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Abstract. In order to contribute to the software reliability problem,
tools have been designed in order to analyze statically the run-time
behavior of programs. Because the correctness problem is undecidable,
some form of approximation is needed. The whole purpose of abstract
interpretation is to formalize this idea of approximation. We illustrate in-
formally the application of abstraction to the semantics of programming
languages as well as to program static analysis. The main point is that in
order to reason or compute about a complex system, some information
must be lost, that is the observation of executions must be either partial
or at a high level of abstraction.

In the second part of the paper, we compare program static analysis
with deductive methods, model-checking and type inference. Their foun-
dational ideas are shortly reviewed, and the shortcomings of these four
tools are discussed, including when they are combined. Alternatively,
since program debugging is still the main program verification method
used in the software industry, we suggest to combine formal with informal
methods.

Finally, the grand challenge for all formal methods and tools is to solve
the software reliability, trustworthiness or robustness problems. Few chal-
lenges more specific to program analysis by abstract interpretation are
shortly discussed.

1 Introductive Motivations

The evolution of hardware by a factor of 10° over the past 25 years has lead
to the explosion of the size of programs in similar proportions. The scope of
application of very large programs (from 1 to 40 millions of lines) is likely to
widen rapidly in the next decade. These big programs will have to be designed
at a reasonable cost and then modified and maintained during their lifetime
(which is often over 20 years). The size and efficiency of the programming and
maintenance teams in charge of their design and follow-up cannot grow up in
similar proportions. At a not so uncommon (and often optimistic) rate of one bug
per thousand lines such huge programs might rapidly become hardly manageable
in particular for safety critical systems (128). Therefore in the next 10 years, the
software reliability problem is likely to become a major concern and challenge to
modern highly computer-dependent societies.
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In the past decade a lot of progress has been done both on thinking/method-
ological tools (to enhance the human intellectual ability) to cope with complex
software systems and mecanical tools (using the computer) to help the program-
mer to reason on programs.

The mecanical tools for computer aided program verification started empiri-
cally by executing or simulating the program in enough representative possible
environments. However debugging of the compiled code or simulation of a model
of the source program hardly scale up and often offer a low coverage of the pro-
gram dynamic behavior.

Formal program verification methods attempt to mecanically prove that pro-
gram execution is correct in all specified environments. This includes deductive
methods, model checking, program typing and program analysis.

Since program verification is undecidable, computer aided program verifica-
tion methods are all partial or incomplete. The undecidability or complexity is
always solved by using some form of approzrimation. This means that the me-
chanical tool will sometimes suffer from practical time and space complexity
limitations, rely on finiteness hypotheses or provide only semi-algorithms, re-
quire user interaction or be able to consider restricted forms of specifications or
programs only. The mechanical program verification tools are all quite similar
and essentially differ in their choices regarding the approximations which have
to be done in order to cope with undecidability or complexity. The ambition of
abstract interpretation is to formalize this notion of approximation in a unified
framework (45; 48).

2 Abstract Interpretation

Since program verification deals with properties, that is sets (of objects with
these properties), abstract interpretation can be formulated in an application
independent setting, as a theory for approximating sets and set operations as
considered in set (or category) theory. A more restricted understanding of ab-
stract interpretation is to view it as a theory of approximation of the behavior of
dynamic discrete systems (such as the formal semantics of programs or a com-
munication protocole specification). Since such behaviors can be characterized
by fixpoints (e.g. corresponding to iteration), an essential part of the theory pro-
vides constructive and effective methods for fixpoint approximation and checking
by abstraction (52).

2.1 Fixpoint Semantics

The semantics of a programming language defines the semantics of any program
written in this language. The semantics of a program provides a formal math-
ematical model of all possible behaviors of a computer system executing this
program in interaction with any possible environment. In the following we will
try to explain informally why the semantic of a program can be defined as the
solution of a fixpoint equation. Then, in order to compare semantics, we will



show that all semantics of a program can be organized in a hierarchy by ab-
straction. By observing computations at different levels of abstraction, one can
approximate fixpoints hence organize the semantics of a program in a lattice
(43).

2.2 Trace Semantics

Our finer grain of observation of program execution, that is the most precise
of the semantics that we will consider, is that of trace semantics, a model also
frequently used in temporal logic (139). An execution of a program for a given
specific interaction with its environment is a sequence of states, observed at
discrete intervals of time, starting from an initial state, then moving from one
state to the next one by executing an atomic program step or transitions and
either ending in a final regular or erroneous state or non terminating, in which
case the trace is infinite (see Fig. 1).
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Fig. 1. Examples of Computation Traces

2.3 Least Fixpoint Trace Semantics

The trace semantics can be defined in fixpoint form (43), that is as a solution
of an equation of the form X = F(X) where X ranges over sets of finite and
infinite traces.

More precisely, let Behaviors be the set of execution traces of a program,
possibly starting in any state. We denote by Behaviors™ the subset of finite
traces and by Behaviors™ the subset of infinite traces.

A finite trace &—— . ——% in Behaviors™ is either reduced to a final state

(in which case there is no possible transition from state o= %) or the initial state

¢ is not final and the trace consists of a first computation step 3 B after which,
from the intermediate state e, the execution goes on with the shorter finite trace
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. 3 ending in the final state o. The finite traces are therefore all well

defined by induction on their length.

An infinite trace &—— . —— .. in Behaviors™ starts with a first computa-
tion step & 8 after which, from the intermediate state lo), the execution goes
on with an infinite trace o .. ——. .. starting from the intermediate state e.
These remarks lead to the following fixpoint equation:

Behaviors = {e | @ is a final state}
U {%—?— —e| & Bisan elementary step &
B 3%c Behaviors™t}
U {%—?— ] & Bisan elementary step &
b e Behaviors™}

In general, the equation has multiple solutions. For example if there is only

state %, it is not final and the only possible elementary step is e then the
a

equation is Behaviors = {e— ..—— ..| &— . — .. € Behaviors}.

One solution is {%—%—%—%—. .—— ..} but another one is the empty set

(). Therefore, we choose the least solution for the computational partial ordering:

« More finite traces € less infinite traces » .

2.4 Abstractions

A programming language semantics is more or less precise according to the con-
sidered observation level of the program executions (105). This intuitive idea can
be formalized by Abstract interpretation (43) and applied to different languages
(13; 79), including for proof methods (39).

The abstract interpretation theory formalizes this notion of approximation/
abstraction in a mathematical setting which is independent of particular ap-
plications. In particular, abstractions must be provided for all mathematical
constructions used in programming and specification languages semantic defini-
tions (48; 52).

If the approximation is rough enough, the abstraction of a concrete seman-
tics can lead to an abstract semantics which is less precise but is effectively
computable by a computer. By effective computation of the abstract semantics,
the computer is able to analyze the behavior of programs and of software before
and without executing them (44). Abstract interpretation algorithmics provide
approximate methods for computing this abstract semantics. The main abstract
interpretation algorithmics provide effective methods for the exact or approxi-
mate iterative resolution of fixpoint equations (45).

We will first illustrate formal and effective abstractions for sets. Then we will
show that such abstractions can be lifted to functions and finally to fixpoints.

The abstraction idea and its formalization are equally applicable in other
areas of computer science such as artificial intelligence (87) e.g. for intelligent



planning (21), proof checking (85), automated deduction and theorem proving
(86), etc.

2.5 Hierarchy of Abstractions

As shown in Fig. 2 (from (43), where Behaviors, denoted 7% for short, is the
lattice infimum), all abstractions of a semantics can be organized in a lattice
(which is part of the lattice of abstract interpretations introduced in (48)). The
approzimation partial ordering of this lattice formally corresponds to logic im-
plication, intuitively to the idea that a semantics is more precise than another.
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Fig. 2. The Hierarchy of Semantics

Fig. 3 illustrates the derivation of a relational semantics (105) (denoted 7>

in Fig. 2) from a trace semantics (denoted 7% in Fig. 2). The abstraction « from

. . . . . . a Z
trace to relational semantics consists in replacing the finite traces e—— .. —=a

by the pair (a,z) of the initial and final states. The infinite traces 3 B
... are replaced by the pair (a, L) where the symbol L denotes non-termination.
Therefore the abstraction is:

aX) = {{a,2) | —.—e e X}
The denotational semantics (denoted 7% in Fig. 2) is the isomorphic representa-
tion of a relation by its right-image:
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Fig. 3. Abstraction from Trace to Relational and Natural Semantics

a(R) =Xa-{x | (a,z) € R}.

The abstraction from relational to big-step operational or natural semantics
(denoted 7+ in Fig. 2) simply consists in forgetting everything about non-termination,
so a(R) = {(a,z) € R|x # L}, as illustrated in Fig. 3.

A non comparable abstraction consists in collecting the set of initial and final

states as well as all transitions (z,y) appearing along some finite or infinite trace

-— . ’.‘—X ... of the trace semantics. One gets the small-step operational or

transition semantics (138) (denoted 7 in Fig. 2 and also called Kripke structure
in modal logic) as illustrated in Fig. 4.
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Fig. 4. Transition Semantics

A further abstraction consists in collecting all states appearing along some
finite or infinite trace as illustrated in Fig. 5. This is the partial correctness
semantics (39) or the collecting semantics (45) for proving invariance properties
of programs.

All abstractions considered in this paper are “from above” so that the ab-
stract semantics describes a superset or logical consequence of the concrete
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Fig. 5. Collecting / Partial Correctness Semantics

semantics. Abstractions “from below” are dual and consider a subset of the
concrete semantics. An exemple of approximation “from below” is provided by
debugging techniques which consider a subset of the possible program executions
or by existential checking where one wants to prove the existence of an execu-
tion trace fullfilling some given specification. In order to avoid repeating two
times dual concepts, we only consider approximations “from above”, knowing
that approximations “from below” can be easily derived by applying the duality
principle (as found e.g. in lattice theory).

2.6 Effective Abstractions

Numerical Abstractions Assume that a program has two integer variables
X and Y. The trace semantics of the program (Fig. 1) can be abstracted in the
collecting semantics (Fig. 5). A further abstraction consists in forgetting in a
state all but the values x and y of variables X and Y. In this way the trace
semantics is abstracted to a set of points, as illustrated in Fig. 6(a).

We now illustrate informally a number of effective abstractions of an [in]finite
set of points.

Non-relational Abstractions The nonn-relational, attibute independent or
cartesian abstractions (48, example 6.2.0.2) consists in ignoring the possible
relationships between the values of the X and Y variables. So a set of pairs is
approximated through projection by a pair of sets. Each such set may still be
infinite and in general not exactly computer representable. Further abstractions
are therefore needed.

The sign abstraction (48) illustrated in Fig. 6(b) consists in replacing integers
by their sign thus ignoring their absolute value.

The interval abstraction (44) illustrated in Fig. 6(c) is more precise since it
approximates a set of integers by it minimal and maximal values (including —oo
and 400 as well as the empty set if necessary).

The congruence abstraction (92) illustrated in Fig. 6(d) is not comparable.
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Fig. 6. Non-relational Abstractions

Relational Abstractions Relational abstractions are more precise than non
relational ones (112) in that some of the relationships between values of the
program states are preserved by the abstraction.

For example the polyhedral abstraction (61) illustrated in Fig. 7(b) approxi-
mates a set of integers by its convex hull. Only non-linear relationships between
the values of the program variables are forgotten.

The use of an octogonal abstraction (2) illustrated in Fig. 7(a) is less precise
since only some shapes of polyhedra are retained or equivalently only linear
relations between any two variables are considered with +1 or -1 coefficients (of
the form +z + y < ¢ where ¢ is an integer constant).

A non comparable relational abstraction is the linear congruence abstraction
(93) illustrated in Fig. 7(c).

A combination of non-relational dense approximations (like intervals) and
relational sparse approximations (like congruences) is the trapezoidal linear con-
gruence abstraction of (122) as illustrated in Fig. 7(d).

Symbolic Abstractions Most structures manipulated by programs are sym-
bolic structures such as control structures (call graphs), data structures (search
trees), communication structures (distributed & mobile programs), etc. It is
very difficult to find compact and expressive abstractions of such sets of objects
(sets of languages, sets of automata, sets of trees or graphs, etc.). For example
Biichi automata or automata on trees are very expressive but algorithmically
expensive.
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Fig. 8. Binary Decision Graphs

A compromise between semantic expressivity and algorithmic efficiency was
recently introduced by (124; 123) using Binary Decision Graphs and Tree Schemata
to abstract infinite sets of infinite trees is illustrated in Fig. 8 & 9.

2.7 Information Loss

Any abstraction introduces some loss of information. For example the abstrac-
tion of the trace semantics into relational or denotational semantics loses all
information on the computation cost since all intermediate steps in the execu-
tion are removed.

All answers given by the abstract semantics are always correct with respect to
the concrete semantics. For example if termination is proved using the relational
semantics then there no execution abstracted to (a, L) so no infinite trace 8
—— . —— .. in the trace semantics whence non termination is impossible when
starting execution in initial state a.
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Fig. 10. Is 1/ (X+1-Y) well-defined?

However, because of the information loss, not all questions can be definitely
answered with the abstract semantics. For example the natural semantics cannot
answer questions about termination as can be done with the relational or de-
notational semantics. These semantics cannot answer questions about concrete
computation costs

The more concrete semantics can answer more questions. The more abstract
semantics are simpler. Non comparable abstract semantics (such as intervals
and congruences) can neither answer more nor less questions.

To illustrate the loss of information, let us consider the problem of deciding
whether the operation 1/ (X+1-Y) appearing in a program is always well defined
at run-time. The answer can certainly be given by the concrete semantics since
it has no point on the line © + 1 — y = 0, as shown in Fig. 10(a).

In practice the concrete abstraction is not computable so it is hardly usable
in a useful effective tool. The dense abstractions that we have considered are
too approximate as illustrated in Fig. 10(b).

However the answer is positive when using the relational congruence abstrac-
tion, as shown in Fig. 10(c).

Abstract interpretation theory has mainly been concerned with the sound-
ness of the abstract semantics/interpreter, relative to which questions can be
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answered corectly despite the loss of information, which is essential in practice
and leads to a formal design method.

However completeness, relative to the formalization of the loss of information
in a controlled way so as to answer a given set of questions, has also been studied
(48; 82), including in the context of model checking (42). In practice complete
abstractions, including a most abstract one do exist, but most often are not
computable and even hard to design manually since the design of a complete
abstraction is logically equivalent to a formal correctness proof (42).

A more limited but certainly feasible objective towards expressive analyses
is by combination of abstract domains (such as the reduced product (48), dis-
junctive completion (48; 76), complementation (36)) and their refinement (81),
which can be implemented in static analyser generators (e.g. (117)).

2.8 Function Abstraction

We now show how the abstraction of complex mathematical objects used in the
semantics of programming or specification languages can be defined by compos-
ing abstractions of simpler mathematical structures.

For example knowing abstractions of the parameter and result of a monotonic
function on sets, a function F can be abstracted into an abstract function F*
as illustrated in Fig. 11 (48). Mathematically, F* takes its parameter z in the

Abstract domain

r)/ Oé Fu:aoFofy

-

Concrete domain

Fig.11. Function Abstraction

abstract domain. Let vy(x) be the corresponding concrete set (y is the adjoined,
intuitively the inverse of the abstraction function «). The function F' can be
applied to get the concrete result o F' o y(z). The abstraction function « can
then be applied to approximate the result F*(z) = a o F o y(z).

In general neither F' nor o and « is computable even though the abstraction
« may be effective. So we have got a formal specification of the abstract function
F* and an algorithm has to be found for an effective implementation.
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2.9 Fixpoint Abstraction

A fixpoint of a function F' can often be obtained as the limit of the iterations of
F from a given initial value L. In this case the abstraction of the fixpoint can
often be obtained as the abstract limit of the iteration of the abstraction F* of
F starting from the abstraction a(L) of the initial value L. The basic result is
that the concretization of the abstract fixpoint is related to the concrete fixpoint
by the approximation relation expressing the soundness of the abstraction (48).
This is illusrated in Fig. 12.
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Fig. 12. Fixpoint Abstraction

Often states have some finite component (e.g. a program counter) which can
be used to get a fixpoint system of equations by projection along that compo-
nent. Then chaotic and asynchronous iteration stategies can be used to solve the
equations iteratively (46). Various efficient iteration strategies have been stud-
ied, including ones taking particular properties of abstractions into account and
others to speed up the convergence of the iterates (45; 53).

2.10 Composing Abstractions

Abstractions hence abstract interpreters for program analysis can be designed
compositionally by stepwise abstraction, combination or refinement (48; 80).
An example of stepwise abstraction is the functional abstraction of Sec. 2.8.
The abstraction of a function is parameterized by abstractions for the function
parameters and the function result which can be chosen later in the modular
design of the abstract interpreter. An example of abstraction combination is the
reduced product of two abstractions (48) which is the most abstract abstraction
more precises than these two abstractions. An example of refinement is the
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power operation (48) which complete an abstract domain by adding missing
disjunctions and the complement (36) adding missing negations.

It is always possible to refine an abstraction so as to check a given spec-
ification for a given program (42; 82). Nevertheless this approach has severe
practical limitations since, in general, the design of this abstraction is logically
equivalent to the design of an inductive argument for the formal proof that the
given program satisfies the given specification while the soundness proof of this
abstraction logically amounts to checking the inductive verification conditions of
this formal proof (42). Such proofs can hardly be fully automated hence human
interaction is unavoidable. Moreover the whole process has to be repeated each
time the program or specification is modified.

Instead of considering such strong specifications for a given specific program,
the objective of program analysis is to consider (often predefined) specifications
and all possible programs. The practical problem in program analysis is there-
fore to design useful abstractions which are computable for all programs and
expressive enough to yield interesting information for most programs.

3 Program Analysis

Program analysis is the automatic static determination of dynamic run-time
properties of programs.

3.1 Foundational Ideas of Program Analysis

Given a program and a specification, a program analyzer will check if the pro-
gram semantics satisfies the specification (Fig. 13(a)). In case of failure,the
analyser will provide hints to understand the origin of errors (e.g. by providing
necessary conditions to be satisfied by counter-examples).

The principle of the analysis is to compute an approximate semantics of the
program in order to check a given specification. Abstract interpretation is used
to derive, from a standard semantics, the approximate and computable abstract
semantics. The derivation can often be done by composing standard abstractions
to fit a particular kind of information which has to be discovered about program
execution. This derivation is itself not (fully) mechanizable but static analyser
generators such as PAG (71) and others can provide generic abstractions to be
composed with problem specific ones.

In practice, the program analyser contains a generator reading the program
text and producing equations or constraints which solution is a computer rep-
resentation of the program abstract semantics. A solver is then used to solve
these abstract equations/constraints. A popular resolution method is to use it-
eration. In this case the convergence may have to be accelerated using widening
to over estimate the solution followed by a narrowing to improve it (45). The
approximation of the abstract semantics is then used by a diagnoser to check
the specification. Because of the loss of information, the diagnosis is always of
the form “ves”, “no”, ¢ 7 or “irrelevant” (e.g. a safety specification for
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unreachable code). The general structure of program analysers is illustrated in
Fig. 13(b).

3.2 Shortcomings of Program Analysis

Static program analysis can be used for large programs (220 000 lines of C)
without user interaction. The abstractions are chosen to be of wide scope with-
out specialization to a particular program. Abstract algebras can be designed
and implemented into libraries which are resuable for different programming
languages. The objective is to discover invariants that are likely to appear in
many programs so that the abstraction must be widely reusable for the program
analyzer to be of economic interest.

The drawback of this general scope is that the considered abstract speci-
fications and properties are often simple, mainly concerning elementary safety
properties. For example non-linear abstractions of sets of points are very difficult
et very few mathematical results are of practical interest and directly applicable
to program analysis (4). Checking termination and similar liveness properties is
trivial with finite state systems, at least from a theoretical if not algorithmical
point of view (e.g. finding loops in finite graphs). The same problem for infinite
state systems with potentially infinite data structures (as considered e.g. in par-
tial evaluation) requires the discovery of wariant functions which is also very
difficult in full generality and even more for fair concurrent systems (123).

Even when considering restricted simple abstract properties, the semantics of
real-life programming languages is very complex (recursion, concurrency, modu-
larity, etc.) whence so is the corresponding abstract interpreter. The abstraction
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of this semantics hence the design of the analyzer is mostly manual (and beyond
the hability of casual programmers or theorem provers) whence costly. The con-
sidered abstractions must have a large scope of application and must be easily
reusable to be of economic interest.

From a user point of view, the results of the analysis have to be presented in
a simple way (for example by pointing at errors only or by providing abstract
counter-examples, or less frequently concrete ones). Experience shows that the
cases of uncertainty represent 5 to 10 % of the possible cases. They must be
handle with other empirical or formal methods (including more refined abstract
interpretations).

3.3 Applications of Program Analysis

Among the numerous applications of program analysis, let us cite Data flow
analysis (60); program optimization and transformation (including partial eval-
uation and program specialization (110) and data dependence analysis for the
parallelisation of sequential languages); set-based analysis (56); Type inference
(41) (including undecidable systems and soft typing); Verification of reactive
(109), real-time (98) and (linear) hybrid systems (97) including state space re-
duction (57); cryptographic protocol analysis(129); Abstract model-checking of
infinite systems (58; 60); Abstract debugging, testing and verification (38; 17);
Cache and pipeline behavior prediction (72); Probabilistic analysis (130); Com-
munication topology analysis for mobile/distributed code (74); Automatic differ-
entiation of numerical programs (152); Abstract simulation of temporal specifi-
cations (26); Semantic tattooing/watermarking of software; etc.

Program static analysis has been intensively studied for grammars and poly-
nomial systems (40), term graph rewriting (89), typesetting languages (107),
procedural languages (16; 47) (for alias analysis (157), pointer analysis (68; 69),
parameter boxing/unboxing (90), copy elimination (146), dependence analysis
(121), exception analysis (145), constant propagation (115), (linear) equality or
inequality relationskips analysis (61) etc.), parallel procedural languages (62;
88), functional languages (for binding time analysis (156), strictness analysis
(23; 54; 132), inverse image analysis (70), projection analysis (22), comport-
ment analysis (55), dependency analysis (12), path/trace analysis (34), closure
analysis (135), control flow analysis (149), value flow analysis (14), compile-
time garbage collection (108), stackability and escape analysis (10), data struc-
tures and abstract data type analysis (119), heap shape analysis (111; 151),
exception analysis (158), polymorphic function analysis (3), kind/sort analysis
(94), typing (41), effect systems (113), termination analysis (136), time com-
plexity analysis (143), parallelization (154), etc.), functional parallel languages
(63), data parallel languages (27), logic languages including Prolog (51; 66)
(for mode (125) and type analysis (106) and their combination (18), finiteness
analysis (8), relational argument size analysis (147), dependency analysis (131),
detecting determinate/functional computations (83), mutually exclusive rules de-
tection (140), occur check reduction (150), WAM code optimization (64), copy
avoidance (78), groundness analysis (37), sharing analysis (35), freeness analysis
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(32) and their combinations (33), termination analysis (114), time complexity
and cost analysis (67), parallelisation (19), etc.) including its search rule and the
cut (77) and database programming languages (1), concurrent logic languages
(24), functional logic languages (99), constraint logic languages (9), concurrent
constraint logic languages (159), specification languages (84), synchronous lan-
guages (96), concurrent/parallel languages (50), communicating and distributed
languages (49; 126) and more recently object-oriented languages (11).

Abstract interpretation has been used (including interval analysis) for the
static analysis of the embedded ADA software of the Ariane 5 launcher! (116).
The static program analysis aims at the automatic detection of the definiteness,
potentiality, impossibility or inaccessibility of run-time errors such as scalar and
floating-point overflows, array index errors, divisions by zero and related arith-
metic exceptions, uninitialized variables, data races on shared data structures,
etc. The analyser was able to automatically discover the Ariane 501 flight error.
This was a success for the later 502 and 503 flights and the ARD? (116) and in
the verification of avionic software (142).

3.4 Industrialization of Static Analysis by Abstract Interpretation

The impressive results obtained by the static analysis of real-life embedded
critical software (116; 142) is quite promising for the industrialization of abstract
interpretation.

This is the explicit objective of AbsInt Angewandte Informatik GmbH Kl cre-
ated in Germany by R. Wilhelm and C. Ferdinand in 1998 commercializing the
program analyser generator PAG and an application to determine the worst-case
execution time for modern computer architectures with memory caches pipelines,

etc (73).

Pilaud in 1999 to develop and commercialize ADA and C program analyzers.

Other companies like Connected Components Corporation ¥Rd created in
the U.S.A. by W.L. Harrison in 1993 use abstract interpretation internally e.g.
for compiler design (103).

4 Abstract Formal Methods

No automatic formal method can ultimately find all errors in a software sys-
tem and so for their combinations. We will shortly review the automatic formal
methods for computer-aided program verification, briefly discussing their prin-
ciples, advantages and shortcomings. Since program analysis has already been
discussed, we now consider typing, model-checking, deductive methods and their
combination.

! Flight software (60,000 lines of Ada code) and Inertial Measurement Unit (30,000
lines of Ada code).
2 Atmospheric Reentry Demonstrator: module coming back to earth.
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4.1 Typing

Polymorphic typing and type inference (127) was a definite step in the design of
programming languages and compilers (102). The question for the next decade
seems to be to scale to more expressive properties.

Foundational Ideas of Typing Typing is based on decidable program analy-
ses. This approach is always possible by restricting both on specifications (al-
lowed types) and on programs, as shown when considering types as abstract
interpretations (41). In theory, type systems have a clean presentation of the
type analysis (inference algorithm (127)) through an equivalent logical formal
system (type verification (65). Monomorphic typing (104) was extended to poly-
morphism (127), complex data structures, references (100), exceptions and sep-
arate modules (101) in a way that scales up for very large programs. It is nicely
integrated in the compiler and the certification can go down to the generated
code (proof-carrying code (133), certified compiler (153)).

Shortcomings of Typing Type systems (e.g. with subtle subtyping) can be
very complex to understand for the casual user. One difficulty is that typing is
compositional but not fully abstract (e.g. the same polymorphic code can type
differently in different utilization contexts). The interaction with the user is often
crude (no hint is given to understand why wrong programs do not type well).
It is hardly possible for the user to provide hints to help the typing process.
The logical specification of the type system is often inexistent in the reference
manual, not equivalent to the type inference algorithm or so inextricable that it
is useless both to the programmer and compiler designer. The programs consid-
ered in type theory are both complex (higher-order modules) and too restricted
(mainly functional languages). The most severe restrictions are on the consid-
ered properties (arithmetic, out of range, null pointer dereferencing, ... errors
are checked at run-time, all liveness properties are ignored). These restrictions
and the difficulty to generalize to more expressive properties mainly follow from
the encoding of types as terms/formulee and from the one iterate fixpoint ap-
proximation.

4.2 Deductive Methods

Foundational Ideas of Deductive Methods Deductive methods use a (man-
ually designed abstraction of) the program semantics to obtain minimal verifica-
tion conditions to prove program correctness. These verification conditions can
be derived from the program trace semantics by abstract interpretation (43).
Then a theorem prover (134) or a proof assistant (137) is used to check the
verification conditions.

Shortcomings of Deductive Methods Deductive methods use the schema of
Fig. 13(b) but for the fact that the solver is replaced by a verifier or checker thus
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avoiding fixpoint computations. So the constraints or equations corresponding to
the verification conditions are not solved. This means that an inductive argument
(e.g. invariant, variant function) has to be provided, generally by the user. Since
the implication involved in the verification condition is itself undecidable, the
proof verification can only be partially automatized, even though the solution to
the equations/constraints is provided. Therefore interaction of the programmer
with the prover is ultimately needed. This (wo)man/prover interaction is hard
if not despairing, in particular because the size of the proof is often exponential
in the program size. Therefore debugging an unsuccessful proof (because of a
program error or a prover weakness) can be as complex as (if not much more
complex than) debugging the program itself.

An alternative (118) consists in restricting the form of predicates considered
by the prover, (which is an abstract interpretation (48, Sec. 5)). This can go
up to unsound verification condition simplifications, essentially to make verifier
simpler (e.g. modular arithmetic).

Because theorem provers are driven by unformalized heuristics, and these
heuristics and their interactions are changed over time for improving proof
strategies, theorem provers are often unstable over time (e.g. proof strategies
get changed so that old proofs no longer work). Another weakness which makes
interaction with other formal methods somewhat difficult is the uniform encod-
ing of properties as syntactical terms/formule (so that e.g. BBDs are hardly
efficiently encodable). It follows that the theorem prover has ultimately to be
extented with program analysers, model checkers, typing, among others (148),
often without supporting theory, in particular for mechanizing and combining
abstractions.

4.3 Model Checking

Model checking (28; 141) has been very successful for the verification of hardware
(7), communication protocoles (31), cryptographic protocoles (5), and real-time
(25) or probabilistic (155) processes. As far as software systems are concerned,
the question for the next decade is whether model checking can be extended to
the verification of very large real-life programs.

Foundational Ideas of Model Checking First a model of the program (i.e.
manually designed abstraction of the program semantics) must be designed (in
the form of a transition system similar to a small step operational semantics).
Then a specification of the program must be provided by the user in a very
expressive temporal logic (139). A model checker can then check the specification
by exhaustive search/symbolic exploration of the state space.

The spectacular success of model checking followed from the clever design of
data structures (e.g. BDDs) and algorithms (e.g. minimal state graph generation
(15), fixpoint computation (120) or SAT (6)) for representing very large sets of
booleans and their transformations.

The approximation is that the model must be finite-state or some form of
abstract interpretation must be used (30; 91) to reduce the verification problem
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to finite state, including symmetries (29), etc. Also clever semantics of concur-
rent systems have been considered, e.g. to avoid the combinatorial explosion of
interleaving (31).

Another trend in infinite-state model checking consider safety properties only
and polyhedral abstractions, with variants (e.g. Presburger arithmetic (20)).
This is a direct application of polyhedral program analysis (61), including the
use of widenings. This allows e.g. for the analysis of reactive (75), real-time (95)
and hybrid systems (96).

Shortcomings of Model Checking Although model checking gained a factor
of 100 in 10 years, it is very difficult to scale up because of the state explosion
problem. So, the necessary restriction to available computer resources often re-
duces the model checker from formal verification to debugging on part of the
state space. Since the model must ultimately be finite (to allow for exhaustive
search/symbolic exploration), abstraction is mandatory, which is a very difficult
task to do manually and/or is left informal. Moreover, some forms of abstrac-
tions (such as interval (45) or polyhedral (61) abstractions) do not abstract
concrete transition systems into abstract transition systems so that the model
checker may not be reusable in the abstract. One can use abstraction for model
checking which are complete in that there always exists a program specific ab-
straction into a finite model to prove a given specification correct (see (42) for
safety properties) but none will be complete for all programs, even for simple
properties as considered in program analysis (53). It follows that complete ab-
stractions are difficult and not reusable hence not cost effective.

5 Combining Program Verification Methods

Since no single formal method can ultimately solve the verification problem, a
current trend is to combine formal methods.

For example, one can rely on a user designed abstraction and derive a a
program finite abtract model by abstract interpretation, prove the correctness
of the abstraction by deductive methods and later verify the abstract model by
model-checking (144).

A fundamental limitation (42) is that the abstraction discovery and the ab-
stract semantics derivation are respectively logically equivalent hence practically
as difficult as invariant discovery and invariant verification in a formal proof. So
we have the feeling that combination of tools might simplify formal proofs but
still will ultimately not solve the program verification problem.

6 Combining Empirical and Formal Methods

Formal methods have made a lot of progress in the last decade. Nevertheless
there are few automatic light weight tools to apply them in practice. Integration
of such tools is difficult and cannot ultimately solve all verification problems.
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It follows that the only mechanical tool for verifying programs, which defaults
and incompleteness are well known, is still debugging. There again progress was
slow, in particular because theory never took debugging seriously. The main
advantage of debugging is that a debugger is a light weight tool which is very
easily understood by all programmers. Because of its well-known incredible cost
for weak results, debugging may not scale up in the next decade for very large
software.

An alternative which still remains to be investigated is the combination of
informal methodslike debugging with verification tools. Let us consider for ex-
ample abstract testing (59).

The classical debugging methodology consists in running the program on test
data, checking if the execution satisfies informal specifications. This process is
repeated by providing more tests until reaching a satisfactory coverage.

By an easily understandable analogy, the abstract testing methodology (59)
consists in computing the abstract semantics for a finitary or infinitary abstrac-
tion chosen by the programmer among a predefined palette (not user defined,
which would be too difficult). The abstract semantics is then checked against
user-provided abstract assertions or the abstraction of a formal specification.
This process is repeated with more refined abstractions until enough assertions
are proved or no predefined abstraction can do.

Observe that one can prove the absence of (some categories of) bugs, not
only their presence. Moreoever abstract evaluation can range from an analogy
with program execution to the application of proof methods (using e.g. forward
as well as backward reasonings providing abstract counter-examples) without
attempting to make a one-shot complete formal proof of the specification.

7 Conclusions on the Past Decade

Full program verification by formal methods (e.g. model checking/deductive
methods), which requires user interaction (for discovering an abstraction or in-
ductive argument) is very costly in human resources hence is not likely to scale
up for very large software. Abstraction is mandatory for program verification
but difficult, hardly automatizable and beyond the common capabilities of most
programmers.

Partial program verification by static analysis (with typing being considered
as a particular and successfull case) is cost-effective® because no user interven-
tion is mandatory for performing the analysis and universal abstractions are
reusable hence commercializable.

For large and complex programs, complete verification by formal methods is
not likely to be viable at low cost. Program debugging is still and will probably
remain for some time the prominent industrial program “verification” method.

In this context, abstract interpretation based program static analysis can
be extended to abstract program testing. Abstract interpretation based methods

3 e.g. less than 0.25% per program line costing 50 to 80%.
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offer powerful techniques which, in the presence of approximation, can be viable
alternatives or complements both to the exhaustive search of model-checking
and to the partial exploration methods of classical debugging.

8 Grand Challenge for the Next Decade

We believe that in the next decade the software industry will certainly have to
face its responsability imposed by a computer-dependent society. Consequently,
SOFTWARE RELIABILITY? will be a grand challenge for computer science and
practice.

The grand challenge for formal methods, in particular abstract interpretation
based formal tools, is both the large scale industrialization and the intensifica-
tion of the fundamental research effort.

General-purpose, expressive and cost-effective abstractions have to be devel-
opped e.g. to handle floating point numbers, data dependences (e.g. for paral-
lelization), liveness properties with fairness (to extend finite-state model-checking
to software), probabilistic properties, etc. Present-day tools will have to be en-
hanced to handle higher-order compositional modular analyses and to new pro-
gramming paradigms (such as threads, mobile/network programming, etc.), to
automatically combine and refine abstracts, to interact nicely with users and
other formal or informal methods.

The most challenging objective might be to integrate formal analysis by
abstract interpretation in the full software development process.

4 other suggestions were “trustworthiness” (C. Jones) and “robustness” (R. Leino).
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