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Abstract How much cutting is needed to simplify the topology of a surface?
We provide bounds for several instances of this question, for the minimum
length of topologically non-trivial closed curves, pants decompositions, and cut
graphs with a given combinatorial map in triangulated combinatorial surfaces
(or their dual cross-metric counterpart).

Our work builds upon Riemannian systolic inequalities, which bound the
minimum length of non-trivial closed curves in terms of the genus and the
area of the surface. We first describe a systematic way to translate Rieman-
nian systolic inequalities to a discrete setting, and vice-versa. This implies a
conjecture by Przytycka and Przytycki from 1993, a number of new systolic
inequalities in the discrete setting, and the fact that a theorem of Hutchinson
on the edge-width of triangulated surfaces and Gromov’s systolic inequality for
surfaces are essentially equivalent. We also discuss how these proofs generalize
to higher dimensions.
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CNRS, Département d’informatique, École normale supérieure, Paris, France. E-mail:
eric.colin.de.verdiere@ens.fr.

A. Hubard
Laboratoire de l’Institut Gaspard Monge, Université Paris-Est Marne-la-Vallée. E-mail: al-
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2 Éric Colin de Verdière et al.

Then we focus on topological decompositions of surfaces. Relying on ideas
of Buser, we prove the existence of pants decompositions of length O(g3/2n1/2)
for any triangulated combinatorial surface of genus g with n triangles, and
describe an O(gn)-time algorithm to compute such a decomposition.

Finally, we consider the problem of embedding a cut graph (or more gen-
erally a cellular graph) with a given combinatorial map on a given surface.
Using random triangulations, we prove (essentially) that, for any choice of a
combinatorial map, there are some surfaces on which any cellular embedding
with that combinatorial map has length superlinear in the number of triangles
of the triangulated combinatorial surface. There is also a similar result for
graphs embedded on polyhedral triangulations.
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decomposition
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1 Introduction

Shortest curves and graphs with given properties on surfaces have been much
studied in the recent computational topology literature; a lot of effort has
been devoted towards efficient algorithms for finding shortest curves that sim-
plify the topology of the surface, or shortest topological decompositions of
surfaces [7,8,19–23,39] (refer also to the recent surveys [12,18]). These objects
provide “canonical” simplifications or decompositions of surfaces, which turn
out to be crucial for algorithm design in the case of surface-embedded graphs,
where making the graph planar is needed [6, 9, 11, 41], as well as for many
purposes in computer graphics and mesh processing [29,43,44,48,60].

In this article, we study inequalities that relate the size of a triangulated
surface with the length of such shortest curves and graphs embedded thereon.
The model parameter that we study is the notion of edge-width of an (un-
weighted) graph embedded on a surface [7,56], that is, the length of a shortest
closed walk in the graph that is non-contractible on the surface (i.e., cannot
be deformed to a single point on the surface). In particular we are interested
in the following question: What is the largest possible edge-width, over all
triangulations with n triangles of an orientable surface of genus g without
boundary? It was known [33] that O(

√
n/g log g) is an upper bound for the

edge-width, and we prove that this bound is asymptotically tight, namely, that
some combinatorial surfaces of arbitrarily large genus achieve this bound. We
also study similar questions for other types of curves (non-separating closed
curves, null-homologous but non-contractible closed curves) and for decompo-
sitions (pants decompositions, and cut graphs with a prescribed combinatorial
map), and give an algorithm to compute short pants decompositions.
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Most of our results build upon or extend to a discrete setting some known
theorems in Riemannian systolic geometry, the archetype of which is an upper
bound on the systole (the length of a shortest non-contractible closed curve—a
continuous version of the edge-width) in terms of the square root of the area
of a Riemannian surface without boundary (or more generally the dth root
of the volume of an essential Riemannian d-manifold). Riemannian systolic
geometry [28,34] was pioneered by Loewner and Pu [54], reaching its maturity
with the deep work of Gromov [27]. In Thurston’s words, topology is naked
and it dresses with geometric structures; systolic geometry regards the lengths
and areas of all those possible outfits. Similarly, endowing a topological surface
with a triangulation is a way to “dress” it and much of this paper leverages
on comparing these two types of outfits.

We always assume that the surface has no boundary, that the underlying
graph of the combinatorial surface is a triangulation, and that its edges are
unweighted ; the curves and graphs we seek remain on the edges of the triangu-
lation. Lifting any of these restrictions invalidates or significantly worsens our
bounds. In many natural situations, such requirements hold, such as in geo-
metric modeling and computer graphics, where triangular meshes of surfaces
without boundary are typical and, in many cases, the triangles have bounded
aspect ratio (which immediately implies that our bounds apply, the constant
in the O(·) notation depending on the aspect ratio).

After the preliminaries (Section 2), we prove three independent results
(Sections 3–5), which are described and related to other works below. This
paper is organized so as to showcase the more conceptual results before the
more technical ones. Indeed, the results of Section 3 exemplify the strength
of the connection with Riemannian geometry, while the results in Sections 4
and 5 are perhaps a bit more specific, but feature deeper algorithmic and
combinatorial tools.

Systolic inequalities for closed curves on triangulations. Our first result (Sec-
tion 3) gives a systematic way of translating a systolic inequality in the Rie-
mannian case to the case of triangulations, and vice-versa. This general re-
sult, combined with known results from systolic geometry, immediately im-
plies bounds on the length of shortest curves with given topological properties:
On a triangulation of genus g with n triangles, some non-contractible (resp.,
non-separating, resp., null-homologous but non-contractible) closed curve has
length O(

√
n/g log g), and, moreover, this bound is best possible.

These upper bounds are new, except for the non-contractible case, which
was proved by Hutchinson [33] with a worse constant in the O(·) notation.
The optimality of these inequalities is also new. Actually, Hutchinson [33] had
conjectured that the correct upper bound was O(

√
n/g); Przytycka and Przy-

tycki refuted her conjecture, building, in a series of papers [51–53], examples
that show a lower bound of Ω(

√
n log g/g). They conjectured in 1993 [52] that

the correct bound was O(
√
n/g log g); here, we confirm this conjecture.

In Appendix A, we observe that the proofs of the results mentioned above
extend to higher dimensions. However, the situation is not quite as symmetrical
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as in the two-dimensional case: It turns out that discrete systolic inequalities in
terms of the number of vertices or facets imply continuous systolic inequalities,
and that continuous systolic inequalities imply discrete systolic inequalities
only in terms of the number of facets. This allows us to derive that a systolic
inequality in terms of the number of facets holds for every triangulation of an
essential manifold.

As pointed out to us by a referee, slight variations of the results of Section 3
and Appendix A were simultaneously and independently discovered by Ryan
Kowalick in his Ph.D. thesis [38]. Our approach in Section 3.1 is similar to
his. In contrast, we use Voronoi diagrams in Section 3.2, while he uses a dif-
ferent construction inspired by Whitney. We will make some further technical
comments on his work at the end of Appendix A.

Short pants decompositions. A pants decomposition is a set of disjoint simple
closed curves that split the surface into pairs of pants, namely, spheres with
three boundary components. In Section 4, we focus on the length of the shortest
pants decomposition of a triangulation. As in all previous works, we allow
several curves of the pants decomposition to run along a given edge of the
triangulation. (Formally, we work in the cross-metric surface that is dual to
the triangulation.)

The problem of computing a shortest pants decomposition has been con-
sidered by several authors [17, 50], and has found satisfactory solutions (ap-
proximation algorithms) only in very special cases, such as the punctured
Euclidean or hyperbolic plane [17]. Strikingly, no hardness result is known;
the strong condition that curves have to be disjoint, and the lack of corre-
sponding algebraic structure, makes the study of short pants decompositions
hard [30, Introduction]. In light of this difficulty, it seems interesting to look for
algorithms that compute short pants decompositions, even without guarantee
compared to the optimum solution.

Inspired by a result by Buser [5, Th. 5.1.4] on short pants decompositions
on Riemannian surfaces, we prove that every triangulation of genus g with
n triangles admits a pants decomposition of length O(g3/2n1/2), and we give
an O(gn)-time algorithm to compute one. While it is known that pants de-
compositions of length O(gn) can be computed for arbitrary combinatorial
surfaces [14, Prop. 7.1], the assumption that the surface is unweighted and
triangulated allows for a strictly better bound in the case where g = o(n). (It
is always true that g = O(n).) We remark that the greedy approach coupled
with Hutchinson’s bound only gives a bound on the length of the pants decom-
position of the form f(g).

√
n where f is superpolynomial [1, Introduction].

On the lower bound side, some surfaces have no pants decompositions with
length O(n7/6−ε), as proved recently by Guth et al. [30] using the probabilistic
method. Guth et al. show that polyhedral surfaces obtained by gluing triangles
at random have this property.

Shortest embeddings of combinatorial maps. Finally, in Section 5, we consider
the problem of decomposing a surface using a short cut graph with a pre-
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scribed combinatorial map. A natural approach to build a homeomorphism
between two surfaces is to cut both of them along a cut graph, and to put the
remaining disks in correspondence. However, for this approach to work, cut
graphs defining the same combinatorial map are needed.

In this direction, Lazarus et al. [40] proved that every surface has a canon-
ical system of loops (a specific combinatorial map of a cut graph with one
vertex) with length O(gn), which is worst-case optimal, and gave an O(gn)-
time algorithm to compute one.

However, there is no strong reason to focus on canonical systems of loops.
It is fairly natural to expect that other combinatorial maps will always have
shorter embeddings (in particular, by allowing several vertices on the cut graph
instead of just one). Still, we prove (essentially) that for any choice of com-
binatorial map of a cut graph, there exist triangulations with n triangles on
which all embeddings of that combinatorial map have a superlinear length,
actually Ω(n7/6−ε). (Since n may be O(g), there is no contradiction with the
result by Lazarus et al. [40].) In particular, some edges of the triangulation
are traversed Ω(n1/6−ε) times.

Our proof uses the probabilistic method in the same spirit as the afore-
mentioned article of Guth et al. [30]: We show that combinatorial surfaces
obtained by gluing triangles randomly satisfy this property asymptotically al-
most surely, i.e., that the probability of satisfying this property by a random
surface tends to one as the number of triangles tend to infinity. We remark
that beyond the extremal qualities that concern us, random surfaces and their
geometry have been heavily studied recently [24,45] in connection to quantum
gravity [49] and Belyi surfaces [3].

Another view of our result is via the following problem: Given two graphs
G1 and G2 cellularly embedded on a surface S, is there a homeomorphism
ϕ : S → S such that G1 does not cross the image of G2 too many times?
Our result essentially says that, if G1 is fixed, for most choices of trivalent
graphs G2 with n vertices, for any ϕ, there will be Ω(n7/6−ε) crossings between
G1 and ϕ(G2). This is related to recent preprints [25,46], where upper bounds
are proved for the number of crossings for the same problem, but with sets
of disjoint curves instead of graphs. During their proof, Matoušek et al. [46]
also encountered the following problem (rephrased here in the language of this
paper): For a given genus g, does there exist a universal combinatorial map
cutting the surface of genus g into a genus zero surface (possibly with several
boundaries), and with a linear-length embedding on every such surface? We
answer this question in the negative for cut graphs. In Appendix B, we prove
a related result for families of closed curves cutting the surface into a genus
zero surface.
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2 Preliminaries

2.1 Topology for Graphs on Surfaces

We only recall the most important notions of topology that we will use, and
refer to Stillwell [59] or Hatcher [32] for details. We denote by Sg,b the (ori-
entable) surface of genus g with b boundaries, which is unique up to home-
omorphism. The surfaces S0,0, S0,1, S0,2, and S0,3 are respectively called the
sphere , the disk , the annulus, and the pair of pants. Surfaces are as-
sumed to be connected, compact, and orientable unless specified otherwise.
The notation ∂S denotes the boundary of S.

A path , respectively a closed curve , on a surface S is a continuous map
p : [0, 1]→ S, respectively γ : S1 → S. Paths and closed curves are simple if
they are one-to-one. A curve denotes a path or a closed curve. We refer to
Hatcher [32] for the usual notions of homotopy (continuous deformation) and
homology. A closed curve is contractible if it is null-homotopic, i.e., it cannot
be continuously deformed to a point. A simple closed curve is contractible if
and only if it bounds a disk.

All the graphs that we consider in this paper are multigraphs, i.e., loops
are allowed and vertices can be joined by multiple edges. An embedding of
a graph G on a surface S is, informally, a crossing-free drawing of G on S.
A graph embedding is cellular if its faces are homeomorphic to open disks.
Euler’s formula states that v−e+f = 2−2g−b for any graph with v vertices,
e edges, and f faces cellularly embedded on a surface S with genus g with
b boundaries. A triangulation of a surface S is a cellular graph embedding
such that every face is a triangle. A graph G cellularly embedded on a surface S
yields naturally a combinatorial map M , which stores the combinatorial
information of the embedding G, namely, the cyclic ordering of the edges
around each vertex; we also say that G is an embedding of M on S. Two
graphs cellularly embedded on S have the same combinatorial map if and
only if there exists a self-homeomorphism of S mapping one (pointwise) to the
other.

A graph G embedded on a surface S is a cut graph if the surface obtained
by cutting S along G is a disk. A pants decomposition of S is a family of
disjoint simple closed curves Γ such that cutting S along all curves in Γ gives
a disjoint union of pairs of pants. Every surface Sg,b except the sphere, the
disk, the annulus, and the torus admits a pants decomposition, with 3g+ b−3
closed curves and 2g + b− 2 pairs of pants.

2.2 Combinatorial and Cross-Metric Surfaces

We now briefly recall the notions of combinatorial and cross-metric surfaces,
which define a discrete metric on a surface; see Colin de Verdière and Erick-
son [13] for more details. In this paper, all edges of the combinatorial and
cross-metric surfaces are unweighted.



Discrete Systolic Inequalities and Decompositions of Triangulated Surfaces 7

A combinatorial surface is a surface S together with an embedded graph
G, which will always be a triangulation in this article. In this model, the only
allowed curves are walks in G, and the length of a curve c, denoted by |c|G, is
the number of edges of G traversed by c, counted with multiplicity.

However, it is often convenient (Sections 4 and 5) to allow several curves to
traverse a same edge of G, while viewing them as being disjoint (implicitly, by
“spreading them apart” infinitesimally on the surface). This is formalized using
the dual concept of cross-metric surface : Instead of curves in G, we consider
curves in regular position with respect to the dual graph G∗, namely, that
intersect the edges of G∗ transversely and away from the vertices; the length
of a curve c, denoted by |c|G∗ , is the number of edges of G∗ that c crosses,
counted with multiplicity. Since, in this article, G is always a triangulation,
G∗ is always trivalent, i.e., all its vertices have degree three. Thus, a cross-
metric surface is a surface S equipped with a cellular, trivalent graph (usually
denoted by G∗).

We note that the previous definition of cross-metric surface is valid also
in the case where the surface has non-empty boundary (see Colin de Verdière
and Erickson [13, Section 1.2] for more details). Curves and graph embedded
on cross-metric surfaces can be manipulated efficiently [13]. The different no-
tions of systoles are easily translated for both combinatorial and cross-metric
surfaces.

Once again, we emphasize that, in this paper, unless otherwise noted, all
combinatorial surfaces are triangulated (each face is a disk with
three sides) and unweighted (each edge has weight one). Dually, all
cross-metric surfaces are trivalent (each vertex has degree three)
and unweighted (each edge has crossing weight one).

2.3 Riemannian Surfaces and Systolic Geometry

We will use some notions of Riemannian geometry, referring the interested
reader to standard textbooks [15, 37]. A Riemannian surface (S,m) is a
surface S equipped with a metric m, defined by a scalar product on the tan-
gent space of every point. For example, smooth surfaces embedded in some
Euclidean space Rd are naturally Riemannian surfaces—conversely, every Rie-
mannian surface can be isometrically embedded in some Rd [31] but we will
not need this fact. The length of a (rectifiable) curve c is denoted by |c|m. The
Gaussian curvature κp of S at a point p is the product of the eigenvalues of
the scalar product at p. By the Bertrand–Diquet–Puiseux theorem [58, Chap-
ter 3, Prop. 11], the area of the ball B(p, r) of radius r centered at p equals
πr2 − κpπr4 + o(r4). We now collect the results from systolic geometry that
we will use; for a general presentation of the field, see, e.g., Gromov [28] or
Katz [34].

Theorem 2.1 ([4, 27, 28, 35, 57]) There are constants c, c′, c′′, c′′′ > 0 such
that, on any Riemannian surface without boundary, with genus g and area A:
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1. some non-contractible closed curve has length at most c
√
A/g log g;

2. some non-separating closed curve has length at most c′
√
A/g log g;

3. some null-homologous non-contractible closed curve has length at most
c′′
√
A/g log g.

Furthermore,

4. for an infinite number of values of g, there exist Riemannian surfaces of
constant curvature −1 (hence area A = 4π(g − 1)) and systole larger than
2

3
√
π

√
A/g log g− c′′′. In particular, the three previous inequalities are tight

up to constant factors.

In this theorem, (1) and (2) are due to Gromov [27,28], (3) is due to Sabourau [57],
and (4) is due to Buser and Sarnak [4, p. 45]. Furthermore, Gromov’s proof
yields c = 2/

√
3 in (1), which has been improved asymptotically by Katz and

Sabourau [35]: They show that for every c > 1/
√
π there exists some integer gc

so that (1) is valid for every g ≥ gc.

3 A Two-Way Street

In this section, we prove that any systolic inequality regarding closed curves
in the continuous (Riemannian) setting can be converted to the discrete (tri-
angulated) setting, and vice-versa.

3.1 From Continuous to Discrete Systolic Inequalities

Theorem 3.1 Let (S,G) be a triangulated combinatorial surface of genus g,
without boundary, with n triangles. Let δ > 0 be arbitrarily small. There exists
a Riemannian metric m on S with area n such that for every closed curve
γ in (S,m) there exists a homotopic closed curve γ′ on (S,G) with |γ′|G ≤
(1 + δ) 4

√
3 |γ|m.

This theorem, combined with known theorems from systolic geometry, im-
mediately implies:

Corollary 3.1 Let (S,G) be a triangulated combinatorial surface with genus g
and n triangles, without boundary. Then, for some absolute constants c, c′,
and c′′:

1. some non-contractible closed curve has length at most c
√
n/g log g;

2. some non-separating closed curve has length at most c′
√
n/g log g;

3. some homologically trivial non-contractible closed curve has length at most
c′′
√
n/g log g.

Proof of Corollary 3.1. The proof consists in applying Theorem 3.1 to (S,G),
obtaining a Riemannian metric m. For each of the different cases, the appropri-
ate Riemannian systolic inequality is known, which means that a short curve γ
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of the given type exists on (S,m) (Theorem 2.1(1–3)); by Theorem 3.1, there
exists a homotopic curve γ′ in (S,G) such that |γ′|G ≤ (1 + δ) 4

√
3 |γ|m, for

any δ > 0.

Plugging in the best known constants for Theorem 2.1 (1) allows us to take
c = 2/ 4

√
3, or any c > 4

√
3/π2 asymptotically using the refinement of Katz and

Sabourau.
Furthermore, we note that, by Euler’s formula and double-counting, we

have n = 2v + 4g − 4, where v is the number of vertices of G. Thus, on a tri-
angulated combinatorial surface with v ≥ g vertices, the length of a shortest
non-contractible closed curve is at most 2

√
2 4
√

3 ·
√
v/g log g < 3.73

√
v/g log g.

This reproves a theorem of Hutchinson [33], except that her proof technique
leads to the weaker constant 25.27. This constant can be improved asymptot-
ically to 4

√
108/π2 < 1.82 with the aforementioned refinement.

` 1 ` 1

γ

α

β

Figure 3.1 A piecewise linear double torus with area A such that the length of a shortest
splitting closed curve is Ω(A) (left), but the length of a shortest homologically trivial non-
contractible curve, concatenation of αβα−1β−1, has length Θ(1).

We also remark that, in (3), we cannot obtain a similar bound if we re-
quire the curve to be simple (and therefore to be splitting [10]). Indeed, Fig-
ure 3.1 shows that the minimum length of a shortest homologically trivial,
non-contractible closed curve can become much larger if we additionally re-
quest the curve to be simple.

Proof of Theorem 3.1. We first recall that every surface has a unique structure
as a smooth manifold, up to diffeomorphism, and we can therefore assume in
the following that S is a smooth surface.

The first part of the proof is similar to Guth et al. [30, Lemma 5]. Define
mG to be the singular Riemannian metric given by endowing each triangle of G
with the geometry of a Euclidean equilateral triangle of area 1 (and thus side
length 2/ 4

√
3): This is a genuine Riemannian metric except at a finite number of

points, the set of vertices of G. The graph G is embedded on (S,mG). Let γ be
a closed curve γ : S1 → S. Up to making it longer by a factor at most

√
1 + δ,

we may assume that γ is piecewise linear and transversal to G. Now, for each
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triangle T and for every maximal part p of γ that corresponds to a connected
component of γ−1(T ), we do the following. Let x0 and x1 be the endpoints
of p on the boundary of T . (If γ does not cross any of the edges of G, then it is
contractible and the statement of the theorem is trivial.) There are two paths
on the boundary of T with endpoints x0 and x1; we replace p with the shorter
of these two paths. Since T is Euclidean and equilateral, elementary geometry
shows that these replacements at most doubled the lengths of the curve. Now,
the new curve lies on the graph G. We transform it with a homotopy into a no
longer curve that is an actual closed walk in G, by simplifying it each time it
backtracks. Finally, from a closed curve γ, we obtained a homotopic curve γ′

that is a walk in G, satisfying |γ′|G = 4
√

3/2 |γ′|mG
≤
√

1 + δ 4
√

3 |γ|mG
.

The metric mG satisfies our conclusion, except that it has isolated singular-
ities. For the sake of concision we defer the smoothing procedure to Lemma 3.1.
This lemma allows us to smooth and scale mG to obtain a metric m, also with
area n, that multiplies the length of all curves by at least 1/

√
1 + δ compared

to mG. This metric satisfies the desired properties.

There remains to explain how to smooth the metric, which is done using
partitions of unity.

Lemma 3.1 With the notations of the proof of Theorem 3.1, there exists a
smooth Riemannian metric m on S, also with area n, such that any closed
curve γ in S satisfies |γ|m ≥ |γ|mG

/
√

1 + δ.

Proof. The idea is to smooth out each vertex v of G to make mG Riemannian,
as follows. Recall that δ > 0 is fixed; ε > 0 will be determined later.

On the open ball B(v, 2ε), consider a Riemannian metric mv such that (i)
mv has area at most δ/3, and (ii) any path in that ball is longer under mv

than under mG. This is certainly possible provided ε is small enough: For
example, take any diffeomorphism from B(v, 1/2) onto the open unit disk D
in the plane; define a metric on B(v, 1/2) by taking the pullback metric of a
multiple λ of the Euclidean metric on D, where λ is chosen large enough so
that this pullback metric is larger than mG (and thus (ii) is satisfied). If we
take ε > 0 small enough, the restriction of this pullback metric to B(v, 2ε)
also satisfies (i).

We now use a partition of unity to define a smooth metric m̂ that inter-
polates between mG and the metrics mv. By choosing an appropriate open
cover, and therefore an appropriate partition of unity ρ, we obtain a metric
m̂ = ρGmG +

∑
v∈V ρvmv such that:

– outside the balls centered at a vertex v of radius 2ε, we have m̂ = mG;
– inside a ball B(v, ε), we have m̂ = mv;
– in B(v, 2ε) \B(v, ε), the metric m̂ is a convex combination of mG and mv.

The area of m̂ is at most the sum of the areas of mG and the mv’s, which is
at most n(1 + δ). Moreover, for any curve γ, we have |γ|m̂ ≥ |γ|mG

.
Finally, we scale m̂ to obtain the desired metric m with area n; for any

curve γ, we indeed have |γ|m ≥ |γ|m̂/
√

1 + δ.
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3.2 From Discrete to Continuous Systolic Inequalities

Here we prove that, conversely, discrete systolic inequalities imply their Rie-
mannian analogs. The idea is to approximate a Riemannian surface by the
Delaunay triangulation of a dense set of points, and to use some recent results
on intrinsic Voronoi diagrams on surfaces [16].

Theorem 3.2 Let (S,m) be a Riemannian surface of genus g without bound-
ary, of area A. Let δ > 0. For infinitely many values of n, there exists a tri-
angulated combinatorial surface (S,G) embedded on S with n triangles, such

that every closed curve γ in (S,G) satisfies |γ|m ≤ (1 + δ)
√

32
π

√
A/n |γ|G.

We have stated this result in terms of the number n of triangles; in fact, in the
proof we will derive it from a version in terms of the number of vertices; Euler’s
formula and double counting imply that, for surfaces, the two versions are
equivalent. Together with Hutchinson’s theorem [33], this result immediately
yields a new proof of Gromov’s classical systolic inequality:

Corollary 3.2 For every Riemannian surface (S,m) of genus g, without bound-
ary, and area A, there exists a non-contractible curve with length at most
101.1√
π

√
A/g log g.

Proof. Let δ > 0, and let (S,G) be the triangulated combinatorial surface
implied by Theorem 3.2 with n ≥ 6g − 4 triangles. Euler’s formula implies
that the number v of vertices of G is at least g, hence we can apply Hutchin-
son’s result [33], which yields a non-contractible curve γ on G with |γ|G ≤
25.27

√
(n2 + 2− 2g)/g log g. By Theorem 3.2, |γ|m ≤ 101.08(1+δ)√

π

√
A/g log g.

On the other hand, using this theorem in the contrapositive together with the
Buser–Sarnak examples (Theorem 2.1(4)) confirms the conjecture by Przyty-
cka and Przytycki [52, Introduction]:

Corollary 3.3 For any ε > 0, there exist arbitrarily large g and v such
that the following holds: There exists a triangulated combinatorial surface of
genus g, without boundary, with v vertices, on which the length of every non-
contractible closed curve is at least 1−ε

6

√
v/g log g.

Proof. Let ε > 0, let (S,m) be a Buser–Sarnak surface from Theorem 2.1(4),
and let G be the graph obtained from Theorem 3.2 from (S,m), for some δ > 0
to be determined later. Combining these two theorems, we obtain that every
non-contractible closed curve γ in G satisfies

(1 + δ)

√
32

π

√
A

n
|γ|G ≥

2

3
√
π

√
A

g
log g − c′′′,

where A = 4π(g− 1). If δ was chosen small enough (say, such that 1/(1 + δ) ≥
1−ε/2), and g was chosen large enough, we have |γ|G ≥ 1−ε

3
√
8

√
n
g log g. Finally,

we have n ≥ 2v by Euler’s formula.
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Before delving into the proof of Theorem 3.2, we introduce a refinement
of the well-known injectivity radius. The strong convexity radius at a point x
in a Riemannian surface (S,m) is the largest radius ρx such that for every
r < ρx the ball of radius r centered at x is strongly convex, that is, for any
p, q ∈ B(x, r) there is a unique shortest path in (S,m) connecting p and q,
this shortest path lies entirely within B(x, r), and moreover no other geodesic
connecting p and q lies within B(x, r); we refer to Klingenberg [37, Def. 1.9.9]
for more details. The strong convexity radius is positive at every point, and
its value on the surface is continuous (see also Dyer, Zhang, and Möller [16,
Sect. 3.2.1]). It follows that for every compact Riemannian surface (S,m), the
strong convexity radius of (S,m), namely, the infimum of the strong convexity
radii of the points in (S,m), is strictly positive. We will need the following
lemma, which is a result of of Dyer, Zhang, and Möller [16, Corollary 2] (see
also Leibon [42, Theorem 1] for a very related theorem):

Lemma 3.2 Let (S,m) be a Riemannian surface without boundary, let ρ′ > 0
be less than half the strong convexity radius of (S,m), and let P a point set of
S in general position such that for every x on S, there exists a point p of P
such that dm(x, p) ≤ ρ′. Then the Delaunay graph of P is a triangulation of
S, and its edges are shortest paths.

Proof of Theorem 3.2. Let η, 0 < η < 1/2 be fixed, and ε > 0 to be defined
later (depending on η). Let P be an ε-separated net on (S,m), that is, P is a
point set such that any two points in P are at distance at least ε, and every
point in (S,m) is at distance smaller than ε from a point in P . For example,
if we let P be the centers of an inclusionwise maximal family of disjoint open
balls of radius ε/2, then P is an ε-separated net. In the following we put P
in general position by moving the points in P by at most ηε; in particular, no
point in the surface is equidistant with more than three points in P .

Let P = {p1, . . . , pv}, and let

Vi := {x ∈ (S,m) | ∀j 6= i, d(x, pi) ≤ d(x, pj)}

be the Voronoi region of pi. Since every point of (S,m) is at distance at
most (1 + η)ε from a point in P , each Voronoi region Vi is included in a
ball of radius (1 + η)ε centered at pi. Define the Delaunay graph of P to be
the intersection graph of the Voronoi regions, and note that if Vi∩Vj 6= ∅, then
the corresponding neighboring points of the Delaunay graph are at distance
at most 2(1 + η)ε.

Assume that ε is small enough so that (1 + η)ε is less than half the strong
convexity radius. Lemma 3.2 implies that the Delaunay graph, which we denote
by G, can be embedded as a triangulation of S with shortest paths representing
the edges.

Consider a closed curve γ on G. Since neighboring points in G are at
distance no greater than 2(1+η)ε on (S,m), we have |γ|m ≤ 2(1+η)ε|γ|G. To
obtain the claimed bound, there remains to estimate the number v of points
in P . By compactness, the Gaussian curvature of (S,m) is bounded from above
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by a constant K. By the Bertrand–Diquet–Puiseux theorem, the area of each

ball of radius 1−2η
2 ε is π(1− 2η)2 ε

2

4 −Kπ(1− 2η)4 ε
4

16 + o(ε4) ≥ π(1− 2η)3 ε
2

4
if ε > 0 is small enough. Since the balls of radius (1 − 2η) ε2 centered at P

are disjoint, their number v is at most A/(π(1 − 2η)3 ε
2

4 ). In other words,

ε ≤ 2√
π(1−2η)3

√
A/v. Putting together our estimates, we obtain that

|γ|m ≤
4(1 + η)√
π(1− 2η)3

√
A

n/2− 2g + 2
|γ|G,

where n is the number of triangles of G. Thus, if ε > 0 is small enough, n can be
made arbitrarily large, and the previous estimate implies, if η was chosen small

enough (where the dependency is only on δ) that |γ|m ≤ (1 + δ)
√

32
π

√
A
n |γ|G.

Remark on orientability. Notice that Theorems 3.1 and 3.2 hold for non ori-
entable surfaces with the same proofs. We stated the continuous systolic in-
equality for orientable surfaces. As observed by Gromov [28, p. 306] a double
cover argument shows that the same results hold (up to a multiplicative con-
stant factor) for the systole of non-orientable surfaces other than the projective
plane. For the projective plane, a systolic inequality also holds, for which the
exact constant is known and corresponds to metrics of constant positive curva-
ture [54]. Therefore, since our results do not rely on orientability, the discrete
systolic inequalities hold for all surfaces, with similar dependence on the Euler
genus, up to a multiplicative factor. Notice that when we talked about homol-
ogy no coefficients were specified. It is customary to assume Z coefficients for
orientable manifolds and F2 for non orientable ones.

4 Computing Short Pants Decompositions

Recall that the problem of computing a shortest pants decomposition for a
given surface is open, even in very special cases. In this section, we describe
an efficient algorithm that computes a short pants decomposition on a trian-
gulation. Technically, we allow several curves to run along a given edge of the
triangulation, which is best formalized in the dual cross-metric setting. If g is
fixed, the length of the pants decomposition that we compute is of the order
of the square root of the number of vertices:

Theorem 4.1 Let (S,G∗) be a (trivalent, unweighted) cross-metric surface
of genus g ≥ 2, with n vertices, without boundary. In O(gn) time, we can
compute a pants decomposition (γ1, . . . , γ3g−3) of S such that, for each i, the
length of γi is at most C

√
gn (where C is some universal constant).

With a little more effort, we can obtain that the length of γi is at most
C
√
in but we focus on the weaker bound for the sake of clarity.



14 Éric Colin de Verdière et al.

The inspiration for this theorem is a result by Buser [5], stating that in
the Riemannian case, there exists a pants decomposition with curves of length
bounded by 3

√
gA. The proof of Theorem 4.1 consists mostly of translating

Buser’s construction to the discrete setting and making it algorithmic. The key
difference is that for the sake of efficiency, unlike Buser, we cannot afford to
shorten the curves in their homotopy classes, and we have to use contractibility
tests in a careful manner.

Given simple, disjoint closed curves Γ in general position on a (possibly
disconnected) cross-metric surface (S,G∗), cutting S along Γ , and/or restrict-
ing to some connected components, gives another surface S′, and restricting
G∗ to S′ naturally yields a cross-metric surface that we denote by (S′, G∗|S′).

To simplify notation we denote by |c| (instead of |c|G∗) the length of a curve c
on a cross-metric surface (S,G∗).

A key step towards the proof of Theorem 4.1 is the following proposition,
which allows us to effectively cut a surface with boundary along closed curves
of controlled length.

Proposition 4.1 Let (S,G∗) be a possibly disconnected cross-metric surface,
such that every connected component has non-empty boundary and admits a
pants decomposition. Let n be the number of vertices of G∗ in the interior of S.
Assume moreover that |∂S| ≤ `, where ` is an arbitrary positive integer.

We can compute a family ∆ of disjoint simple closed curves of (S,G∗) that
splits S into one pair of pants, zero, one, or more annuli, and another possibly
disconnected surface S′ containing no disk component, such that |∂S′| ≤ ` +
4n/`+ 2. The algorithm takes as input (S,G∗), outputs ∆ and (S′, G∗|S′), and

takes linear time in the complexity of (S,G∗).

We first show how Theorem 4.1 can be deduced from this proposition. It relies
on computing a good approximation of the shortest non-contractible closed
curve, cutting along it, and applying Proposition 4.1 inductively:

Proof of Theorem 4.1. To prove Theorem 4.1, we consider our cross-metric
surface without boundary (S,G∗), and we start by computing a simple non-
contractible curve γ whose length is at most twice the length of the shortest
non-contractible closed curve. Such a curve can be computed in O(gn) time [7,
Prop. 9] (see also Erickson and Har-Peled [20, Corollary 5.8]) and has length
at most C

√
n, where C is a universal constant, see Section 3. This gives a

surface S(1) with two boundary components.
Let us define the sequence `k = C

√
kn for some constant C. We then

proceed inductively, applying Proposition 4.1 with ` = `k to S(k), in order to
obtain another surface S(k)′, from which we remove all the pairs of pants and
annuli. We denote the resulting surface by S(k+1) and repeat until we obtain
a surface S(m) that is empty. Note that, for every k, S(k) contains no disk,
annulus, or pair of pants, and that every application of Proposition 4.1 gives
another pair of pants. Therefore, we obtain a pants decomposition of S by
taking the initial curve γ together with the union of the collections of curves
∆ given by successive applications of Proposition 4.1 and removing, for any



Discrete Systolic Inequalities and Decompositions of Triangulated Surfaces 15

subfamily of ∆ of several homotopic curves, all but the shortest one of them.
The number of applications of Proposition 4.1 is bounded by the number of
pants in a pants decomposition, which is 2g − 2.

There remains to bound the length of the closed curves in the pants de-
composition. A small computation shows that `k + 4n/`k + 2 ≤ `k+1 for
C large enough and k ≤ 3n, which holds since k ≤ 3g − 3 ≤ 3n. Now,
|∂S(1)| ≤ C

√
n = `1, and applying Proposition 4.2 inductively on S(k−1)

with ` = `k−1 shows that |∂S(k)| ≤ `k = C
√
kn. Therefore, the length of the

kth closed curve of the pants decomposition is at most C
√
kn. The total com-

plexity of this algorithm is O(gn) since we applied O(g) times Proposition 4.1.

Now, onwards to the proof of the main proposition.

Proof of Proposition 4.1. We will only describe how ∆ is computed, since one
directly obtains S′ by cutting along ∆ and discarding the annuli and one pair
of pants.

The idea is to shift the boundary components simultaneously until one
boundary component splits, or two boundary components merge. This is anal-
ogous to Morse theory on the surface with the function that is the distance to
the boundary. In this way, we choose the homotopy classes of the curves in ∆,
but in order to control their length we actually do some backtracking before
splitting or merging.

Initially, let Γ = (γ1, . . . , γk) be (curves infinitesimally close to) the bound-
aries of S. We will shift these curves to the right while preserving their sim-
plicity, disjointness, and homotopy classes. We orient each γi so that it has the
surface to its right at the start. In particular, at any time of the algorithm,
any two curves are to the right of each other.

Shifting phase: The idea of shifting a closed curve γi one step to the right is
to push it so that every point of the resulting curve is exactly at distance one
from the original curve. The shifting phase consists of shifting every curve in Γ
one step to the right, and to reiterate. During this process, curves will collide,
which will allow us to build the new curves of the pants decomposition.

A piece of a curve in Γ is a maximal subpath inside a face of G∗. We
say that two distinct pieces of curves in Γ are tangent if (i) they are not
consecutive pieces along the same curve and (ii) there is a path on the surface
that starts to the right of one piece, arrives to the right of the other, crosses
no piece, and crosses at most one edge of G∗, see Figures 4.1(a, c, e).

Basically, tangencies are the obstacles to shifting the curve to the right.
On the other hand, in a tangency, we can rewire the curves as shown on
Figure 4.1(b, d, f), by locally exchanging the connections between the pieces
without changing the orientations of the pieces. Our algorithm needs first to
remove all tangencies in Γ , by repeating the following steps while there exists
a tangency:
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(e) (g)(f)

G∗ G∗ G∗

(a)

G∗

(b)

G∗
G∗ G∗

(c) (d)

Figure 4.1 (a) Two tangent pieces of curves lying in the same face. (b) The rewiring of
these curves. (c) Two tangent pieces of curves lying in adjacent faces. (d) The rewiring of
these curves. (e) A curve that is tangent with itself. (f) Its rewiring. (g) The result after
discarding the contractible subcurve.

– If the pieces involved in the tangency belong to the same closed curve,
then, by the chosen orientation, the rewiring necessarily transforms the
initial curve into exactly two curves, which we test for contractibility. If
one of them is contractible, we discard it (Figure 4.1(g)) and continue with
the other one. Otherwise, both are non-contractible; the shifting phase is
over, and we go to the splitting phase below.

– If the tangency involves pieces belonging to different closed curves in Γ , the
rewiring transforms the two curves into a single curve; the shifting phase
is over, and we go to the merging phase below.

At this step, we removed all tangencies without entering the splitting or
the merging phase. Since G∗ is trivalent, if γi were to cross consecutively two
edges that are incident to the same vertex v to the right of the curve, it would
form a tangency with the third edge incident to v, a contradiction. Thus, the
local picture is as on Figure 4.2(a): The edges of G∗ to the right of γi, incident
to the faces traversed by γi, form a cycle (the horizontal line in Figure 4.2);
each edge incident to the cycle is either to its left or to its right, and these
edges are attached to the cycle by distinct vertices; and γi crosses exactly those
edges of G∗ that are to its left. We transform γi so that it now crosses exactly
those edges that are to the right of the cycle, as shown on Figure 4.2(b). The
absence of tangencies ensures that this still gives disjoint simple curves, with
the same homotopy classes; of course, this operation may create one or several
tangencies (in particular, a face of G∗ may now be traversed by several pieces).

When this is done, we repeat the entire shifting phase (again starting with
the tangency detection). Thus, the shifting phase is repeated over and over,
until we enter the splitting phase or the merging phase below. Before describing
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(a)

G∗
γic

γic+1

(b)

G∗

Figure 4.2 Shifting a curve one step to its right.

γ1
γ1r

γ2rγ2

γ1s

γ2s

η
γ1

γ2
δ

(a)

γ1 δ1

δ2

γ1
γ1rγ1s

η α

β

(b)

Figure 4.3 (a) Splitting phase. (b) Merging phase.

these phases, let us describe some properties that are satisfied when we exited
the shifting phase. Let r be the integer such that each curve has been pushed
r steps to the right. For each i, 1 ≤ i ≤ k, and each c, 0 ≤ c ≤ r, let γic
be the curve γi pushed by c steps. Note that by construction, the distance
between any point of γic and the curve γic−1 is exactly one. Let s denote the

largest c ≤ r such that
∑k
i=1 |γic| ≤ `. (Remember that this is the case for c = 0

by hypothesis.)

Splitting phase: We arrived to the splitting phase because two pieces of the
same curve became tangent, and after rewiring, both of the new subcurves
are non-contractible, as is pictured on the top of Figure 4.3. The purpose of
the splitting phase is to choose geometric representatives of curves in these
homotopy classes. For simplicity, let γ1 denote the curve that became tangent
with itself during the shifting phase. First, for every i 6= 1, we add γis to the
family ∆. By assumption, γ1 splits into two non-contractible closed curves α
and β. Let η be the shortest path with endpoints on γ1s going through the
splitting tangency between α and β. This path can be computed in linear
time (in the complexity of the portion of the surface swept during the shifting
phase) by backtracking from γ1r to γ1s , and adding pieces of η at every step. The
path η cuts γ1s into two subpaths µ and ν. We denote by δ1 the concatenation
of µ and η, and by δ2 the concatenation of ν and η. To finish the splitting
phase, we add δ1 and δ2 to the family ∆.

Merging phase: We arrived to the merging phase because two distinct shifted
curves became tangent in the shifting phase (Figure 4.3, bottom); and we
rewired them, obtaining a curve homotopic to their concatenation. The pur-
pose of the merging phase is to choose a geometric representative in this homo-
topy class. For simplicity, let us denote by γ1 and γ2 two curves that became
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tangent during the shifting phase. First, for every i 6= 1, 2, we add γis to the
family ∆. Let η be the shortest path from γ1s and γ2s (as above, we can compute
it in linear time). The curve δ is defined by the concatenation η−1 · γ1s · η · γ2s .
To finish the merging phase, we add δ to ∆.

Analysis: After splitting or merging, we added curves to ∆ that cut the surface
into an additional pair of pants, (possibly) some annuli, and the remaining
surface S′. Observe that we did not add any contractible closed curve to ∆;
thus, S′ has no connected component that is a disk. There remains to prove
that the length of the boundary S′ satisfies |∂S′| ≤ ` + 4n/` + 2. The key
quantitative idea is the way in which the value of s was chosen: If s was equal
to r (perhaps the most natural strategy), the boundary of S′ would contain
(at least) one curve γir, and we would have no control on its length. On the
opposite, if we had chosen s = 0, we would have no control on the lengths
of the arcs η involved in the merging or the splitting. The choice of s gives
the right trade-off in-between: the lengths of the curves γsi are controlled by
this threshold, while the lengths of the arcs are controlled by the area of the
annulus between γis and γir. We now make this explanation precise.

Lengths after the splitting phase. After a splitting phase with the curve γ1,
the boundary ∂S′ of S′ consists of all the other curves γis in Γ and of the
two new curves, whose sum of the lengths is bounded by |γ1s | + 2|η|. Hence

|∂S′| ≤ |γ1s | + 2|η| +
∑k
i=2 |γis|, which is at most ` + 2|η| by the choice of s.

Furthermore, by construction, |η| ≤ 2(r− s) + 1, as every step of shifting adds
at most 2 to the length of η, and it may cost an additional 1 to cross the last
tangency edge.

Lengths after the merging phase. After a merging phase with the curves
γ1 and γ2, the boundary ∂S′ of S′ consists of all the other curves γis of Γ , and
of the new curve, whose length is bounded by |γ1s |+ |γ2s |+2|η|. Hence similarly,
|∂S′| ≤ `+ 2|η|. Furthermore, by construction, we also have |η| ≤ 2(r− s) + 1.

Final analysis. Thus, after either the splitting or the merging phase, we
proved that |∂S′| ≤ ` + 4(r − s) + 2. To conclude the analysis, there only
remains to prove that r − s ≤ n

` .

Let c ∈ {s, . . . , r − 1}. The curves γic and γic+1 bound an annulus Ki
c. We

claim that the number A(Ki
c) of vertices in the interior of this annulus, its

area, is at least |γic+1|. This follows from the shifting procedure (refer back
to Figure 4.2—remember that G∗ is trivalent) and from the fact that the
contractible closed curves possibly stemming from γic only make the area larger,
by definition of a tangency.

For c ∈ {s, . . . , r − 1} and i ∈ {1, . . . , k}, the annuli Ki
c have disjoint

interiors, so the sum of their areas is at most n. By the above formula, this
sum is at least

∑r−1
j=s Uc+1, where Uc =

∑k
i=1 |γic|. On the other hand, we have

Uc+1 ≥ ` if s ≤ c ≤ r − 1, by definition of s. Putting all together, we obtain
n ≥ (r − s)`, so r − s ≤ n

` .
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Complexity: At the start, the complexity of the set of curves is bounded by
the complexity of (S,G∗), and by construction, during the algorithm, the com-
plexity of the set of curves is always linear in n. The complexity of the splitting
phase or the merging phase is thus also linear in n. The complexity of out-
putting the new surface (S′, G∗|S′) is linear in the complexity ∂S′, which is, by
construction, also linear in n. To conclude, it suffices to prove that the whole
shifting phase takes linear time. We study separately the tangency detection
step and the contractibility tests.

Tangency detection. Remember that our curves are stored on the cross-
metric surface: At each time, we maintain the arrangement A of the overlay of
the curves in Γ with G∗. On each face f of A, we store a list L(f) of pointers
to the pieces incident to that face and having that face to their right. Thus,
f contains a tangency if and only if |L(f)| ≥ 2. Similarly, if g is a face of A
incident to f via an edge of G∗, the union of f and g contains a tangency if
and only if |L(f) ∪ L(g)| ≥ 3, or |L(f) ∪ L(g)| = 2 and the two corresponding
pieces are not consecutive. These properties can be tested in constant time.

As we push the curves, we update the corresponding lists L(f). At the
start of the shifting, or once the curves have been pushed by one step, we first
detect the tangencies within the same face f , and deal with them, updating
the lists L(f). At this step, there is at most one piece per face of G∗. For every
piece of Γ , we mark the edges incident to the face to the right of that piece;
as soon as one edge is marked from both sides, and the two corresponding
pieces are not consecutive, there is a tangency, which we handle immediately.
The running time for one tangency detection step is the total complexity of
the faces that are incident to the curves, and to their right; the sum of these
complexities is linear in n. (Note that we only care about the part of the
surface that is to the right of the curves; the data structures involving faces of
the remaining part of the surface are irrelevant.)

Contractibility tests. Finally, to perform a contractibility test on two sub-
curves α and β, we perform a tandem search on the surfaces bounded by α
and β, and stop as soon as we find a disk. If we find one, the complexity
in the tandem search is at most twice the complexity of this disk, which is
immediately discarded and never visited again. If we do not find a disk, the
complexity is linear in n, but the shifting phase is over. Therefore, the total
complexity of the contractibility tests is linear in the number of vertices swept
by the shifting phase or in the disks, until the very last contractibility test,
which takes time linear in n. In the end, the shifting phase takes time linear
in n, which concludes the complexity analysis.

5 Shortest Cellular Graphs with Prescribed Combinatorial Maps

Guth, Parlier, and Young proved the following result:

Theorem 5.1 ([30, Theorem 2]) For any ε > 0, the following holds with
probability tending to one as n tends to ∞: A random (trivalent, unweighted)
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cross-metric surface without boundary with n vertices has no pants decompo-
sition of length at most n7/6−ε.

In this statement, two cross-metric surfaces are regarded as equal if some self-
homeomorphism of the surface maps one to the other. (Note that vertices,
edges, and faces are unlabeled.) As a side remark, by a simple argument, we
are actually able to strengthen this result, by replacing, in the statement above,
“pants decomposition” by “genus zero decomposition”. We defer the proof of
this side result, independent of the following considerations, to Appendix B.

The main purpose of this section is to provide an analogous statement,
not for pants decompositions or genus zero decompositions, but for cut graphs
(or, actually, for arbitrary cellular graphs) with a prescribed combinatorial
map. We essentially prove that, for any combinatorial map M of any cellular
graph embedding (in particular, of any cut graph) of genus g, there exists a
(trivalent, unweighted) cross-metric surface S with n vertices such that any
embedding of M on S has length Ω(n7/6). We are not able to get this result
in full generality, but are able to prove that it holds for infinitely many values
of g. On the other hand, the result is stronger since, as in Theorem 5.1, it
holds “asymptotically almost surely” with respect to the uniform distribution
on unweighted trivalent cross-metric surfaces with given genus and number of
vertices.

Let (S,G∗) be a cross metric surface without boundary, and M a combina-
torial map on S. The M -systole of (S,G∗) is the minimum among the lengths
of all graphs embedded in (S,G∗) with combinatorial map M . Given g and n,
we consider the set S(g, n) of trivalent unweighted cross-metric surfaces of
genus g, without boundary, and with n vertices, where we regard two cross-
metric surfaces as equal if some self-homeomorphism of the surface maps one
to the other. This refines the model introduced by Gamburd and Makover [24].
Here is our precise result:

Theorem 5.2 Given strictly positive real numbers p and ε, and integers n0
and g0, there exist n ≥ n0 and g ≥ g0 such that, for any combinatorial map M
of a cellular graph embedding with genus g, with probability at least 1 − p, a
cross-metric surface chosen uniformly at random from S(g, n) has M -systole
at least n7/6−ε.

We can obtain a similar result in the case of polyhedral triangulations, namely,
metric spaces obtained by gluing n equilateral Euclidean triangles with sides
of unit length. We first note that an element of S(g, n) naturally corresponds
to a polyhedral triangulation by gluing equilateral triangles of unit side length
on the vertices. The notion of M -systole is defined similarly in this setting,
and we now prove that Theorem 5.2 implies an analogous result for polyhedral
triangulations:

Theorem 5.3 Given strictly positive real numbers p and ε, and integers n0
and g0, there exist n ≥ n0 and g ≥ g0 such that, for any combinatorial map M
of a cellular graph embedding with genus g, with probability at least 1 − p,



Discrete Systolic Inequalities and Decompositions of Triangulated Surfaces 21

a. b. c.

Figure 5.1 a. The graph H, obtained after cutting S open along C. The vertices in B (on
the outer face) and the vertices of G∗ (not on the outer face) are shown. The chords are in
thick (black) lines. b. The graph H1. c. The graph H2.

a polyhedral triangulation chosen uniformly at random from S(g, n) has M -
systole at least n7/6−ε.

5.1 Proof of Theorem 5.2

The general strategy of the proof of Theorem 5.2 is inspired by Guth, Par-
lier and Young [30], who proved a related bound for pants decompositions;
however, the details of the method are rather different. Our main tool is the
following proposition.

Proposition 5.1 Given integers g, n, and L, and a combinatorial map M of
a cellular graph embedding of genus g, at most

f(g, n, L) = 2O(n)L (L/g + 1)
12g−9

cross-metric surfaces in S(g, n) have M -systole at most L.

Proof. First, note that it suffices to prove the result for cut graphs with
minimum degree at least three. Indeed, one can transform any cellular graph
embedding into such a cut graph by removing edges, removing degree-one
vertices with their incident edges, and dissolving degree-two vertices, namely,
removing them and replacing the two incident edges with a single one. For a
combinatorial map M with minimum degree at least three, Euler’s formula
and double-counting immediately imply that M has at most 4g − 2 vertices
and 6g − 3 edges. Given a cross-metric surface (S,G∗) in S(g, n), let C be a
cut graph of genus g with combinatorial map M and length at most L.

Let H ′ be the graph that is the overlay of G∗ and C. Cutting S along C
yields a topological disk D, and transforms H ′ into a connected graph H
(Figure 5.1(a)) embedded in the plane, where the outer face corresponds to
the copies of the vertices and edges of the cut graph C. The set B of vertices of
degree two on the outer face of H exactly consists of the copies of the vertices
of C; there are at most 12g−6 of these. A side of H is a path on the boundary
of D that joins two consecutive points in B.
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a. b.

Figure 5.2 The exchange argument to prove (i).

Given the combinatorial map of H in the plane, we can (almost) recover
the combinatorial maps corresponding to H ′ and to (S,G∗). Indeed, the set B
of vertices of degree two on the outer face of H determines the sides of D. The
correspondence between each side of D and each edge of the combinatorial
map M is completely determined once we are given the correspondence be-
tween a single half-edge on the outer face of H and a half-edge of M ; in turn,
this determines the whole gluing of the sides of H and completely reconstructs
H ′ with C distinguished. Finally, to obtain G∗, we just “erase” C. Therefore,
one can reconstruct the combinatorial map corresponding to the overlay H ′

of G∗ and C, just by distinguishing one of the O(L) half-edges on the outer
face of H.

A chord of H is an edge of H that is not incident to the outer face but
connects to vertices incident to the outer face. Two chords are parallel if their
endpoints lie on the same pair of sides of D. We claim that we can assume the
following:

(i) no chord has its endpoints on the same side of H (Figure 5.2(a) shows an
example not satisfying this property);

and that (at least) one of the two following conditions holds:

(ii) the subgraph of H between any two parallel chords only consists of other
parallel chords (Figure 5.3(a) shows an example not satisfying this prop-
erty), or

(ii’) there are two parallel chords such that the subgraph of H between them
contains all the interior vertices of H.

Indeed, without loss of generality, we can assume that our cut graph C has
minimum length among all cut graphs of (S,G∗) with combinatorial map M .
If a chord violates (i), one could shorten the cut graph by sliding a part of the
cut graph over the chord (Figure 5.2), which is a contradiction.

For (ii) and (ii’), the basic idea is to use a similar exchange argument as to
prove (i), but we need a perturbation argument as well. Specifically, let us tem-
porarily perturb the crossing weights of the edges of G∗ as follows: The weight
of each edge e of G∗ becomes 1 + we, where the we’s are real numbers that
are linearly independent over Q (e.g., independent and identically distributed
random) and strictly between 0 and 1/L. Let C be a shortest embedded graph
with combinatorial map M under this perturbed metric.
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p1

p2

c1 c2

a. b. c.

Figure 5.3 a.: Two chords violating (ii). b.: The exchange argument, in case p1 and p2
have different perturbed lengths. c.: A schematic view of the situation, in case p1 and p2
have the same perturbed length.

It is easy to see that C is also a shortest embedding with combinatorial
map M under the unweighted metric: Indeed, two cut graphs C1 and C2

with respective (integer) lengths `1 < `2 ≤ L in the unweighted metric have
respective lengths `′1 < `′2 in the perturbed metric, since the perturbation
increases the length of each edge by less than 1/L.

We claim that either (ii) or (ii’) holds for this choice of C. Assume that
(ii) does not hold; we prove that (ii’) holds. So the region R of D between
two parallel chords c1 and c2 of D contains internal vertices; without loss of
generality (by (i)), assume that the region R contains no other chord in its
interior. Let p1 and p2 be the two subpaths of the cut graph on the boundary
of R. If p1 and p2 have different lengths under the perturbed metric, e.g., p1
is shorter, then we can push the part of p2 to let it run along p1 and shorten
the cut graph (Figure 5.3(b)), which is a contradiction. Therefore, p1 and p2
have the same length under the perturbed metric, which implies that they
cross exactly the same set E of edges of G∗, since the weights are linearly
independent over Q. (We exclude from E the edges on the endpoints of p1
and p2.) Since none of the edges in E are chords, all the endpoints of the
edges in E belong to R (Figure 5.3(c)), which implies (ii’) by connectivity
of G∗. This concludes the proof of the claim.

We now estimate the number of possible combinatorial maps for H, by
“splitting” it into two connected plane graphs H1 and H2, estimating all pos-
sibilities of choosing each of these graphs, and estimating the number of ways
to combine them.

Let H1 be the graph (see Figure 5.1(b)) obtained from H by removing
all chords and dissolving all degree-two vertices (which are either in B or
endpoints of a chord). H1 is connected, trivalent, and has at most n vertices not
incident to the outer face, so O(n) vertices in total. By a classical calculation
(see for example [30, Lemma 4]), there are thus 2O(n) possible choices for the
combinatorial map of this planar trivalent graph H1.

On the other hand, let H2 be the graph (see Figure 5.1(c)) obtained from H
by removing internal vertices together with their incident edges and dissolv-
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ing all degree-two vertices not in B. Since the chords are non-crossing and
connect distinct sides of D, the pairs of sides connected by at least one chord
form a subset of a triangulation of the polygon having one vertex per side
of D. To describe H2, it therefore suffices to describe a triangulation of this
polygon with at most 12g − 6 edges, which makes 2O(g) = 2O(n) possibilities,
and to describe, for each of the 12g − 9 edges of the triangulation, the num-
ber of parallel chords connecting the corresponding pair of sides. Since there
are at most L chords, the number of possibilities for these numbers equals
{(x1, . . . , x12g−9) | xi ≥ 0,

∑
i xi ≤ L}, which is the number of weak composi-

tions of L into 12g − 8 parts, namely(
L+ 12g − 9

12g − 9

)
≤
(
e(L+ 12g − 9)

12g − 9

)12g−9

= O
(
(L/g + 1)12g−9

)
× 2O(n),

the inequality being standard (or following from Stirling’s formula).
Finally, in how many ways can we combine given H1 and H2 to form H? Let

us first assume that (ii) holds; the parallel chords joining the same pair of sides
are consecutive, so choosing the position of a single chord fixes the position of
the other chords parallel to it. Therefore, given H1, we need to count in how
many ways we can insert the O(g) vertices of B on H2 into H1, and similarly
the O(g) intervals where endpoints of chords can occur, respecting the cyclic
ordering. After choosing the position of a distinguished vertex of H2, we have
to choose O(g) positions on the edges of the boundary of H1, possibly with

repetitions, which leaves us with
(
O(n+g)
O(g)

)
≤ 2O(n+g) = 2O(n) possibilities. In

case (ii’) holds, a very similar argument gives the same result.
The claimed bound follows by multiplying the number of all possible choices

above: there are O(L) choices for the distinguished half-edge of the outer face
of H, 2O(n) choices for H1, O

(
(L/g + 1)12g−9

)
× 2O(n) choices for H2, and

2O(n) possibilities for combining H1 and H2.

Proof of Theorem 5.2. Let g0, n0, p, ε be as indicated. Euler’s formula implies
that a cross-metric surface with n vertices has genus g ≤ (n + 2)/4. We now
show that, if n is large enough,

(n+2)/4∑
g=g0

f(g, n, n7/6−ε) ≤ n(1−ε)n/2. (∗)

Indeed, by Proposition 5.1 we have

f(g, n, n7/6−ε) ≤ 2C0n
(
n7/6−ε/g + 1

)12g−9
for some constant C0. We need to sum up these terms from g = g0 to (n+2)/4.
For n large enough, the largest term in this sum is for g = (n+ 2)/4. Thus the
desired sum is bounded from above by

n2C0n
(

4n1/6−ε + 1
)12(n+2)/4−9

,
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which is at most 2C1nn(1/6−ε)3n (for n large enough, for some constant C1),
which in turn is at most n(1−ε)n/2 for n large enough.

Furthermore, let h(g, n) = |S(g, n)| be the number of (connected) cross-

metric surfaces with genus g and n vertices. We have
∑(n+2)/4
g=0 h(g, n) ≥

eCnnn/2 if n is large enough and even, for some absolute constant C; this
is probably folklore, and we provide a proof, deferred to Lemma 5.1. But, if
g is fixed, h(g, n) = O(eC

′n) for some constant C ′ [30, Lemma 4]. Thus, since
g0 is fixed, there is a constant C ′′ such that, for n large enough and even,∑(n+2)/4
g=g0

h(g, n) ≥ eC′′nnn/2 (**).

Choose any (even) n ≥ n0 such that n−εn/2e−C
′′n ≤ p and such that (*)

and (**) hold. Thus, we have

(n+2)/4∑
g=g0

f(g, n, n7/6−ε) ≤ p
(n+2)/4∑
g=g0

h(g, n),

which implies that for some g ≥ g0,

f(g, n, n7/6−ε)/h(g, n) ≤ p

and the denominator is non-zero. In other words, among all h(g, n) cross-
metric surfaces with genus g and n vertices, for any combinatorial map M of
a cellular graph embedding of genus g, a fraction at most p of these surfaces
have an embedding of M with length at most n7/6−ε.

We remark that a tighter estimate on the number h(g, n) of triangulations
with n triangles of a surface of genus g could lead to the same result for any
large enough g, instead of for infinitely many values of g.

To conclude the proof, there remains to prove the bound on the number of
connected surfaces.

Lemma 5.1 The number of (trivalent, unweighted) connected cross-metric
surfaces with n vertices without boundary is, for n even large enough, at least
eCnnn/2 for some absolute constant C.

Proof. Let Gn be the set of simple unlabelled trivalent graphs with n vertices.
Let G′n be the set of graphs in Gn that are connected. Let S′n be the number
of connected cross-metric surfaces with n vertices; we want a lower bound
on |S′n|. Below we implicitly assume n to be even, for otherwise these sets are
empty.

We have |S′n| ≥ |G′n|, because every graph in G′n leads to a connected cross-
metric surface, by cellularly embedding the graph arbitrarily, and these cross-
metric surfaces are distinct, because they have distinct vertex-edge graphs.

Moreover, |G′n|/|Gn| tends to one as n goes to infinity, because the pro-
portion of 3-connected graphs in the set of simple unlabelled trivalent graphs
with n vertices goes to one as n goes to infinity [47, p. 338]. (Actually, except
for this argument, our proof is heavily inspired by Guth et al. [30, Lemmas 1
and 3].)
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The number of simple labelled trivalent graphs with n = 2k vertices is,

as n goes to infinity, equivalent to (6k)!
(3k)!288ke2 [55]. The expected number of

automorphisms of these graphs tends to one as n goes to infinity [47, Corol-

lary 3.8], which implies that |Gn| is equivalent to (6k)!
(3k)!(2k)!288ke2, which is at

least eCnnn/2 for some absolute constant C. The previous paragraphs imply
that |S′n| is asymptotically at least as large, as desired.

5.2 Proof of Theorem 5.3

We now show that the result just proved, Theorem 5.2, implies the polyhedral
variant, Theorem 5.3:

Proof. As in the proof of Theorem 5.2, it suffices to prove the result for
maps M that are cut graphs with minimum degree three, which have at most
4g − 2 vertices and 6g − 3 edges. Let G be the vertex-edge graph of a poly-
hedral triangulation on a surface S with genus g. Assume that C is a graph
with combinatorial map M and of length at most n7/6−ε on that polyhedral
surface. We prove that some cut graph with combinatorial map M has length
O(n7/6−ε) in the dual cross-metric surface (S,G∗). Since, by Theorem 5.2, the
proportion of such surfaces is arbitrarily small, this implies the theorem.

Without loss of generality, we assume that C is piecewise-linear, and in
general position with respect to G. We consider a tubular neighborhood of G
(Figure 5.4(a)), obtained by first building a small disk around each vertex of G,
and then building a rectangular strip containing each part of edge not covered
by a disk. The disks are pairwise disjoint, the strips are pairwise disjoint, and
each strip intersects only the disks corresponding to the incident vertices of
the corresponding edge, along paths. We push C into the disks and strips as
follows. A piece of C in a triangle T is a maximal connected part of C that
lies in T ; the side number of a piece is the number of sides of T it touches.

First, consider all the pieces with side number one. By an ambient isotopy,
we can push these pieces across the side of the triangle they touch without
increasing their length. So we can assume that no piece has side number one
in any triangle.

Next, we deal with the pieces with side number two. By an ambient isotopy
of the triangle fixing its boundary, we push all such pieces into the strips of
the two sides of the triangle, putting the vertices in the disk touching the
two strips (Figure 5.4(b–c)). Elementary geometry implies that this at most
doubles the length of the pieces containing no vertex of C, and it increases the
length of the pieces with a vertex by an additional term that is linear in the
number of edges incident to the vertices of the piece. Since C has O(g) = O(n)
edges, the length of the modified cut graph is still O(n7/6−ε).

Finally, there exists at most one piece with side number three lying in each
triangle. We can push that piece as well to the three strips of the sides of the
triangle, pushing all vertices of that piece to one of the disks, chosen arbitrarily
(Figure 5.4(d)); this operation increases the length of C by an additional term



Discrete Systolic Inequalities and Decompositions of Triangulated Surfaces 27

a. b.

c. d.

e. f.

Figure 5.4 Illustration of the proof of Theorem 5.3. a.: The disks and strips inside one
triangle of G, and the part of the cut graph C inside the triangle. b.: A piece with side
number one is pushed across the side of the triangle. c.: The pieces with side number two
are pushed to the disks and strips. d.: The piece with side number three is pushed to the
disks and strips. e.: The paths Ps. f.: The cross-metric surface.

that is at most the number of edges of the piece. As before, this additional
increase in length is O(g) = O(n).

So, we have obtained an isotopic cut graph C ′, whose length is stillO(n7/6−ε),
with the property that the vertices of C ′ lie in the disks and the edges of C ′

lie in the union of the disks and the strips. For each strip s, draw a shortest
path Ps, with endpoints on its boundary, separating the two incident disks
(Figure 5.4(e)). If a portion of C ′ inside s crosses Ps more than once, it forms
a bigon with Ps; by flipping innermost bigons, without increasing the length
of C ′, we can assume that each portion of C ′ inside s crosses Ps at most once.
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Now we extend the paths Ps to form the graph G∗ (Figure 5.4(f)). By the
paragraph above, each crossing of a path Ps corresponds to a portion of a path
of C ′ that crosses the strip containing Ps, and thus has length at least 1− δ,
for δ > 0 arbitrarily close to zero (the size of the disks and strips are chosen
according to δ). Therefore, the length of C ′ on the cross-metric surface (S,G∗)
is at most (1−δ) times that of the length of C ′ on the polyhedral triangulated
surface, and thus O(n7/6−ε).

An interesting question would be to determine whether there exists an
analog of Theorem 5.2 when we are not given the embedding of M , but only its
abstract graph. More generally, let S and M be two graphs with n vertices that
are cellularly embeddable on a surface of genus g; are there cellular embeddings
of S and M on this surface such that the graphs cross only O(n) times?
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École normale supérieure, 2012. Habilitation thesis, available at http://www.di.ens.

fr/~colin/.



Discrete Systolic Inequalities and Decompositions of Triangulated Surfaces 29
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A Discrete Systolic Inequalities in Higher Dimensions

In this appendix, we show that the proofs from Section 3 extend almost ver-
batim to higher dimensions. In the following discussion (M,T ) will be a tri-
angulated d-manifold.1 We will denote by fd(T ) the number of d-dimensional
simplices of T , and by f0(T ) the number of vertices. The main difference with
the two-dimensional case is that while for surfaces, discrete systolic inequal-
ities in terms of f0 and in terms of fd are easily seen to be equivalent (by
Euler’s formula and double counting), in higher dimensions the situation is
more complicated.

We consider the supremal values of the functionals sysd

fd
and sysd

f0
, where sys

denotes the length of a shortest closed curve in the 1-skeleton of (M,T ) that
is non-contractible on the manifold M . In particular we focus on when these
quantities are bounded from above. As we surveyed in the introduction, the
two-dimensional case of this problem has been studied by topological graph
theorists and computational topologists; however, as far as we know, it has
never been considered in dimension higher than two in the past. We report the
results and open problems that we can derive by generalizing our techniques
for surfaces.

A.1 From Continuous to Discrete Systolic Inequalities

To infer discrete systolic inequalities from the Riemannian ones, the obvious
approach is, as before, to start with a triangulated manifold (M,T ) and to
endow M with a metric mT by deciding that each simplex of T is a regular
Euclidean simplex of volume one. (Since the simplices are regular, we glue them
by facewise isometries.) Hence, length and volume are naturally defined via
the restriction to each Euclidean simplex. Following Gromov [27], we will call
such a metric a piecewise Riemannian metric. Unlike the 2-dimensional case,
however, foundational work of Kervaire [36] shows that in higher dimensions
such a triangulated manifold is not always smoothable. (We will show how to
circumvent this difficulty below.)

Theorem A.1 There exists a constant Cd, such that for every triangulated
compact manifold (M,T ) without boundary of dimension d, there exists a piece-
wise Riemannian metric m on M with volume fd(T ) such that for every closed
curve γ in M , there exists a homotopic closed curve γ′ on the 1-skeleton G
of T with

|γ′|G ≤ Cd|γ|m.

The proof works inductively, pushing curves from the i-dimensional skele-
ton to the (i− 1)-dimensional one. We start with the following lemma.

1 E.g., (M,T ) is a simplicial complex whose underlying space is a d-manifold. However,
we can allow more general triangulations obtained from gluing d-simplices, in which, after
gluing, some faces (e.g., vertices) of the same d-simplex are identified.
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Lemma A.1 Let ∆ be an i-dimensional regular simplex, endowed with the
Euclidean metric. There exists an absolute constant C ′i such that, for each
arc γ properly embedded in ∆ with endpoints in ∂∆, there exists an arc γ′

embedded on ∂∆, with the same endpoints as γ, such that |γ′| ≤ C ′i|γ|.

Proof of Lemma A.1. Since the statement of the lemma is invariant by scaling
all the distances, we can assume that ∆ is the regular i-simplex whose circum-
scribing sphere bounds the unit ball B in Ri. Let us first consider the bijec-
tion ϕ that maps ∆ to B by radial projection (such that the restriction of ϕ to
any ray from the origin is a linear function). It is not hard to see that there is
a constant C ′′i such that, for any arc γ in ∆, we have |γ|/C ′′i ≤ |ϕ(γ)| ≤ C ′′i |γ|
(one can compute the optimal C ′′i by writing the map in hyperspherical coor-
dinates and computing the differential).

Therefore it suffices to prove the lemma for the unit ball B instead of
the regular simplex ∆. Let β be an arc embedded in B. Let β′ be a shortest
geodesic arc on ∂B with the same endpoints as β. Then we have |β′| ≤ π

2 |β|,
which proves the result.

Proof of Theorem A.1. As we mentioned before, we endow M with the piece-
wise Riemannian metric obtained by endowing each simplex of dimension d
with the geometry of the regular Euclidean simplex of volume 1. Then, us-
ing Lemma A.1, for every arc A of γ in every d-simplex, we push A to the
(d− 1)-skeleton of (M,T ), and we repeat this procedure inductively until γ is
embedded in the 1-skeleton. In the end, the length of γ′ has increased by at
most a multiplicative factor that depends only on d.

The Riemannian systolic inequality in higher dimensions is now stated in
the following theorem.

Theorem A.2 (Gromov [27]) For every d, there is a constant Cd such
that, for any Riemannian metric m on any essential compact d-manifold M
without boundary, there exists a non-contractible closed curve of length at most
Cd vol(m)1/d.

For a definition of essential manifold, see [27]. The prime examples of essential
manifolds are the so-called aspherical manifolds, which are the manifolds whose
universal cover is contractible. These include for example the d-dimensional
torus for every d, or manifolds that accept a hyperbolic metric and, more
generally, manifolds that are locally CAT(0). In particular, all surfaces except
the 2-sphere and the projective plane are aspherical. On the other hand, real
projective spaces and lens spaces are examples of essential manifolds that are
non aspherical.

Theorem A.2 also holds for piecewise Riemannian metrics. Indeed, its proof
revolves around two key inequalities: the filling radius-volume inequality and
a systole-filling radius inequality. The former relies on a coarea formula which
holds for piecewise Riemannian metrics (see [27, Lemma 4.2b]), and the proof
of the latter uses no smoothness property either, see [27, p. 9 and 10]. As
a corollary of this refinement to piecewise Riemannian metrics and of our
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Theorem A.1, we obtain the following result relating the length of systoles
and the number of facets.

Corollary A.1 Let (M,T ) be a triangulated essential compact d-manifold
without boundary. Then, for some constant cd depending only on d, some non-
contractible closed curve in the 1-skeleton of T has length at most cdfd(T )1/d.

A.2 From Discrete to Continuous Systolic Inequalities

We now turn our attention to the other direction, namely, transforming a
discrete systolic inequality into a continuous one.

Theorem A.3 Let M be a compact Riemannian manifold of dimension d and
volume V without boundary, and let δ > 0. For infinitely many values of f0,
there exists a triangulation (M,T ) of M with f0 vertices, such that every closed
curve γ in the 1-skeleton G of M satisfies

|γ|m ≤ (1 + δ)
10√
π
Γ (d/2 + 1)1/d

(
V

f0

)1/d

|γ|G.

(Here, Γ is the usual Gamma function.) The proof follows the same idea as the
proof of Theorem 3.2. We start with the centers of a maximal set of disjoint
balls of radius ε/2 in M and want to compute the Delaunay triangulation
associated to it, with the hope that if ε is small enough, we will obtain a
triangulation of M . However, Delaunay complexes behave differently in higher
dimensions, and this hope turns out to be false in many cases. We rely instead
on a recent work reported by Boissonnat, Dyer and Ghosh [2] who devised
the correct perturbation scheme to triangulate a manifold using a Delaunay
complex. We will use the following theorem.

Theorem A.4 Let M be a compact Riemannian manifold. For a small enough
ε, there exists a point set P ⊆M such that

(i) For every x ∈M , there exists p ∈ P such that |x− p|m ≤ ε.
(ii) For every pair p 6= p′ ∈ P , |p− p′|m ≥ 2ε/5.

(iii) The Delaunay complex of P is a triangulation of M .

For completeness, we sketch how to infer this theorem from the paper [2].

Proof of Theorem A.4. We say that a set of points P ⊆ M is ε-dense if
d(x, P ) < ε for x ∈M , µ0ε-separated if d(p, q) ≥ µ0ε for all distinct p, q ∈ P ,
and is a (µ0, ε)-net if it is ε-dense and µ0ε-separated.

Taking µ′0 = 1 and ε′ small enough, we start with a (µ′0, ε
′)-net in M ,

which can be obtained for example by taking the centers of a maximal set
of disjoint balls of radius ε′/2. Now, the extended algorithm of Boissonnat
et al. [2] outputs a (µ0, ε)-net with ε ≤ 5ε′/4 and µ0 ≥ 2µ′0/5, which will
be our point set P . These conditions correspond to items (i) and (ii) in our
theorem. For ε small enough, all the hypotheses of their main theorem are
fulfilled, and therefore we obtain that the Delaunay complex of the (µ0, ε)-net
is a triangulation of M , which is our item (iii).
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The proof of Theorem A.3 now follows the same lines as in the 2-dimensional
case.

Proof of Theorem A.3. Let ε > 0 be a constant. Following Theorem A.4, if ε is
small enough, there exists a point set P whose Delaunay complex triangulates
M . Let G be the 1-skeleton of this complex, and γ be a closed curve embedded
in G.

By property (i), neighboring points in G are at distance no more than 2ε,
therefore we have |γ|m ≤ 2ε|γ|G. There just remains to estimate the value of
ε, which we do by estimating the number of balls. By compactness, the scalar
curvature of M is bounded from above by some constant K. Now, if ε is small
enough, for any p ∈ P we have:

vol(B(p, ε/5)) ≥ εd

5d

(
1− ε2

6d
K + o(ε4)

)
vol(Bd),

where Bd is the unit Euclidean ball of dimension d. This follows from standard
estimates on the volume of a ball in a Riemannian manifold, see for example

Gromov [26, p. 89]. We recall that vol(Bd) = πd/2

Γ (d/2+1) .

By property (ii), the balls B(p, ε/5) are disjoint, therefore their number

f0 is at most Γ (d/2+1)5dV
πd/2εd(1−ε) if ε is small enough. Finally, putting together our

estimates, we obtain that

|γ|m ≤ (1 + δ)
10√
π

(
Γ (d/2 + 1)

f0
V

)1/d

|γ|G.

However, this theorem leads to no immediate corollaries, since unlike the two-
dimensional case, we do not know of any discrete systolic inequalities involving
f0 in dimensions larger than two. This leads to the following question.

Question A.1 Are there manifolds M of dimension d ≥ 3 for which there
exists a constant cM such that, for every triangulation (M,T ), there is a non-
contractible closed curve in the 1-skeleton of T of length at most cMf0(T )1/d?

Notice that a positive answer to this question for essential compact mani-
folds without boundary would yield a new proof of Gromov’s systolic inequal-
ity.

Remark: In his thesis [38], Kowalick states a theorem that is closely re-
lated to our Theorem A.3, and thus to this question. Essentially, his result
is ours substituting f0 with fd. Precisely, he shows that if for a manifold M ,
there exists c′M > 0 such that, for every triangulation (M,T ), there is a non-
contractible closed curve in the 1-skeleton of T of length at most c′Mfd(T )1/d,
then there exists a constant sM such that the systole of every Riemannian
metric on M is bounded above by sM vol(M)1/d. This statement can be de-
rived from our proof without much extra difficulty. It is enough to show that in
the triangulations constructed in the proof of Theorem A.3, for large enough
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f0(T ), the number fd(T ) is bounded above by f0(T ) up to a multiplicative con-
stant that depends only on the dimension. This follows again from a packing
argument and from the bounds on volume growth of small balls. For ε small
enough with respect to the strong convexity radius and the minimal sectional
curvature of the manifold, the quotient vol(B(x, 2ε))/ vol(B(x, ε) is bounded
from above by an absolute constant kd depending only on the dimension. Since
two points in the same facet of our Delaunay complex are at distance at most

2ε, we have fd(T ) ≤ kd
d

d+1f0(T ).

B Lengths of Genus Zero Decompositions

A genus zero decomposition of a surface is a family of disjoint simple closed
curves that cut the surface into a (connected) genus zero surface with bound-
ary. Every genus zero decomposition (of a surface with genus at least two) can
be extended to a pants decomposition. In this section, we prove the following
strengthening of Theorem 5.1:

Theorem B.1 For any ε > 0, the following holds with probability tending to
one as n tends to ∞: A random (trivalent, unweighted) cross-metric surface
with n vertices has no genus zero decomposition of length at most n7/6−ε.

The argument is very similar to the one by Poon and Thite [50, Sect. 2].
As we shall see, this theorem is an immediate consequence of the following
proposition:

Proposition B.1 Let (S,G∗) be a (trivalent, unweighted) cross-metric sur-
face with genus zero and b ≥ 3 boundary components. Then there exists some
pants decomposition Γ of S such that each edge of G∗ has O(log b) crossings
with each edge of Γ .

Proof. Define the multiplicity of a set of curves on (S,G∗) to be the maximum
number of crossings between an edge of G∗ and the set of curves.

Let T be a spanning tree of the boundary components of (S,G∗), that
is, a tree of multiplicity one in (S,G∗) so that each boundary component
of S is intersected by exactly one leaf of the tree, (Figure B.1(a)). Draw a
path p following the tree T , touching it only at the leaves (Figure B.1(b–c));
such a path p has multiplicity two, and touches each boundary component
exactly once. Let B1, B2, . . . , Bb be the boundary components in order along
p (oriented arbitrarily).

Now, we build the pants decomposition (Figure B.1(d)). First we group
the boundary components by pairs, {B1, B2}, {B3, B4}, and so on. Then we
cut S into a collection of bb/2c pairs of pants and a genus zero surface with
db/2e boundary components, and we reiterate the process on the latter surface.
After O(log b) iterations, the remaining surface has at most three boundary
components, so we have built a pants decomposition Γ .

We claim that Γ has multiplicity O(log b). Indeed, each closed curve of Γ
is made of (1) pieces that go around a boundary component, and (2) pieces
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(c)

(d)

(a) (b)

Figure B.1 The construction of the pants decomposition in Proposition B.1. (a) The tree T .
(b) The path p. (c) An isomorphic drawing of p. (d) The pants decomposition.

that follow a subpath of p. The pieces of type (1) have overall multiplicity
O(log b), because O(log b) pieces go around a given boundary component and
each edge of G∗ is incident to at most two boundary components. The pieces
of type (2) have overall multiplicity O(log b), since O(log b) pieces run along a
given subpath of p, and because p has multiplicity two in (S,G∗). The result
follows.

Proof of Theorem B.1. Consider a random cross-metric surface (S,G∗) with
n vertices; let g be its genus.

– It may be that (S,G∗) has genus zero or one; but this happens with prob-
ability arbitrarily close to zero, provided n is large enough (this follows by
combining Lemma 5.1 with Guth et al. [30, Lemma 4]);

– otherwise, if (S,G∗) admits a genus zero decomposition Γ ′ of length at
most n7/6−ε, we cut (S,G∗) along Γ ′, obtaining a cross-metric surface with
genus zero with 2g ≥ 3 boundary components and O(n7/6−ε) edges. Propo-
sition B.1 implies that this new cross-metric surface has a pants decom-
position Γ with length O(n7/6−ε log g) = O(n7/6−ε log n). The union of Γ
and Γ ′ is a pants decomposition of (S,G∗) of length at mostO(n7/6−ε log n+
n7/6−ε) = O(n7/6−ε

′
) for some ε′ < ε if n is large enough. By Theorem 5.1

above, we conclude that this happens with arbitrarily small probability as
n→∞.


