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ABSTRACT
We show that abstract interpretation-based static program
analysis can be made efficient and precise enough to formally
verify a class of properties for a family of large programs
with few or no false alarms. This is achieved by refinement
of a general purpose static analyzer and later adaptation to
particular programs of the family by the end-user through
parametrization. This is applied to the proof of soundness
of data manipulation operations at the machine level for
periodic synchronous safety critical embedded software.

The main novelties are the design principle of static an-
alyzers by refinement and adaptation through parametriza-
tion (Sect. 3 and 7), the symbolic manipulation of expres-
sions to improve the precision of abstract transfer functions
(Sect. 6.3), the octagon (Sect. 6.2.2), ellipsoid (Sect. 6.2.3),
and decision tree (Sect. 6.2.4) abstract domains, all with
sound handling of rounding errors in floating point compu-
tations, widening strategies (with thresholds: Sect. 7.1.2,
delayed: Sect. 7.1.3) and the automatic determination of
the parameters (parametrized packing: Sect. 7.2).

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Program Verification—for-
mal methods, validation, assertion checkers; D.3.1 [Program-
ming Languages]: Formal Definitions and Theory—se-
mantics; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs—
Mechanical verification, assertions, invariants; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming
Languages—Denotational semantics, Program analysis.

General Terms
Algorithms, Design, Experimentation, Reliability, Theory,
Verification.

Keywords
Abstract Interpretation; Abstract Domains; Static Analy-
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1. INTRODUCTION
Critical software systems (as found in industrial plants,

automotive, and aerospace applications) should never fail.
Ensuring that such software does not fail is usually done by
testing, which is expensive for complex systems with high re-
liability requirements, and anyway fails to prove the impos-
sibility of failure. Formal methods, such as model checking,
theorem proving, and static analysis, can help.

The definition of “failure” itself is difficult, in particular
in the absence of a formal specification. In this paper, we
choose to focus on a particular aspect found in all specifica-
tions for critical software, that is, ensuring that the critical
software never executes an instruction with “undefined” or
“fatal error” behavior, such as out-of-bounds accesses to ar-
rays or improper arithmetic operations (such as overflows or
division by zero). Such conditions ensure that the program
is written according to its intended semantics, for example
the critical system will never abort its execution. These cor-
rectness conditions are automatically extractable from the
source code, thus avoiding the need for a costly formal spec-
ification. Our goal is to prove automatically that the soft-
ware never executes such erroneous instructions or, at least,
to give a very small list of program points that may possibly
behave in undesirable ways.

In this paper, we describe our implementation and exper-
imental studies of static analysis by abstract interpretation
over a family of critical software systems, and we discuss the
main technical choices and possible improvements.

2. REQUIREMENTS
When dealing with undecidable questions on program ex-

ecution, the verification problem must reconcile correctness
(which excludes non exhaustive methods such as simula-
tion or test), automation (which excludes model checking
with manual production of a program model and deductive
methods where provers must be manually assisted), preci-
sion (which excludes general analyzers which would produce
too many false alarms, i.e., spurious warnings about poten-
tial errors), scalability (for software of a few hundred thou-
sand lines), and efficiency (with minimal space and time
requirements allowing for rapid verification during the soft-
ware production process which excludes a costly iterative
refinement process).

Industrialized general-purpose static analyzers satisfy all
criteria but precision and efficiency. Traditionally, static
analysis is made efficient by allowing correct but somewhat
imprecise answers to undecidable questions. In many usage
contexts, imprecision is acceptable provided all answers are



sound and the imprecision rate remains low (e.g. 5 to 15%
of the runtime tests cannot typically be eliminated). This is
the case for program optimization (such as static elimination
of run-time array bound checks), program transformation
(such as partial evaluation), etc.

In the context of program verification, where human in-
teraction must be reduced to a strict minimum, false alarms
are undesirable. A 5% rate of false alarms on a program of a
few hundred thousand lines would require a several person-
year effort to manually prove that no error is possible. For-
tunately, abstract interpretation theory shows that for any
finite class of programs, it is possible to achieve full pre-
cision and great efficiency [7] by discovering an appropriate
abstract domain. The challenge is to show that this theoret-
ical result can be made practical by considering infinite but
specific classes of programs and properties to get efficient
analyzers producing few or no false alarms. A first experi-
ment on smaller programs of a few thousand lines was quite
encouraging [5] and the purpose of this paper is to report on
a real-life application showing that the approach does scale
up.

3. DESIGN PRINCIPLE
The problem is to find an abstract domain that yields an

efficient and precise static analyzer for the given family of
programs. Our approach is in two phases, an initial design
phase by specialists in charge of designing a parametrizable
analyzer followed by an adaptation phase by end-users in
charge of adapting the analyzer for (existing and future)
programs in the considered family by an appropriate choice
of the parameters of the abstract domain and the iteration
strategy (maybe using some parameter adaptation strategies
provided by the analyser).

3.1 Initial Design by Refinement
Starting from an existing analyzer [5], the initial design

phase is an iterative manual refinement of the analyzer. We
have chosen to start from a program in the considered fam-
ily that has been running for 10 years without any run-time
error, so that all alarms are, in principle, due to the impre-
cision of the analysis. The analyzer can thus be iteratively
refined for this example until all alarms are eliminated.

Each refinement step starts with a static analysis of the
program, which yields false alarms. Then a manual back-
ward inspection of the program starting from sample false
alarms leads to the understanding of the origin of the im-
precision of the analysis. There can be two different reasons
for the lack of precision:

• Some local invariants are expressible in the current ver-
sion of the abstract domain but were missed either:
– because some abstract transfer function (Sect. 5.4) was
too coarse, in which case it must be rewritten closer to
the best abstraction of the concrete transfer function [9],
(Sect. 6.3);
– or because a widening (Sect. 5.5) was too coarse, in which
case the iteration strategy must be refined (Sect. 7.1);

• Some local invariants are necessary in the correctness
proof but are not expressible in the current version of the
abstract domain. To express these local invariants, a new
abstract domain has to be designed by specialists and incor-
porated in the analyzer as an approximation of the reduced
product [9] of this new component with the already existing
domain (Sect. 7.2).

When this new refinement of the analyzer has been imple-
mented, it is tested on typical examples and then on the full
program to verify that some false alarms have been elim-
inated. In general the same cause of imprecision appears
several times in the program; furthermore, one single cause
of imprecision at some program point often leads later to
many false alarms in the code reachable from that program
point, so a single refinement typically eliminates a few dozen
if not hundreds of false alarms.

This process is to be repeated until there is no or very few
false alarms left.

3.2 Adaptation by Parametrization
The analyzer can then be used by end-users in charge

of proving programs in the family. The necessary adapta-
tion of the analyzer to a particular program in the family
is by appropriate choice of some parameters. An example
provided in the preliminary experience [5] was the widening
with thresholds (Sect. 7.1.2). Another example is relational
domains (such as octagons [30], Sect. 6.2.2) which cannot
be applied to all global variables simultaneously because the
corresponding analysis would be too expensive; it is possi-
ble to have the user supply for each program point groups
of variables on which the relational analysis should be inde-
pendently applied.

In practice we have discovered that the parametrization
can be largely automated (and indeed it is fully automated
for octagons as explained in Sect. 7). This way the effort to
manually adapt the analyzer to a particular program in the
family is reduced to a minimum.

3.3 Analysis of the Alarms
We implemented and used a slicer [34] to help in the

alarm inspection process. If the slicing criterion is an alarm
point, the extracted slice contains the computations that
led to the alarm. However, the classical data and control
dependence-based backward slicing turned out to yield pro-
hibitively large slices.

In practice we are not interested in the computation of
the variables for which the analyzer already provides a value
close to end-user specifications, and we can consider only the
variables we lack information about (integer or floating point
variables that may contain large values or boolean variables
that may take any value according to the invariant). In the
future we plan to design more adapted forms of slicing: an
abstract slice would only contain the computations that lead
to an alarm point wherever the invariant is too weak.

4. THE CONSIDERED FAMILY OF PRO-
GRAMS

The considered programs in the family are automatically
generated using a proprietary tool from a high-level specifi-
cation familiar to control engineers, such as systems of dif-
ferential equations or synchronous operator networks (block
diagrams as illustrated in Fig. 1), which is equivalent to
the use of synchronous languages (like Lustre [20]). Such
synchronous data-flow specifications are quite common in
real-world safety-critical control systems ranging from let-
ter sorting machine control to safety control and monitoring
systems for nuclear plants and “fly-by-wire” systems. Peri-
odic synchronous programming perfectly matches the need
for the real-time integration of differential equations by for-



ward, fixed step numerical methods. Periodic synchronous
programs have the form:

declare volatile input, state and output variables;
initialize state variables;
loop forever

– read volatile input variables,
– compute output and state variables,
– write to volatile output variables;

wait for next clock tick;
end loop

Our analysis proves that no exception can be raised (but
the clock tick) and that all data manipulation operations
are sound. The bounded execution time of the loop body
should also be checked by static analysis [16] to prove that
the real-time clock interrupt does occur at idle time.

We operate on the C language source code of those sys-
tems, ranging from a few thousand lines to 132,000 lines of
C source code (75 kLOC after preprocessing and simplifi-
cation as in Sect. 5.1). We take into account all machine-
dependent aspects of the semantics of C (as described in
[5]) as well as the periodic synchronous programming as-
pects (for the wait). We use additional specifications to
describe the material environment with which the software
interacts (essentially ranges of values for a few hardware
registers containing volatile input variables and a maximal
execution time to limit the possible number of iterations in
the external loop1).

The source codes we consider use only a reduced subset
of C, both in the automatically generated glue code and the
handwritten pieces. As it is often the case with critical sys-
tems, there is no dynamic memory allocation and the use
of pointers is restricted to call-by-reference. On the other
hand, an important characteristics of those programs is that
the number of global and static2 variables is roughly lin-
ear in the length of the code. Moreover the analysis must
consider the values of all variables and the abstraction can-
not ignore any part of the program without generating false
alarms. It was therefore a grand challenge to design an anal-
ysis that is precise and does scale up.

5. STRUCTURE OF THE ANALYZER
The analyzer is implemented in Objective Caml [25]. It

operates in two phases: the preprocessing and parsing phase
followed by the analysis phase.

5.1 Preprocessing Phase
The source code is first preprocessed using a standard

C preprocessor, then parsed using a C99-compatible parser.
Optionally, a simple linker allows programs consisting of sev-
eral source files to be processed.

The program is then type-checked and compiled to an
intermediate representation, a simplified version of the ab-
stract syntax tree with all types explicit and variables given
unique identifiers. Unsupported constructs are rejected at
this point with an error message.

Syntactically constant expressions are evaluated and re-

1Most physical systems cannot run forever and some event
counters in their control programs are bounded because of
this physical limitation.
2In C, a static variable has limited lexical scope yet is per-
sistent with program lifetime. Semantically, it is the same
as a global variable with a fresh name.

placed by their value. Unused global variables are then
deleted. This phase is important since the analyzed pro-
grams use large arrays representing hardware features with
constant subscripts; those arrays are thus optimized away.

Finally the preprocessing phase includes preparatory work
for trace partitioning (Sect. 7.1.5) and parametrized packing
(Sect. 7.2).

5.2 Analysis Phase
The analysis phase computes the reachable states in the

considered abstract domain. This abstraction is formalized
by a concretization function γ [8, 9, 11]. The computation
of the abstraction of the reachable states by the abstract
interpreter is called abstract execution.

The abstract interpreter first creates the global and
static variables of the program (the stack-allocated vari-
ables are created and destroyed on-the-fly). Then the ab-
stract execution is performed compositionally, by induction
on the abstract syntax, and driven by the iterator.

5.3 General Structure of the Iterator
The abstract execution starts at a user-supplied entry

point for the program, such as the main function. Each pro-
gram construct is then interpreted by the iterator according
to the semantics of C as well as some information about the
target environment (some orders of evaluation left unspeci-
fied by the C norm, the sizes of the arithmetic types, etc.,
see [5]). The iterator transforms the C instructions into di-
rectives for the abstract domain that represents the memory
state of the program (Sect. 6.1), that is, the global, static
and stack-allocated variables.

The iterator operates in two modes: the iteration mode
and the checking mode. The iteration mode is used to gen-
erate invariants; no warning is displayed when some possible
errors are detected. When in checking mode, the iterator is-
sues a warning for each operator application that may give
an error on the concrete level (that is to say, the program
may be interrupted, such as when dividing by zero, or the
computed result may not obey the end-user specification for
this operator, such as when integers wrap-around due to an
overflow). In all cases, the analysis goes on with the non-
erroneous concrete results (overflowing integers are wiped
out and not considered modulo, thus following the end-user
intended semantics).

Tracing facilities with various degrees of detail are also
available. For example the loop invariants which are gener-
ated by the analyzer can be saved for examination.

5.4 Primitives of the Iterator
Whether in iteration or checking mode, the iterator starts

with an abstract environment E] at the beginning of a state-
ment S in the program and outputs an abstract environ-
ment JSK](E]) which is a valid abstraction after execution
of statement S. This means that if a concrete environment
maps variables to their values, JSKs is a standard semantics
of S (mapping an environment ρ before executing S to the
corresponding environment JSKs(ρ) after execution of S),
JSKc is the collecting semantics of S (mapping a set E of
environments before executing S to the corresponding set
JSKc(E) = {JSKs(ρ) | ρ ∈ E} of environments after execu-
tion of S), γ(E]) is the set of concrete environments be-
fore S then JSK](E]) over-approximates the set JSKc(γ(E]))
of environments after executing S in that JSKc(γ(E])) ⊆



γ(JSK](E])). The abstract semantics JSK] is defined as fol-
lows:

• Tests: let us consider a conditional

S = if (c) { S1 } else { S2 }
(an absent else branch is considered as an empty execution
sequence). The condition c can be assumed to have no side
effect and to contain no function call, both of which can be
handled by first performing a program transformation. The
iterator computes:

JSK](E]) = JS1K
](guard](E]

, c)) t] JS2K
](guard](E]

,¬c))

where the abstract domain implements:
– t] as the abstract union that is an abstraction of the
union ∪ of sets of environments;
– guard](E], c) as an approximation of JcKc(γ(E])) where
the collecting semantics JcKc(E) = {ρ ∈ E | JcKs(ρ) = true}
of the condition c is the set of concrete environments ρ in
E satisfying condition c. In practice, the abstract domain
only implements guard] for atomic conditions and compound
ones are handled by structural induction.

• Loops are by far the most delicate construct to analyze.
Let us denote by E

]
0 the environment before the loop:

while (c) {body }
The abstract loop invariant to be computed for the head of
the loop is an upper approximation of the least invariant
of F where F (E) = γ(E]

0) ∪ JbodyKc(JcKc(E)). The fixpoint

computation F ](E]) = E
]
0 t] JbodyK](guard](E], c)) is al-

ways done in iteration mode, requires a widening (Sect. 5.5)
and stops with an abstract invariant E] satisfying F ](E])
v] E] (where the abstract partial ordering x v] y implies
γ(x) ⊆ γ(y)) [11]. When in checking mode, the abstract
loop invariant has first to be computed in iteration mode
and then, an extra iteration (in checking mode this time),
starting from this abstract invariant is necessary to collect
potential errors.

• Sequences i1;i2: first i1 is analyzed, then i2, so that:

Ji1;i2K
](E]) = Ji2K

] ◦ Ji1K
](E]) .

• Function calls are analyzed by abstract execution of the
function body in the context of the point of call, creating
temporary variables for the parameters and the return value.
Since the considered programs do not use recursion, this
gives a context-sensitive polyvariant analysis semantically
equivalent to inlining.

• Assignments are passed to the abstract domain.
• Return statement : We implemented the return state-

ment by carrying over an abstract environment represent-
ing the accumulated return values (and environments, if the
function has side effects).

5.5 Least Fixpoint Approximation with
Widening and Narrowing

The analysis of loops involves the iterative computation of
an invariant E] that is such that F ](E]) v] E] where F ] is
an abstraction of the concrete monotonic transfer function
F of the test and loop body. In abstract domains with in-
finite height, this is done by widening iterations computing
a finite sequence E

]
0 = ⊥, . . . , E

]
n+1 = E]

n

`
F ](E]

n), . . . ,

E
]
N of successive abstract elements, until finding an invari-

ant E
]
N . The widening operator

`
should be sound (that

is the concretization of x
`

y should overapproximate the

concretizations of x and y) and ensure the termination in
finite time [8, 11] (see an example in Sect. 7.1.2).

In general, this invariant is not the strongest one in the
abstract domain. This invariant is then made more and
more precise by narrowing iterations: E

]
N , . . . , E

]
n+1 =

E]
n

a
F ](E]

n) where the narrowing operator
a

is sound (the
concretization of x

a
y is an upper approximation of the

intersection of x and y) and ensures termination [8, 11].

6. ABSTRACT DOMAINS
The elements of an abstract domain abstract concrete

predicates, that is, properties or sets of program states. The
operations of an abstract domain are transfer functions ab-
stracting predicate transformers corresponding to all basic
operations in the program [8]. The analyzer is fully paramet-
ric in the abstract domain (this is implemented using an Ob-
jective Caml functor). Presently the analyzer uses the mem-
ory abstract domain of Sect. 6.1, which abstracts sets of pro-
gram data states containing data structures such as simple
variables, arrays and records. This abstract domain is itself
parametric in the arithmetic abstract domains (Sect. 6.2)
abstracting properties of sets of (tuples of) boolean, integer
or floating-point values. Finally, the precision of the abstract
transfer functions can be significantly improved thanks to
symbolic manipulations of the program expressions preserv-
ing the soundness of their abstract semantics (Sect. 6.3).

6.1 The Memory Abstract Domain
When a C program is executed, all data structures (simple

variables, arrays, records, etc) are mapped to a collection of
memory cells containing concrete values. The memory ab-
stract domain is an abstraction of sets of such concrete mem-
ory states. Its elements, called abstract environments, map
variables to abstract cells. The arithmetic abstract domains
operate on the abstract value of one cell for non-relational
ones (Sect. 6.2.1) and on several abstract cells for relational
ones (Sect. 6.2.2, 6.2.3, and 6.2.4). An abstract value in a
abstract cell is therefore the reduction of the abstract values
provided by each different basic abstract domain (that is an
approximation of their reduced product [9]).

6.1.1 Abstract Environments
An abstract environment is a collection of abstract cells,

which can be of the following four types:
• An atomic cell represents a variable of a simple type

(enumeration, integer, or float) by an element of the arith-
metic abstract domain. Enumeration types, including the
booleans, are considered to be integers.

• An expanded array cell represents a program array us-
ing one cell for each element of the array. Formally, let
A =

`
(vi

1, . . . , v
i
n)
´

i∈∆
be the family (indexed by a set ∆)

of values of the array (of size n) to be abstracted. The ab-
straction is ⊥ (representing non-accessibility of dead code)
when A is empty. Otherwise the abstraction is an abstract
array A]

e of size n such the expanded array cell A]
e[k] is the

abstraction of
S

i∈∆ vi
k for k = 1, . . . , n. Therefore the ab-

straction is component-wise, each element of the array being
abstracted separately.

• A shrunk array cell represents a program array using a
single cell. Formally the abstraction is a shrunk array cell
A]

s abstracting
Sn

k=1

S
i∈∆ vi

k. All elements of the array are
thus “shrunk” together. We use this representation for large
arrays where all that matters is the range of the stored data.



• A record cell represents a program record (struct) us-
ing one cell for each field of the record. Thus our abstraction
is field-sensitive.

6.1.2 Fast Implementation of Abstract Environments
A naive implementation of abstract environments may use

an array. We experimented with in-place and functional ar-
rays and found this approach very slow. The main reason
is that abstract union t] operations are expensive, because
they operate in time linear in the number of abstract cells;
since both the number of global variables (whence of ab-
stract cells) and the number of tests (involving the abstract
union t]) are linear in the length of the code, this yields a
quadratic time behavior.

A simple yet interesting remark is that in most cases,
abstract union operations are applied between abstract en-
vironments that are identical on almost all abstract cells:
branches of tests modify a few abstract cells only. It is there-
fore desirable that those operations should have a complex-
ity proportional to the number of differing cells between
both abstract environments. We chose to implement ab-
stract environments using functional maps implemented as
sharable balanced binary trees, with short-cut evaluation
when computing the abstract union, abstract intersection,
widening or narrowing of physically identical subtrees [5,
§6.2]. An additional benefit of sharing is that it contributes
to the rather light memory consumption of our analyzer.

On a 10,000-line example we tried [5], the execution time
was divided by seven, and we are confident that the exe-
cution times would have been prohibitive for the longer ex-
amples. The efficiency of functional maps in the context of
sophisticated static analyses has also been observed by [26]
for representing first-order structures.

6.1.3 Operations on Abstract Environments
Operations on a C data structure are translated into op-

erations on cells of the current abstract environments. Most
translations are straightforward.

– Assignments: In general, an assignment lvalue := e is
translated into the assignment of the abstract value of e
into the abstract cell corresponding to lvalue. However, for
array assignments, such as x[i] := e, one has to note that the
array index i may not be fully known, so all cells possibly
corresponding to x[i] may either be assigned the value of
e, or keep their old value. In the analysis, these cells are
assigned the upper bound of their old abstract value and
the abstract value of e. Similarly, for a shrunk array x, after
an assignment x[i] := e, the cell representing x may contain
either its old value (for array elements not modified by the
assignment), or the value of e.

– Guard: The translation of concrete to abstract guards
is not detailed since similar to the above case of assignments.

– Abstract union, widening, narrowing: Performed cell-
wise between abstract environments.

6.2 Arithmetic Abstract Domains
The non-relational arithmetic abstract domains abstract

sets of numbers while the relational domains abstract sets of
tuples of numbers. The basic abstract domains we started
with [5] are the intervals and the clocked abstract domain
abstracting time. They had to be significantly refined using
octagons (Sect. 6.2.2), ellipsoids (Sect. 6.2.3) and decision
trees (Sect. 6.2.4).

6.2.1 Basic Abstract Domains
• The Interval Abstract Domain. The first, and simplest,

implemented domain is the domain of intervals, for both
integer and floating-point values [8]. Special care has to be
taken in the case of floating-point values and operations to
always perform rounding in the right direction and to handle
special IEEE [23] values such as infinities and NaN s (Not a
Number).

• The Clocked Abstract Domain. A simple analysis using
the intervals gives a large number of false warnings. A great
number of those warnings originate from possible overflows
in counters triggered by external events. Such errors can-
not happen in practice, because those events are counted at
most once per clock cycle, and the number of clock cycles
in a single execution is bounded by the maximal continuous
operating time of the system.
We therefore designed a parametric abstract domain. (In
our case, the parameter is the interval domain [5].) Let
X] be an abstract domain for a single scalar variable. The
elements of the clocked domain consist in triples in (X])3.

A triple (v], v
]
−, v

]
+) represents the set of values x such that

x ∈ γ(v]), x − clock ∈ γ(v]
−) and x + clock ∈ γ(v]

+), where
clock is a special, hidden variable incremented each time the
analyzed program waits for the next clock signal.

6.2.2 The Octagon Abstract Domain
Consider the following program fragment:

R := X−Z;
L := X;
if (R>V) L := Z+V;

At the end of this fragment, we have L ≤ X. In order to
prove this, the analyzer must discover that, when the test
is true, we have R = X− Z and R > V, and deduce from this
that Z+V < X (up to rounding). This is possible only with a
relational domain able to capture simple linear inequalities
between variables.

Several such domains have been proposed, such as the
widespread polyhedron domain [13]. In our prototype, we
have chosen the recently developed octagon abstract domain
[28, 30], which is less precise but faster than the polyhe-
dron domain: it can represent sets of constraints of the form
±x±y ≤ c, and its complexity is cubic in time and quadratic
in space (w.r.t. the number of variables), instead of expo-
nential for polyhedra. Even with this reduced cost, the huge
number of live variables prevents us from representing sets
of concrete environments as one big abstract state (as it was
done for polyhedra in [13]). Therefore we partition the set of
variables into small subsets and use one octagon for some of
these subsets (such a group of variables being then called a
pack). The set of packs is a parameter of the analysis which
can be determined automatically (Sect. 7.2.1).

Another reason for choosing octagons is the lack of sup-
port for floating-point arithmetics in the polyhedron do-
main. Designing relational domains for floating-point vari-
ables is indeed a difficult task, not much studied until re-
cently [27]. On one hand, the abstract domain must be
sound with respect to the concrete floating-point semantics
(handling rounding, NaN s, etc.); on the other hand it should
use floating-point numbers internally to manipulate abstract
data for the sake of efficiency. Because invariant manipula-
tions in relational domains rely on some properties of the
real field not true for floating-points (such as x + y ≤ c and



z − y ≤ d implies x + z ≤ c + d), it is natural to consider
that abstract values represent subsets of RN (in the rela-
tional invariant x + y ≤ c, the addition + is considered in
R, without rounding, overflow, etc.). Our solution separates
the problem in two. First, we design a sound abstract do-
main for variables in the real field (our prototype uses the
octagon library [28] which implementation is described in
[29]). This is much easier for octagons than for polyhedra,
as most computations are simple (addition, multiplication
and division by 2). Then, each floating-point expression is
transformed into a sound approximate real expression tak-
ing rounding, overflow, etc. into account (we use the linear
forms described in Sect. 6.3) and evaluated by the abstract
domain.

Coming back to our example, it may seem that octagons
are not expressive enough to find the correct invariant as
Z + V < X is not representable in an octagon. However,
our assignment transfer function is smart enough to extract
from the environment the interval [c, d] where V ranges (with
d ≤ RM where RM is an upper bound of R already computed
by the analysis) and synthesize the invariant c ≤ L− Z ≤ d,
which is sufficient to prove that subsequent operations on L

will not overflow. Thus, there was no need for this family
of programs to use a more expressive and costly relational
domain.

Remark that this approach provides a generic way of
implementing relational abstract domains on floating-point
numbers. It is parametrized by:

• a strategy for the determination of packs (Sect. 7.2.1);
• an underlying abstract domain working in the real field.

Aspects specific to floating-point computation (such as
rounding and illegal operations) are automatically taken
care of by our approach.

6.2.3 The Ellipsoid Abstract Domain
To achieve the necessary precision, several new abstract

domains had to be designed. We illustrate the general ap-
proach on the case of the ellipsoid abstract domain.

By inspection of the parts of the program on which the
previously described analyses provide no information at all
on the values of some program variables, we identified code
of the form:

if (B) {
Y := i;
X := j;

} else {
X′ := aX − bY + t;
Y := X;
X := X′;

}
where a and b are floating-point constants, i, j and t are
floating-point expressions, B is a boolean expression, and X,
X′, and Y are program variables. The previously described
analyses yield the imprecise result that X and Y may take any
value. This apparently specialized style of code is indeed
quite frequent in control systems since it implements the
simplified second order digital filtering discrete-time system
illustrated in Fig. 1.

The first branch is a reinitialization step, the second
branch consists in an affine transformation Φ. Since this
code is repeated inside loops, the analysis has to find an
invariant preserved by this code. We looked manually for
such an invariant on typical examples, identified the above
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Figure 1: A simplified second-order digital filtering
system.

generic form (essentially depending on a and b), then de-
signed a generic abstract domain εa,b able to discover such
invariants, implemented the abstract domain lattice and
transfer operations and finally let the analyzer automatically
instantiate the specific analysis to the code (in particular to
parts that may not have been inspected).

To find an interval that contains the values of X and Y

in the specific case where we can compute bounds to the
expression t by the previously described analyses, say |t| ≤
tM , we have designed a new abstract domain εa,b based on
ellipsoids, that can capture the required invariant. More
precisely, we can show that:

Proposition 1 If 0 < b < 1, a2 − 4b < 0, and k ≥“
tM

1−
√

b

”2

, then the constraint X2 − aXY + bY2 ≤ k is pre-

served by the affine transformation Φ.

The proof of this proposition follows by algebraic manip-
ulations using standard linear algebra techniques. In our
examples, the conditions on a and b required in Prop. 1 are
satisfied. We still have to design the abstract operations to
propagate the invariant in the program, and to take into
account rounding errors that occur in floating-point compu-
tations (and are not modeled in the above proposition).

Having fixed two floating-point numbers a and b such that
0 < b < 1 and a2 − 4b < 0, we present a domain εa,b, for
describing sets of ellipsoidal constraints. An element in εa,b

is a function r which maps a pair of variables (X, Y) to a
floating-point number r(X, Y) such that X2 − aXY + bY2 ≤
r(X, Y).

We briefly describe some primitives and transfer functions
of our domain:

• Assignments. Let r ∈ εa,b be the abstract element de-
scribing some constraints before a statement X := e, our
goal is to compute the abstract element r′ describing a set
of constraints satisfied after this statement:

1. in case e is a variable Y, each constraint containing Y

gives a constraint for X. Formally, we take r′ such that
r′(U, V ) = r(σU,σV ) where σ is the substitution of the
variable Y for the variable X;

2. in case e is an expression of the form aY+ bZ+ t, we first
remove any constraint containing X, then we add a new
constraint for X and Y. We therefore take:

r
′ = r[(X, ) 7→ +∞][( , X) 7→ +∞][(X, Y) 7→ δ(r(Y, Z))] .



We have used the function δ defined as follows:

δ(k) =

  
√

b +

 
4f

|a|
√

b + b√
4b − a2

!!
√

k + (1 + f)tM

!2

where f is the greatest relative error of a float with re-
spect to a real and t ∈ [−tM , tM ]. Indeed, we can show
that, if Y2 − aYZ + bZ2 ≤ k and X = aY − bZ + t, then in
exact real arithmetic X2 − aXY+ bY2 ≤ (

√
bk + tM )2, and

taking into account rounding errors, we get the above
formula for δ(k);

3. otherwise, we remove all constraints containing X by tak-
ing r′ = r[(X, ) 7→ +∞][( , X) 7→ +∞]3.

• Guards are ignored, i.e., r′ = r.
• Abstract union, intersection, widening and narrowing

are computed component-wise. The widening uses thresh-
olds as described in Sect. 7.1.2.

The abstract domain εa,b cannot compute accurate re-
sults by itself, mainly because of inaccurate assignments (in
case 3.) and guards. Hence we use an approximate reduced
product with the interval domain. A reduction step con-
sists in substituting in the function r the image of a couple
(X, Y) by the smallest element among r(X, Y) and the floating-
point number k such that k is the least upper bound to the
evaluation of the expression X2 − aXY + bY2 in the floating-
point numbers when considering the computed interval con-
straints. In case the values of the variable X and Y are proved
to be equal, we can be much more precise and take the small-
est element among r(X, Y) and the least upper bound to the
evaluation of the expression (1 − a + b)X2.

These reduction steps are performed:
• before computing the union between two abstract ele-

ments r1 and r2, we reduce each constraint ri(X, Y) such that
ri(X, Y) = +∞ and r3−i(X, Y) 6= +∞ (where i ∈ {1; 2});

• before computing the widening between two abstract
elements r1 and r2, we reduce each constraint r2(X, Y) such
that r2(X, Y) = +∞ and r1(X, Y) 6= +∞;

• before an assignment of the form X′ := aX− bY + t, we
refine the constraints r(X, Y).
These reduction steps are especially useful in handling a
reinitialization iteration.

Ellipsoidal constraints are then used to reduce the in-
tervals of variables: after each assignment A of the form

X′ := aX− bY + t, we use the fact that |X′| ≤ 2
√

b
q

r′(X′,X)

4b−a2
,

where r′ is the abstract element describing a set of ellipsoidal
constraints just after the assignment A.

This approach is generic and has been applied to handle
the digital filters in the program.

6.2.4 The Decision Tree Abstract Domain
Apart from numerical variables, the code uses also a

great deal of boolean values, and no classical numerical do-
main deals precisely enough with booleans. In particular,
booleans can be used in the control flow and we need to re-
late the value of the booleans to some numerical variables.
Here is an example:

B := (X=0);
if (¬ B) Y := 1/X;

We found also more complex examples where a numeri-
cal variable could depend on whether a boolean value had

3 This is also the case for initialization.

changed or not. In order to deal precisely with those exam-
ples, we implemented a simple relational domain consisting
in a decision tree with leaf an arithmetic abstract domain4.
The decision trees are reduced by ordering boolean variables
(as in [6]) and by performing some opportunistic sharing of
subtrees.

The only problem with this approach is that the size of
decision trees can be exponential in the number of boolean
variables, and the code contains thousands of global ones.
So we extracted a set of variable packs, and related the
variables in the packs only, as explained in Sect. 7.2.3.

6.3 Symbolic Manipulation of Expressions
We observed, in particular for non-relational abstract do-

mains, that transfer functions proceeding by structural in-
duction on expressions are not precise when the variables
in the expression are not independent. Consider, for in-
stance, the simple assignment X := X− 0.2 ∗ X performed in
the interval domain in the environment X ∈ [0, 1]. Bottom-
up evaluation will give X − 0.2 ∗ X ⇒ [0, 1] − 0.2 ∗ [0, 1] ⇒
[0, 1] − [0, 0.2] ⇒ [−0.2, 1]. However, because the same X

is used on both sides of the − operator, the precise result
should have been [0, 0.8].

In order to solve this problem, we perform some simple
algebraic simplifications on expressions before feeding them
to the abstract domain. Our approach is to linearize each
expression e, that is to say, transform it into a linear form
`JeK on the set of variables v1, . . . , vN with interval coeffi-

cients: `JeK =
PN

i=1[αi, βi]vi +[α, β]. The linear form `JeK is
computed by recurrence on the structure of e. Linear oper-
ators on linear forms (addition, subtraction, multiplication
and division by a constant interval) are straightforward. For
instance, `JX− 0.2 ∗ XK = 0.8 ∗ X, which will be evaluated to
[0, 0.8] in the interval domain. Non-linear operators (multi-
plication of two linear forms, division by a linear form, non-
arithmetic operators) are dealt by evaluating one or both
linear form argument into an interval.

Although the above symbolic manipulation is correct in
the real field, it does not match the semantics of C expres-
sions for two reasons:

• floating-point computations incur rounding;
• errors (division by zero, overflow, etc.) may occur.
Thankfully, the systems we consider conform to the IEEE

754 norm [23] that describes rounding very well (so that,
e.g., the compiler should be prevent from using the multiply-
add-fused instruction on machines for which the result of a
multiply-add computation may be slightly different from the
floating point operation operation A + (B ×C) for some in-
put values A, B, C). Thus, it is easy to modify the recursive
construction of linear forms from expressions to add the er-
ror contribution for each operator. It can be an absolute
error interval, or a relative error expressed as a linear form.
We have chosen the absolute error which is more easily im-
plemented and turned out to be precise enough.

To address the second problem, we first evaluate the ex-
pression in the abstract interval domain and proceed with
the linearization to refine the result only if no possible arith-
metic error was reported. We are then guaranteed that the
simplified linear form has the same semantics as the initial
expression.

4The arithmetic abstract domain is generic. In practice, the
interval domain was sufficient.



7. ADAPTATION VIA PARAMETRIZA-
TION

In order to adapt the analyzer to a particular program
of the considered family, it may be necessary to provide in-
formation to help the analysis. A classical idea is to have
users provide assertions (which can be proved to be invari-
ants and therefore ultimately suppressed). Another idea is
to use parametrized abstract domains in the static program
analyzer. Then the static analysis can be adapted to a par-
ticular program by an appropriate choice of the parameters.
We provide several examples in this section. Moreover we
show how the analyzer itself can be used in order to help or
even automatize the appropriate choice of these parameters.

7.1 Parametrized Iteration Strategies

7.1.1 Loop Unrolling
In many cases, the analysis of loops is made more precise

by treating the first iteration of the loop separately from
the following ones; this is simply a semantic loop unrolling
transformation: a while loop may be expanded as follows:

if (condition) { body ; while (condition) { body } }
The above transformation can be iterated n times, where the
concerned loops and the unrolling factor n are user-defined
parameters. In general, the larger the n, the more precise
the analysis, and the longer the analysis time.

7.1.2 Widening with Thresholds
Compared to normal interval analysis [10, §2.1.2], ours

does not jump straight away to ±∞, but goes through a
number of thresholds. The widening with thresholds

`
T

for the interval analysis of Sect. 6.2.1 is parametrized by
a threshold set T that is a finite set of numbers containing
−∞ and +∞ and defined such that:

[a, b]
`

T [a′
, b

′] = [if a′ < a then max{` ∈ T | ` ≤ a′} else a,
if b′ > b then min{h ∈ T | h ≥ b′} else b]

In order to illustrate the benefits of this parametrization
(see others in [5]), let x0 be the initial value of a variable X

subject to assignments of the form X := αi ∗ X + βi, i ∈ ∆
in the main loop, where the αi, βi, i ∈ ∆ are floating point
constants such that 0 ≤ αi < 1. Let be any M such that

M ≥ max{|x0|, |βi|
1−αi

, i ∈ ∆}. We have M ≥ |x0| and

M ≥ αiM + |βi| and so all possible sequences x0 = x0,
xn+1 = αix

n +βi, i ∈ ∆ of values of variable X are bounded
since ∀n ≥ 0 : |xn| ≤ M . Discovering M may be difficult in
particular if the constants αi, βi, i ∈ ∆ depend on complex
boolean conditions. As long as the set T of thresholds con-
tains some number greater or equal to the minimum M , the
interval analysis of X with thresholds T will prove that the
value of X is bounded at run-time since some element of T

will be an admissible M .
In practice we have chosen T to be (±αλk)0≤k≤N . The

choice of α and λ mostly did not matter much in the first
experiments. After the analysis had been well refined and
many causes of imprecision removed, we had to choose a
smaller value for λ to remove some false alarms. In any
case, αλN should be large enough; otherwise, many false
alarms for overflow are produced.

7.1.3 Delayed Widening
When widening the previous iterate by the result of the

transfer function on that iterate at each step as in Sect. 5.5,
some values which can become stable after two steps of
widening may not stabilize. Consider the example:

X := Y + γ;
Y := α ∗ X + δ

This should be equivalent to Y := α ∗ Y + β (with β =
δ + αγ), and so a widening with thresholds should find a
stable interval. But if we perform a widening with thresh-
olds at each step, each time we widen Y, X is increased to
a value surpassing the threshold for Y, and so X is widened
to the next stage, which in turn increases Y further and the
next widening stage increases the value of Y. This eventually
results in top abstract values for X and Y.

In practice, we first do N0 iterations with unions on all
abstract domains, then we do widenings unless a variable
which was not stable becomes stable (this is the case of
Y here when the threshold is big enough as described in
Sect. 7.1.2). We add a fairness condition to avoid livelocks in
cases for each iteration there exists a variable that becomes
stable.

7.1.4 Floating Iteration Perturbation
The stabilization check for loops considered in Sect. 5.4

has to be adjusted because of the floating point computa-
tions in the abstract. Let us consider that [a, b] is the math-
ematical interval of values of a variable X on entry of a loop.
We let FC,A([a, b]) be the mathematical interval of values of
X after a loop iteration. C = R means that the concrete
operations in the loop are considered to be on mathematical
real numbers while C = F means that the concrete opera-
tions in the loop are considered to be on machine floating
point numbers. If FR,A([a, b]) = [a′, b′] then FF,A([a, b]) =
[a′ − ε1, b

′ + ε1] because of the cumulated concrete round-
ing errors ε1 ≥ 0 when evaluating the loop body5. The
same way A = R means that the interval abstract domain
is defined ideally using mathematical real numbers while
A = F means that the interval abstract domain is imple-
mented with floating point operations performing rounding
in the right direction. Again, if FC,R([a, b]) = [a′, b′] then
FC,F([a, b]) = [a′ − ε2, b

′ + ε2] because of the cumulated ab-
stract rounding errors during the static analysis of the loop
body. The analyzer might use FF,F which is sound since if
FR,R([a, b]) = [a′, b′] then FF,F([a, b]) = [a′−ε1−ε2, b

′+ε1+ε2]
which takes both the concrete and abstract rounding errors
into account (respectively ε1 and ε2).

Mathematically, a loop invariant for variable X is an in-
terval [a, b] such that FF,R([a, b]) ⊆ [a, b]. However, the loop
stabilization check is made as FF,F([a, b]) ⊆ [a, b], which is
sound but incomplete: if FF,R([a, b]) is very close to [a, b],
e.g. FF,R([a, b]) = [a, b] then, unfortunately, FF,F([a, b]) =
[a − ε2, b + ε2] * [a, b]. This will launch useless additional
iterations whence a loss of time and precision.

The solution we have chosen is to overapproximate FF,F

by bFF,F such that bFF,F([a, b]) = [a′− ε∗ |a′|, b′ + ε∗ |b′|] where
[a′, b′] = FF,F([a, b]) and ε is a parameter of the analyzer cho-
sen to be an upper bound of the possible abstract rounding
errors in the program loops. Then the loop invariant inter-

5 We take the rounding error on the lower and upper bound
to be the same for simplicity.



val is computed iteratively with bFF,F, which is simply less
precise than with FF,F, but sound. The loop stabilization
test is performed with FF,F which is sound. It is also more
precise in case ε∗(min{|a′|; |b′|}) is greater than the absolute
error on the computation of FF,F([a

′ − ε ∗ |a′|, b′ + ε ∗ |b′|]).
We have not investigated about the existence (nor about
the automatic computation) of such a parameter in the gen-
eral case yet, nevertheless attractiveness of the encountered
fixpoints made the chosen parameter convenient.

7.1.5 Trace Partitioning
In the abstract execution of the program, when a test

is met, both branches are executed and then the abstract
environments computed by each branch are merged. As de-
scribed in [5] we can get a more precise analysis by delaying
this merging.

This means that:
if (c) { S1 } else { S2 } rest

is analyzed as if it were

if (c) { S1; rest } else { S2; rest } .

A similar technique holds for the unrolled iterations of loops.
As this process is quite costly, the analyzer performs this

trace partitioning in a few end-user selected functions, and
the traces are merged at the return point of the function.
Informally, in our case, the functions that need partitioning
are those iterating simultaneously over arrays a[] and b[]

such that a[i] and b[i] are linked by an important numer-
ical constraint which does not hold in general for a[i] and
b[j] where i 6= j. This solution was simpler than adding
complex invariants to the abstract domain.

7.2 Parametrized Abstract Domains
Recall that our relational domains (octagons of Sect. 6.2.2,

and decision trees of Sect. 6.2.4) operate on small packs of
variables for efficiency reasons. This packing is determined
syntactically before the analysis. The packing strategy is a
parameter of the analysis; it gives a trade-off between accu-
racy (more, bigger packs) and speed (fewer, smaller packs).
The strategy must also be adapted to the family of programs
to be analyzed.

7.2.1 Packing for Octagons
We determine a set of packs of variables and use one oc-

tagon for each pack. Packs are determined once and for
all, before the analysis starts, by examining variables that
interact in linear assignments within small syntactic blocks
(curly-brace delimited blocks). One variable may appear in
several packs and we could do some information propagation
(i.e. reduction [9]) between octagons at analysis time, using
common variables as pivots; however, this precision gain was
not needed in our experiments. There is a great number of
packs, but each pack is small; it is our guess that our packing
strategy constructs, for our program family, a linear num-
ber of constant-sized octagons, effectively resulting in a cost
linear in the size of the program. Moreover, the octagon
packs are efficiently manipulated using functional maps, as
explained in Sect. 6.1.2, to achieve sub-linear time costs via
sharing of unmodified octagons.

Our current strategy is to create one pack for each syn-
tactic block in the source code and put in the pack all vari-
ables that appear in a linear assignment or test within the
associated block, ignoring what happens in sub-blocks of

the block. For example, on a program of 75 kLOC, 2,600
octagons were detected, each containing four variables on
average. Larger packs (resulting in increased cost and pre-
cision) could be created by considering variables appearing
in one or more levels of nested blocks; however, we found
that, in our program family, it does not improve precision.

7.2.2 Packing Optimization for Octagons
Our analyzer outputs, as part of the result, whether each

octagon actually improved the precision of the analysis. It
is then possible to re-run the analysis using only packs that
were proven useful, thus greatly reducing the cost of the
analysis. (In our 75 kLOC example, only 400 out of the
2,600 original octagons were in fact useful.) Even when the
program or the analysis parameters are modified, it is per-
fectly safe to use a list of useful packs output by a previous
analysis. We experimented successfully with the following
method: generate at night an up-to-date list of good oc-
tagons by a full, lengthy analysis and work the following
day using this list to cut analysis costs.

7.2.3 Packing for Decision Trees
In order to determine useful packs for the decision trees

of Sect. 6.2.4, we used the following strategy: each time a
numerical variable assignment depends on a boolean, or a
boolean assignment depends on a numerical variable, we put
both variables in a tentative pack. If, later, we find a pro-
gram point where the numerical variable is inside a branch
depending on the boolean, we mark the pack as confirmed.
In order to deal with complex boolean dependences, if we
find an assignment b := expr where expr is a boolean ex-
pression, we add b to all packs containing a variable in expr.
In the end, we just keep the confirmed packs.

At first, we restrained the boolean expressions used to ex-
tend the packs to simple boolean variables (we just consid-
ered b := b’) and the packs contained at most four boolean
variables and dozens of false alarms were removed. But we
discovered that more false alarms could be removed if we ex-
tended those assignments to more general expressions. The
problem was that packs could then contain up to 36 boolean
variables, which gave very bad performance. So we added
a parameter to restrict arbitrarily the number of boolean
variables in a pack. Setting this parameter to three yields
an efficient and precise analysis of boolean behavior.

8. EXPERIMENTAL RESULTS
The main program we are interested in is 132,000 lines of

C with macros (75 kLOC after preprocessing and simplifi-
cation as in Sect. 5.1) and has about 10,000 global/static
variables (over 21,000 after array expansion as in Sect. 6.1).
We had 1,200 false alarms with the analyzer [5] we started
with. The refinements of the analyzer described in this pa-
per reduce the number of alarms down to 11 (and even 3,
depending on the versions of the analyzed program). Fig. 2
gives the total analysis time for a family of related programs
on commodity hardware (2.4 GHz, 1 Gb RAM PC), using a
slow but precise iteration strategy.

The memory consumption of the analyzer is reasonable
(550 Mb for the full-sized program). Several parameters, for
instance the size of the octagon packs (Sect. 7.2.1), allow for
a space-precision trade-off.

The packing optimization strategy of reusing results
from preceding analysis to reduce the number of octagons
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Figure 2: Total analysis time for the family of pro-
grams without packing optimization (Sect. 7.2.2).

(Sect. 7.2.2) reduces, on the largest example code, mem-
ory consumption from 550 Mb to 150 Mb and time from
1 h 40 min to 40 min. Furthermore, the current automatic
tuning of the iteration strategy may be made more efficient,
using fewer iterations and thus reducing analysis time.

9. RELATED WORK
Let us discuss some other verification methods that could

have been considered. Dynamic checking methods were ex-
cluded for a safety critical system (at best data can be col-
lected at runtime and checked offline). Static methods re-
quiring compiler or code instrumentation (such as [15]) were
also excluded in our experiment since the certified compiler
as well as the compiled code, once certified by traditional
methods, cannot be modified without costly re-certification
processes. Therefore we only consider the automated static
proof of software run-time properties, which has been a re-
current research subject since a few decades.

9.1 Software Model Checking
Software model checking [22] has proved very useful to

trace logical design errors, which in our case has already
been performed at earlier stages of the software develop-
ment, whereas we concentrate on abstruse machine imple-
mentation aspects of the software. Building a faithful model
of the program (e.g. in Promela for Spin [22]) would be just
too hard (it can take significantly more time to write a model
than it did to write the code) and error-prone (by checking a
manual abstraction of the code rather than the code itself, it
is easy to miss errors). Moreover the abstract model would
have to be designed with a finite state space small enough
to be fully explored (in the context of verification, not just
debugging), which is very difficult in our case since sharp
data properties must be taken into account. So it seems im-
portant to have the abstract model automatically generated
by the verification process, which is the case of the abstract
semantics in static analyzers.

9.2 Dataflow Analysis and Software Abstract
Model Checking

Dataflow analyzers (such as ESP [14]) as well as abstrac-
tion based software model checkers (such as a.o. Blast [21],
CMC [31] and Slam [4]) have made large inroads in tackling

programs of comparable size and complexity. Their impres-
sive performance is obtained thanks to coarse abstractions
(e.g. resulting from a program “shrinking” preprocessing
phase [14, 1] or obtained by a globally coarse but locally pre-
cise abstraction [31]). In certain cases, the abstract model
is just a finite automaton, whose transitions are triggered
by certain constructions in the source code [15]; this allow
checking at the source code level high-level properties, such
as “allocated blocks of memory are freed only once” or “in-
terrupts are always unmasked after being blocked”, ignoring
dependencies on data.

The benefit of this coarse abstraction is that only a small
part of the program control and/or data have to be consid-
ered in the actual verification process. This idea did not
work out in our experiment since merging paths or data in-
evitably leads to many false alarms. On the contrary we had
to resort to context-sensitive polyvariant analyses (Sect. 5.4)
with loop unrolling (Sect. 7.1.1) so that the size of the (se-
mantically) “expanded” code to analyze is much larger than
that of the original code. Furthermore, the properties we
prove include fine numerical constraints, which excludes sim-
ple abstract models.

9.3 Deductive Methods
Proof assistants (such as Coq [33], ESC [17] or PVS [32])

face semantic problems when dealing with real-life program-
ming languages. First, the prover has to take the machine-
level semantics into account (e.g., floating-point arithmetic
with rounding errors as opposed to real numbers, which is
far from being routinely available 6). Obviously, any tech-
nique for analyzing machine arithmetic will face the same
semantic problems. However, if the task of taking concrete
and rounding errors into account turned out to be feasible
for our automated analyzer, this task is likely to be daunt-
ing in the case of complex decision procedures operating on
ideal arithmetic [32]. Furthermore, exposing to the user the
complexity brought by those errors is likely to make assisted
manual proof harrowing.

A second semantic difficulty is that the prover needs to
operate on the C source code, not on some model written
in a prototyping language so that the concrete program se-
mantics must be incorporated in the prover (at least in the
verification condition generator). Theoretically, it is possi-
ble to do a “deep embedding” of the analyzed program into
the logic of the proof assistant — that is, providing a mathe-
matical object describing the syntactic structure of the pro-
gram as well as a formal semantics of the programming lan-
guage. Proving any interesting property is then likely to be
extremely difficult. “Shallow embeddings” — mapping the
original program to a corresponding “program” in the input
syntax of the prover — are easier to deal with, but may
be difficult to produce in the presence of nondeterministic
inputs, floating-point rounding errors etc. . .

The last and main difficulty with proof assistants is that
they must be assisted, in particular to help providing induc-
tive arguments (e.g. invariants). Of course these provers
could integrate abstract domains in the form of abstrac-
tion procedures (to perform online abstractions of arbitrary
predicates into their abstract form) as well as decision pro-
cedures (e.g. to check for abstract inclusion v]). The main
problem is to have the user provide program independent

6For example ESC is simply unsound with respect to mod-
ular arithmetics [17].



hints, specifying when and where these abstraction and de-
cision procedures must be applied, as well as how the induc-
tive arguments can be discovered, e.g. by iterative fixpoint
approximation, without ultimately amounting to the imple-
mentation of a static program analysis.

Additionally, our analyzer is designed to run on a whole
family of software, requiring minimal adaptation to each
individual program. In most proof assistants, it is difficult
to change the program without having to do a considerable
amount of work to adapt proofs.

9.4 Predicate Abstraction
Predicate abstraction, which consists in specifying an ab-

straction by providing the atomic elements of the abstract
domain in logical form [19] e.g. by representing sets of states
as boolean formulas over a set of base predicates, would cer-
tainly have been the best candidate. Moreover most imple-
mentations incorporate an automatic refinement process by
success and failure [2, 21] whereas we successively refined
our abstract domains manually, by experimentation. In ad-
dition to the semantic problems shared by proof assistants,
a number of difficulties seem to be insurmountable to auto-
mate this design process in the present state of the art of
deductive methods:

9.4.1 State Explosion Problem:
To get an idea of the size of the necessary state space,

we have dumped the main loop invariant (a textual file over
4.5 Mb).

The main loop invariant includes 6,900 boolean interval
assertions (x ∈ [0, 1]), 9,600 interval assertions (x ∈ [a, b]),
25,400 clock assertions (Sect. 6.2.1), 19,100 additive octago-
nal assertions (a ≤ x + y ≤ b), 19,200 subtractive octagonal
assertions (a ≤ x− y ≤ b, see Sect. 6.2.2), 100 decision trees
(Sect. 6.2.4) and 1,900 ellipsoidal assertions (Sect. 6.2.3)7.

In order to allow for the reuse of boolean model check-
ers, the conjunction of true atomic predicates is usually en-
coded as a boolean vector over boolean variables associated
to each predicate [19] (the disjunctive completion [9] of this
abstract domain can also be used to get more precision [2,
21], but this would introduce an extra exponential factor).
Model checking state graphs corresponding to several tenths
of thousands of boolean variables (not counting hundreds of
thousands of program points) is still a real challenge. More-
over very simple static program analyzes, such as Kildall’s
constant propagation [24], involve an infinite abstract do-
main which cannot be encoded using finite boolean vectors
thus requiring the user to provide beforehand all predicates
that will be indispensable to the static analysis (for exam-
ple the above mentioned loop invariant involves, e.g., over
16,000 floating point constants at most 550 of them appear-
ing in the program text).

Obviously some of the atomic predicates automatically
generated by our analysis might be superfluous. On one
hand it is hard to say which ones and on the other hand this
does not count all other predicates that may be indispens-
able at some program point to be locally precise. Another
approach would consist in trying to verify each potential

7Figures are rounded to the closest hundred. We get more
assertions than variables because in the 10,000 global vari-
ables arrays are counted once whereas the element-wise ab-
straction yields assertions on each array element. Boolean
assertions are needed since booleans are integers in C.

faulty operation separately (e.g., focus on one instruction
that may overflow at a time) and generate the abstractions
lazily [21]. Even though repeating this analysis over 100,000
times might be tractable, the real difficulty is to automat-
ically refine the abstract predicates (e.g. to discover that
considered in Prop. 1).

9.4.2 Predicate Refinement:
Predicate abstraction per se uses a finite domain and is

therefore provably less powerful than our use of infinite ab-
stract domains (see [12], the intuition is that all inductive as-
sertions have to be provided manually). Therefore predicate
abstraction is often accompanied by a refinement process to
cope with false alarms [2, 21].

Under specific conditions, this refinement can be proved
equivalent to the use of an infinite abstract domain with
widening [3].

Formally this refinement is a fixpoint computation [7, 18]
at the concrete semantics level, whence introduces new el-
ements in the abstract domain state by state without ter-
mination guarantee whereas, e.g., when introducing clocks
from intervals or ellipsoids from octagons we exactly look
for an opposite more synthetic point of view. Therefore the
main difficulty of counterexample-based refinement is still
to automate the presently purely intellectual process of de-
signing precise and efficient abstract domains.

10. CONCLUSION
In this experiment, we had to cope with stringent require-

ments. Industrial constraints prevented us from requiring
any change in the production chain of the code. For in-
stance, it was impossible to suggest changes to the library
functions that would offer the same functionality but would
make the code easier to analyze. Furthermore, the code
was mostly automatically generated from a high-level spec-
ification that we could not have access to, following rules of
separation of design and verification meant to prevent the
intrusion of unproved high-level assumptions into the verifi-
cation assumptions. It was therefore impossible to analyze
the high-level specification instead of analyzing the C code.

That the code was automatically generated had contrary
effects. On the one hand, the code fit into some narrow
subclass of the whole C language. On the other hand, it
used some idioms not commonly found in human-generated
code that may make the analysis more difficult; for instance,
where a human would have written a single test with a
boolean connective, the generated code would make one test,
store the result into a boolean variable, do something else
do the second test and then retrieve the result of the first
test. Also, the code maintains a considerable number of
state variables, a large number of these with local scope but
unlimited lifetime. The interactions between several com-
ponents are rather complex since the considered program
implement complex feedback loops across many interacting
components.

Despite those difficulties, we developed an analyzer with
a very high precision rate, yet operating with reasonable
computational power and time. Our main effort was to
discover an appropriate abstraction which we did by man-
ual refinement through experimentation of an existing ana-
lyzer [5] and can be later adapted by end-users to particular
programs through parametrization (Sect. 6.3 and 7). To



achieve this, we had to develop two specialized abstract do-
mains (Sect. 6.2.3 and 6.2.4) and improve an existing domain
(Sect. 6.2.2).

The central idea in this approach is that once the analyzer
has been developed by specialists, end-users can adapt it to
other programs in the family without much efforts. However
coming up with a tool that is effective in the hands of end
users with minimal expertise in program analysis is hard.
This is why we have left to the user the simpler parametriza-
tions only (such as widening thresholds in Sect. 7.1.2 easily
found in the program documentation) and automated the
more complex ones (such as parametrized packing Sect. 7.2).
Therefore, the approach should be economically viable.
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