¥ie[1,n], 32e[0,m[ such that 1eJS+ .
s+ s+2

Therefore if Fi(X ) E X3 then F.(XS)EXS.' since

1
. _ 1
Xs:Xb+£ clse X§+2LJFi(XS+E)E Fs+2(Xs+2) §+2+

which implies XiLJFi(XS)E X? since X=X

é+2:ié+l+1.
Hence in both cases ¥iell,nl], Fi(XS)E x° proving
that F(x°)=x>. Also, according to Tarski's theorem
1fp(F) exists and is equal to [1S where s={xeL"
F(X)< X} therefore X°eS proving that pr(F)E;XS.
End of Proof.

. =k
In practice the definition of F' models the use of
heuristics for generating invariants (e.g. Katz &

Mannal19761]).

Example : Coming back to the program of §3.3, we

have given the first terms of the corresponding



approximation sequence at §3.4

Pg = false

PI

} = (%29) and (x=X) and (y=7)

P? = [(%27) and (x=%) and (y=3)]
or
“[(¥kel1,21:%2k¥) and (x=%-F) and (y=5)]

PZ = [(X2y) and (x=X) and (y=y)]

or

“T(¥kel1,2]:%2k¥) and (x=%-y) and (y=3)]

or

“T(¥kel1,31:%2k¥) and (x=x-2¥) and (y=y)]
An easy guess is that P; = [Jkel0,2]: (x=x-ky) and
(y=y)]. Therefore taking this assertion as a
strengthened version of Pi we compute P;
P! = {Iv : [Jkel0,2]
[Jkel1,3]

(v=R-k¥) and (y=¥) and (x=v-y)}

(2=X-k¥) and (y=y) 1

P = [(%2y) and (=X} and (y=y)]

or

TTkel1,31:(R2(k+1)F) and (x=%-k¥) and (y=§) ]
Since P; does not imply PZ we strengthen P; to get
PZ = [dk=0 :

Iterating again we obtain

(x=%-Kk7) and (y=7)]

P3 = [(%>F) and (x=R) and (y=3)]
or
TTak21: (R2(k+1)F) and (x=%-ky) and (y=3)]

which implies P; so that P; can be chosen to be an
approximate invariant at program point {2}.

End of Example.

(A post fixed point %% of F (such that F(x5)=
x%) can further be improved to get .a better approxi-

mation of Ifp(F), see Cousot[1977al).

9. CONCLUSION

The numerous techniques which are used for dis-
covering properties of programs often appear to be
rather different. We think that the fixpoint approach
to the semantic analysis of programs (Cousot[1977a],
Cousot[1977b]) provides the convenient framework for
expressing the deep unity underlying these apparen-
tly unrelated techniques. By fixpoint approach in
the semantic analysis of programs we refer to the
whole of techniques for determining properties of
programs which take as starting point the fact that
properties of a program can be viewed as the least
solution to a system of equations which is. associa-

ted in a rather natural way with this program. The

idea of solving these equations by means of chaotic
successive approximations is so natural that it was
first understood as a program execution on symbolic
values. We think that even a semi-automatic resolu-
tion of the semantic equations is a terrific task
which result can hardly be controlled by the pro-
grammer. Therefore an important idea for automati-
zing the resolution of these equations is the oneof
approximation. Compile time checks, global data flow
analysis, program performance prediction or proofs
of partial correctness are examples of approximate
analyses of programs. It is our experience that the
exact or total properties of a program can often be
determined by addition of several approximate analy-
ses of specific properties. The determination of a
range of complementary logical propertiesof program
should allow the analysis of program properties by
successive approximations. Each of these specific
properties should be simple enough to allow the au-
tomatic resolution of the corresponding equations.
The spectrum of these properties should be wide
enough to cover the total semantics of programs.
Interaction with the programmer for guiding the
choice and the order of determination of these spe-
cific properties might be a natural way for human

intervention.
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