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Abstract

Starting from a denotational semantics of the eager untyped
lambda-calculus with explicit runtime errors, the standard
collecting semantics is defined as specifying the strongest
program properties. By a first abstraction, a new sound
type collecting semantics is derived in compositional fix-
point form. Then by successive (semi-dual) Galois con-
nection based abstractions, type systems and/or type in-
ference algorithms are designed as abstract semantics or
abstract interpreters approximating the type collecting se-
mantics. This leads to a hierarchy of type systems, which
is part of the lattice of abstract interpretations of the un-
typed lambda-calculus. This hierarchy includes two new
à la Church/Curry polytype systems. Abstractions of this
polytype semantics lead to classical Milner/Mycroft and
Damas/Milner polymorphic type schemes, Church/Curry
monotypes and Hindley principal typing algorithm. This
shows that types are abstract interpretations.

1 Introduction

The leading idea of abstract interpretation [6, 7, 9, 12] is
that program semantics, proof and static analysis methods
have common structures which can be exhibited by abstrac-
tion of the structure of run-time computations. This leads
to an organization of the more or less approximate or refined
semantics into a lattice of abstract interpretations. This uni-
fying point of view allows for a synthetic understanding of
a wide range of works from theoretical semantical specifica-
tions to practical static analysis algorithms.

It will be shown that this point of view can be applied to
type theory, in particular to type soundness and à la Curry
type inference which, following [17, 29], have been dominat-
ing research themes in programming languages during the
last two decades, at least for functional programming lan-
guages [1, 19, 31]. Traditionally the design of a type system
“involves defining the notion of type error for a given lan-
guage, formalizing the type system by a set of type rules,
and verifying that program execution of well-typed programs
cannot produce type errors. This process, if successful, guar-
antees the type-soundness of a language as a whole. Type-
checking algorithms can then be developed as a separate con-
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cern, and their correctness can be verified with respect to a
given type system; this process guarantees that type checkers
satisfy the language definition.” [2]. Abstract interpreta-
tion allows viewing all these different aspects in the more
unifying framework of semantic approximation. Formaliza-
tion of program analysis and type systems within the same
abstract interpretation framework should lead to a better
understanding of the relationship between these seemingly
different approaches to program correctness and optimiza-
tion.

2 Syntax

The syntax of the untyped eager lambda calculus is:

x, f, . . . ∈ X : program variables

e ∈ E : program expressions

e ::= x | �x · e | e1(e2) | �f ·�x · e |
1 | e1 − e2 | (e1 ? e2 : e3)

�x · e is the lambda abstraction and e1(e2) the application.
In �f ·�x · e, the function f with formal parameter x is de-
fined recursively. (e1 ? e2 : e3) is the test for zero.

3 Denotational Semantics

The semantic domain S is defined by the following equations
[20]:

W
4
= {ω} wrong

z ∈ Z integers

u, f, ϕ ∈ U ∼= W⊥ ⊕Z⊥⊕ [U 7→ U]⊥ values

R ∈ R 4
= X 7→ U environments

φ ∈ S 4
= R 7→ U semantic domain

where ω is the wrong value, ⊥ denotes non-termination, D⊥
is the lift of domain D (with up injection ↑( •) ∈ D 7→ D⊥
and partial down injection ↓( •) ∈ D⊥ 7−6→ D), D1 ⊕ D2 is
the coalesced sum of domains D1 and D2 (with left and
right injections • ::D1 ∈ D1 7→ D1 ⊕ D2 and • ::D2 ∈
D2 7→ D1 ⊕ D2), Ω

4
= ↑(ω) ::W⊥ and [D1 7→ D2] is the

domain of continuous, ⊥-strict, Ω-strict functions from D1

into D2. v is the computational ordering on U and t is the
least upper bound (lub) of increasing chains.

In the metalanguage for defining the denotational seman-
tics below, Λx. . . . or Λx∈S. . . . is the lambda abstraction.
(. . . ? . . . | . . . ? . . . | . . .) is the conditional expression.
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The assignment R[x←u] is such that R[x←u](x) = u and

R[x←u](y) = R(y) when x 6= y. lfp
v

⊥ ϕ is the v-least fix-
point of the monotone operator ϕ ∈ L 7→ L on a complete
partial order (cpo) 〈L, v〉, which is greater than or equal to
⊥ [8, 20].

The denotational semantics [19, 29]

S[[ •]] ∈ E 7→ S

defines a call-by-value evaluation with run-time type check
and propagation of errors:

S[[x]]
4
= ΛR. R(x)

S[[�x · e]] 4= ΛR. ↑
�

Λu.(u = ⊥∨ u = Ω ? u |

S[[e]]R[x←u])
�

:: [U 7→ U]⊥

S[[e1(e2)]]
4
= ΛR.(S[[e1]]R = ⊥ ∨ S[[e2]]R = ⊥ ? ⊥ |

S[[e1]]R = f :: [U 7→ U]⊥ ? ↓(f)
�
S[[e2]]R

�
|

Ω)

S[[�f ·�x · e]] 4= ΛR. lfp
v

↑(Λ u.⊥)::[U 7→U]⊥
Λϕ.S[[�x · e]]R[f←ϕ]

S[[1]]
4
= ΛR. ↑(1) ::Z⊥

S[[e1 − e2]]
4
= ΛR.(S[[e1]]R = ⊥ ∨ S[[e2]]R = ⊥ ? ⊥ |

S[[e1]]R = z1 :: Z⊥ ∧ S[[e2]]R = z2 ::Z⊥ ?
↑(↓(z1)− ↓(z2)) ::Z⊥ | Ω)

S[[(e1 ? e2 : e3)]]
4
= ΛR.(S[[e1]]R = ⊥ ? ⊥ | S[[e1]]R =

z ::Z⊥ ? (↓(z) = 0 ? S[[e2]]R | S[[e3]]R) |
Ω)

The choice of a denotational semantics instead of the usual
operational semantics follows [29] and corresponds to an ini-
tial abstraction [12] where the notion of computation step
is lost. The relational semantics of [30] was initially chosen
but finally abandoned in favor of a semantic model where
the use of fixpoints is explicit both in the standard and type
semantics. The denotational semantics introduces an initial
approximation which prevents discussing notions linked to
computation steps such as subject reduction [31]. It illus-
trates the direct application of the Galois connection based
abstract interpretation framework [6, 7, 9] initially conceived
for transition systems, that is small-step operational seman-
tics, to denotational semantics.

4 Standard Collecting Semantics

A semantic property is a set of possible semantics of a pro-
gram. The set of semantic properties:

P ∈ P
4
= ℘(S)

is a complete boolean lattice 〈P, ⊆, ∅, S, ∪, ∩, ¬〉 for subset
inclusion ⊆, that is logical implication.

The standard collecting semantics:

C[[ •]] ∈ E 7→ P

C[[e]]
4
= {S[[e]]}

is the strongest program property.
Type systems are understood as abstract compositional

semantics of the lambda calculus which approximate the
standard collecting semantics. The à la Church/Curry sim-
ple type system [1] is first considered.

5 Church/Curry Monotype Semantics

The type of a program e is a set of typings 〈H, m〉 stat-
ing that the standard evaluation of the program e in an
environment R where global variables x have type H(x)
given by type environment H returns a value S[[e]]R with
monotype m. For example, program �x · x has type {〈H,
m ->m〉 | H ∈ HC ∧m ∈ M C}. The syntax of types and type
semantic domains are:

m ∈ M
C , m ::= int | m1 ->m2 monotype

H ∈ H
C 4

= X 7→ M
C type environment

θ ∈ I
C 4

= H
C × M C typing

T ∈ T
C 4

= ℘(IC) program type

The meaning of types is defined by the concretization
function γC as follows:

γC
1 ∈ M

C 7→ ℘(U)

γC
1 ( int)

4
= {↑(z) :: Z⊥ | z ∈ Z}∪ {⊥}

γC
1 (m1 ->m2)

4
= {↑(ϕ) :: [U 7→ U]⊥ | ϕ ∈ [U 7→U] ∧

∀u ∈ γC
1 (m1) : ϕ(u) ∈ γC

1 (m2)} ∪ {⊥}
γC

2 ∈ H
C 7→ ℘(R)

γC
2 (H)

4
= {R ∈ R | ∀x ∈ X : R(x) ∈ γC

1 (H(x))}
γC

3 ∈ I
C 7→ P

γC
3 (〈H, m〉) 4= {φ ∈ S | ∀R ∈ γC

2 (H) : φ(R) ∈ γC
1 (m)}

γC ∈ T
C 7→ P

γC(T)
4
=

T

θ∈ T
γC

3 (θ), γC(∅) 4= S

One has:

γC(
S

i∈∆

Ti) =
T

i∈∆

γC(Ti)

so that there exists a unique upper adjoint αC ∈ P 7→ T
C

such that 〈αC, γC〉 is a Galois connection [9], a fact that is
denoted:

〈P, ⊆〉 −−−−→←−−−−
αC

γC

〈TC, ⊇〉

The notation 〈L, ≤〉 −−−→←−−−α
γ
〈M, �〉 for semi-dual Galois con-

nections (that are called Galois connection for short) means
that 〈L, ≤〉 and 〈M, �〉 are posets such that the pair of ab-
straction function α ∈ L 7→ M and concretization function
γ ∈M 7→ L satisfy, for all x ∈ L and y ∈M :

α(x) � y ⇐⇒ x ≤ γ(y)

The abstraction α preserves existing lubs while the con-
cretization γ preserves existing glbs. Reciprocally, if α pre-
serves existing lubs or γ preserves existing glbs then there is

a unique adjoint such that 〈L, ≤〉 −−−→←−−−α
γ
〈M, �〉 where α(x)

= glb{y | x ≤ γ(y)} and γ(y) = lub{x | α(x) � y}.
The intuition is that αC(P ) is the best possible (i.e.

most precise) type of programs with property P . This is
in contrast with the use of logical or algebraic relations
[24, 30, 31, 38] for which no such notion exists 1. The critique

1The left image γ (y)
4
= {x | L(x, y)} of the logical relation L is

the usual concretization towards the standard collecting semantics so
the use of a logical relation amounts to the use of a concretization
only, the implicit corresponding abstraction being unused.
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of the use of Galois connections by [38] relies, as often, on the

use of a collecting semantics of type C
′
[[e]] ∈ ℘(R) 7→ ℘(U),

which is inadequate anyway because it is too abstract for
types, a phenomenon already observed by [13] in the con-
text of comportment analysis. The above Galois connection
clearly shows that logical implication of program properties
⊆ is abstracted by superset inclusion ⊇ of typings, hence
the use of co-induction in [30]. More importantly, the ab-
straction function is essential in the design of the abstract
type semantics, as observed in [11] and illustrated below.

The Church/Curry monotype type semantics:
TC[[ •]] ∈ E 7→ T

C

defines the type TC[[e]] of program e. The type semantics
TC[[ •]] is said to be sound in that for all programs e ∈ E,
one has:

αC(C[[e]]) ⊇ TC[[e]]

⇐⇒ C[[e]] ⊆ γC(TC[[e]])

⇐⇒ S[[e]] ∈ γC(TC[[e]])

This correctness condition for the abstract Church/Curry
type semantics TC[[ •]] is the classical ⊆-upper concrete ap-
proximation of the collecting semantics C[[e]]. The corre-
sponding abstract approximation is ⊇-upper (hence⊆-lower,
which should not be confusing). It follows that any other

abstract semantics T
′C[[e]] ⊆ TC[[e]] is also sound.

A program e is typable if and only if TC[[e]] 6= ∅. Sound-
ness implies that typable programs cannot go wrong [29] in
that:

〈H, m〉 ∈ TC[[e]] ∧ R ∈ γC
2 (H) ∧ S[[e]]R 6= ⊥ =⇒ S[[e]]R 6= Ω

(since, by definition of γC, S[[e]]R ∈ γC
1 (m) and Ω 6∈ γC

1 (m)).
For clarity of the presentation, the design of the Church/-

Curry monotype semantics TC[[ •]] by abstract interpreta-
tion of the collecting semantics C[[ •]] is postponed to Sec. 7.
Anyway the result is well-known:

TC[[x]]
4
= {〈H, H(x)〉 | H ∈ HC}

TC[[�x · e]] 4= {〈H, m1 ->m2〉 |
〈H[x←m1], m2〉 ∈ TC[[e]]}

TC[[e1(e2)]]
4
= {〈H, m2〉 | 〈H, m1 ->m2〉 ∈

TC[[e1]] ∧ 〈H, m1〉 ∈ TC[[e2]]}
TC[[�f ·�x · e]] 4= {〈H, m〉 | 〈H[f←m], m〉 ∈ TC[[�x · e]]}

TC[[1]]
4
= {〈H, int〉 | H ∈ HC}

TC[[e1 − e2]]
4
= {〈H, int〉 |

〈H, int〉 ∈ TC[[e1]] ∩TC[[e2]]}
TC[[(e1 ? e2 : e3)]]

4
= {〈H, m〉 | 〈H, int〉 ∈ TC[[e1]] ∧

〈H, m〉 ∈ TC[[e2]] ∩TC[[e3]]}

Like any inductive definition on a poset, the Church/-
Curry monotype semantics can be presented in equivalent
rule based form [15]. For that purpose, a set of rules of the
form:

θ1 ∈ TC[[e1]], . . . , θn ∈ TC[[en]], θ ∈ TC[[e(e1, . . . , en)]]

Ψi
e(θ1, . . . , θn, θ) ∈ TC[[e(e1, . . . , en)]]

i ∈ ∆

for a program expression e(e1, . . . , en) with immediate com-
ponents e1, . . . , en is interpreted as:

TC[[e(e1, . . . , en)]]
4
= lfp

⊆

∅
ΛX.{Ψi

e(θ1, . . . , θn, θ) | i ∈ ∆∧
θ1 ∈ TC[[e1]] ∧ . . . ∧ θn ∈ TC[[en]] ∧ θ ∈ X}

where, by structural induction, the TC[[ei]], i = 1, . . . , n
are already defined while TC[[e(e1, . . . , en)]] is defined induc-
tively. At least one of the rules should not be recursive (else
TC[[e(e1, . . . , en)]] = ∅):

θ1 ∈ TC[[e1]], . . . , θn ∈ TC[[en]]

Ψj
e(θ1, . . . , θn) ∈ TC[[e(e1, . . . , en)]]

If all rules are of that form, the fixpoint of a constant func-
tion reduces to:

TC[[e(e1, . . . , en)]]
4
= {Ψi

e(θ1, . . . , θn) | i ∈ ∆ ∧
θ1 ∈ TC[[e1]] ∧ . . . ∧ θn ∈ TC[[en]]}

This is the case for Church/Curry monotype semantics,
which, by defining judgments as:

H C−̀− e⇒m
4
= 〈H, m〉 ∈ TC[[e]]

can be presented in the equivalent rule based form:

H C−̀− x⇒H(x)
H C−̀− e1⇒m1 ->m2, H C−̀− e2⇒m1

H C−̀− e1(e2)⇒m2

H[x←m1] C−̀− e⇒m2

H C−̀− �x · e⇒m1 ->m2

H[f←m] C−̀− �x · e⇒m

H C−̀− �f ·�x · e⇒m

H C−̀− 1⇒ int
H C−̀− e1⇒ int, H C−̀− e2⇒ int

H C−̀− e1 − e2⇒ int

H C−̀− e1⇒ int, H C−̀− e2⇒m, H C−̀− e3⇒m

H C−̀− (e1 ? e2 : e3)⇒m

The functional versus the rule-based presentation of the ab-
stract semantics is only a superfluous difference between ab-
stract interpretation and type theory. The main difference
seems to be that in type theory the above rule based assign-
ment of Church/Curry monotypes to program expressions is
taken for granted [1] whereas in abstract interpretation it is
constructively derived from the collecting semantics and the
〈α, γ 〉 abstraction-concretization pair (as shown thereafter).
In particular changing the standard semantics S[[ •]] from an
eager call-by-value to a lazy call-by-name would change the
considered type systems (as e.g. in [34]).

6 À la Church/Curry Polytype Semantics

The use of abstract interpretation to (re-)design the well-
known Church/Curry monotype system is comforting but
may seem unconvincing because the type system was known
in advance. A new refinement is now introduced allowing
for recursive calls of f in a fixpoint definition TC[[�f ·�x · e]]
to be assigned different monotypes (which is the essence
of Milner’s polymorphic type schemes [29], although it is
restricted to the let x = e in e′ construct). This leads to a
new polytype system which is simple enough to illustrate
application of abstract interpretation to type theory.

Polytypes are defined as follows:

m ∈ M
PC , m ::= int | m1 ->m2 monotype

p ∈ P
PC 4

= ℘(M PC ) polytype

H ∈ H
PC 4

= X 7→ P
PC type environment

θ ∈ I
PC 4

= H
PC × M PC typing

T ∈ T
PC 4

= ℘(IPC) program type (1)
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The innovation with respect to Church/Curry monotype
system is to associate sets of monotypes understood con-
junctively to global program variables in type environments
(instead of a single simple type).

The concretization function γPC is:

γPC
1 ∈ M

PC 7→ ℘(U)

γPC
1 ( int)

4
= {↑(z) :: Z⊥ | z ∈ Z}∪ {⊥}

γPC
1 (m1 ->m2)

4
= {↑(ϕ) :: [U 7→ U]⊥ | ϕ ∈ [U 7→ U] ∧

∀u ∈ γPC
1 (m1) : ϕ(u) ∈ γPC

1 (m2)} ∪ {⊥}
γPC

2 ∈ P
PC 7→ ℘(U)

γPC
2 (p)

4
=

T

m∈ p
γPC

1 (m), γPC
2 (∅) 4= U

γPC
3 ∈ H

PC 7→ ℘(R)

γPC
3 (H)

4
= {R ∈ R | ∀x ∈ X : R(x) ∈ γPC

2 (H(x))}
γPC

4 ∈ I
PC 7→ P

γPC
4 (〈H, m〉) 4= {φ ∈ S | ∀R ∈ γPC

3 (H) : φ(R) ∈ γPC
1 (m)}

γPC ∈ T
PC 7→ P

γPC(T)
4
=

T{γPC
4 (θ) | θ ∈ T}, γPC(∅) 4= S

Since γPC preserves greatest lower bounds:

γPC(
S

i∈∆

Ti) =
T

i∈∆

γPC(Ti)

The Galois connection:

〈P, ⊆〉 −−−−→←−−−−
αPC

γPC

〈TPC, ⊇〉

is such that αPC(P ) is the best possible (i.e. most precise)
type of programs with property P . The Church/Curry poly-
type semantics:

TPC[[ •]] ∈ E 7→ T
PC

is designed to be sound. For all programs e ∈ E,
αPC(C[[e]]) ⊇ TPC[[e]] ⇐⇒ C[[e]] ⊆ γPC(TPC[[e]]) ⇐⇒
S[[e]] ∈ γPC(TPC[[e]]) so that typable programs e cannot go
wrong since 〈H, m〉 ∈ TPC[[e]]∧R ∈ γPC

3 (H)∧S[[e]]R 6= ⊥ =⇒
S[[e]]R 6= Ω.

Again for simplicity of the presentation, the design of
the Church/Curry polytype semantics TPC[[ •]] by abstract
interpretation of the collecting semantics C[[ •]] is postponed
until Sec. 16. The let construct is defined such that:

S[[ let x = e1 in e2]]
4
= S[[(�x · e2)(e1)]]

The Church/Curry polytype semantics is as follows (in the

metalanguage, gfp
v

> φ is the v-greatest fixpoint of the
monotone operator φ ∈ L 7→ L on a cpo 〈L, v〉 which is
less than or equal to >. The polytype M PC

->M
PC is de-

fined to be a shorthand for {m1 ->m2 | m1,m2 ∈ M PC}):

TPC[[x]]
4
= {〈H, m〉 | m ∈ H(x)}

TPC[[�x · e]] 4= {〈H, m1 ->m2〉 |
〈H[x←{m1}], m2〉 ∈ TPC[[e]]}

TPC[[e1(e2)]]
4
= {〈H, m2〉 | 〈H, m1 ->m2〉 ∈

TPC[[e1]] ∧ 〈H, m1〉 ∈ TPC[[e2]]}
TPC[[ let x = e1 in e2]]

4
= {〈H, m2〉 | ∃p1 6= ∅ : ∀m1 ∈ p1 :

〈H, m1〉 ∈ TPC[[e1]] ∧
〈H[x←p1], m2〉 ∈ TPC[[e2]]}

TPC[[�f ·�x · e]] 4= {〈H, m〉 | m ∈ gfp
⊆

MPC ->MPC
Ψ}

where Ψ
4
= Λp.{m′ | 〈H[f←p], m′〉 ∈ TPC[[�x · e]]}

= {〈H, m〉 | ∃p ⊆ M
PC

->M
PC : m ∈

p ∧ ∀m′ ∈ p : 〈H[f←p], m′〉 ∈
TPC[[�x · e]]}

TPC[[1]]
4
= {〈H, int〉 | H ∈ HPC}

TPC[[e1 − e2]]
4
= {〈H, int〉 | 〈H, int〉 ∈

TPC[[e1]] ∩TPC[[e2]]}
TPC[[(e1 ? e2 : e3)]]

4
= {〈H, m〉 | 〈H, int〉 ∈ TPC[[e1]] ∧

〈H, m〉 ∈ TPC[[e2]] ∩TPC[[e3]]}

Notice in the definition of TPC[[ let x = e1 in e2]] that p1 6= ∅.
Otherwise let x = e1 in1 would be always be typable with
p1 = ∅ because x does not appear in 1. This is not sound
since if S[[e1]]R = Ω then by definition of the eager deno-
tational semantics S[[ let x = e1 in1]]R = S[[(�x ·1)(e1)]]R
= Ω. However this would be sound with a lazy semantics
where e1 is not evaluated.

By defining judgments as:

H PC−̀− e⇒m
4
= 〈H, m〉 ∈ TPC[[e]]

the Church/Curry polytype semantics can be presented in
the equivalent rule based form:

m ∈ H(x)

H PC−̀− x⇒m

H[x←{m1}] PC−̀− e⇒m2

H PC−̀− �x · e⇒m1 ->m2

H PC−̀− e1⇒m1 ->m2, H PC−̀− e2⇒m1

H PC−̀− e1(e2)⇒m2

p1 6= ∅, ∀m1 ∈ p1 : H PC−̀− e1⇒m1, H[x←p1] PC−̀− e2⇒m2

H PC−̀− let x = e1 in e2⇒m2

∀m1 ∈ p1 : H[f←p1] PC−̀− �x · e⇒m1, m ∈ p1

H PC−̀− �f ·�x · e⇒m
(2)

H PC−̀− 1⇒ int
H PC−̀− e1⇒ int, H PC−̀− e2⇒ int

H PC−̀− e1 − e2⇒ int

H PC−̀− e1⇒ int, H PC−̀− e2⇒m, H PC−̀− e3⇒m

H PC−̀− (e1 ? e2 : e3)⇒m

Example 1 The following ML program (such that F f g
n x = g(fn(x))) is not typable by Damas-Milner’s polymor-
phic type system [17, 29]. To show this, it is sufficient to
submit it to an ML compiler2:

> Caml Light version 0.71/mac

#let rec F f g n x =
if n = 0 then g(x)
else F(f)(fun x -> (fun h -> g(h(x))))(n-1)(x)(f);;

Toplevel input:
>........F f g n x =
> if n = 0 then g(x)
> else F(f)(fun x -> (fun h -> g(h(x))))(n-1)(x)(f)..
This expression has type
’a -> (’b -> ’c) -> int -> ’b -> ’c,
but is used with type
’a -> (’b -> (’b -> ’b) -> ’c) -> int -> ’b -> ’a -> ’c.

2In practice, ML programmers would rewrite F as let rec F f g n
x = if n = 0 then g(x) else F f (fun x -> g(f x)) (n-1) x;; with
type (’a -> ’a) -> (’a -> ’b) -> int -> ’a -> ’b.
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Using the above à la Church/Curry polytype system, the
type of this program is formally defined as:

{〈H, m〉 | m ∈ gfp
⊆

MPC ->MPC
Ψ}

where:

Ψ(p) = {m1 ->((m2 ->m3) -> ( int ->(m2 ->m3))) |
m1 ->(( m4 ->(( m4 -> m2)-> m3))->(int->( m2 ->( m1 -> m3)))) ∈ p}

that is, by hand-computation of the greatest fixpoint:

{〈H, (m1 ->m1) ->((m1 ->m2) -> ( int ->(m1 ->m2)))〉
| H ∈ HPC ∧m1,m2 ∈ M PC} ut

Prop. 26 will show that Damas-Milner-Mycroft polymor-

phic type semantics TDM2
[[ •]] is an abstraction of TPC[[ •]].

This example is given to show that this abstraction is strict3.
The next refinement is to consider polytypes p to the left

of the arrow p ->m to get a simple form of infinite conjunc-
tive types [3, 5, 23] with rules:

H[x←p1] ∧−̀− e⇒m2

H ∧−̀− �x · e⇒p1 ->m2

H ∧−̀− e1⇒p1 ->m2, p1 6= ∅, ∀m1 ∈ p1 : H ∧−̀− e2⇒m1

H ∧−̀− e1(e2)⇒m2

so that the let x = e1 in e2 rule no longer appears as a spe-
cial case. For lack of space, this type system (otherwise

similar to PC−̀−) will not be developed, and consider instead a
further refinement in the form of the type collecting seman-
tics TCo[[ •]].

7 Polytype to Monotype Abstraction

In order to illustrate the constructive design of an abstract
semantics by abstract interpretation of a concrete semantics
on a very simple example, TC[[e]] is now derived from TPC[[e]].
The correspondence is given by the Galois insertion4:

〈TPC, ⊇〉 −−−→−→←−−−−
α

γ
〈TC, ⊇〉

such that:

α(T)
4
= {〈H, m〉 | 〈Λy∈X.{H(y)}, m〉 ∈ T}

γ(T’)
4
= {〈Λy∈X.{H(y)}, m〉 | 〈H, m〉 ∈ T’}

The design of TC[[e]] is by algebraic simplification of the
expression α(TPC[[e]]) using an ⊇-upper approximation when
necessary. One proceeds by induction on the syntax of e. For
e = x, one has:

α(TPC[[x]])

= {〈H, m〉 | 〈Λy∈X.{H(y)}, m〉 ∈ TPC[[x]]} by def. α

= {〈H, m〉 | m ∈ {H(x)}} by def. TPC[[x]]

= {〈H, H(x)〉 | H ∈ IC} by def. ∈
4
= TC[[x]]

3Formally ∃e ∈ E : TPC[[e]] ⊃ γ̈MM
p ◦ γDM

p (TDM2
[[e]]).

4A Galois insertion 〈L, ≤〉 −−−→−→←−−−−
α

γ

〈M, �〉 is a Galois connection

〈L, ≤〉 −−−→←−−−α
γ

〈M, �〉 such that α is onto (which is equivalent to γ is

one-to-one and is equivalent to α ◦ γ = Id where Id is the identity
on M).

For e = let x = e1 in e2, one has (y ∈ X is a program vari-
able):

α(TPC[[ let x = e1 in e2]])

= {〈H, m〉 | 〈Λy.{H(y)}, m〉 ∈ TPC[[ let x = e1 in e2]]}
by definition of α

= {〈H, m2〉 | ∃p1 6= ∅ : ∀m1 ∈ p1 : 〈Λy.{H(y)}, m1〉 ∈
TPC[[e1]] ∧ 〈Λy.{H(y)}[x←p1], m2〉 ∈ TPC[[e2]]}

by definition of TPC[[ let x = e1 in e2]]

⊇ {〈H, m2〉 | 〈Λy.{H(y)}, m1〉 ∈ TPC[[e1]] ∧
〈Λy.{H(y)}[x←{m1}], m2〉 ∈ TPC[[e2]]}

by restricting p1 to {m1}
The restriction of the polytype p1 to the monotype {m1} is a
loss of information. The best solution to assign a monotype
to let x = e1 in e2 would be to locally use a polytype for
x in e2. However this approximation allows for the same
monotype system to be used in all subexpressions.

= {〈H, m2〉 | 〈Λy.{H(y)}, m1〉 ∈ TPC[[e1]] ∧
〈Λy.{H[x←m1](y)}, m2〉 ∈ TPC[[e2]]}

by definition of assignment H[x←t]
= {〈H, m2〉 | 〈H, m1〉 ∈ α(TPC[[e1]]) ∧ 〈H[x←m1], m2〉 ∈

α(TPC[[e2]])} by definition of α

⊇ {〈H,m2〉 | 〈H,m1〉 ∈ TC[[e1]]∧〈H[x←m1],m2〉 ∈ TC[[e2]]}
by induction hypothesis

4
= TC[[ let x = e1 in e2]]

The other cases are equally simple.

8 Abstract Semantics and Interpreters

An abstract semantics:

〈T], ≤], T][[ •]]〉

is given by a poset of abstract properties/types 〈T], ≤]〉,
where ≤] is an abstract version of logical implication, and
an abstract semantic function:

T][[ •]] ∈ E 7→ T
].

A compositional abstract semantics

〈T], ≤], P]〉
is parameterized by semantic primitives

P] = {Ψ]
e | e ∈ E}

where each primitive Ψ]
e for program expression

e[x1, . . . , xm](e1, . . . , en)

with locally bound variables x1, . . . , xm (as x in �x · e′)
and subexpressions e1, . . . , en (as e′ in �x · e′) has signa-
ture Xm 7→ (T]

n 7→ T
]). The corresponding semantics 〈T],

≤], T][[ •]]〉 is defined compositionally (Ψ]
e(u1, . . . , un) is a

shorthand for Ψ]
e[x1, . . . , xm](u1, . . . , un)):

T][[e]]
4
= Ψ]

e(T
][[e1]], . . . ,T][[en]])

by induction on the syntax of program expressions. A com-
positional abstract semantics 〈T],≤], P]〉 is monotone when
all primitives are monotone, that is:

〈T1, . . . , Tn〉 ≤] 〈T′1, . . . , T′n〉
=⇒ Ψ]

e(T1, . . . ,Tn) ≤] Ψ]
e(T
′
1, . . . ,T

′
n) .

When 〈T], ≤]〉 is computer-representable and the prim-
itives {Ψ]

e | e ∈ E} are computable, this is the specification
of a generic abstract interpreter defined by induction on the
structure of programs and parameterized by modules for im-
plementing the primitives with above signature.
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9 Abstraction and Soundness

The abstract semantics 〈T], ≤], T][[ •]]〉 is said to be the
abstraction of the concrete semantics 〈T[, ≤[, T[[[ •]]〉 when-
ever there is a concretization map γ ∈ T

] 7→ T
[ which is

monotone and such that:

∀e ∈ E : T[[[e]] ≤[ γ(T][[e]]).

If the concrete and abstract semantics are defined composi-
tionally then, by induction on the structure of e, the follow-
ing general compositional abstraction condition:

∀i = 1, . . . , n : T[[[ei]] ≤[ γ(T][[ei]]) (3)

=⇒ Ψ[
e(T

[[[e1]], . . . ,T[[[en]]) ≤[ γ(Ψ]
e(T

][[e1]], . . . ,T][[en]]))

is sufficient. 〈T], ≤], P]〉 is said to be an upper approxi-
mation of 〈T], ≤], P\〉 when it is an abstraction through
the identity map, in which case the general compositional
abstraction condition degenerates to the following upper ap-
proximation condition:

∀i = 1, . . . , n : T\[[ei]] ≤] T][[ei]]

=⇒ Ψ\
e(T

\[[e1]], . . . ,T\[[en]]) ≤] Ψ]
e(T

][[e1]], . . . ,T][[en]]).

A sound abstract semantics is an abstraction of the col-
lecting semantics 〈P, ⊆, C[[ •]]〉. Observe that an upper ap-
proximation of a sound abstraction is a sound abstraction.

For monotone compositional abstract semantics 〈T], ≤],
P]〉, the following monotone compositional concretization
condition:

Ψ[
e(γ(T][[e1]]), . . . , γ(T][[en]])) ≤[ γ(Ψ]

e(T
][[e1]], . . . ,T][[en]]))

implies the general compositional abstraction condition (3)
hence that the corresponding abstract semantics 〈T], ≤],
T][[ •]]〉 is the abstraction of 〈T[, ≤[, T[[[ •]]〉.

Observe that the abstraction of a sound abstraction is
a sound abstraction so that abstract semantics and inter-
preters can be designed by successive abstractions. This re-
mains true when the correspondence is a Galois connection
since they compose:

〈T[, ≤[〉 −−−→←−−−
α\

γ\

〈T\, ≤\〉 ∧ 〈T\, ≤\〉 −−−→←−−−
α]

γ]

〈T], ≤]〉

=⇒ 〈T[, ≤[〉 −−−−−−→←−−−−−−
α]◦α\

γ\◦γ]

〈T], ≤]〉 .

When the correspondence between concrete and abstract
compositional semantics is through a Galois connection:

〈T[, ≤[〉 −−−→←−−−α
γ

〈T], ≤]〉 (4)

The best abstraction of 〈T[, ≤[, P[〉 is defined as 〈T], ≤],
P\〉 with primitives:

Ψ\
e(T1, . . . ,Tn)

4
= α(Ψ[

e(γ(T1), . . . , γ(Tn))) .

This terminology is justified by the fact that if 〈T], ≤], P]〉
is an abstraction of the monotone concrete semantics 〈T[,
≤[, P[〉 then the corresponding semantics is an upper ap-
proximation of the best abstract semantics, since:

∀e ∈ E : T\[[e]] ≤] T][[e]] .

Reciprocally, observe that any upper approximation of the
best abstraction of a monotone compositional concrete se-
mantics is an abstraction of that concrete semantics.

It follows that the exhibition of a Galois connection is
a precious guide for designing a type system, since one can
use the best abstraction:

Λ〈T1, . . . , Tn〉.α(Ψ[
e(γ(T1), . . . , γ(Tn)))

as a starting point and derive an upper approximation Ψ]
e

by elimination of α and γ in the previous formula. However,
when (4) holds and 〈T], ≤], P]〉 is monotone, the following
monotone compositional abstraction condition:

α(Ψ[
e(T

[[[e1]], . . . ,T[[[en]])) ≤] Ψ]
e(α(T[[[e1]]), . . . , α(T[[[en]]))

implies that the corresponding abstract semantics 〈T], ≤],
T][[ •]]〉 is the abstraction of 〈T[, ≤[, T[[[ •]]〉. As already
illustrated by the design of TC[[e]] from TPC[[e]], the method-
ology consists of starting from α(Ψ[

e(T
[[[e1]], . . . , T[[[en]])) so

as to rewrite it in the form Ψ]
e(α(T[[[e1]]), . . . , α(T[[[en]]))

hence providing the definition of Ψ]
e. It remains to check

that Ψ]
e is monotone.

10 Typable Programs Cannot Go Wrong

A (prescriptive) sound type system T ] is a tuple 〈T], ≤],
T][[ •]], γ], E ]〉 where 〈T], ≤], T][[ •]]〉 is a sound abstract
semantics for the monotone concretization function

γ] ∈ T
] 7→ P

(recall that P
4
= ℘(S)) and the map

E ] ∈ T
] 7→ ℘(R)

such that

∀T ∈ T] : ∀R ∈ E ](T) : ∀φ ∈ γ](T) : Ω 6∈ φ(R)

defines admissible environments. For example, 〈TPC, ≤PC,
TPC[[ •]], γPC, EPC〉 is a sound type system where:

EPC(T)
4
= {R | ∃〈H, m〉 ∈ T ∧ R ∈ γPC

3 (H)}

A program e is typable in the environment R ∈ R for the
sound type system T ], if and only if:

R ∈ E ](T][[e]])

Proposition 2 A typable program e in the environment
R ∈ R for any sound type system T ] cannot go wrong in
that S[[e]]R 6= Ω.

It is interesting to note that instead of “formalizing the type
system by a set of type rules, and verifying that program ex-
ecution of well-typed programs cannot produce type errors.”
[2], the abstract interpretation design methodology ensures
that type systems will be sound by construction, this sound-
ness requirement being used as a guideline for designing the
type system.

11 Herbrand Abstraction

The Herbrand abstraction (with associative and commuta-
tive variants) is the most extensively and almost exclusively
used abstraction for type inference. It is also of common use
in abstract interpretation of logic programs [18].

Let T be a denumerable set of terms. Let V ⊆ T be a
denumerable infinite subset of variables. Variables in V are
called generic since they are instanciable whereas variables
not in V , called parametric are not instanciable (hence can
be considered as constants). W ↪→ T stands for the set of
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idempotent substitutions σ assigning a term σ(v) ∈ T to
variables v ∈ W . Let groundV (T ) ⊆ T be the subset of
ground terms, with no variable in V . By [27], one has the
Galois insertions (α ∈ V is a generic variable):

〈℘( groundV (T )), ⊆, ∅, groundV (T ), ∪, ∩〉

−−−−−−−−−→−→←−−−−−−−−−−
lcgV

groundV 〈T ∅/≡
V
, ≤V , ∅, [α]≡

V
, lcgV , gciV 〉

〈℘(T ), ⊆, ∅, T , ∪, ∩〉

−−−−−−−→−→←−−−−−−−−
lcgV

instV 〈T ∅/≡
V
, ≤V , ∅, [α]≡

V
, lcgV , gciV 〉

where instV (t) is the set of instances in T of term t ∈ T
for generic variables in V while groundV (t) is the set of
ground ones with no variable in V . lcgV is the least
common generalization (also called most specific general-
ization or least common anti-instance) for generic variables
in V . ≤V is the instantiation preorder (t1 ≤V t2 ⇐⇒
instV (t1) ⊆ instV (t2)). ≡V is the corresponding equiva-

lence relation. T
∅
/≡
V

is the set of equivalence classes [t]≡
V

augmented with a new infimum ∅. gciV (θ) is the greatest
common instance of a set θ ⊆ T of terms that is mguV (T ′)t
where t ∈ T ′, mguV (T ′) being the most general unifier of
T ′ and T ′ being a renaming of T such that no two terms
in T ′ share a common generic variable in V . If ∅ ∈ T or
no such unifier exists (in which case mguV (T ′) = ∅) then

gciV (θ) = ∅. The complete lattice 〈T ∅/≡
V
, ≤V , ∅, [α]≡

V
,

lcgV , gciV 〉 satisfies the ascending chain condition but has
infinite strictly decreasing chains with limit ∅. When all
variables are generic, or V is understood from the context,
index V is omitted.

12 Exactness and Principality

A principal typing is a typing that subsumes all others
[17, 31]. More generally, this means that there is an exact
representation for all possible typings. This can be under-
stood as a relation between abstract semantics, as follows:

Definition 3 If T\[[ •]] ∈ E 7→ T
\ and 〈T\, ≤\〉 −−−→←−−−

α]

γ]

〈T],

≤]〉 then the abstract semantics T][[ •]] ∈ E 7→ T
] such that

∀e ∈ E : α](T\[[e]]) ≤] T][[e]] is exact if and only if ∀e ∈ E :
γ](T][[e]]) = T\[[e]]. It is principal if and only if it is exact
and moreover T] = T

\.

This means that the abstraction loses no information for the
semantics T\[[ •]] and T][[ •]] which are isomorphic although
other elements x of T] not in {γ](T][[e]]) | e ∈ E} may have
a strict approximation x <\ γ](α](x)).

Proposition 4 If T[[ •]] ∈ E 7→ T
] and 〈T], ≤]〉 −−−→−→←−−−−−

α]

γ]

〈T], ≤\〉 then the only possible exact semantics is T][[e]]
4
=

α](T[[e]]) which is the case if and only if γ](T][[e]]) = T[[e]].

A remarkable property of exactness is that it can be used
both as an upper and a lower approximation:

Proposition 5 If 〈T\, ≤\, T\[[ •]]〉, resp. 〈T\, ≥\, T\[[ •]]〉,
with exact abstraction 〈T], ≤], T][[ •]]〉 is an abstraction of
the concrete semantics 〈T[, ≤[, T[[[ •]]〉 then 〈T], ≤], T][[ •]]〉
(resp. 〈T], ≥], T][[ •]]〉) is also an abstraction of 〈T[, ≤[,
T[[[ •]]〉.

Proof Assume that 〈T\, ≥\, T\[[ •]]〉 is the abstraction of

〈T[, ≤[, T[[[ •]]〉 by γ\, 〈T\, ≤\〉 −−−→←−−−
α]

γ]

〈T], ≤]〉 and T][[e]]
4
=

α](T\[[e]])5. By exactness γ](T][[e]]) = T\[[e]] so T[[[e]] ≤[
γ\(T\[[e]]) = γ\ ◦ γ](T][[e]]) as required. Any ≥]-approxima-
tion Tx....[[e]] of T][[e]] is also an abstraction since γ](T][[e]]) ≥\
γ](Tx....[[e]]) whence T[[[e]] ≤[ γ\ ◦ γ](T][[e]]) ≤[ γ\ ◦ γ](T][[e]])
by monotony. ut

13 Hindley Monotype Semantics

Hindley type abstract interpreter [21] is a computer-imple-
mentable exact abstraction of Church/Curry monotype ab-
stract semantics 〈TC, ⊇, TC[[ •]]〉. Hindley types are as fol-
lows:
’a ∈ V type variables

τ ∈ M
H
v monotype with variables

τ ::= int | ’a | τ1 ->τ2

H ∈ H
H 4

= X 7→ M
H
v type environment

T ∈ T
H 4

= H
H × M H

v program typing

The Hindley type semantics:

TH[[ •]] ∈ E 7→ T
H∅
/≡

(where TH∅/≡ is TH up to variable renaming augmented with
an infimum ∅) is defined as follows (the most general en-
vironment H ∈ H

H is such that ∀x ∈ X : H(x) ∈ V and
∀x 6= y ∈ X : H(x) 6= H(y). ’a, ’b and ’c are fresh type
variables):

TH[[x]]
4
= 〈H, H(x)〉

TH[[�x · e]] 4
= (TH[[e]] = 〈H, τ 〉 ?

〈H[x←’a], H(x) ->τ 〉 | ∅)
TH[[e1(e2)]]

4
= (TH[[e2]] = 〈H2, τ2〉 ∧

gci{TH[[e1]], 〈H2, τ2 ->’a〉} = 〈H,
τ2 ->τ〉 ? 〈H, τ 〉 | ∅)

TH[[�f ·�x · e]] 4
= (TH[[�x · e]] = 〈H, τ 〉 ∧

σ = mgu{’a ->’b,H(f), τ} 6= ∅ ?
〈σ(H)[f←’c], σ(τ )〉 | ∅)

TH[[1]]
4
= 〈H, int〉

TH[[e1 − e2]]
4
= gci{〈H, int〉,TH[[e1]],TH[[e2]]}

TH[[(e1 ? e2 : e3)]]
4
= (TH[[e1]] = 〈H1, int〉 ?

gci{〈H1, ’a〉,TH[[e2]],TH[[e3]]} | ∅)

The soundness of Hindley type semantics is by construction:

Proposition 6 〈TH
∅
/≡ ,≥,TH[[ •]]〉 is an exact abstraction of

Church/Curry monotype abstract semantics 〈TC, ⊇, TC[[ •]]〉
by the Galois insertion 〈TC, ⊆〉 −−−−−−−−→−→←−−−−−−−−−−

lcg

ground
〈TH∅/≡ , ≤〉

since for all e ∈ E:

TH[[e]]
4
= lcg(TC[[e]]), TC[[e]] = ground(TH[[e]]).

Proof By structural induction on e. For short, typical cases
are considered.

5In general T][[e]] is not an abstraction of T\[[e]] (hence of T[[[e]]

through γ\) since T\[[e]] ≤\ γ](α](T\[[e]])) by the Galois connection

whence T\[[e]] ≤\ γ](T][[e]]) whereas a ≥\-upper-approximation is
required.
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TH[[x]]
4
= lcg(TC[[x]]) by def. TH[[x]]

= lcg({〈H, H(x)〉 | H ∈ HC}) by def. TC[[x]]
= 〈H, H(x)〉 by def. lcg and H
ground(TH[[x]])

= {〈σ(H), σ(H(x))〉 | σ ∈ V ↪→ M
C} by def. ground

= {〈H, H(x)〉 | H ∈ HC} by def. H and substitution

= TC[[x]] by def. TC[[x]]

TH[[�f ·�x · e]]
4
= lcg

h
TC[[�f ·�x · e]]

i
by def. TH[[�f ·�x · e]]

= lcg
h
{〈H, m〉 | 〈H[f←m], m〉 ∈ TC[[�x · e]]}

i

by def. TC[[�f ·�x · e]]
= lcg

h
{〈H, m1 ->m2〉 | 〈H[f←m1 ->m2], m1 ->m2〉 ∈

TC[[�x · e]]}
i

by def. TC[[�x · e]]

= lcg
h
{〈H, m1 ->m2〉 | 〈H[f←m1 ->m2], m1 ->m2〉 ∈

ground(TH[[�x · e]])}
i

by induction hypothesis

= lcg
h
{〈H, m1 ->m2〉 | 〈H[f←m1 ->m2], m1 ->m2〉 ∈

{〈σ(A), σ(τ )〉 | σ ∈ V ↪→ M
C ∧ 〈A, τ 〉 = TH[[�x · e]]}}

i

by def. ground

= lcg
h
{〈H, m1 ->m2〉 | H[f←m1 ->m2] = σ(A) ∧

m1 ->m2 = σ(τ )∧ σ ∈ V ↪→ M
C ∧ 〈A, τ 〉 = TH[[�x · e]]}

i

by def. ∈ and 〈 •, •〉
= lcg

h
{〈H, m1 ->m2〉 | ∀y 6= f : H(y) = σ(A)(y) ∧

σ(A)(f) = m1 ->m2 = σ(τ ) ∧ σ ∈ V ↪→ M
C ∧ 〈A,

τ 〉 = TH[[�x · e]]}
i

by def. H[ •← •]

= lcg
h
{〈H, m1 ->m2〉 | H = σ(A[f←’c]) ∧ m1 ->m2 =

σ(A(f)) = σ(τ ) ∧ σ ∈ V ↪→ M
C ∧ 〈A, τ 〉 = TH[[�x · e]]}

i

by def. A[ •← •], A( •) and substitution where ’c is a
fresh type variable

= lcg
h
{〈σ(A[f←’c]), σ(’a ->’b)〉 | σ(’a ->’b) = σ(A(f))

= σ(τ ) ∧ σ ∈ V ↪→ M
C ∧ 〈A, τ 〉 = TH[[�x · e]]}

i
by

def. = and substitution where ’a and ’b are fresh type
variables

= (TH[[�x · e]] = 〈A, τ 〉 ∧ ς = mgu{’a ->’b,A(f), τ} 6= ∅ ?

lcg
h
{〈σ′ ◦ ς(A[f←’c]), σ′ ◦ ς(τ )〉 | σ′ ∈ V ↪→ M

C}
i
| ∅)

by def. of mgu

= (TH[[�x · e]] = 〈A, τ 〉 ∧ ς = mgu{’a ->’b,A(f), τ} 6= ∅ ?

lcg
h

ground(〈ς(A[f←’c]), ς(τ )〉)
i
| ∅)

by def. of ground

= (TH[[�x · e]] = 〈A, τ 〉 ∧ ς = mgu{’a ->’b,A(f), τ} 6= ∅ ?
〈ς(A[f←’c]), ς(τ )〉 | ∅) since lcg ◦ ground = Id

The proof that ground(TH[[e]]) = TC[[e]] is obtained by the
terms between square brackets [. . .] when reading the above
proof backwards. ut
14 A Type Collecting Semantics

The question “What is a type system” has hardly received
a formal answer. Type systems can be viewed as abstract
semantics in the lattice of abstract interpretations [9] which
are more abstract than a type collecting semantics which

is the most general type system in that it is more precise
than the reduced product [9] of all existing type systems.
With respect to the general collecting semantics C[[ •]], this
type collecting semantics factors out all approximations in-
troduced by type systems such as “run-time values, except
ω, are not taken into account”6 or the even more debatable
“both branches of a conditional should have the same type”.

The approximation is mainly introduced through the def-
inition of typings PCo and their correspondence 〈αCo, γCo〉
with program properties. Further approximations are in-
troduced by the requirement that the type collecting se-
mantics semantics TCo[[ •]] should be a compositional upper-
approximation of the best typing αCo(C[[ •]])7. Finally fix-
point approximations later introduce further approxima-
tions8.

In what follows ⊥Co is the type of never terminating com-
putations. int is the type of computations returning an in-
teger if and when terminating. 〈t1, t2〉, traditionally written
t1 ->t2, is the type of functions which given an argument of
type t1 deliver, if ever, a result with type t2. An object
of polytype T ⊆ P

Co has all types t ∈ T. The collecting
polytypes PCo are defined as follows:

P
Co0 4

= { ⊥Co, int} basic types

P
Coδ+1 4

= P
Coδ ∪ ℘(PCoδ × PCoδ) δ + 1 successor

ordinal

P
Coλ 4

=
S

δ<λ

P
Coδ λ limit ordinal

t ∈ T ⊆ PCo 4=
S

δ∈O
P

Coδ
O is the class of ordi-
nals

The meaning of collecting polytypes is defined by the con-
cretization function:

γCo
1 ∈ P

Co 7→ ℘(U)

The definition of γCo
1 makes use of O-termed sequences of

functions ~γCo
1
δ ∈ PCoδ 7→ ℘(U), δ ∈ O and ~γCo

1
δ ∈ (PCoδ ×

P
Coδ) 7→ ℘(U), δ ∈ O defined by transfinite recursion as

follows:

γCo
1

0
( ⊥Co)

4
= {⊥} γCo

1
0
( int)

4
= {↑(z) :: Z⊥ | z ∈ Z}∪ {⊥}

~γCo
1

δ
(t1 ->t2)

4
= {↑(ϕ) :: [U 7→ U]⊥ | ϕ ∈ [U 7→ U] ∧ ∀u ∈

γCo
1
δ
(t1) : ϕ(u) ∈ γCo

1
δ
(t2)} ∪ {⊥}, t1 ->t2 ∈ PCoδ × PCoδ

γCo
1
δ+1

(t)
4
= γCo

1
δ
(t) if t ∈ PCoδ

γCo
1
δ+1

(T)
4
=

T

t1 -> t2∈ T
~γCo

1
δ
(t1 ->t2) if T ⊆ PCoδ × PCoδ

γCo
1 ( ∅Co)

4
= U when T = ∅Co 4= ∅

γCo
1
λ
(t)

4
= γCo

1
δ
(t) if λ limit ord., δ<λ and t ∈ PCoδ

γCo
1 (t)

4
= γCo

1
δ
(t) where t ∈ PCoδ

Collecting polytypes t, more precisely the set γCo
1 (t) of values

that they describe, are ideals [28, 41] in that γCo
1 (t) is not

empty since ⊥ ∈ γCo
1 (t), γCo

1 (t) is downwards closed (if u, v ∈
U, u v v and v ∈ γCo

1 (t) then u ∈ γCo
1 (t)) and γCo

1 (t) is closed
under lubs of increasing chains (if uδ, δ < ε is a v-increasing
chain of elements of γCo

1 (t) then tδ<εuδ ∈ γCo
1 (t)).

6This is certainly not the case for intervals in Pascal or dependent
types.

7In absence of best abstractions, approximations can be introduced
dynamically by widenings [11] which are omitted here for short.

8Widenings [6, 7] also play a central rôle for precise fixpoint ap-
proximation. See [33] for type widenings.
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The subtyping preorder ≤Co is defined on collecting poly-
types PCo as:

t1 ≤Co t2
4
= γCo

1 (t1) ⊆ γCo
1 (t2)

which is an abstract version of logical implication. By con-
sidering the quotient set PCo/≡Co with equivalence

t1 ≡Co t2
4
= (t1 ≤Co t2 ∧ t2 ≤Co t1)

〈PCo/≡Co, ≤Co〉 is a partial order. The subtyping order is left
antitone and right monotone for functional types (as, e.g.,
in [28]):

Lemma 7 t1 ->t2 ≤Co ⊥Co -> t2. If t′1 6= ⊥Co then
t1 ->t2 ≤Co t′1 -> t′2 if and only if t′1 ≤Co t1 ∧ t2 ≤Co t′2.

Let us define ∧Co ∈ ℘(PCo/≡Co) 7→ P
Co/≡Co as:

∧Co T
4
= ⊥Co if ⊥Co ∈ T or T contains both int and t1 -> t2

4
= int if T = { int}
4
= ∅Co if T = ∅
4
=

S
T if ∅ 6= T ⊆ ℘(PCo/≡Co × PCo/≡Co)

γCo
1 preserves existing greatest lower bounds (glbs):

Lemma 8 γCo
1 (∧Co T) =

T

t∈ T
γCo

1 (t) and ∧Co T is the ≤Co-

greatest lower bound of T.

γCo
1 preserves glbs and is injective so that:

Lemma 9 〈℘(U), ⊆〉 −−−−→−→←−−−−−
αCo

1

γCo
1 〈PCo/≡Co, ≤Co〉

is a Galois insertion where, as it is the case for all Galois
connections [9], αCo

1 is uniquely determined as:

αCo
1 (U)

4
= ∧Co{t ∈ PCo/≡Co | U ⊆ γCo

1 (t)}

and, αCo
1 being surjective, αCo

1 (℘(U))
4
= {αCo

1 (U) | U ⊆ U} =
P

Co/≡Co is a complete lattice:

Lemma 10 〈PCo/≡Co, ≤Co, ⊥Co, ∅Co, ∨Co, ∧Co〉 is a complete

lattice where ∨Co T
4
= αCo

1 (
S

t∈ T γCo
1 (t)).

Next, the abstraction is extended to environment properties
approximated by type environments:

H ∈ H
Co 4

= X 7→ P
Co/≡Co type environment

with pointwise ordering:

αCo
2 (R)

4
= Λx∈X.αCo

1 ({R(x) | R ∈ R})
γCo

2 (H)
4
= {R ∈ R | ∀x ∈ X : R(x) ∈ γCo

1 (H(x))}
H1 ≤̇

Co
H2

4
= ∀x ∈ X : H1(x) ≤Co H2(x)

so that:

Lemma 11

〈℘(R), ⊆, ∅, R, ∩, ∪〉 −−−−→−→←−−−−−
αCo

2

γCo
2 〈H Co , ≤̇Co

, ⊥̇Co, ∅̇Co, ∨̇Co

, ∧̇Co

〉

is a Galois insertion between complete lattices. Finally the
abstraction is extended to program properties P ∈ P ap-
proximated by typings. A typing maps type environments
to program types where a type environment assigns types
to global/free variables:

θ ∈ T
Co 4= H

Co 7→ P
Co/≡Co typing

with pointwise ordering:

αCo(P )
4
= ΛH∈ HCo .αCo

1 ({φ(R) | R ∈ γCo
2 (H) ∧ φ ∈ P})

γCo(θ)
4
= {φ | ∀H ∈ HCo : ∀R ∈ γCo

2 (H) :
φ(R) ∈ γCo

1 (θ(H))}
θ1 ≤̈

Co
θ2

4
= ∀H ∈ HCo : θ1(H) ≤Co θ2(H)

so that one gets Galois connection between complete lat-
tices:

Proposition 12

〈P, ⊆, ∅, S, ∩, ∪〉 −−−−→←−−−−
αCo

γCo

〈TCo, ≤̈Co
, ⊥̈Co, ∅̈Co, ∨̈Co

, ∧̈Co

〉

The type collecting semantics has been designed using the
soundness requirement (see Prop. 15 below) as follows:

TCo[[x]]
4
= ΛH.H(x)

TCo[[�x · e]] 4
= ΛH.∧Co

n
t ->TCo[[e]]H[x←t]

���
t ∈ PCo/≡Co − { ⊥Co}

o

TCo[[e1(e2)]]
4
= ΛH.∧Co

n
t ∈ PCo/≡Co

���
TCo[[e1]]H ≤Co {TCo[[e2]] ->t}

o
TCo[[�f ·�x · e]] 4=

ΛH. lfp
≤Co

{∅Co ->⊥Co}
Λt∈PCo/≡Co.TCo[[�x · e]]H[f←t]

TCo[[1]]
4
= ΛH. int

TCo[[e1 − e2]]
4
= ΛH. int ∧Co TCo[[e1]] ∧Co TCo[[e2]]

TCo[[(e1 ? e2 : e3)]]
4
= ΛH.(TCo[[e1]]H = ⊥Co ? ⊥Co |

TCo[[e1]]H = int ? TCo[[e2]]H ∨Co TCo[[e3]]H | ∅Co)

Example 13 We could have avoided explicit fixpoint defi-
nitions �f ·�x · e using the eager call by value Y combinator
Y = �f ·W(W) where W = �x ·�y · f(x(x))(y). The col-
lecting type of Y is such that:

TCo[[Y]] ≤̈Co
ΛH.∧Co

n
{{t1 -> t2} ->{t1 ->t2}} ->{t1 ->t2}

���
t1 ∈ PCo − { ⊥Co} ∧ t2 ∈ PCo

o
ut

Any ≤̈Co
-upper-approximation of the best abstraction of the

standard collecting semantics is sound:

Lemma 14 ∀e ∈ E: ∀H ∈ H Co : ∀t ∈ PCo:
[αCo(C[[e]])H ≤Co t] ⇐⇒ [∀R ∈ γCo

2 (H) : S[[e]]R ∈ γCo
1 (t)]

Proof

∀R ∈ γCo
2 (H) : S[[e]]R ∈ γCo

1 (t)

⇐⇒ ∀R ∈ γCo
2 (H) : {S[[e]]R} ⊆ γCo

1 (t) def. ∪
⇐⇒ ∀R ∈ γCo

2 (H) : αCo
1 ({S[[e]]R}) ≤Co t def. Galois con.

⇐⇒ ∨Co{αCo
1 ({S[[e]]R}) | R ∈ γCo

2 (H)} ≤Co t def. lubs

⇐⇒ αCo
1 (∪{{S[[e]]R} | R ∈ γCo

2 (H)}) ≤Co t αCo
1 preserves

existing lubs

⇐⇒ αCo
1 ({S[[e]]R | R ∈ γCo

2 (H)}) ≤Co t def. ∪
⇐⇒ αCo

1 ({φ(R) | φ ∈ {S[[e]]} ∧ R ∈ γCo
2 (H)}) ≤Co t def. ∈

⇐⇒ αCo({S[[e]]}) ≤Co t def. αCo

⇐⇒ αCo(C[[e]]) ≤Co t def. C[[ •]]. ut
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This soundness requirement provides a guideline for de-
riving the definition of TCo[[ •]] by upper-approximation of
αCo(C[[e]]):

Proposition 15 If the type collecting semantics TCo[[ •]] is
monotone9 then it is well-defined and sound since for all
e ∈ E:

αCo(C[[e]]) ≤̈Co
TCo[[e]]

Proof

αCo(C[[e]])

= αCo({S[[e]]}) def. C[[ •]]
= αCo

1 ({φ(R) | φ ∈ {S[[e]]} ∧ R ∈ γCo
2 (H)}) def. αCo

= αCo
1 ({S[[e]]R | R ∈ γCo

2 (H)}) def. ∈
= ∧Co{t ∈ PCo/≡Co | αCo

1 ({S[[e]]R | R ∈ γCo
2 (H)}) ≤Co t}

def. glbs

= ∧Co{t ∈ PCo/≡Co | {S[[e]]R | R ∈ γCo
2 (H)}) ⊆ γCo

1 (t)}
Galois connection

= ∧Co{t ∈ PCo/≡Co | ∀R ∈ γCo
2 (H) : S[[e]]R ∈ γCo

1 (t)} def. ⊆

The proof goes on by structural induction on e. For short,
only few typical cases are considered.

αCo(C[[x]])

= ∧Co{t ∈ PCo/≡Co | ∀R ∈ γCo
2 (H) : S[[x]]R ∈ γCo

1 (t)}
= ∧Co{t ∈ P

Co/≡Co | ∀R ∈ R : ∀y ∈ X : R(y) ∈
γCo

1 (H(y)) =⇒ R(x) ∈ γCo
1 (t)} by def. γCo

2 (H) and S[[x]]R

= ∧Co{t ∈ PCo/≡Co | ∀R ∈ R : R(x) ∈ γCo
1 (H(x)) =⇒ R(x) ∈

γCo
1 (t)} since R(x) is independent of R(y), y 6= x

= ∧Co{t ∈ PCo/≡Co | ∀u ∈ U : u ∈ γCo
1 (H(x)) =⇒ u ∈ γCo

1 (t)}
by def. R and R(x)

= ∧Co{t ∈ PCo/≡Co | γCo
1 (H(x)) ⊆ γCo

1 (t)} by def. ⊆
= ∧Co{t ∈ PCo/≡Co | H(x) ≤Co t} by def. ≤Co

= H(x) by def. glbs
4
= TCo[[x]] since αCo and γCo have been eliminated.

αCo(C[[�f ·�x · e]])
= ∧Co{t ∈ PCo/≡Co | ∀R ∈ γCo

2 (H) : S[[�f ·�x · e]]R ∈ γCo
1 (t)}

= ∧Co{t ∈ PCo/≡Co | ∀R ∈ γCo
2 (H) :

lfp
v

↑(Λ u.⊥)::[U 7→U]⊥
Λf.S[[�x · e]]R[f←f] ∈ γCo

1 (t)}

= ∧Co{t ∈ PCo/≡Co | ∀R ∈ γCo
2 (H) : f0 = ↑(Λu.⊥) :: [U 7→U]⊥

∧ ∀n ∈ N : fn+1 = S[[�x · e]]R[f←fn] ∧ t
n∈N

fn ∈ γCo
1 (t)}

by continuity and Kleene fixpoint theorem

Requiring all iterates of the fixpoint, hence all intermediate
steps of the computation to be typed, one gets, by definition
of glbs, an upper approximation:

≤Co ∧Co{t ∈ P
Co/≡Co | ∃tn, n ∈ N : ∀R ∈ γCo

2 (H) : f0 =
↑(Λu.⊥) :: [U 7→ U]⊥ ∧ t0 = { ∅Co -> ⊥Co} ∧ ∀n ∈ N :

fn+1 = S[[�x · e]]R[f←fn] ∈ γCo
1 (tn+1)∧ t

n∈N
fn ∈ γCo

1 (t)}

Observe that ∀n ∈ N: fn ∈ γCo
1 (tn) so t

n∈N
fn ∈ γCo

1 (∨Co

n∈N
tn)

since types are ideals. So t
n∈N

fn ∈ γCo
1 (t) can be ensured by

9Monotonicity of TCo[[•]] is proved in later Prop. 16.

the stronger requirement ∨Co

n∈N
tn ≤Co t. In this way, one gets

an upper approximation:

≤Co ∧Co{t ∈ P
Co/≡Co | ∃tn, n ∈ N : ∀R ∈ γCo

2 (H) : f0 =
↑(Λu.⊥) :: [U 7→ U]⊥ ∧ t0 = { ∅Co -> ⊥Co} ∧ ∀n ∈ N :

fn+1 = S[[�x · e]]R[f←fn] ∧ fn ∈ γCo
1 (tn) ∧∨Co

n∈N
tn ≤Co t}

since, moreover, f0 ∈ γCo
1 (t0). The iterative definition of the

fn, n ∈ N leads to a similar idea for the tn, n ∈ N. To do
this, one knows by induction hypothesis that for all H′ ∈
H

Co :

αCo({S[[�x · e]]})H′ ≤Co TCo[[�x · e]]H′

whence by Lem. 14:

∀R ∈ γCo
2 (H′) : S[[�x · e]]R ∈ γCo

1 (TCo[[�x · e]]H′)

Besides for all n ∈ N, fn ∈ γCo
1 (tn) whence by definition

of γCo
2 and H[ •← •] one has R[f←fn] ∈ γCo

2 (H[f←tn]) for
all R ∈ γCo

2 (H). It follows that for all R ∈ γCo
2 (H) one

has S[[�x · e]]R[f←fn] ∈ γCo
1 (TCo[[�x · e]]H[f←tn]). Hence by

choosing tn+1 = TCo[[�x · e]]H[f←tn] one can guarantee that
fn ∈ γCo

1 (tn). An upper approximation as been obtained:

≤Co ∧Co{t ∈ PCo/≡Co | ∃tn, n ∈ N : t0 = { ∅Co -> ⊥Co} ∧
∀n ∈ N : tn+1 ∈ TCo[[�x · e]]H[f←tn] ∧∨Co

n∈N
tn ≤Co t}

By defining Φ H
4
= Λt∈PCo/≡Co.TCo[[�x · e]]H[f←t], one rec-

ognizes the first iterates of lfp
≤Co

{∅Co ->⊥Co}
Φ H in tn, n ∈ N

provided one can prove Φ H to be monotone. While de-
signing TCo[[ •]] this was impossible since TCo[[ •]] was not
yet completely known. So the proof was postponed and the
monotonicity hypothesis was added. So assuming TCo[[ •]] to

be monotone, Φ H is also monotone and lfp
≤Co

{∅Co ->⊥Co}
Φ H

is well-defined. Moreover ∨Co

n∈N
tn ≤Co lfp

≤Co

{∅Co ->⊥Co}
Φ H by

the constructive version of Tarski’s fixpoint theorem [8] so

that lfp
≤Co

{∅Co ->⊥Co}
Φ H ≤Co t implies∨Co

n∈N
tn ≤Co t. Therefore

one obtains a further upper-approximation:

≤Co ∧Co{t ∈ PCo/≡Co | lfp
≤Co

{∅Co ->⊥Co}
Φ H ≤

Co t}

= lfp
≤Co

{∅Co ->⊥Co}
Φ H by def. of glbs

4
= TCo[[�f ·�x · e]]H
since this expression is defined in terms of elements of the
type collecting semantics only and can hardly be simplified.

ut
Checking for monotonicity was postponed:

Proposition 16 For all e ∈ E, TCo[[e]] is monotone:

∀H1,H2 ∈ H Co : H1 ≤̇
Co

H2 =⇒ TCo[[e]]H1 ≤Co TCo[[e]]H2.

This Prop. 16 shows, in retrospect, that typings could have
restricted to monotone ones (A 7− m→ B is the set of mono-
tone maps of A into B):

θ ∈ T
Co 4= H

Co 7− m→ P
Co/≡Co typing

Finally it remains to turn the type collecting semantics
TCo[[ •]] into a sound prescriptive type system:
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Corollary 17 Let ECo 4= Λθ∈TCo. S{γCo
2 (H) | H ∈ H Co ∧

θ(H) 6= ∅Co}. Then 〈TCo, ≤̈Co
, TCo[[ •]], γCo, ECo〉 is a sound

type system.

A different type collecting semantics is given by the “gen-
eral types” of [32, 33, 35, 36]. This collecting semantics is
based on a big-step operational semantics so that it is more
abstract with respect to nontermination (which has to be
handled rather indirectly). In other aspects it is much more
refined since the operational semantics uses explicit clo-
sures (which have to be abstracted to (recursive) functions).
Moreover non-deterministic type choices t2 ⊕ t3 to handle
conditionals (e1 ? e2 : e3) are more precise than t2 ∨Co t3

since e.g. int ⊕ int -> int 6= ∅Co. However the type col-
lecting semantics TCo[[ •]] is simpler and refined enough to
be instanciable into recursive types [3], conjunctive types [5]
and Milner’s polymorphic type schemes [17, 29, 37].

15 Fixpoint Approximation

Let us recall the following fixpoint approximation theorem
from [9, 10]:

Proposition 18 If 〈L,v,⊥,>, t, u〉 −−−→←−−−α
γ
〈L],v],⊥],>],

t], u]〉, F ∈ L 7− m→ L, a v F (a), F ] ∈ L] 7− m→ L] and

α ◦ F v] F ] ◦ α then α
�

lfp
v

a
F
�
v] lfp

v]

α(a)
F ]. If more-

over α(a) v] a] v] F ](a]) then α
�

lfp
v

a
F
�
v] lfp

v]

a]
F ].

This proposition provides a method for upper-
approximation of concrete fixpoints by abstract fixpoints.
In particular F ] can be chosen as α ◦ F ◦ γ since:

Proposition 19 If 〈L, v, ⊥, >, t, u〉 −−−→←−−−α
γ

〈L], v], ⊥],
>], t], u]〉, F ∈ L 7− m→ L, F ] ∈ L] 7− m→ L] then α ◦ F
v] F ] ◦ α if and only if α ◦ F ◦ γ v] F ].

16 Design of the Church/Curry Polytype Seman-
tics by Abstraction of the Type Collecting Se-
mantics

In order to simplify the presentation, the soundness proof of
the Church/Curry polytype semantics has been left pend-
ing. To do so, 〈TPC, ⊇, TPC[[ •]]〉 must be proved to be
an abstraction of the type collecting semantics 〈TCo, ≤Co,
TCo[[ •]]〉.

γPo
1 ∈ M

PC 7→ P
Co/≡Co

γPo
1 ( int)

4
= int

γPo
1 (m1 ->m2)

4
= {γPo

1 (m1) ->γPo
1 (m2)}

γPo
2 ∈ P

PC 7→ P
Co/≡Co

γPo
2 (p)

4
= ∧Co

m∈ p
γPo

1 (m)

γPo
3 ∈ H

PC 7→ H
Co

γPo
3 (H)

4
= Λx∈X.γPo

2 (H(x))

γPo
4 ∈ I

PC 7→ P

γPo
4 (〈H, m〉) 4= ΛA∈ HCo .∧Co{γPo

1 (m) | A ≤Co γPo
3 (H)}

γPo ∈ T
PC 7→ P

γPo(T)
4
= ∧Co{γPo

4 (〈H, m〉) | 〈H, m〉 ∈ T}

There is no subtyping for monotypes:

Lemma 20 ∀m1,m2 ∈ M
PC : γPo

1 (m1) ≤Co γPo
1 (m2) ⇐⇒

m1 = m2.

For polytypes, the Galois connection:

〈PCo/≡Co, ≤Co, ⊥Co, ∅Co, ∨Co, ∧Co〉

−−−−→←−−−−
αPo

2

γPo
2 〈PPC, ⊇, M PC , ∅, ∩, ∪〉

can be extended pointwise to environments and typings, as
was the case for the type collecting semantics. This leads
to the abstract typing domain (X 7→ P

PC) 7− m→ P
PC. How-

ever to follow the tradition established by [29] of restricting
polytypes to environments10, one can chose to define TPC

4
= ℘((X 7→ P

PC) × M PC ), see (1). The corresponding Galois
connection is:

〈TCo, ≤̈Co
, ⊥̈Co, ∅̈Co, ∨̈Co

, ∧̈Co
〉 −−−−→←−−−−

αPo

γPo

〈TPC, ⊇, HPC × M PC , ∅, ∩, ∪〉
where:

Lemma 21 αPo(θ) = {〈H, m〉 | θ(γPo
3 (H)) ≤Co γPo

2 ({m})}
= {〈H, m〉 | m ∈ αPo

2 ◦ θ ◦ γ
Po
3 (H)}

TPC[[e]] is monotone in the sense that (H ⊆̇ H′ if and only if
∀x ∈ X : H(x) ⊆ H′(x)):

Lemma 22 If 〈H, m〉 ∈ TPC[[e]] and H ⊆̇ H′ then 〈H′, m〉
∈ TPC[[e]].

Corollary 23 If p1 ⊆ p2 ∈ PPC and 〈H[x←p1],m〉 ∈ TPC[[e]]
then 〈H[x←p2], m〉 ∈ TPC[[e]].

This corollary corresponds to lemma 1 of [17]. Soundness of
Church/Curry polytype semantics follows from:

Proposition 24 ∀e ∈ E: TCo[[e]] ≤̈Co
γPo(TPC[[e]])

Proof The proof is by structural induction on e. Only a few
typical cases are considered.

αPo(TCo[[x]])

= αPo(ΛH.H(x)) by def. TCo[[x]]

= {〈H, m〉 | γPo
3 (H)(x) ≤Co γPo

1 (m)} by Lem. 21

= {〈H, m〉 | γPo
2 (H(x)) ≤Co γPo

1 (m)} by def. γPo
3

= {〈H, m〉 |
�
∧Co

m′∈ H( x)

γPo
1 (m′)

�
≤Co γPo

1 (m)} by def. γPo
2

⊇ {〈H, m〉 | ∃m′ ∈ H(x) : γPo
1 (m′) ≤Co γPo

1 (m)} by def. glbs

= {〈H, m〉 | ∃m′ ∈ H(x) : m′ = m} by Lem. 20

= {〈H, m〉 | m ∈ H(x)} by def. =
4
= TPC[[x]]

αPo(TCo[[�f ·�x · e]])

= αPo(ΛH. lfp
≤Co

{∅Co ->⊥Co}
Λt∈PCo/≡Co.TCo[[�x · e]]H[f←t])

by def. TCo[[�f ·�x · e]]

= {〈H, m〉 |
�

lfp
≤Co

{∅Co ->⊥Co}
ΦCo

H

�
≤Co γPo

2 ({m})} where

ΦCo
H
4
= Λt∈PCo/≡Co.TCo[[�x · e]]γPo

3 (H)[f←t] by Lem. 21

10For example Milner’s algorithm W returns a monotype, which can
be “manually” transformed into a polytype by adding a quantifier.
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= {〈H, m〉 | αPo
2 (

�
lfp
≤Co

{∅Co ->⊥Co}
ΦCo

H

�
⊇ {m}}

since 〈αPo
2 , γ

Po
2 〉 is a Galois connection

⊇ {〈H, m〉 | m ∈ lfp
⊇

MPC ->MPC
ΦPC

H} by Prop. 18 since

αPo
2 ({ ∅Co -> ⊥Co}) ⊇ {m1 ->m2 | m1,m2 ∈ M

PC} 4=
M

PC
->M

PC and by defining ΦPC
H such that αPo

2 ◦ ΦCo
H

⊇ ΦPC
H ◦ α

Po
2 and ΦPC

H(M PC
->M

PC ) ⊆ M
PC

->M
PC

= {〈H, m〉 | m ∈ gfp
⊆

MPC ->MPC
ΦPC

H} by duality

4
= TPC[[�f ·�x · e]]

It remains to design ΦPC
H such that:

αPo
2 ◦ ΦCo

H(t)

= αPo
2 (TCo[[�x · e]]γPo

3 (H)[f←t]) by def. of ΦCo
H

⊇ αPo
2 ◦ TCo[[�x · e]] ◦ γPo

3 (H[f←αPo
2 (t)])

by monotony of αPo
2 (t) and TCo[[�x · e]] since γPo

2 ◦ αPo
2

≥Co t so that γPo
3 (H)[f←t] ≤̇Co

γPo
3 (H)[f←γPo

2 ◦ αPo
2 (t)] =

γPo
3 (H[f←αPo

2 (t)])

= {m | 〈H[f←αPo
2 (t)], m〉 ∈ {〈H′, m〉 | m ∈ αPo

2 ◦
TCo[[�x · e]] ◦ γPo

3 (H′)}} by def. ∈
= {m | 〈H[f←αPo

2 (t)], m〉 ∈ αPo(TCo[[�x · e]])} by Lem. 21

= {m | 〈H[f←αPo
2 (t)], m〉 ∈ TPC[[�x · e]]} by ind. hyp.

= ΦPC
H ◦ α

Po
2 (t)

by defining ΦPC
H
4
= Λp.{m | 〈H[f←p], m〉 ∈ TPC[[�x · e]]}

Obviously ΦPC
H(M PC

->M
PC ) ⊆ M

PC
->M

PC by definition of

TPC[[�x · e]].

Finally, let us observe that by Tarski’s fixpoint theorem

gfp
⊆

MPC ->MPC
ΦPC

H =
S{p ⊆ M

PC
->M

PC | p ⊆ ΦPC
H(p)}. It

follows that {m} ⊆ gfp
⊆

MPC ->MPC
ΦPC

H if and only if ∃p ⊆
M

PC
->M

PC : {m} ⊆ p ∧ p ⊆ ΦPC
H(p). Therefore, one has:

TPC[[�f ·�x · e]]
= {〈H, m〉 | m ∈ gfp

⊆

MPC ->MPC
ΦPC

H}

= {〈H, m〉 | ∃p ⊆ M
PC

->M
PC : {m} ⊆ p ∧ p ⊆ {m′ |

〈H[f←p], m′〉 ∈ TPC[[�x · e]]}}
= {〈H, m〉 | ∃p ⊆ M PC

->M
PC : m ∈ p∧∀m′ ∈ p : 〈H[f←p],

m′〉 ∈ TPC[[�x · e]]} ut

The type semantics TPC[[ •]] leads to a polymorphic typing
rule (2) for recursive definitions �f ·�x · e, as is the case
of [37] for Milner’s [29] polymorphic type schemes. A ⊇-
upper approximation TMC[[ •]] à la Milner [29] with TMC[[e]]
can be defined as TPC[[e]] but for the monomorphic typing
of recursive definitions �f ·�x · e:

TMC[[�f ·�x · e]] 4= {〈H, m1 ->m2〉 | 〈H[f←{m1 ->m2}],
m1 ->m2〉 ∈ TMC[[�x · e]]}

This leads to the typing rule:

H[f←{m1 ->m2}] MC−̀− �x · e⇒m1 ->m2

H MC−̀− �f ·�x · e⇒m1 ->m2

Soundness is obvious:

Proposition 25 ∀e ∈ E: TCo[[e]] ≤̈Co
γPo(TMC[[e]])

Proof

αPo(TCo[[�f ·�x · e]])
⊇ {〈H, m〉 | ∃p ⊆ M PC

->M
PC : m ∈ p∧∀m′ ∈ p : 〈H[f←p],

m′〉 ∈ TMC[[�x · e]]} as proved for TPC[[�f ·�x · e]]
⊇ {〈H, m〉 | m ∈ {m1 ->m2} ∧ ∀m′ ∈ {m1 ->m2} :
〈H[f←{m1 ->m2}], m′〉 ∈ TMC[[�x · e]]} by restricting
the choice of p to {m1 ->m2} ⊆ M

PC
->M

PC

⊇ {〈H, m1 ->m2〉 | 〈H[f←{m1 ->m2}], m1 ->m2〉 ∈
TMC[[�x · e]]} by def. ∈

4
= TMC[[�f ·�x · e]] ut

17 À la Damas-Milner-Mycroft Semantics

If Hindley semantics TH[[ •]] is an exact abstraction of
Curry/Church monotype semantics TC[[ •]] by Herbrand ab-
straction, it is clear that this same abstraction is not exact
for Curry/Church polytype semantics TPC[[ •]]. The argu-
ment is similar to that of [23] showing that Milner’s polymor-
phic type schemes do not have the principal typing property.
One can imagine objects x of polytype { int, int -> int}.
For example x might be an integer which is Λu. x when
used as a function or a function of type int -> int which
is x(0) (or better x(⊥) with call-by-name) when used as

an integer. The meaning of [x : { int, int -> int}] PC−̀−
x(x)⇒ int cannot be the same as its Herbrand abstrac-

tion [x : [α]≡ ] H′−̀− x(x)⇒ int. This problem could be

solved by considering a refinement TH′ [[ •]] of TH[[ •]] in-
volving a disjunctive completion [13] allowing for judg-

ments of the form [x : { int, int -> int}] H′−̀− x(x)⇒ int or

[x : { int,8’a.’a ->’a}] H′−̀− x(x)⇒ int. The classical solu-
tion given by [29], can be understood as consisting in con-
sidering a further abstraction TM[[ •]] of TPC[[ •]] ruling out
such undesirable environments. The abstract domains is
now defined together with the corresponding abstractions.

Closed monotypes are similar to Church simple types:

µ ∈ M
DM
c closed monotype

µ ::= int | µ1 ->µ2

The set M DM
v of monotypes with variables à la Hindley is

preordered by the instance relation ≤DM
v

4
= ≤V with corre-

sponding equivalence ≡DM
v :

’a ∈ V type variable11

τ ∈ M
DM
v monotype with variables

τ ::= int | ’a | τ1 ->τ2

Let ftv(t) be the set of free type variables of t. To
provide a context-free syntax of type schemes, paramet-
ric/free variables (like ’a in 8’b.’b ->’a) are differentiated
from generic/bound type variables (like ’b in 8’b.’b ->’a):

’a ∈ Vp parametric/free type variables

’b ∈ Vg generic/bound type variables

’a, ’b ∈ V
4
= Vg ∪ Vp type variable (Vg ∩ Vp = ∅)

11Type variables ’a, ’c are used instead of the traditional α, γ to
avoid confusion with the abstraction/concretization functions.
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Generic polytypes are type schemes without free variable
(like 8’b.’b -> int):

ς ∈ P
DM

g closed/generic polytype

ς ::= µ | 8’b1 . . . ’b`.τ where {’b1, . . . , ’b`} = ftv(τ ) ⊆ Vg

P
DM

g is preordered by the instance relation ≤DM
g with corre-

sponding renaming equivalence ≡DM
g (e.g. 8’b.’b -> int ≡DM

g

8’c.’c -> int):

8’b1 . . . ’b`.τ ≤DM
g 8’b

′
1 . . . ’b

′
m.τ

′ 4= τ ≤DM
v τ ′

P
DM

g

∅
/≡DM

g
is PDM

g up to renaming of generic/bound variables

’b ∈ Vg and introduction of an empty generic polytype

∅DM
g . There is an isomorphism M

DM
v −−−−−−→−→←←−−−−−−−

gen

elim
P

DM
g be-

tween Hindley’s monotypes with variables and generic poly-
types given by:

elim(µ)
4
= µ

elim(8’b1 . . . ’b`.τ )
4
= τ

gen(τ )
4
= 8’b1 . . . ’b`.τ where {’b1, . . . , ’b`} = ftv(τ )

It follows, by composition of Galois insertions, that: 〈PPC,

⊆〉 −−−−−→−→←−−−−−−
αDM

g

γDM
g

〈PDM
g

∅
/≡DM

g
, ≤DM

g 〉 where:

αDM
g

4
= gen ◦ lcg γDM

g
4
= ground ◦ elim

is a Galois insertion between à la Church/Curry polytypes
and generic polytypes.

Parametric polytypes are type schemes with paramet-
ric/free type variables (like 8’b.’b ->’a):

π ∈ P
DM

p parametric polytype

π ::= τ | 8’b1 . . . ’b`.τ where {’b1, . . . , ’b`} = ftv(τ ) ∩ Vg

P
DM

p is preordered by the instance relation ≤DM
p with corre-

sponding equivalence ≡DM
p (e.g. 8’b.’b ->’a ≡DM

p 8’c.’c ->’a
but 8’b.’b ->’a 6≡DM

p 8’c.’c ->’d):

π ≤DM
p π′

4
= ∀σ ∈ Vp ↪→ M

DM
c : σ(π) ≤DM

g σ(π′)

P
DM

p

∅
/≡DM

p
is PDM

p up to renaming of generic/bound variables

’b ∈ Vg and introduction of an empty polytype ∅DM
p .

Generic type environments map program variables to
generic polytypes:

H ∈ H
DM
g

4
= X 7→ P

DM
g

∅
/≡DM

g
generic type
environment

The preordering is pointwise H ≤̇DM
g H

4
= ∀x ∈ X : H(x) ≤DM

g

H(x) with corresponding renaming equivalence ≡̇DM
g . The

correspondence between à la Church/Curry polytypes and
generic polytypes is extended pointwise to type environ-

ments 〈HPC , ⊆̇〉 −−−−−→−→←−−−−−−
α̇DM

g

γ̇DM
g

〈HDM
g , ≤̇DM

g 〉 so that γ̇DM
g (H)

4
=

Λx∈X.γDM
g (H(x)) .

Parametric type environments map program variables to
parametric polytypes:

H ∈ H
DM
p

4
= X 7→ P

DM
p

∅
/≡DM

p
parametric type
environment

The preordering is pointwise H ≤̇DM
p H

4
= ∀x ∈ X : H(x) ≤DM

p

H(x) ⇐⇒ ∀σ ∈ Vp ↪→ M
DM
c : σ(H) ≤̇DM

g σ(H) with corre-

sponding renaming equivalence ≡̇DM
p . HDM

p /≡̇DM
p

is HDM
p up to

renaming of parametric/free variables ’a ∈ Vp. For exam-
ple [x : 8’b.’b ->’a; y : ’a] ≡̇DM

p [x : 8’c.’c ->’d; y : ’d] since
parametric type variables like ’a and ’d are externally or
globally quantified, which is formalized by the injective glb-
preserving concretization function γ̇DM

p ∈ H
DM
p 7→ ℘(HPC )

defined by γ̇DM
p (H)

4
= {γ̇DM

g (σ(H)) | σ ∈ Vp ↪→ M
DM} so that

〈℘(HPC ), ⊆〉 −−−−−→−→←−−−−−−
α̇DM

p

γ̇DM
p

〈HDM
p , ≤̇DM

p 〉 is a Galois insertion.

Since TPC[[ •]] has no principal typing for the Herbrand
abstraction, one cannot look for an exact Herbrand abstrac-
tion of TPC[[ •]] (as was the case of TH[[ •]] for TC[[ •]]) but
instead for an Herbrand abstraction of a ⊇-upper approxi-
mation TM[[ •]] of TPC[[ •]] defined by:

TM[[e]]
4
= αM(TPC[[e]])

αM(T)
4
= {〈H, m〉 ∈ T | H ∈ γ̇DM

g (HDM
g )}

such that 〈TPC, ⊇〉 −−−−→←−−−−
αM

Id 〈TPC, ⊇〉. TM[[ •]] is obviously

sound since it is an ⊇-upper approximation of the sound
abstract semantics TPC[[ •]].

Generic typings correspond to an attribute-independent
abstraction:

T ∈ T
MM
g

4
= H

DM
g 7− m→ P

DM
g

∅
/≡DM

g
generic program
typing

This attribute-independent abstraction is the one consid-
ered by [38]. It is often used in extension of Damas-Milner
polymorphic type schemes to logic programs [39]. Formally,
this would be a restriction to [17, 29] since infinitely many
generic typings are necessary to express the property speci-
fied by a single parametric typing.

Parametric typings correspond to a relational abstrac-
tion:

T ∈ T
MM
p

4
=

�
H

DM
p 7−DM→ P

DM
p

∅
/≡DM

p

�
/≡̈MM

p
parametric

program typing

T
MM
p is preordered by the pointwise instance relation ≤̈MM

p :

T1 ≤̈
MM
p T2

4
= ∀H ∈ HDM

p : T1(H) ≤DM
p T2(H)

⇐⇒ ∀H ∈ HDM
g : T1(H) ≤DM

g T2(H)

with corresponding equivalence ≡̈MM
p which is used to define

T
MM
p up to renaming of parametric/free variables ’a ∈ Vp.

The notation 7−DM→ states that T ∈ TMM
p satisfies:

∀H1,H2 ∈ HDM
p : H1 ≤̇

DM
p H2 =⇒ T(H1) ≤DM

p T(H2) (5)

∀H ∈ HDM
p : ftv(T(H)) ⊆ ftv(H) (6)

∀H ∈ HDM
p : ∀σ ∈ Vp ↪→ M

DM
c : T(σ(H)) = σ(T(H)) (7)

The monotony condition (5) corresponds e.g. to Prop. 16.
Condition (6) states that a free type variable not free in
the type environment should be quantified12. Condition (7)
states that free variables in H are globally quantified. By
(6), it is equivalent to:

12This has to be done “manually” in Milner’s algorithm W which
returns a monotype, which must be quantified to be transformed into
a polytype.
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∀H ∈ HDM
p : ∀σ ∈ Vp ↪→ M

DM
c : σ(T(σ(H))) = σ(T(H)) (8)

The correspondence α̈MM
p ∈ T

PC 7→ T
MM
p and γ̈MM

p ∈
T

MM
p 7→ T

PC is defined by ( gen H τ
4
= 8’b1 . . . ’b`.τ where

{’b1, . . . , ’b`} = ftv(τ )− ftv(H)13):

α̈MM
p (T)

4
= ΛH∈ HDM

p
. gen H ◦ lcg{τ ∈ M DM

v | ∀σ ∈ V ↪→
M

DM
c : 〈γ̇DM

g (σ(H)), σ(τ )〉 ∈ T}
γ̈MM

p (T)
4
= {〈γ̇DM

g (H), µ〉 | H ∈ HDM
g ∧ µ ∈ γDM

g (T(H))}
= {〈γ̇DM

g (σ(H)), µ〉 | H ∈ HDM
p ∧ σ ∈ Vp ↪→ M

DM
c ∧

µ ∈ γDM
g (σ(T(H)))}

so that:

〈TPC, ⊆, ∅, IPC, ∪, ∩〉 −−−−−→−→←−−−−−−
α̈MM

p

γ̈MM
p

〈TMM
p , ≤̈MM

p ΛH. ∅DM
p , ΛH.8’b.’b, ∨̈MM

p , ∧̈MM

p 〉

where:

∨̈MM

p
i∈∆

Ti
4
= ΛH. gen H ◦ lcg{ elim(Ti(H)) | i ∈ ∆}

∧̈MM

p
i∈∆

Ti
4
= ΛH. gen H ◦ gci{ elim(Ti(H)) | i ∈ ∆}

is a Galois insertion.
The Milner-Mycroft type semantics can now be designed

(’a is a fresh type variable):

TMM[[x]]
4
= ΛH.H(x)

TMM[[ let x = e1 in e2]]
4
= ΛH.TMM[[e2]]H[x←TMM[[e1]]H]

TMM[[�x · e]] 4= ΛH. gen H ◦ lcg{τ1 -> elim(π2) |
τ1 ∈ M DM

v ∧
π2 = TMM[[e]]H[x←τ1] 6= ∅DM

p }
TMM[[e1(e2)]]

4
= ΛH.(τ2 = elim(TMM[[e2]]H) ∧

τ2 ->τ = gci{ elim(TMM[[e1]]H), τ2 ->’a} ?
gen H(τ ) | ∅DM

p )

TMM[[�f ·�x · e]] 4= ΛH. gfp
≤DM

p

8 ’b1, ’b2. ’b1 -> ’b2

Ψ H

where Ψ H
4
= Λπ ∈PDM

p
.TMM[[�x · e]]H[f← gen H[ f←∅DM

p ]
(π)]

TMM[[1]]
4
= ΛH. int

TMM[[e1 − e2]]
4
= ΛH. gci{ int, elim(TMM[[e1]]H),

elim(TMM[[e2]]H)}
TMM[[(e1 ? e2 : e3)]]

4
= ΛH.( int ≤ elim(TMM[[e1]]H) ?

gen H ◦ gci{ elim(TMM[[e2]]H),
elim(TMM[[e3]]H)} | ∅DM

p )

TMM[[ •]] is sound by construction:

Proposition 26 〈TMM
p , ≥̈MM

p , TMM[[ •]]〉 is an abstraction of
Milner’s approximation 〈TPC, ⊇, TM[[ •]]〉 of Church/Curry
polytype abstract semantics 〈TPC, ⊇, TPC[[ •]]〉 by the Galois

insertion 〈TPC,⊆〉 −−−−−→−→←−−−−−−
α̈MM

p

γ̈MM
p

〈TMM
p , ≤̈MM

p 〉 since for all e ∈ E:

13A type variable renaming may be necessary to have bound generic
type variables ’b1, . . . , ’b` in Vg and free parametric type variables
ftv(τ) ∩ ftv(H) in Vp.

TMM[[e]] ≥̈MM

p α̈MM
p (TM[[e]]) = α̈MM

p (TPC[[e]])

TM[[e]] ⊇ γ̈MM
p (TMM[[e]])

As shown by Ex. 1, the abstraction is not exact since e.g. al-
though TPC[[�f ·�x · e]] may be expressible by a type of TDM

p ,
this may not be the case for the polytype of the recursive
calls of f within e.

The Damas-Milner-Mycroft isomorphic semantics 〈TDM2
,

⊇, TDM2
[[ •]]〉 is useful for deriving typing rules:

T
DM2 4

= ℘
��
H

DM
p × M DM

v

�
/≡̈DM

p

�

TDM2
[[e]]

4
= αDM

p (TMM[[e]])

αDM
p (T)

4
= {〈H, τ 〉 | τ ∈ inst ◦ elim(T(H))}

where:

γDM
p (TDM2

[[e]]) = TMM[[e]]

and:

γDM
p (T)

4
= ΛH∈ HDM

p
. gen H ◦ lcg({τ | 〈H, τ 〉 ∈ T})

The Damas-Milner-Mycroft semantics TDM2
[[ •]] is obtained

as follows:

TDM2
[[x]]

4
= {〈H, τ 〉 | τ ≤DM

v elim(H(x))}
TDM2

[[ let x = e1 in e2]]
4
= {〈H, τ2〉 | 〈H, τ1〉 ∈ TDM2

[[e1]] ∧
〈H[x← gen H(τ1)], τ2〉 ∈ TDM2

[[e2]]}
TDM2

[[�x · e]] 4= {〈H, τ1 ->τ2〉 | τ1 ∈ M DM
v ∧

〈H[x←τ1], τ2〉 ∈ TDM2
[[e]]}

TDM2
[[e1(e2)]]

4
= {〈H, τ 〉 | 〈H, τ2〉 ∈ TDM2

[[e2]] ∧
〈H, τ2 ->τ〉 ∈ TDM2

[[e1]]}
TDM2

[[�f ·�x · e]] 4= {〈H, τ 〉 | τ ≤DM
v

gfp
≤DM

v

[ ’a-> ’b]≡DM
v

Ψ H

where Ψ H
4
= Λτ ∈M DM

v
.

lcg{τ ′ | 〈H[f← gen H[ f←∅DM
p ]

(τ )], τ ′〉 ∈ TDM2
[[�x · e]]}

TDM2
[[1]]

4
= {〈H, int〉 | H ∈ HDM

p }
TDM2

[[e1 − e2]]
4
= {〈H, int〉 | 〈H, int〉 ∈ TDM2

[[e1]]∩
TDM2

[[e2]]}
TDM2

[[(e1 ? e2 : e3)]]
4
= {〈H, τ 〉 | 〈H, int〉 ∈ TDM2

[[e1]] ∧
〈H, τ 〉 ∈ TDM2

[[e2]] ∩TDM2
[[e3]]}

One can consider a ⊇-upper approximation TDM[[ •]] with

TDM[[e]] which is defined à la Milner [29] as TDM2
[[e]] but for

the monomorphic typing of recursive definitions �f ·�x · e:

TDM[[�f ·�x · e]] 4= {〈H, τ1 ->τ2〉 | 〈H[f←{τ1 ->τ2}],
τ1 ->τ2〉 ∈ TDM[[�x · e]]}

By defining judgments as:

H DM−̀− e⇒τ 4
= 〈H, τ 〉 ∈ TDM2

[[e]]

The Damas-Milner semantics can be presented in the equiv-
alent rule based form [17]:

329



•TH[[ •]] À la Hindley principal
monotype semantics

?

6

•TC[[ •]] À la Church/Curry
monotyping semantics
6

•TDM[[ •]]
À la Damas-Milner
polytyping semantics
(monomorphic recursion)

6
?

•
TDM2

[[ •]]

À la Damas-Milner-
Mycroft polytyping
semantics (polymor-
phic recursion)

•TMC[[ •]]

À la Church/Curry
polytype semantic
(monomorphic
recursion)

6
•

TMM[[ •]]
À la Milner-Mycroft
principal polytype
semantics

• TM[[ •]]
À la Church/Curry
polytype semantics
(with Milner’s
environments) •TPC[[ •]] À la Church/Curry

polytype semantics
(polymorphic recursion)
6

•T∧[[ •]] À la Church/Curry
polytype semantics
(polymorphic recursion
and abstraction)

6

•TCo[[ •]] Type collecting
semantics6

•{S[[ •]]} 4= C[[ •]]
Standard collecting
semantics

B
B
B
B
B
B
B
B
BBM

@
@@I

�
���

�
�
��

Figure 1: Lattice of type abstract interpretations

τ ≤DM
v elim(H(x))

H DM−̀− x⇒τ

H[x←τ1] DM−̀− e⇒τ2
H DM−̀− �x · e⇒τ1 ->τ2

H DM−̀− e1⇒τ1 ->τ2, H DM−̀− e2⇒τ1
H DM−̀− e1(e2)⇒τ2

H[f←τ1 ->τ2] DM−̀− �x · e⇒τ1 ->τ2

H DM−̀− �f ·�x · e⇒τ1 ->τ2

H DM−̀− 1⇒ int
H DM−̀− e1⇒ int, H DM−̀− e2⇒ int

H DM−̀− e1 − e2⇒ int

H DM−̀− e1⇒ int, H DM−̀− e2⇒τ, H DM−̀− e3⇒τ

H DM−̀− (e1 ? e2 : e3)⇒τ

18 Lattice of Type Abstract Interpretations

The considered type semantics can be organized within the
lattice of abstract interpretations as shown in Fig. 1 (→
denotes abstraction and ↔ equivalence).

19 Conclusion

It has been shown that à la Curry type systems can be
designed constructively by abstract interpretation of a stan-
dard denotational semantics. This leads to a hierarchy of
type systems (including recursive types, intersection types,

etc. not considered for short) abstracting the type collect-
ing semantics. The view of types as abstract interpretations
should be useful to type system designers. The formaliza-
tion corresponds to a shift from syntax (where defining lan-
guages by typing rules is understood as a context-sensitive
syntax [31]) to semantics (where types are understood as
approximate semantic properties). Clearly operational se-
mantics which was used in the original definition of abstract
interpretation [6, 7, 9] could also have been used. The ap-
proach should be applicable to Church typing, where the
type system is part of the language definition, by designing
a semantics incorporating runtime types and type checking.
Moreover, this abstraction idea goes beyond the few type
systems considered in this paper as shown by [32, 33, 36],
including system F [35].

This application of abstract interpretation to the design
of type systems shows once again after [11, 13] that the use of
a denotational versus an operational semantics is no problem
for the Galois connection-based framework introduced in [6,
7, 9]. In particular their is no need to abandon the idea of
best abstraction in favor of weaker safety proofs by logical
relations [24, 38] when such a best abstraction does exist. If
it doesn’t, a concretization function will do equally well [11].
The key and simple idea is to define the standard collecting
semantics properly.

The comparison of type systems and program analy-
sis goes beyond equivalence results such as [40] because
both type system and program analysis are not only com-
pared but formalized within the same abstract interpreta-
tion framework. For example the comparison of abstraction
functions only is sufficient to perform expressiveness com-
parisons.

As far as type system implementors and compiler writers
are concerned, this work should be useful for the rapproche-
ment of type and abstract interpretation theory, maybe to
go beyond current type-based or effect-based program anal-
yses, which heavily, if not exclusively, rely on the representa-
tion of program properties by terms [4, 25, 26] and/or have
no realistic type/property inference algorithm [22]. With
the term representation of program properties, it is some-
times very heavy and difficult to obtain as powerful ana-
lyzes as considered in abstract interpretation (such as e.g.
[7, 14, 16]). However by choosing to combine these abstract
domains with those considered for type systems, instead of
trying to use a uniform but inexpressive term-encoding of
abstract properties, one should get interesting new perspec-
tives in program analysis.

These new abstract domains combining typing proper-
ties with other abstract properties might even be useful to
improve the present type inference algorithms, without nec-
essarily changing the corresponding type systems. A sound
type inference algorithm which would be more precise than
required by the typing rules would be harmless for the pro-
grammer and certainly useful to an optimizing compiler.
This is because formal type inference rules are often not
used/usable in practice (and sometimes not even provided
with the language definition). No one is interested in these
rules for programs which are well-typed by the compiler.
For programs which are rejected by the compiler, most pro-
grammers seem not think in term of type inference rules
(that is T[[ •]]) but in terms of some abstraction of program
execution (that is α(C[[ •]]) 6= T[[ •]]). If this point of view is
accepted, more powerful program analysis-based, hence un-
decidable type systems, might be considered. This would be
a step towards the ideal unattainable situation where unty-
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pable programs should go wrong while programs that cannot
go wrong should be typable!
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