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Abstract
A pseudocircle is a simple closed curve on some surface; an arrangement of pseudocircles is

a collection of pseudocircles that pairwise intersect in exactly two points, at which they cross.
Ortner proved that an arrangement of pseudocircles is embeddable into the sphere if and only if
all of its subarrangements of size at most four are embeddable into the sphere, and asked if an
analogous result holds for embeddability into orientable surfaces of higher genus. We answer this
question positively: An arrangement of pseudocircles is embeddable into an orientable surface of
genus g if and only if all of its subarrangements of size at most 4g +4 are. Moreover, this bound
is tight. We actually have similar results for a much general notion of arrangement, which we
call an arrangement of graphs.

1 Introduction
The starting point of this work is motivated by Ortner [14]: He proved that an arrangement of
pseudocircles is embeddable into the sphere if and only if all of its subarrangements of size at most
four are embeddable into the sphere, and asked if an analogous result held for embeddability into
surfaces of higher genus. We answer this question positively, and in fact prove a similar result for
the more general notion of arrangement of graphs.

We briefly recall some standard notions of topological graph theory; see Mohar and Thomassen [13]
for details. All surfaces under consideration are orientable; we denote by Sg the (orientable) surface
of genus g. If G is a graph and v is a vertex of G, then a rotation of v is a cyclic ordering of the
edges incident with v. A rotation system of G is a collection of rotations of all vertices of G.

Remark. Throughout this work, every graph under consideration is implicitly assumed to be
equipped with a rotation system. (This enhanced notion of a graph is also called a combinato-
rial map in the literature). If G is a graph and H is a subgraph of G, then it is implicitly assumed
that the rotation system of H is the one naturally inherited from the rotation system of G.
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We define an arrangement of graphs G to be a collection (G0, . . . , Gn) of connected subgraphs
of a graph

⋃n
i=0 Gi such that G0 has at least one vertex in common with each of G1, . . . , Gn. For

brevity, we use
⋃
G to denote

⋃n
i=0 Gi. We emphasize that

⋃
G (as all graphs under consideration)

is endowed with a rotation system, from which Gi inherits a rotation system, for i = 0, . . . , n.
The size of G is n + 1, the number of graphs in the arrangement. A subarrangement of G is a
subcollection of G that contains G0. Thus every subarrangement of G is an arrangement.

An embedding of a graph G on an orientable surface S is a drawing of G on S without crossings,
such that the clockwise ordering of the edges around each vertex v in this drawing matches the
rotation of v in the rotation system of G. An embedded graph is a graph with a given embedding
on a surface. A graph G is embeddable into a surface S if there is an embedding of G on S.

Our main result is the following.

Theorem 1. Let g ≥ 0. An arrangement of graphs is embeddable into Sg if and only if all its
subarrangements of size at most 4g + 5 are embeddable into Sg. Moreover, the bound of 4g + 5 is
tight.

In Theorem 1, the requirement that some graph G0 intersects all other graphs in the arrangement
may seem superfluous. However, as we argue in Section 4, some condition along these lines is
required in order to obtain a result in this spirit.

Let us recast the notion of arrangement of pseudocircles in our terminology. A pseudocircle is a
simple closed curve in a surface. Grünbaum [7] defined an arrangement of pseudocircles (actually,
he used the terminology arrangement of curves) to be a family of pseudocircles embedded on a
surface such that any two pseudocircles intersect in exactly two points, at which they cross. In
our language, an arrangement of pseudocircles is thus an arrangement of graphs G = (G0, . . . , Gn)
such that each Gi is a cycle and, for each i 6= j, Gi and Gj intersect at exactly two vertices of

⋃
G,

where they cross. The main result by Ortner [14] is the following.

Theorem 2 (Ortner [14, Theorem 10]). An arrangement of pseudocircles is embeddable into S0 if
and only if all its subarrangements of size at most four are embeddable into S0.

At the end of his article, Ortner asks whether such a result can be generalized to arbitrary
surfaces. Theorem 1 already answers this question positively. We actually prove the following
result, with a sharp bound on the size of the subarrangements:

Theorem 3. Let g ≥ 0. An arrangement of pseudocircles is embeddable into Sg if and only if all
its subarrangements of size at most 4g + 4 are embeddable into Sg. Moreover, the bound of 4g + 4
is tight.

Depending on the context, the notion of arrangement of pseudocircles can be relaxed in several
ways; see for instance [1, 8, 9, 15]. Arrangements of other objects, such as line segments [4] (or
Jordan arcs [5]), can also be naturally regarded as special cases of arrangements of graphs, and so
our Theorem 1 also applies to them.

To explain our proof strategy, let us first define the genus gen(G) of a graph G to be the smallest
integer g such that G embeds in Sg. Such an embedding of G is necessarily cellular, and one can
obtain it by attaching a disk to each boundary walk of G (those boundary walks are well defined
by the rotation system). If G has vertex set V , edge set E, and set W of boundary walks, then, by
Euler’s formula, we have the following [13, Section 4.1]:

gen(G) = (1/2)(2− |V |+ |E| − |W|). (1)
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In Section 2, we shall prove the following proposition.

Proposition 4. Let G be an arrangement of graphs, and let h := gen(
⋃
G). Then for each g ∈

{0, . . . , h} there is a subarrangement Gg of G, of size at most 4g + 1, such that gen(
⋃
Gg) ≥ g.

Moreover, if G is an arrangement of pseudocircles, then this bound of 4g + 1 can be improved to 4g
for every g ∈ {1, . . . , h}.

In Section 3, we prove our Theorems 1 and 3. As we will see, the upper bounds of 4g + 5 and
4g + 4 follow as an easy corollary of the above proposition; we use specific constructions to prove
their tightness. As we will see, the tightness of the bound 4g + 5 in Theorem 1 is witnessed by
arrangements of graphs which are quite specific: Each graph is a cycle, and two distinct graphs are
either disjoint or have exactly two intersection points, at which they cross.

Remark. In general, when considering graphs, one allows loops and multiple edges. However,
it is not hard to see that proving Theorem 1 reduces to proving it in the case of graphs without
loops (simply by subdividing each loop once). So, henceforth, we assume that all graphs under
consideration are without loops.

2 Proof of Proposition 4
A face of a graph G embedded on a surface S is a connected component of S \G. We remark that
a face f is an open subset of S, that is, the vertices and edges that lie on boundary of f are not
part of f . Every face is bounded by one or several walks of the graph, called boundary walks, which
are determined by the rotation system of G.

We follow the convention that as we traverse a boundary walk of an embedding of a graph G,
the face lies at our right-hand side. Thus, for instance, if G is just a cycle v0e1v1 · · · emv0 in the
sphere, then G has two faces, one of which has boundary walk v0e1 · · · emv0, and the other has
boundary walk v0em · · · e1v0. We note that this convention would be ambiguous in the presence of
loop edges, but by the remark at the end of the previous section this is not an issue in our context
since all graphs under consideration are loopless.

Let G be a graph, and let J be a subgraph of G. If G is embedded on a surface S, then J
naturally inherits an embedding on S from the embedding of G, and so we will implicitly regard J
also as an embedded graph.

Let G be an embedded graph, and let J be a subgraph of G. Let f be a face of J , and let e
be an edge of G \ J contained in f , incident with a vertex v in a boundary walk W of f . If as we
traverse W we encounter e leaving v at our right-hand side, then we say that e attaches to W at
v. Note that e may attach to (at most) two distinct walks, and if it attaches to two walks, then it
may do so at the same vertex or at different vertices.

An instance in which an edge attaches to two distinct walks at the same vertex is given by the
following example. Let G be a cellularly embedded graph in the torus with only one vertex v and
two loop-edges e and e′, and let J = G − e. Then J has two boundary walks, and as we traverse
either of these boundary walks we encounter e leaving v at our right-hand side.

Continuing with the discussion, let G be an embedded graph, let J be a subgraph of G, and let
f be a face of J . Let W, W ′ be distinct boundary walks of f . A walk U = v0e1v1 . . . emvm of G is a
WW ′-walk if e1, v1, . . . , vm−1, em are in the interior of f , e1 attaches to W at v0, and em attaches
to W ′ at vm. Thus a WW ′-walk has its (not necessarily distinct) endvertices in J , and is otherwise
contained in G \ J . If U is either a path or a cycle, we say that it is a WW ′-path contained in f .
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The proof of Proposition 4 relies crucially on the following two lemmas.

Lemma 5. Let G = (G0, . . . , Gn) be an arrangement of graphs such that
⋃
G is cellularly embedded

on a surface S, and let H be a subgraph of
⋃
G that contains the vertex set of G0. Assume that

some face f of H has at least two boundary walks. Then for some distinct boundary walks W, W ′ of
f there is a WW ′-path contained in f , whose edges are contained in the union of two graphs in G.

Lemma 6. Let G = (G0, . . . , Gn) be an arrangement of graphs such that
⋃
G is cellularly embedded

on a surface S, and let H be a subgraph of
⋃
G that contains the vertex set of G0. Assume that

some face f of H has positive genus and a single boundary walk. Then there is a subgraph Q of⋃
G that lies in f ∪ ∂f , whose edges belong to the union of two graphs in G, and such that Q is

either:

1. a path with endpoints in ∂f that is otherwise disjoint from ∂f , and does not separate f ; or

2. a cycle with one vertex in ∂f that is otherwise disjoint from ∂f , and does not separate f ; or

3. the union of a cycle C contained in the interior of f , that does not separate f , and of a path
that has one endpoint in C and one endpoint in ∂f , and is otherwise disjoint from C and ∂f .

Proof of Proposition 4, assuming Lemmas 5 and 6. Let us consider an embedding of
⋃
G on Sh;

since h = gen(
⋃
G), the embedding is necessarily cellular. We prove by induction on g = 0, . . . , h

that there is an embedded subgraph Hg of
⋃
G such that:

• Hg contains all the vertices of G0;

• Hg has genus g;

• Hg has a single face in Sh, with a single boundary walk;

• Hg is contained in a subarrangement of G of size at most 4g + 1.

This will show the first part of the proposition: Indeed, let Gg be a subarrangement of G of size at
most 4g + 1 containing Hg; we have g = gen(Hg) ≤ gen(

⋃
Gg).

For the base case, it suffices to take H0 to be a spanning tree of G0. For the inductive step, let
0 < g ≤ h and suppose the statement holds for g− 1. Because g− 1 < h, the unique face f of Hg−1
has a single boundary walk. Moreover, f has positive genus: since Sh has genus h and Hg−1 has
genus g − 1, it follows that the genus of f is h− (g − 1).

Let us first apply Lemma 6 to H := Hg−1 and to its unique face f ; we obtain a subgraph Q of
⋃
G

lying in f ∪∂f , whose edges belong to the union of two graphs in G, having one of the three specific
structures mentioned in Lemma 6. Regardless of that structure, the graph H ′g−1 := Hg−1 ∪Q has
a single face, with exactly two boundary walks. Moreover, if H ′g−1 was obtained from Hg−1 by
adding k edges, then k − 1 vertices were added. Thus, by Equation 1, the genus of H ′g−1 equals
that of Hg−1, namely g − 1.

Let us now apply Lemma 5 to H := H ′g−1 and to its unique face f ; if W and W ′ are the
two boundary walks of f , we obtain a WW ′-path P whose edges are contained in the union of
two graphs in G. We finally let Hg := H ′g−1 ∪ P . This graph has a single face, with exactly one
boundary walk. Moreover, if Hg was obtained from H ′g−1 by adding k edges, then k − 1 vertices
were added. Thus, by Equation 1, the genus of Hg equals that of H ′g−1 plus one, namely g.
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Finally, recall that Hg−1 is contained in a subarrangement of G of size at most 4g − 3. Thus,
by construction, Hg is contained in a subarrangement of G of size at most 4g + 1. The proof of the
induction step is complete.

We proceed analogously if G is induced from an arrangement of pseudocircles, but in this case
we proceed by induction on g = 1, . . . , h. The induction hypothesis is the same, with 4g+1 replaced
by 4g; the proof of the inductive step is identical. Let us prove the base case g = 1. Theorem 2
implies that (since

⋃
G is not embeddable into the sphere, as gen(

⋃
G) ≥ 1) G has a subarrangement

G1 of size at most four, such that
⋃
G1 is not embeddable into the sphere, that is, gen(

⋃
G1) ≥ 1.

Applying to G1 the same construction as the induction step above, we obtain a subgraph H1 of
⋃
G1

of genus exactly one, embedded on Sh with a single face, having a single boundary walk. Of course,
since G1 has size four, the graph H1 is contained in a subarrangement of G of size at most four, as
desired.

Proof of Lemma 5. Let f be a face of H whose set W = {W1, . . . , Wr} of boundary walks has size
at least 2. The cellularity of

⋃
G implies that for some two distinct Wj , Wk in W there exists a

WjWk-path contained in f . If there is such a WjWk-path U with only one or two edges then we are
done, as the edges of U are obviously contained in the union of two graphs of G. Thus we assume
that every WjWk-path has at least three edges. In particular, there are vertices of

⋃
G contained

in f .
We say that a vertex v contained in f has colour ` ∈ {1, . . . , r} if there is a path P with the

following properties: (i) P starts at v, its final edge attaches to W`, and except for this attachment,
P is contained in f ; and (ii) there is a Gi ∈ G that contains all the edges of P .

We note that each vertex contained in f has at least one colour. Indeed, let w be a vertex
contained in f . Since H contains all the vertices of G0, it follows that there is an i ∈ {1, . . . , n}
such that w is in Gi. Since Gi is connected and it contains at least one vertex of G0, it follows that
there is a path contained in Gi that has w as an endpoint and whose other endpoint is in G0. A
shortest path P with this property has the endpoint in G0 necessarily in the boundary of f , and
so the final edge of P attaches to W` for some ` ∈ {1, . . . , r}.

We also note that (∗) if e = uv is an edge such that e, u, and v are all contained in f , then u
and v have at least one common colour. To see this, first we note that since e and its endvertices
are contained in f , then there is an i ∈ {1, . . . , n} such that e (and hence also u and v) belongs
to Gi. Using the same arguments as in the previous paragraph, it follows that there is a path Q
contained in Gi, whose first edge is e (the startpoint of Q is either u or v) and that attaches to W`

for some ` ∈ {1, . . . , r}. Therefore u and v have the common colour `.
We shall show that some vertex contained in f has at least two distinct colours. Note that this

completes the proof: if j 6= k are both colours of v, then it follows that there is a WjWk-walk, and
hence a WjWk-path, contained in the union of two graphs in G.

We recall from the first paragraph of this proof that there is a WjWk-path U = v0e1v1 · · · emvm

contained in f , for some distinct Wj , Wk ∈ W, where m ≥ 3. By (∗), for each i = 1, . . . , m − 2
the vertices vi and vi+1 have a colour in common. Since v1 has color j and vm−1 has colour k, it
follows that at least one vertex in {v1, . . . , vm−1} has at least two colours.

The heart of the proof of Lemma 6 is the following lemma, which is reminiscent of Thomassen’s
3-path condition [16]; see also Mohar and Thomassen [13, Chapter 4].
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Lemma 7. Let G = (G0, . . . , Gn) be an arrangement of graphs such that
⋃
G is cellularly embedded

on a surface S of positive genus, and G0 consists of a single vertex v. Then there is a non-separating
cycle in

⋃
G contained in the union of two graphs in G.

Proof. We use cellular homology over Z/2Z, but we make the proof self-contained. Let G = (V, E)
be the graph equal to

⋃
G. A subset E′ of E is a boundary if the faces of G can be colored in black

and white in such a way that E′ is exactly the set of edges of G incident with one black face and
one white face.

We remark that, in contrast to homology theory, here a cycle is a closed walk without repeated
vertices.

We have the following (standard) properties:

1. The symmetric difference of two boundaries is a boundary.

2. Let E′ be the edge set of a cycle C in G. Then E′ is a boundary if and only if C is separating.

Let v0e1v1 . . . emvm (with vm = v0) be a non-separating cycle C in
⋃
G. For each i = 0, . . . , m−1,

let us choose a path Pi from v to vi in some graph Gp of the arrangement, such that Gp also
contains ei. Finally, let Li be the set of edges of E that appear in the closed walk Pi · ei+1 · Pi+1
(where Pi+1 denotes the reversal of Pi+1) an odd number of times. By construction, for each i there
exist two graphs in G whose union contains all the edges in Li.

We remark that the symmetric difference of the Li equals precisely the edge set of C, which is
not a boundary since C is non-separating (Property 2). By Property 1, there is an i ∈ {0, . . . , m−1}
such that Li is not a boundary.

We now claim that each vertex in the graph (V, Li) has even degree. To see this, let u be a
vertex in (V, Li) with degree greater than 0. Thus u appears in the walk Wi := Pi · ei+1 · Pi+1.
Define the weight of each edge e in Wi incident with u as the number of times that e appears in
Wi. Since Wi is closed, the sum of the weights of all edges in Wi incident with u is even, and so the
number of edges in Wi incident with u that have odd weight must be even. Since the number of
edges in Wi incident with u that have odd weight is precisely the degree of u in (V, Li), this proves
the claim.

It follows that Li is the disjoint union (and thus, the symmetric difference) of edge sets of cycles;
for the same reason as above, one of these edge sets of cycles is not a boundary. By Property 2
again, the corresponding cycle is non-separating; like Li, it is contained in the union of some two
graphs in G.

Proof of Lemma 6. Let S′ be the surface that results by contracting S \ f to a single point. Then
G naturally induces an arrangement (G′0, G′1, . . . , G′n) in S′, where G′0 consists of a single vertex v.
Note that the graphs in G that do not have any edge in f also get collapsed to a single vertex. Also
note that the cellularity of G implies that G′ is cellularly embedded in S′. By Lemma 7, there exist
(not necessarily distinct) G′i, G′j such that G′i ∪G′j contains a non-separating cycle C.

It is easy to see that if C contains v, then one of the first two outcomes in Lemma 6 must
hold. Suppose finally that C does not contain v. Every graph in the arrangement contains v (as
G′0 consists only of v), and in particular G′i contains v. This implies that there is a path P from C
to v that is contained in G′i, such that P only intersects C at the initial vertex of P . In this case
we have the third outcome in Lemma 6.
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3 Proof of Theorems 1 and 3

3.1 Upper bounds

First we prove the upper bound of 4g + 5, for arbitrary arrangements of graphs (Theorem 1). We
only need to show the “if” part in the theorem, as the “only if” part is trivial. We prove the
contrapositive statement: we let G be an arrangement of graphs not embeddable into Sg, and show
that G has a subarrangement of size at most 4g + 5 that is not embeddable into Sg.

Let h := gen(
⋃
G); we have h ≥ g + 1 because G is not embeddable into Sg. By Proposition 4,

G has a subarrangement Gg+1 of size at most 4(g + 1) + 1 = 4g + 5, such that gen(
⋃
Gg+1) ≥ g + 1.

This implies that the subarrangement Gg+1 of G, which has size at most 4g + 5, is not embeddable
into Sg, as desired.

To prove the upper bound of 4g + 4 in the case of arrangements of pseudocircles (Theorem 3),
we follow the same arguments, using the stronger bound 4g guaranteed by Proposition 4.

3.2 Tightness of the bounds

a

a

cc

d

d

b

b

a

a

cc

d

d

b

b

Figure 1: Illustration of the tightness of the bounds in Theorems 1 (left) and 3 (right).

We first prove that the upper bound of 4g + 5, for arbitrary arrangements of graphs, is tight
(Theorem 1). For this, we refer the reader to Figure 1. On the left hand side we have an ar-
rangement of graphs G of size 9 in the double torus S2; each graph is a cycle, and two distinct
graphs are either disjoint, or have exactly two intersection points, at which they cross. Since

⋃
G

is cellularly embedded in S2, it follows that
⋃
G is not embeddable into the torus. We claim that

every subarrangement of G of size 8 is embeddable into the torus.
To see this first we note that every subarrangement of G must contain the graph G0 at the

center of the polygon, as this is the only graph that intersects all the other graphs. Thus a
subarrangement of size 8 is obtained by removing any of the other graphs. We claim that not only
every subarrangement G′ of G of size 8 is embeddable into the torus, but that it suffices to remove
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two particular edges of an arbitrary graph (distinct from G0) in order to obtain an embedded graph
with genus 1.

Indeed, let G be the subgraph of
⋃
G obtained by removing the two dashed edges on the left

hand side of Figure 1. Thus G has the same number of vertices as
⋃
G, and two fewer edges than⋃

G. It is easy to check that G has the same number of boundary walks as
⋃
G. Using (1), it follows

that gen(G) = gen(
⋃
G)− 1 = 1, as claimed.

We finally note that this construction is easily extended to get, for each g ≥ 0, an arrangement
of graphs (all of them being cycles) of size 4g + 5 that is not embeddable into the surface Sg of
genus g, and all of whose subarrangements of size 4g + 4 are embeddable into Sg.

The tightness of the bound of 4g+4 for arrangements of pseudocircles (Theorem 3) is illustrated
on the right hand side of Figure 1. This figure shows an arrangement of pseudocircles G of size 8 in
S2. Since

⋃
G is cellularly embedded in S2, it follows that

⋃
G is not embeddable into the torus. Now

remove from
⋃
G the two dashed edges shown in the figure. It is easy to verify that the resulting

embedded graph G has two fewer edges and the same number of vertices and boundary walks as⋃
G. Using 1, it follows that gen(G) = gen(

⋃
G)−1 = 1. The two deleted edges belong to the same

pseudocircle, and so it follows that the subarrangement of G obtained by removing this pseudocircle
is embeddable into the torus. By the symmetry of the construction, every subarrangement of G of
size 7 is embeddable into the torus.

This construction is easily extended to give, for each g ≥ 0, an arrangement of pseudocircles of
size 4g + 4 that is not embeddable into the surface Sg of genus g, and all of whose subarrangements
of size 4g + 3 are embeddable into Sg.

4 Concluding remarks
To obtain a result along the lines of Theorems 1 or 3, it is natural to ask if it is absolutely necessary
to require that there is a graph in the arrangement intersecting all other graphs in the collection.
To answer this question, we note that it is necessary to require some sort of condition along these
lines. Indeed, as observed by Ortner [14, Figure 16], there exist arbitrarily large collections of
pseudocircles (whose union is connected) that cannot be embedded into a sphere, and yet the
removal of any pseudocircle leaves an arrangement that can be embedded into a sphere.

On the other hand, in order to have some version of Theorem 1, it is not strictly necessary to
have a single graph intersecting all the others; our techniques and arguments are readily adapted
under the assumption that there is a subcollection of bounded size that gets intersected by all other
graphs. More precisely, let us define an m-arrangement of graphs as a collection in which there is
a subcollection B of size (at most) m such that every graph intersects at least one graph in B, and
the union of the graphs is connected. It is easy to verify that there is a choice of at most 2(m− 1)
graphs whose union with B is connected; this union is, of course, intersected by every other graph.
Thus the graphs in an m-arrangement naturally induce an arrangement of graphs (G0, . . . , Gn),
where G0 is the union of at most 3m − 2 graphs. The following is then an easy consequence of
Proposition 4.

Theorem 8. An m-arrangement of pseudocircles is embeddable into Sg if and only if all of its
subarrangements of size at most 4g + 3m + 2 are embeddable into Sg.
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