Apparition de la composante géante pour un hypergraphe aléatoire

E. Coupelouchoux - M. Lelarge

INRIA-ENS

23 mars 2010
Outline

1. Giant component for random graphs
 - $G(n, p)$
 - $G(n, (d_i)_1^n)$

2. Hypergraphs and branching process approximation
 - Hypergraphs
 - Random hypergraphs
 - Branching process approximation

3. Giant component for random hypergraphs
 - Result
 - Exploring process
 - Differential equation approximation for Markov chains
Erdős-Rényi graphs

- **Model:**
 \[G(n, p) \text{ with } p = \frac{c}{n} \]
 \[C_1(n) = \text{largest connected component of } G \left(n, \frac{c}{n} \right) \]

- **Sub-critical phase:** \(c \leq 1 \) (no giant component)
 \[|C_1(n)| \xrightarrow{n \to \infty} o_p(n) \]

- **Super-critical phase:** \(c > 1 \) (giant component of order \(n \))
 \[\exists \rho > 0, |C_1(n)| \xrightarrow{n \to \infty} \rho n + o_p(n) \]
Graphs with given degree sequence \((d_i)_1^n\)

- **Model:**
 - For each \(n \in \mathbb{N}\), \((d_i)_1^n\) sequence of non-negative integers such that there exists a graph with degree sequence \((d_i)_1^n\)
 - \(G(n,(d_i)_1^n)\) random graph with degree sequence \((d_i)_1^n\), uniformly chosen among all possibilities

- **Conditions:**
 - \(\exists (p_k)_{k=1}^\infty\) probability distribution such that:
 1. \(#\{i : d_i = k\}/n \to p_k\) as \(n \to \infty\), for every \(k \geq 0\)
 2. \(\sum_k kp_k \in (0; \infty)\)
 3. \(p_1 > 0\)
 4. \(\sum_i d_i^2 = O(n)\)
Graphs with given degree sequence \((d_i)_1^n\)

\[D \sim (p_k)_{k=1}^\infty \]
\[C_1(n) = \text{largest connected component of } G(n, (d_i)_1^n) \]

Theorem:

- **Sub-critical phase:** \(\mathbb{E}[D(D-1)] \leq \mathbb{E}[D]\) (no giant component)
 \[|C_1(n)| \xrightarrow{n \to \infty} o_p(n) \]

- **Super-critical phase:** \(\mathbb{E}[D(D-1)] > \mathbb{E}[D]\) (giant component of order \(n\))
 \[\exists \rho > 0, |C_1(n)| \xrightarrow{n \to \infty} \rho n + o_p(n) \]
Hypergraph : definition

V and E finite sets

Hypergraph : $\gamma \subseteq V \times E$

$V = \{\text{vertices}\}$

$E = \{\text{hyper-edges}\}$

Degree of a vertex $v = \text{its number of edges}$

Weight of a hyper-edge $e = \text{its number of edges}$
Degree and weight functions:

\[d : \begin{cases} V & \rightarrow \mathbb{N} \\
 v & \mapsto d(v) = \text{degree of } v \\
\end{cases} \]

\[w : \begin{cases} E & \rightarrow \mathbb{N} \\
 e & \mapsto w(e) = \text{weight of } e \\
\end{cases} \]

Degree and weight frequency vectors:

\[p = (p_1, \ldots, p_L) : p_d = \text{number of vertices of degree } d \]
\[q = (q_1, \ldots, q_L) : q_w = \text{number of hyper-edges of weight } w \]

Correspondence

\[p = (|d^{-1}([1]|), \ldots, |d^{-1}([L]|)) = n(d) \]
\[q = (|w^{-1}([1]|), \ldots, |w^{-1}([L]|)) = n(w) \]
\[p = (2, 2, 1, 0) \]
\[q = (1, 2, 0, 1) \]
\[m = \sum_{d=1}^{L} dp_d = \sum_{w=1}^{L} wq_w \text{ (number of edges)} \]
Random hypergraphs

- \(p = (p_1, \ldots, p_L) \) and \(q = (q_1, \ldots, q_L) \) fixed vectors such that
 \[\sum_{d=1}^{L} dp_d = \sum_{w=1}^{L} wq_w = m \]
- Choose \(V, \ E \) finite sets, \(d \) degree function and \(w \) weight function such that \(n(d) = Np \) and \(n(w) = Nq \), for \(N \in \mathbb{N}^* \)
- \(G(d, w) \) = set of all hypergraphs on \(V \times E \) with degree function \(d \) and weight function \(w \)
- \(\Gamma \) random hypergraph taken uniformly at random in \(G(d, w) \) (\(\Gamma \sim U(d, w) \))
- Number of edges = \(Nm\), number of vertices = \(N\|p\|_1\), number of hyper-edges = \(N\|q\|_1\)
Size of the largest component when $N \to \infty$?

Connected component of a given vertex:

EXPLORATION ALGORITHM
Size of the largest component when $N \to \infty$?

Connected component of a given vertex:

EXPLORATION ALGORITHM
Size of the largest component when $N \to \infty$?

Connected component of a given vertex:

EXPLORATION ALGORITHM
Size of the largest component when $N \to \infty$?

Connected component of a given vertex:

EXPLORATION ALGORITHM
Size of the largest component when $N \to \infty$?

Connected component of a given vertex:

EXPLORATION ALGORITHM
Size of the largest component when $N \to \infty$?

Connected component of a given vertex:

EXPLORATION ALGORITHM

Need to explore a proportion α of the vertices
Branching process approximation: a way to guess the result

\[\Gamma \sim U(d, w) \] converges locally, when \(N \to \infty \), to a tree

Corresponding random tree:

- **Alternating one**: generation of nodes of type \(V \) / generation of nodes of type \(E \)
- Except root, each node of type \(V \) has \(d - 1 \) offsprings with probability \(\frac{dpd}{m} \)
- Each of type \(E \) has \(w - 1 \) offsprings with probability \(\frac{wqw}{m} \)
Algorithm on the tree

- **Step 0**: Let $\alpha > 0$ and turn each vertex into **alive** with probability α
- **Step 1a**: turn into **alive** all individuals of type E having some alive vertex as an offspring
- **Step 1b**: turn into **alive** all individuals of type V having some alive hyper-edge as an offspring
- **Repeat** step 1 infinitely often
Algorithm on the tree

- **Step 0**: Let $\alpha > 0$ and turn each vertex into **alive** with probability α
- **Step 1a**: turn into **alive** all individuals of type E having some alive vertex as an offspring
- **Step 1b**: turn into **alive** all individuals of type V having some alive hyper-edge as an offspring
- **Repeat** step 1 infinitely often
Algorithm on the tree

- **Step 0**: Let $\alpha > 0$ and turn each vertex into alive with probability α
- **Step 1a**: turn into alive all individuals of type E having some alive vertex as an offspring
- **Step 1b**: turn into alive all individuals of type V having some alive hyper-edge as an offspring
- **Repeat** step 1 infinitely often
How to guess the result

Definitions

\[s_0 = g_0 = 1 \]

\[s_n = \mathbb{P}(\text{after } n \text{ steps, a hyper-edge } e \text{ is not alive}) \]

\[g_{n+1} = \mathbb{P}(\text{after } n \text{ steps, a vertex } v \text{ is not alive}) \]

\[s_n = \sum_w \frac{w q_w}{m} (g_n)^{w-1} \]

\[=: \sigma(g_n) \]

\[g_{n+1} = (1 - \alpha) \sum_d \frac{d p_d}{m} (s_n)^{d-1} \]

\[=: \phi_\alpha(g_n) \]
How to guess the result

- ϕ_α maps continuously $[0, 1]$ to $[0, 1)$ and is increasing, so $(g_n)_{n \geq 0}$ converges to

 $$z^*_\alpha = \text{largest root of } \phi_\alpha(z) = z \text{ in } [0, 1)$$

- Proportion of alive vertices:

 $$P(\alpha) = 1 - (1 - \alpha) \sum_d \frac{p_d}{\|p\|_1} (\sigma(z^*_\alpha))^d$$
Two different behaviours

\[f_\alpha(z) = z - \phi_\alpha(z) \]

\[P(\alpha) \xrightarrow{\alpha \to 0} 0 \]
\[\iff \lim_{\alpha \to 0} f'_\alpha(1) \geq 0 \]

\[P(\alpha) \xrightarrow{\alpha \to 0} \lambda_0 > 0 \]
\[\iff \lim_{\alpha \to 0} f'_\alpha(1) < 0 \]
- D random variable such that $\mathbb{P}(D = d) \propto p_d$

$$
\phi_D(z) = \sum_{d=1}^{L} \frac{p_d}{\|p\|_1} z^d
$$

- W random variable such that $\mathbb{P}(W = w) \propto q_w$

$$
\phi_W(z) = \sum_{w=1}^{L} \frac{q_w}{\|q\|_1} z^w
$$

$$
f_\alpha(z) = z - (1 - \alpha) \frac{1}{E[D]} \phi'_D \left(\frac{1}{E[W]} \phi'_W(z) \right)
$$
When $N \to \infty$, is there a giant component of order N?

- $C_1(N) =$ largest connected component of $\Gamma \sim U(d, w)$
- D random variable such that $\mathbb{P}(D = d) \propto p_d$
- W random variable such that $\mathbb{P}(W = w) \propto q_w$

Theorem

Case (i)
If $\mathbb{E}[D(D - 1)] \mathbb{E}[W(W - 1)] \leq \mathbb{E}[D] \mathbb{E}[W]$
then for each $\epsilon > 0$,
$$\mathbb{P} \left(\frac{|C_1(N)|}{N} > \epsilon \right) \to 0$$
(there is no giant component)

Case (ii)
If $\mathbb{E}[D(D - 1)] \mathbb{E}[W(W - 1)] > \mathbb{E}[D] \mathbb{E}[W]$
then, there exists $\lambda > 0$ such that, for each $\epsilon > 0$,
$$\mathbb{P} \left(\left| \frac{|C_1(N)|}{N} - \lambda \right| > \epsilon \right) \to 0$$
(there exists a giant component of order N)
Exploring process

- Exploring the component of a given vertex
- Active vertices = those we want to explore the component
- $\alpha > 0$: activate each vertex independently with proba α
- 3 types of vertices : sleeping, alive, dead
 - sleeping = we haven’t explored it
 - alive = we must explore it
 - dead = we have explored it
Exploring process : algorithm

1. Initially, label active vertices as alive, and non-active ones as sleeping.
2. While there is a vertex that is alive do
3. \hspace{1em} Choose a vertex v uniformly at random among all alive vertices
4. \hspace{1em} For all hyper-edges e that contains v but no dead vertex do
5. \hspace{2em} For all sleeping vertices u connected with e do
6. \hspace{3em} Label u as alive
7. \hspace{1em} Label v as dead
Exploring process: algorithm

1. Initially, label active vertices as alive, and non-active ones as sleeping.
2. While there is a vertex that is alive do
3. Choose a vertex v uniformly at random among all alive vertices.
4. For all hyper-edges e that contains v but no dead vertex do
 For all sleeping vertices u connected with e do
5. Label u as alive.
6. Label v as dead.
Exploring process: algorithm

1. Initially, label active vertices as alive, and non-active ones as sleeping.
2. While there is a vertex that is alive do
3. Choose a vertex v uniformly at random among all alive vertices.
4. For all hyper-edges e that contains v but no dead vertex do
5. For all sleeping vertices u connected with e do
6. Label u as alive.
7. Label v as dead.
Exploring process: algorithm

1. Initially, label active vertices as alive, and non-active ones as sleeping.
2. While there is a vertex that is alive do
3. Choose a vertex v uniformly at random among all alive vertices.
4. For all hyper-edges e that contains v but no dead vertex do
5. For all sleeping vertices u connected with e do
6. Label u as alive.
7. Label v as dead.
Exploring process : algorithm

1. Initially, label active vertices as alive, and non-active ones as sleeping
2. While there is a vertex that is alive do
 3. Choose a vertex v uniformly at random among all alive vertices
 4. For all hyper-edges e that contains v but no dead vertex do
 5. For all sleeping vertices u connected with e do
 6. Label u as alive
 7. Label v as dead
Exploring process: algorithm

1. Initially, label active vertices as alive, and non-active ones as sleeping
2. While there is a vertex that is alive do
3. Choose a vertex \(v \) uniformly at random among all alive vertices
4. For all hyper-edges \(e \) that contains \(v \) but no dead vertex do
5. For all sleeping vertices \(u \) connected with \(e \) do
6. Label \(u \) as alive
7. Label \(v \) as dead
Exploring process : algorithm

1. Initially, label active vertices as alive, and non-active ones as sleeping
2. While there is a vertex that is alive do
 3. Choose a vertex \(v \) uniformly at random among all alive vertices
 4. For all hyper-edges \(e \) that contains \(v \) but no dead vertex do
 5. For all sleeping vertices \(u \) connected with \(e \) do
 6. Label \(u \) as alive
 7. Label \(v \) as dead
Exploring process: algorithm

1. Initially, label active vertices as alive, and non-active ones as sleeping
2. While there is a vertex that is alive do
3. Choose a vertex v uniformly at random among all alive vertices
4. For all hyper-edges e that contains v but no dead vertex do
5. For all sleeping vertices u connected with e do
6. Label u as alive
7. Label v as dead
Exploring process: algorithm

1. Initially, label active vertices as alive, and non-active ones as sleeping.
2. While there is a vertex that is alive do
3. Choose a vertex v uniformly at random among all alive vertices
4. For all hyper-edges e that contains v but no dead vertex do
5. For all sleeping vertices u connected with e do
6. Label u as alive
7. Label v as dead
Exploring process: algorithm

1. Initially, label active vertices as alive, and non-active ones as sleeping.
2. While there is a vertex that is alive do
3.
 Choose a vertex v uniformly at random among all alive vertices.
4.
 For all hyper-edges e that contains v but no dead vertex do
5.

 For all sleeping vertices u connected with e do
6.

 Label u as alive
7.
 Label v as dead
Exploring process: algorithm

1. Initially, label active vertices as alive, and non-active ones as sleeping.
2. While there is a vertex that is alive do
3. Choose a vertex v uniformly at random among all alive vertices.
4. For all hyper-edges e that contains v but no dead vertex do
5. For all sleeping vertices u connected with e do
6. Label u as alive.
7. Label v as dead.
Jumping chain

- **Sequence of random hypergraphs**
 - $\Gamma_0 = \Gamma \sim U(d, w)$
 - $\Gamma_n = \Gamma_{n-1} \setminus \{\text{dead vertex and its hyper-edges}\}$
 - $D_n, W_n = \text{degree and weight functions of } \Gamma_n$
 - Conditionally on the past, $\Gamma_n \sim U(D_n, W_n)$

- **Markov chain**
 $\xi_{d,d',0}^n = \text{nb of non active vertices with current degree } d \text{ and initial degree } d'$
 $\xi_{d,d',1}^n = \text{nb of active vertices with current degree } d \text{ and initial degree } d'$
 $\xi_w^n = \text{nb of hyper-edges with current weight } w$

 $\xi_n = \left(\xi_{d,d',k}^n, \xi_w^n : 0 \leq d \leq d', k \in \{0,1\}, 0 \leq w\right)$

 $(\xi_n)_{n \geq 0} \text{ is a Markov chain}$
Differential equation approximation

- \((X_t)\) continuous-time Markov chain with jump chain \((\xi_n)\)
- Coordinate functions:
 \[
 Y_t = \left(\frac{X_t^{d,d,0}}{N}, \frac{X_t^w}{N} : 1 \leq d \leq L, 1 \leq w \leq L \right)
 \]
- Estimation of the generator
- Differential equation approximation:
 \[
 \begin{align*}
 x_t^w &= e^{-tw} q_w \\
 x_t^{d,d,0} &= \sigma(e^{-t})^d (1 - \alpha)p_d
 \end{align*}
 \]
- Terminal values
Proportion of dead vertices

- End of the algorithm
 \[\iff \text{number of edges connected with alive vertices} = 0 \]
 \[\iff \sum_w w x_t^w - \sum_d d x_t^{d,0} = 0 \]
 \[\iff f_\alpha(e^{-t}) = 0 \]

- Proportion of dead vertices:
 \[
P(\alpha) = 1 - \frac{|\{\text{remained vertices}\}|}{|\{\text{initial vertices}\}|} = 1 - \frac{1}{\|p\|_1} \sum_d \sigma(z^*_\alpha)^d (1 - \alpha) p_d
\]
Two different behaviours

\[f_\alpha(z) = z - \phi_\alpha(z) \]

\[P(\alpha) \rightarrow 0 \quad \text{as} \quad \alpha \rightarrow 0 \]

\[\lim_{\alpha \rightarrow 0} f'_\alpha(1) \geq 0 \]

\[P(\alpha) \rightarrow \lambda_0 > 0 \quad \text{as} \quad \alpha \rightarrow 0 \]

\[\lim_{\alpha \rightarrow 0} f'_\alpha(1) < 0 \]
Conclusion

- As for random graphs, existence of a phase transition for the appearance of the giant component
- Branching process: a way to guess the result
- Markov chain: a tool for proving it
Conclusion

- As for random graphs, existence of a phase transition for the appearance of the giant component
- Branching process: a way to guess the result
- Markov chain: a tool for proving it

Thanks for your attention!
Some bibliography

How to guess the result

Definitions

\[s_0 = g_0 = 1 \]
\[s_n = P(\text{after } n \text{ steps, a hyper-edge } e \text{ isn’t alive}) \]
\[g_{n+1} = P(\text{after } n \text{ steps, a vertex } v \text{ isn’t alive}) \]
\[g_{n+1}^d = P(\text{a vertex of degree } d \text{ isn’t alive at time } n) \]

\[s_n = P(\text{every offspring of } e \text{ wasn’t alive at time } n - 1) \]
\[= \sum_w P(e \text{ has } w - 1 \text{ offsprings}) (P(\text{a given offspring } v \text{ isn’t alive at time } n - 1))^{w-1} \]
\[= \sum_w \frac{wq_w}{m} (g_n)^{w-1} \]
\[=: \sigma(g_n) \]
How to guess the result

\[g_{n+1}^d = \mathbb{P}(a \text{ vertex } v \text{ of degree } d \text{ isn’t alive at time } n \mid v \in V_A) \mathbb{P}(v \in V_A) \]

\[+ \mathbb{P}(a \text{ vertex } v \text{ of degree } d \text{ isn’t alive at time } n \mid v \notin V_A) \mathbb{P}(v \notin V_A) \]

\[= (1 - \alpha) \mathbb{P}(a \text{ vertex } v \text{ of degree } d \text{ isn’t alive at time } n \mid v \notin V_A) \]

\[= (1 - \alpha) \mathbb{P}(\text{none of the } d - 1 \text{ offsprings of } v \text{ is alive at time } n) \]

\[= (1 - \alpha) s_{n}^{d-1} \]

\[= (1 - \alpha) (\sigma(g_n))^{d-1} \]

\[g_{n+1} = \sum_d \mathbb{P}(v \text{ isn’t alive at time } n \mid v \text{ has degree } d) \mathbb{P}(v \text{ has degree } d) \]

\[= (1 - \alpha) \sum_d \frac{d \rho_d}{m} (\sigma(g_n))^{d-1} \]

\[=: \phi_\alpha(g_n) \]
Graphs with clustering
Upper bound: idea

For each $\alpha > 0$:

- $P_N(\alpha) =$ proportion of alive vertices at the end of the algorithm
- $P(\alpha) = \lim_{N \to \infty} P_N(\alpha)$ (limit in probability)
- If we activate some vertex in $C_1(N)$, then

$$\frac{|C_1(N)|}{Nn} \leq P_N(\alpha)$$

- The probability of activating no vertex in $C_1(N)$ tends to 0 (when $N \to \infty$)