
Topological Algorithms
for Graphs on Surfaces

(Algorithmes topologiques pour les graphes tracés sur des surfaces)

par

Éric COLIN DE VERDIÈRE

Mémoire pour l’obtention de

l’Habilitation à Diriger des Recherches

de l’École normale supérieure

(Spécialité Informatique)

Soutenue le 29 mai 2012 devant le jury composé de :

M. Jean-Daniel BOISSONNAT, Directeur de Recherche
M. Victor CHEPOI, Professeur
M. Michel HABIB, Professeur
M. Sylvain PETITJEAN, Directeur de Recherche
M. Jean PONCE, Professeur
M. Gilles SCHAEFFER, Directeur de Recherche
M. Jean-Marc SCHLENKER, Professeur

au vu des rapports de :

M. Victor CHEPOI, Professeur
M. Bojan MOHAR, Professor
M. Jack SNOEYINK, Professor

ii

Date of this version: May 21, 2012.

ACKNOWLEDGMENTS

I wish to express my gratitude to Victor Chepoi, Bojan Mohar, and Jack
Snoeyink, who accepted to review this habilitation thesis in spite of their
busy schedule; I thank them for the interest they expressed in reading my
manuscript. Thanks also to the other members of the examining commit-
tee: Jean-Daniel Boissonnat, Michel Habib, Sylvain Petitjean, Jean Ponce,
Gilles Schaeffer, and Jean-Marc Schlenker.

I would like to thank my colleagues at ENS, and in particular Jean
Ponce, chair of the laboratory, for his help and encouragements. I grate-
fully acknowledge Jean Vuillemin, the past chair of the laboratory, Michel
Pocchiola, my Ph.D. advisor, and David Pointcheval for his help in case
of rain! Many thanks also to the persons from the administrative, tech-
nical, and library staff at ENS for the great and efficient work they are
doing.

Let me thank the co-authors of the research articles presented in this
thesis: Alexandre Boulch, Sergio Cabello, Erin Chambers, Jeff Erickson,
Grégory Ginot, Xavier Goaoc, Sylvain Lazard, Francis Lazarus, Arnaud
de Mesmay, Atsuhiro Nakamoto, Alexander Schrijver, Shripad Thite, and
Kim Whittlesey. In particular, thanks to my students Alexandre Boulch
and Arnaud de Mesmay for their efforts and patience. This manuscript
has also benefited from fruitful discussions with Guillaume Chapuy, Jeff
Erickson, and Arnaud de Mesmay, and I gratefully thank them.

Enfin, je remercie de tout cœur ma famille, et tout particulièrement
ma femme Mathilde et nos enfants François, Cyprien, Thibaut et Maylis
pour leur soutien et leur affection au quotidien.

iv ACKNOWLEDGMENTS

CONTENTS

1 Introduction 1

I Preliminaries and survey on graphs on surfaces 5

2 Preliminaries 7

3 Graphs on surfaces: a short survey 17

II Shortest curves and graphs on surfaces 25

4 Models: combinatorial and cross-metric surfaces 27

5 Basics: cut loci and applications 33

6 More shortest non-trivial cycles 43

7 Other shortest curves 51

III More results for curves and graphs on surfaces 65

8 Testing isotopy of graphs 67

9 Existence of cycles without repeated vertices 75

10 Combinatorics of irreducible triangulations 79

IV Other works and perspectives 83

11 Other works 85

12 Perspectives 95

Index 99

References 101

vi CONTENTS

CHAPTER 1

INTRODUCTION

In this habilitation thesis, we describe algorithms for solving topolog-
ical problems for surfaces and graphs drawn on them. Many graphs,
in theory and in practice, are inherently geometric; they can represent
traffic roads and junctions, computer networks, vertices and edges of a
polytope, or islands and bridges connecting them, as in the historically
famous problem of the seven bridges of Königsberg studied by Euler.
Furthermore, the easiest way to describe a graph is not by its formal def-
inition (adjacency or incidence matrix), but rather by a drawing of the
graph in the plane, possibly with crossings; graph drawing [89] and geo-
metric graph theory [197] are entire fields of research.

Here, we consider graphs embedded (drawn without crossings) on
surfaces “more complicated” than the plane. Examples of “more compli-
cated” surfaces include the torus, the Möbius strip, the projective plane,
and other surfaces of higher genus. Unlike the plane or the sphere, such
surfaces are rich from a topological viewpoint: For example, they admit
closed curves that are non-contractible—in other words, that cannot be
continuously shrunk to a point while staying on the surface.

Therefore, in addition to algorithmic tools, we will use some tools
from topology. Thus, our work belongs to computational topology [82,
244, 251], a growing subfield of computational geometry, and also has
tight links with related communities such as topological graph theory
and graph algorithms. As we shall see, the study of algorithms and
combinatorial properties for graphs on surfaces is far from new and is
represented in several disciplines. However, within the computational
geometry and computational topology communities, this line of research
emerged in the late 1980s and swarmed in the 2000s.

In the field of topology, surfaces have been successfully studied for
more than one century and are very well-understood. Mathematical ob-
jects built upon surfaces, such as mapping class groups and Teichmüller
spaces, are the subject of active research, as a useful step to consider more
complicated topological objects such as three-manifolds, which are, in
contrast, much deeper and not completely understood. While such con-
temporary mathematics are useful to know about for some of the prob-
lems we study, we almost exclusively build upon the very classical re-
sults on surfaces such as their classification up to homeomorphism and

2 1. INTRODUCTION

the properties of their homotopy groups. On the other hand, the algo-
rithms we describe require new combinatorial and structural properties
of curves on surfaces.

Why are algorithms for graphs on surfaces interesting? In contrast to
planar graphs, every graph is embeddable on some surface; graphs on
surfaces are natural generalizations of graphs embedded in the plane
and share many combinatorial properties with them. When studying
graphs embeddable on surfaces, we are not really restricting ourselves to
a particular class of graphs; rather, graphs are classified according to their
genus, or informally to the “simplest” surface they can be embedded in.

Not surprisingly, many general graph problems can be solved more
efficiently using dedicated algorithms assuming that the input graph is
planar. It turns out that many computational problems are solvable on
graphs embedded on a fixed surface within the same asymptotic time
as for planar graphs. In particular, such results apply to “almost-planar
graphs”, for instance, graphs obtained from planar ones by adding a few
edges.

At a very high level, a general paradigm for solving such problems
is to cut the surface to make it planar; this process transforms the graph
into a planar one, allowing to apply algorithmic techniques for planar
graphs. In other words, algorithms are needed to simplify the topology
of the surface.

On another note, given a graph G, the data of an embedding of G
on a surface defines topological properties that a closed walk in G may
or may not have, such as being contractible or not; it also partitions the
set of closed walks into homotopy classes, where two closed walks are in
the same class if and only if one can be deformed continuously to the
other on the surface. As we shall see, many standard questions on closed
walks in graphs admit natural and interesting variants that take these
properties into account.

Shortest curves with prescribed topological properties. Most of this
document is devoted to the study of algorithms to compute shortest
curves that satisfy some desired topological properties on a surface. This
includes the problem of simplifying or decomposing the surface topo-
logically, by cutting along curves drawn on the surface. Furthermore,
we insist in computing shortest curves satisfying the desired conditions.
Besides being a natural requirement—the shortest path problem is fun-
damental, and we are considering a topological variation of it—, this
provides “canonical” curves satisfying these conditions, which also bear
structural properties useful in other algorithms.

On the application side, simplifying or decomposing topologically
a surface is useful in computer graphics and mesh processing, among
others, to remove irrelevant topological features of a mesh or to pa-
rameterize a surface. In such applications, it is important to make the
length of the curves as small as possible. For example, one would like

3

to cut a surface obtained by a 3d scanner along short non-contractible
closed curves, because the scanning process may create spurious han-
dles, which need to be removed. When putting a texture on the surface
of a three-dimensional object is desired, usually a parameterization step
is needed, which requires cutting the surface; the cut should be as short
as possible (with respect to some length function that is not necessarily
the Euclidean distance), because artefacts in the texture may appear at
such places. Some of the algorithms that we describe can be used for
such purposes.

Structure of this document. The idea I had in mind when writing this
habilitation thesis was to present my results on algorithms for graphs
on surfaces, together with a glimpse at the main proof techniques. In
particular, many proofs are sketched or omitted, and some results are
presented in a weakened form; some variants are completely dismissed.
The reader is referred to the research articles for more details.

This document is largely self-contained, and could hopefully serve as
an introduction to computational topology of graphs on surfaces, albeit
heavily biased towards my own research results.

Part I first presents the preliminary notions of surfaces and graphs
drawn on them, together with some important topological notions such
as homotopy and homology. Then we survey existing results about
graphs on surfaces in various disciplines, mostly from a computational
perspective.

In Part II, we consider the problem of computing shortest curves
with certain topological properties on a surface; in that part, the ma-
terial is somehow more developed, in particular in Chapter 5, where
several results are presented in a unified way. We first consider the
problem of computing shortest non-separating or non-disk-bounding
(non-contractible) closed curves, because such curves bear important
structural properties and are basic building blocks; we also describe
algorithms for computing short cut graphs. Then, in Chapter 7, we
describe algorithms to compute shortest curves with other prescribed
topological properties: a shortest curve within a given homotopy class,
or a shortest splitting closed curve.

In Part III, we show other algorithmic and combinatorial results re-
lated to graphs on surfaces, on isotopies between two embedded graphs,
on cycles without repeated vertices on such a graph, and on the complex-
ity of irreducible triangulations of surfaces.

The first chapter of Part IV surveys three of my recent results not
related to surface-embedded graphs. All of them consist of new algo-
rithms or combinatorial properties obtained with topological tools. They
are concerned, respectively, with a topological variation of the notion
of Fréchet distance to measure the similarity between curves, a graph
algorithm to compute vertex-disjoint paths of minimum total length in
a planar graph, and a topological extension of Helly’s theorem with
applications to geometric transversal theory. We conclude with some

4 1. INTRODUCTION

perspectives for further research in Chapter 12.
The chapters of this manuscript are quite independent, with the no-

table exceptions of Chapters 2, 4, and 5, which introduce concepts and
algorithms used in many subsequent chapters.

5

Part I

Preliminaries and Survey
on Graphs on Surfaces

CHAPTER 2

PRELIMINARIES

In this chapter, we present the main actors of this manuscript: surfaces,
graphs, and embeddings, together with some topological notions. For
more details, standard references on topology of surfaces include Arm-
strong [14], Henle [139], and Stillwell [229]. As usual, for a subspace X
of Y, we denote by X the closure of X in Y and by ∂X its boundary.

2.1 Graphs

We use standard terminology for graphs, see, e.g., Diestel [90]. All the
graphs we consider are finite and may have loops and multiple edges
(i.e., they are actually multigraphs); they are undirected unless noted oth-
erwise.

Let G be such a graph; V(G) and E(G) denote respectively the set
of vertices and edges of G. Furthermore, if V ′ ⊆ V(G) and E′ ⊆ E(G),
then G− V ′ denotes the graph G where the vertices in V ′ and their inci-
dent edges have been removed; furthermore, G− E′ denotes the graph G
where the edges in E′ have been removed.

A walk in G is an alternating sequence v0e0v1e1 . . . ek−1vk (k ≥ 0) of
edges and vertices of G, such that the initial endpoint of ei is vi and its
final endpoint is vi+1, for each i, 0 ≤ i ≤ k − 1. If v0 = vk, the walk is
closed.

2.2 Surfaces

2.2.1 Definition

A surface Σ, or compact 2-dimensional topological manifold with bound-
ary, is a (Hausdorff) compact topological space in which every point has
a neighborhood homeomorphic to the plane or to the closed half-plane.
The points that have no neighborhood homeomorphic to the plane com-
prise the boundary of Σ. Equivalently, a surface is a topological space Σ
obtained from finitely many disjoint triangles by gluing together some
edges of the triangles by pairs; the boundary points of Σ arise from
the edges of the triangles that are not identified with any other edge.

8 2. PRELIMINARIES

disk (ori-
entable, g = 0,
b = 1)

sphere (ori-
entable, g = 0,
b = 0)

annulus (ori-
entable, g = 0,
b = 2)

Möbius strip (non-
orientable, g = 1,
b = 1)

a
b

a
a

b

ba

a

a

a

a

a

torus (orientable,
g = 1, b = 0)

handle (orientable,
g = 1, b = 1)

double-torus (orientable, g = 2,
b = 0)

b
a

a

b

b

c
d a

a

a

b b

a

a
b

b

a
b

a

b
c

d

c

d

Figure 2.1. Examples of surfaces. Each surface (top rows) comes with a way to
obtain it by gluing together triangles (bottom rows). Since we only deal with
topological properties, the triangles on the surfaces may not be flat. In the bot-
tom rows, some triangles are already glued together, and the pairs of edges
labeled should be glued, respecting the orientation of the arrows. In the bottom
rows, some edges are dashed; these edges are not shown in the corresponding
surface, for clarity. The genus g and number of boundary components b is spec-
ified, as well as whether the surface is orientable.

The first definition is topological, while the second is more combinato-
rial. The equivalence between both definitions is non-trivial and due to
Kerékjártó [161] and Radó [206]. Henceforth, we always assume addi-
tionally that a surface is, by definition, connected.

2.2.2 Examples

Examples of surfaces include the disk, the sphere, the annulus (or cylin-
der), the Möbius strip, the torus, the handle (or torus with one open

2.3. CURVES AND EMBEDDED GRAPHS 9

disk removed), and the double-torus; Figure 2.1 shows these surfaces,
together with possible gluings of triangles to obtain them. In particu-
lar, note that the boundary of the Möbius strip is connected. In most
cases, we consider surfaces up to homeomorphism; for example, a disk
is just a topological space homeomorphic to the standard closed disk.
We emphasize that the surfaces we consider need not be embedded
in R3 (actually, the non-orientable surfaces without boundary cannot be
embedded in R3), but should be regarded as abstract topological spaces.

2.2.3 Classification

A surface is orientable if it does not contain a subspace homeomorphic
to a Möbius strip. The following classification theorem describes the home-
omorphism classes of surfaces.

Theorem 2.1. Each surface is homeomorphic to exactly one of the following
surfaces:

• the orientable surface of genus g ≥ 0 with b ≥ 0 boundary compo-
nents, obtained from the sphere by removing g open disks with disjoint
closures, attaching a handle to each of the resulting g circles, and finally
removing b open disks with disjoint closures;

• the non-orientable surface of genus g ≥ 1 with b ≥ 0 boundary com-
ponents, obtained from a sphere by removing g open disks with disjoint
closures, attaching a Möbius strip to each of the resulting g circles, and
finally removing b open disks with disjoint closures.

Thus a surface is uniquely determined by its genus, by its number of
boundary components, and by whether it is orientable.

2.3 Curves and Embedded Graphs

Now we consider curves and graphs drawn on a surface Σ. To avoid
topological pitfalls, we assume that every surface is defined by a gluing
of triangles, as explained above, and that all curves are piecewise-linear
with respect to that triangulation.

2.3.1 Paths, Loops, and Cycles

A path on Σ is a continuous map p : [0, 1] → Σ that is piecewise-linear
with respect to the triangulation of Σ: It intersects the edges of the trian-
gulation finitely many times, and it is piecewise-linear when restricted to
a subinterval whose image lies in a single triangle. The endpoints of p
are p(0) (its initial endpoint) and p(1) (its final endpoint). A loop is a
path whose endpoints coincide; that common endpoint is the basepoint
of the loop. A cycle is a piecewise-linear continuous map from the cir-
cle S1= R/Z to Σ; thus, a cycle is the same as a loop, except that a cycle
has no distinguished basepoint.

10 2. PRELIMINARIES

A path or cycle is simple if it is one-to-one; a loop is simple if its
restriction to [0, 1) is one-to-one. Here we would like to warn the reader
that the term path is used in the topological sense: In general, a path may
self-intersect. In contrast, for graph theorists, paths in graphs have no
repeated vertex.

A curve is a path (possibly a loop) or a cycle. By abuse of language,
we sometimes identify a curve with its image on Σ. Also, the exact pa-
rameterization of a curve does not matter; for example, a path p can be
regarded as equivalent to p ◦ ϕ, where ϕ : [0, 1] → [0, 1] is bijective and
increasing.

The reversal of a path p is the path q : [0, 1] → Σ defined by q(t) =

p(1− t). The concatenation p · q of two paths p and q such that p(1) =
q(0) is the path r defined by

r(t) =
{

p(2t) if t ≤ 1/2
q(2t− 1) if t ≥ 1/2.

2.3.2 Graph Embeddings

Let G be a graph. An embedding of G on Σ is, intuitively, a crossing-free
drawing of G on Σ. More precisely, G can be viewed as a topological
space, by taking a disjoint union of segments, one segment per edge of G,
and identifying the endpoints of the segments where the corresponding
edges share endpoints. An embedding of G is a continuous, piecewise-
linear, one-to-one map from G (viewed as a topological space) into Σ.
(Piecewise-linearity means that the restriction of the embedding to each
edge is piecewise-linear.) When no confusion can arise, we sometimes
identify G with its embedding on Σ, or with the image of that embedding.

Let G be a graph embedded on Σ. The faces of G are the connected
components of the complement of the image of G in Σ. The set of faces
of G is denoted by F(G). A vertex or edge is incident to that face if it lies
on the boundary of that face. The degree of a face is the number of edges
incident with that face, counted with multiplicity (it may happen that an
edge has the same face on both sides).

Assume now that G has no isolated vertex. An important conse-
quence of the piecewise-linearity of the embeddings is that cutting Σ
along G is a well-defined operation that results in one or several sur-
faces. The faces of G are in bijection with these surfaces, and are actually
homeomorphic to the interiors of these surfaces. We sometimes use the
notation Σ\\G to denote the surface Σ cut along the graph embedding G.
If Σ\\G is a disk, then G is a cut graph of Σ.

For example, the (easier piecewise-linear version of the) Jordan–
Schönflies theorem asserts that cutting a sphere along a simple cycle
yields two disks. In general, cutting a surface along a simple cycle γ

yields one or two surfaces. If it yields two surfaces, γ is separating.
If, furthermore, (at least) one of these two surfaces is a disk, γ is disk-
bounding.

We also say that a graph is planar if and only if it can be embedded
in the plane, or, equivalently, in the sphere. By abuse of language, we

2.4. CELLULAR GRAPH EMBEDDINGS 11

also say that a graph is planar if it comes with an actual embedding in
the plane.

2.4 Cellular Graph Embeddings

A graph embedding is cellular if all its faces are open disks.1 On ev-
ery surface, there exists a cellular graph embedding. Furthermore, any
graph that embeds cellularly on a surface is connected. In this section,
we discuss representations and properties associated with cellular graph
embeddings.

2.4.1 Combinatorial Representations

Let us assume for now that Σ has no boundary; let G be a graph cel-
lularly embedded on Σ. In general, we are not interested in the actual
geometric position of G on Σ; for example, it is irrelevant to consider the
description of the vertices and edges of G in terms of coordinates in a
fixed triangulation of Σ. Therefore, we need a combinatorial description
of cellular graph embeddings. Essentially, it suffices to specify the way
the faces of G are glued together on the surface; for example, if the graph
has no loop and the surface is oriented, it suffices to store the cyclic order
of the edges around each vertex on the surface. Such combinatorial rep-
resentations of cellularly embedded graphs are usually called maps [169],
although essentially equivalent variants appear in the litterature, like ro-
tation systems [191] or fat graphs [126].

2.4.2 Data Structures

However, to develop efficient algorithms on cellular graph embeddings,
it is necessary to describe actual data structures. Here also, there exist
many possibilities, all of which are more or less equivalent; a popular
choice is the doubly-connected edge list [74], or the closely related halfedge
data structure of the CGAL computational geometry algorithms library2;
see Kettner [162] for a comparison of such data structures for orientable
surfaces, with implementation details. We choose a representation close
to the graph-encoded map [100, 179]. Two advantages are that it can repre-
sent non-orientable surfaces, and that the representation is canonical (for
example, it does not depend on an orientation of the surface, if the sur-
face is orientable). We still assume that Σ has no boundary for simplicity
of exposition.3

The basic building block is the flag, which represents an incidence
between a vertex, an edge, and a face of the embedding; see Figure 2.2.
Each edge e bears four flags. If e is incident to two different vertices
v1 and v2, two flags are incident to v1 and the two others are incident

1In particular, the boundary of Σ has to be entirely covered by the image of G.
2http://www.cgal.org
3We also assume that the graph is not reduced to a single vertex, which may in prin-

ciple be the case if Σ is a sphere.

http://www.cgal.org

12 2. PRELIMINARIES

fivi

ei

Figure 2.2. A part of a cellular graph embedding on a surface. The flags are
represented as short line segments parallel to the edges; there are four flags per
edge. The involutions vi, ei, and fi on the thick flag are also shown.

to v2. Similarly, if e is incident to two different faces f1 and f2, two such
flags are incident to f1 and the two others are incident to f2. If these two
assumptions are satisfied for all edges e of G (which is not the case in
general, e.g., when the graph contains a loop), then a flag is uniquely
determined by the data of its incident vertex, edge, and face.

Three involutions without fixed point4 allow to move to a nearby flag,
and, by iterating the process, to visit the whole cellular graph embedding.
If ϕ is a flag,

• vi(ϕ) is the flag with the same edge-face incidence as ϕ, but with a
different vertex incidence;

• ei(ϕ) is the flag with the same vertex-face incidence as ϕ, but with
a different edge incidence;

• fi(ϕ) is the flag with the same vertex-edge incidence as ϕ, but with
a different face incidence.

In an actual implementation, each flag ϕ can be represented as an object
storing three pointers to vi(ϕ), ei(ϕ), and fi(ϕ).

All our analyses of complexity of algorithms are implicitly done in
the real RAM model [3], as is customary in computational geometry. (For
the algorithms that do not manipulate real numbers, the RAM model
would be sufficient.) In particular, for all our purposes, we can assume
that a pointer can be stored in constant space and can be used in constant
time; also, a real number can be stored in constant space, and arithmetic
operations on real numbers take constant time. It follows that our data
structure has a size that is linear in the number of edges of the graph.

Within the data structure described above, all reasonable operations
on the embedding can be performed efficiently: For example, one can
easily traverse the vertices, edges, and faces of G in O(|E(G)|) time (since
G is cellularly embedded and thus connected). Given a flag ϕ incident to
a vertex v, one can determine the degree of v in linear time in that degree:

4An involution without fixed point is a map f : X → X such that f has no fixed point
but f ◦ f is the identity.

2.4. CELLULAR GRAPH EMBEDDINGS 13

Figure 2.3. Duality. One of the graphs (primal or dual) is depicted with rounded
vertices, and the other with squared vertices. Note that the graphs may have
loops and multiple edges.

It is the number of iterations of the map ei ◦ fi that are needed, starting
on ϕ, to reobtain ϕ. Similarly the degree of a face can be computed (with
ei ◦ vi instead).

Each flag also has a pointer to the underlying vertex, edge, and face
(stored as separate objects). This allows to test in O(1) time whether two
flags are incident to the same vertex, edge, or face. Storing additional in-
formation in the vertices, edges, and faces is also useful in algorithms. It
is also possible to store information in the vertex-edge, edge-face, vertex-
face, and vertex-edge-face incidences, though we will not get at this level
of detail here. Note that the complexity of the data structure is linear in
the number of edges of G.

If the surface Σ is oriented, we can define the orientation of a flag ϕ

intuitively as follows: Start from the vertex incident to ϕ, move along the
edge incident to ϕ, and turn towards the face incident to ϕ. The flag ϕ has
clockwise or counterclockwise orientation depending on the direction of
the turn. For example, the thick flag in Figure 2.2 is oriented counter-
clockwise. Note that, with this definition, each involution vi, ei, and fi
reverses the orientation of a flag. To determine in linear time whether the
surface is orientable, one can choose an arbitrary orientation of a flag and
propagate the orientation information to each flag via the involutions;
this can be done consistently if and only if the surface is orientable.

2.4.3 Duality

Let G be a graph cellularly embedded on a surface Σ without boundary.
A dual graph of G is a graph embedding G∗ defined as follows: Put one
vertex f ∗ of G∗ in the interior of each face f of G; for each edge e of G,
create an edge e∗ in G∗ crossing e and no other edge of G (if e separates
faces f1 and f2, then e∗ connects f ∗1 and f ∗2). See Figure 2.3.

A dual graph embedding is also cellular. The combinatorial represen-
tation of the dual graph is unique. Actually, with our above data struc-

14 2. PRELIMINARIES

ture, dualizing is easy: Simply replace fi with vi and vice-versa. This in
particular proves that duality is an involution: G∗∗ = G.

2.4.4 Euler’s Formula

Let Σ be a surface with genus g and b boundary components. Euler’s
formula states that, for every graph G cellularly embedded on Σ with
v = |V(G)| vertices, e = |E(G)| edges, and f = |F(G)| faces, the quantity
v− e + f does not depend on G, but merely on the surface Σ: It equals
2 − 2g − b if Σ is orientable, and 2 − g − b if Σ is non-orientable. It is
sometimes useful to define the Euler genus g̃ of Σ as 2g if Σ is orientable
and g if Σ is non-orientable, in which case Euler’s formula rewrites as
v− e + f = 2− g̃− b, regardless of the orientability character of Σ.

Let G be a graph cellularly embedded on Σ. Euler’s formula directly
implies that the genus of Σ and the complexity of G are (asymptotically)
bounded from above by the number of edges of G. Conversely, it is often
useful to bound the number of edges of a graph in terms of its number
of vertices. Let G be a graph embedded (not necessarily cellularly) on a
surface Σ. For an integer k ≥ 1, a k-gon of G is a face of G of degree k that
is a disk. A monogon is a 1-gon; a bigon is a 2-gon.

Lemma 2.2. Let G be a graph embedded on a surface of genus g without bound-
ary. If G has no monogon or bigon, then |E(G)| = O(|V(G)|+ g).

Proof. If G is cellularly embedded, this follows from Euler’s formula and
from the relation 2|E(G)| ≥ 3|F(G)|, the latter being obtained by double-
counting the incidences between the edges and faces of G and using the
absence of monogons and bigons.

In the general case, one can augment G to a cellular graph G′ by
adding only edges, without creating monogons or bigons, and apply the
previous reasoning to G′.

In particular, note that if G is a simple graph (without loops or mul-
tiple edges), then G has no monogon or bigon, so the hypotheses of the
lemma are fulfilled.

2.5 Homotopy and Homology

2.5.1 Homotopy

Informally, two paths on Σ are homotopic if one can be deformed into
the other continuously without moving the endpoints. More formally, a
homotopy between two paths p0 and p1 is a continuous map h : [0, 1]×
[0, 1] → Σ such that h(0, ·) = p0, h(1, ·) = p1, and h(·, 0) and h(·, 1) are
constant maps. In such a case, p0 and p1 are homotopic; in particular,
they have the same initial and final endpoints. Being homotopic is an
equivalence relation.

This notion applies in particular to loops with a given basepoint b.
The homotopy classes of loops with basepoint b form a group, called

2.5. HOMOTOPY AND HOMOLOGY 15

b

b

Figure 2.4. These two loops with the same basepoint b on a double-torus are not
homotopic. However, when regarded as cycles, they are freely homotopic, since
one can be detached away from b, moved “around the left handle”, and finally
pushed onto the other cycle.

the fundamental group, or homotopy group, of Σ (the definition does not
actually depend on b): The unit element is the class of the constant loop,
the multiplication corresponds to the concatenation of two loops, and the
inverse operation corresponds to the reversal of a loop. A loop is null-
homotopic, or contractible, if it is homotopic to the constant loop.

A homotopy between two cycles γ0 and γ1 is a continuous map h :
[0, 1]× S1 → Σ such that h(0, ·) = γ0 and h(1, ·) = γ1. Figure 2.4 high-
lights a difference between homotopy of loops and cycles: Two loops
can be non-homotopic while the corresponding cycles are homotopic, be-
cause in homotopy of loops, the basepoint is not allowed to move. In
contrast, homotopy of cycles is sometimes called free homotopy because
no point is fixed.

We will also occasionally encounter the concept of isotopy. An iso-
topy between two simple paths or cycles is a homotopy h such that h(t, ·)
is simple for each t ∈ [0, 1]. An isotopy between two homeomorphisms
from Σ to Σ is a continuous family of homeomorphisms.

2.5.2 Homology

Some results of Chapter 5 rely on the concept of homology. For conve-
nience, we define this concept in the simplest framework that is suffi-
cient for our purposes: one-dimensional cellular homology on surfaces over
the field Z/2Z. Furthermore, we restrict ourselves to a surface Σ without
boundary.

Cycles, boundaries, and homology. Let Γ be the image of a graph G em-
bedded on Σ. We say that Γ is a homology cycle if every vertex of G has
even degree. We say that Γ is a homology boundary if the faces of G can
be colored in two colors, say black and white, such that G is the “bound-
ary” of the black faces: Each edge of G is incident to a black face and a
white face. (These notions are well-defined, because G is uniquely de-
fined by Γ, up to the insertion or deletion of vertices of degree two on
edges of G.) Clearly, a homology boundary is a homology cycle, as in a
homology boundary, the colors black and white must alternate around
any vertex, and therefore every vertex has even degree.

16 2. PRELIMINARIES

Let Γ and Γ′ be two images of embedded graphs on Σ. Since the em-
beddings are piecewise-linear, the symmetric difference of Γ and Γ′ is the
image of an embedded graph, called their sum, denoted by Γ + Γ′. More-
over, the sum of two homology cycles is again a homology cycle (as the
symmetric difference of two images of embedded graphs with only even
degrees is the image of an embedded graph with only even degrees). It
is also not hard to see that the sum of two homology boundaries is again
a homology boundary.

In other words, the sets Z of homology cycles and B of homology
boundaries form vector spaces over the field Z/2Z. (The multiplication
by one is the identity, and the multiplication by zero always gives the
empty set.) Moreover, B is a vector subspace of Z. The homology vector
space of Σ, denoted by H1(Σ), is now simply the vector space that is the
quotient of Z by B.

We can define the homology class of a loop or cycle γ as follows.
The image of γ is the image of an embedded graph where each vertex
has even degree; the homology class of γ is the homology class of that
(image of) embedded graph.

Application and extension. So far, this is just an algebraic construc-
tion. To illustrate one possible use of homology in our context, consider
a simple cycle γ on Σ. We claim that γ is separating if and only if the
homology class of (the image of) γ is zero. Indeed, γ is a homology cycle.
If γ is separating, it splits Σ into two pieces; coloring one piece in black
and one piece in white shows that γ is a homology boundary, hence ho-
mologically trivial. Conversely, if γ is non-separating, there are exactly
two possible colorings of the faces of γ: One can color the unique face in
black or in white; in either case, γ obviously cannot be incident to a white
face and a black face. So γ is not a homology boundary, and is therefore
homologically non-zero.

Relative homology with respect to a finite set P of points of Σ is de-
fined similarly, except that a homology cycle is defined as the image Γ of
a graph G in which every vertex of G has even degree, except possibly for
those vertices that belong to a point in P in the embedding. This yields
the relative homology vector space H1(Σ, P). The algebraic properties
are similar; we omit the details.

CHAPTER 3

GRAPHS ON SURFACES: A SHORT SURVEY

In this chapter, we survey the numerous incarnations of graphs on sur-
faces in various disciplines. To keep this chapter at a reasonable size,
we focus on intrinsic topological surfaces, and omit results considering
surfaces embedded in R3 or in a 3-manifold. Furthermore, we omit the
vast literature on planar graphs. Finally, the chapter is biased towards
algorithmic results. To avoid repetition, some of the results that are the
closest to our work are not cited here, but will be cited in forthcoming
chapters.

Also, our survey is deliberately focused on theoretical aspects; we
omit occurrences of graphs on surfaces in applied fields. Let us only
mention here that some topological algorithms developed in the sub-
sequent chapters are especially relevant for a variety of applications (a
more detailed argumentation can be found in the author’s Ph.D. the-
sis [F]): computer graphics and geometry processing, for texture map-
ping [177, 205], surface correspondence [178], and morphing [171]; mesh
processing, for parameterization [128], remeshing [5], topological simpli-
fication [129,247], approximation [62], and compression [6]. Other related
application areas include computer-aided geometric design, geometric
modeling, and topological data analysis [252]. Techniques for general
surfaces apply in particular to surfaces of genus zero with boundaries,
and are thus useful in VLSI design [176] and map simplification [46, 75].

The present chapter is split into three sections. In the first one, we
consider graphs on surfaces in non-algorithmic fields (topological graph
theory, topology, and enumerative combinatorics). Then we describe al-
gorithms for solving problems with a topological flavor on graphs on
surfaces; most of the remaining results of this manuscript fall into this
category. Finally, we consider algorithms for solving general graph prob-
lems, in the special case where the input graph is embedded on a surface.
We implicitly only consider surfaces without boundary for simplicity of
exposition.

18 3. GRAPHS ON SURFACES: A SHORT SURVEY

3.1 Graphs on Surfaces in Non-Algorithmic Fields

3.1.1 Topological Graph Theory

In combinatorics, one of the pillars of topological graph theory is the inves-
tigation of structural properties of graphs on surfaces. We can only refer
to existing books and surveys by Mohar and Thomassen [191], Gross and
Tucker [126], or Archdeacon [13] for details, and describe a few themes
in the field.

The (orientable) genus of a graph G is the minimum genus of an ori-
entable surface on which G can be embedded; an embedding of mini-
mum genus is necessarily cellular. There are also the variants of the Eu-
ler genus (the minimum Euler genus of a surface on which G can be em-
bedded) and the non-orientable genus (restricting to non-orientable sur-
faces). These are important concepts, and the genera of some graphs like
the complete graphs are known; see, e.g., Archdeacon [13, Section 4.2]
or Mohar and Thomassen [191, Section 4.4]. Similarly, the evolution of
the genus of a graph under simple modifications of the graph has been
studied [12, 187].

Another line of research in this area is the definition of polynomials
for surface-embedded graphs, which are variations of the Tutte polyno-
mial and enjoy the same properties as that polynomial, but depend on
the embedding of the graph on a surface [32, 99]. Determining the num-
ber of curves in different homotopy classes that can pairwise intersect a
bounded number of times is another interesting (and largely open) prob-
lem [10, 149, 183, 199].

Graph coloring on surfaces has also been much studied; see, e.g., Mo-
har and Thomassen [191, Chapter 8] for a survey. In particular, for every
surface Σ of positive genus, the number of colors needed to color the
vertices of any graph on Σ, in such a way that adjacent vertices have dif-
ferent colors, is known; see Ringel [210]. For graphs on Σ that are suffi-
ciently “locally planar”, the number of colors needed drops to five [239].
Surprisingly, the general problem is harder in the plane, but Appel and
Haken solved it with the famous four-color theorem [11].

Last but not least, one of the main reasons for studying graphs em-
beddable on a fixed surface is that they form a minor-closed family. A
simple graph H is a minor of another simple graph G if H can be obtained
from G by removing edges and contracting edges (after which loops are
removed and multiple edges are identified). A family of graphs F is
minor-closed if every minor of a graph in F is also in F . This leads
us to the theory of Robertson and Seymour on graph minors, one of the
most important results in graph theory. In particular [214], for each sur-
face Σ, there exists a finite, very large but theoretically computable, set
of graphs OΣ such that a graph G is embeddable on Σ if and only if no
graph in OΣ is a minor of G (see Mohar and Thomassen [191, Chapter 6]
for a proof of this result). Graphs on surfaces play also a central role in
the proof of the more general graph minor theorem of Robertson and Sey-
mour, stating that every minor-closed family is characterized by a finite

3.1. GRAPHS ON SURFACES IN NON-ALGORITHMIC FIELDS 19

set of excluded minors. More precisely, a crucial ingredient of that result
is a structure theorem for H-minor-free graphs [213], the statement of
which involves graphs embedded on (possibly non-orientable) surfaces
in a crucial way.

3.1.2 Topology

Many topology papers study graphs and curves on surfaces. Most, if
not all, textbooks in topology include the classification of surfaces (Theo-
rem 2.1) [14, 49, 139, 229]; the proof of this classification theorem consists
of transforming an embedded graph into a canonical form with some el-
ementary operations.

Various interesting mathematical structures can be defined on sur-
faces and have been much studied. The mapping class group of an ori-
entable surface Σ is, roughly, the group of isotopy classes of orientation-
preserving self-homeomorphisms of Σ (see Farb and Margalit [116] for
a recent book on this topic). In other words, one regards two such self-
homeomorphisms as equivalent if one can be deformed into the other.
Thus, the definition of the mapping class group is in the same spirit as
the one of the fundamental group, where two homotopic loops are re-
garded as equivalent. The complex of curves (see Schleimer [224]) of a
surface Σ is (essentially) the simplicial complex with vertex set the set of
isotopy classes of simple cycles; a subset of vertices forms a simplex if
and only if the corresponding isotopy classes can be realized by pairwise
disjoint cycles.

A pair of pants is an orientable surface of genus zero with three
boundary components; a pants decomposition of a surface Σ is a family
of simple, pairwise disjoint cycles Γ such that Σ\\Γ is a disjoint union
of pairs of pants. The pants complex [134] is a two-dimensional cell
complex whose vertices are the pants decompositions of a surface; two
pants decompositions are connected with an edge if they differ by one
of two elementary moves that change exactly one cycle in the decom-
position; and similarly two-cells can be defined using more complicated
operations. Variations on this idea exist [22].

Normal curves constitute a compact way of representing families of
simple, pairwise disjoint cycles on a given surface Σ. Essentially, given a
triangulation of Σ, such a family of cycles can be represented by record-
ing its number of crossings with each edge of the triangulation. If no
cycle crosses twice a given edge consecutively in opposite directions, the
isotopy class of the family is uniquely determined. Actually, this rep-
resentation is the toy version of normal surfaces, used in particular in
algorithms for 3-manifold and unknot recognition [132]. Other kinds of
representations of curves on surfaces are train tracks [192, 201] and Dehn-
Thurston coordinates [240].

A very important feature of surfaces is that they can be endowed
with a Riemannian metric of constant curvature. Assume that Σ is an
orientable surface of genus g without boundary. Then, depending on
whether g = 0, g = 1, or g ≥ 2, the surface Σ can be endowed with a

20 3. GRAPHS ON SURFACES: A SHORT SURVEY

Riemannian metric of constant curvature +1 (spherical), 0 (flat), or −1
(hyperbolic). Moreover, if a metric is given on Σ, that metric is confor-
mally equivalent to a metric of constant curvature: This is called the
uniformization theorem.

Related and central is the notion of Teichmüller space of a surface Σ.
Assuming g ≥ 2, this is roughly the set of all “essentially different” hy-
perbolic metrics one can put on Σ (in the following natural but technical
sense: two hyperbolic metrics on Σ are “essentially different” if there ex-
ists no self-diffeomorphism of Σ isotopic to the identity that maps one
metric to the other). This set can naturally be endowed with a topol-
ogy, and is homeomorphic to R6g−6. Explicit coordinates can be given.
Teichmüller spaces are strongly related to mapping class groups [116].
See also the classical exposition of Thurston’s works on surfaces [117] for
more details.

Three-dimensional topology is a deep and rich field of study; Perel-
man’s resolution of the Poincaré conjecture [202–204] is a clear indication
of the current importance of the field. Understanding structural prop-
erties for curves on surfaces can be an important ingredient for discov-
ering more elaborate results in three-dimensional topology. For exam-
ple, a Heegaard splitting of a 3-manifold is obtained by attaching two
handlebodies along the same orientable surface. Thus, the resulting 3-
manifold can be understood by the way the gluing is done. That gluing
can be expressed by a homeomorphism of the surface, and is in particular
a motivation for studying mapping class groups and pants decomposi-
tions [118].

3.1.3 Enumerative, Bijective, and Asymptotic Combinatorics

The problem of counting maps with given properties in the plane or on
surfaces has been much studied. The field was initiated by Tutte [241]
in the special case of the plane, and includes numerous developments in
the case of positive genus, one of the earliest one being by Bender and
Canfield [19], who study generating series associated to the number of
maps on a surface of genus g.

More recently, bijective results were found on the number of rooted
maps or quadrangulations of surfaces [56] and of maps representing cut
graphs on surfaces [55], as well as refined asymptotic estimates in some
cases [20]. (Usually, one considers rooted maps to factor out possible sym-
metries of maps.) One ultimate goal is to define a well-behaved random
model for maps on surfaces. It is possible to describe the asymptotic
number of such maps and some topological and metric properties of scal-
ing limits of random quadrangulations [27, 186].

Matrix integral techniques are very different methods, originally from
two-dimensional quantum gravity in theoretical physics, to enumerate
such maps on a surface. Although these methods apparently need hard
work to be made rigorous, they are very powerful; the idea is that cer-
tain Gaussian integrals over the space of Hermitian matrices can be in-
terpreted as sums of some quantities over all maps with given properties,

3.2. ALGORITHMS FOR TOPOLOGICAL PROBLEMS 21

for example all cut graphs with a given number of edges on a given sur-
face. Lando and Zvonkin [169, Chapter 3] and Zvonkin [253] are good
introductions to this topic.

3.2 Algorithms for Topological Problems

The last few decades saw the development of algorithms for topological
problems for curves and graphs on surfaces. This is also one of the direc-
tions of computational topology, a recent subfield of computational geome-
try aiming at revisiting topological questions through an algorithmic lens
and at focusing on applications of topology in computer science. See e.g.,
Dey et al. [82], Vegter [244], or Zomorodian [251] for surveys of the field
with various points of view; for a more in-depth introduction to compu-
tational topology, we recommend the course notes by Erickson [104].

Thomassen [237] proves that computing the genus of a graph is NP-
hard; some hardness and approximation results are known [60]. On the
other hand, for every fixed integer g, there exists a linear-time algorithm
that embeds an input graph into a surface of genus g, or “certifies” that it
is impossible [158, 189], generalizing the planarity test problem [143]. At
the other extreme, determining the maximum genus of a surface on which
a graph can be cellularly embedded is feasible in polynomial time [123].

The (planar) crossing number of a graph G is the minimum number of
crossings of a drawing of G in the plane. Like the genus, it can be seen as
a measure of the “topological complexity” of a graph. There are several
variants on this notion, and connections between them are known [200].
Determining the crossing number of a graph is NP-hard, even in very
restricted, “nearly-planar”, cases of a planar graph with an additional
edge [48], where the genus is either zero or one. On the positive side,
for fixed k, there is a linear-time algorithm to determine whether a graph
has crossing number at most k [159]; there are also recent approximation
algorithms [68]. One can also define the crossing number of a graph on a
surface different from the plane; in this setting also, approximation algo-
rithms have been found recently [142].

The following questions are fundamental, and were already tackled
by Dehn [77] at the beginning of the 20th century: Determine whether
a given closed walk on a surface-embedded graph is contractible, or
whether two given closed walks are homotopic. These are closely re-
lated to two central problems of combinatorial group theory, where the
corresponding algebraic problems are the word problem and the conju-
gacy problem respectively: Determine whether an element of a group
(given by generators and relations) is trivial, and whether two such
elements are conjugates. In our context, the group considered is the
fundamental group of a surface (made of 2g generators and a single
relation, for an orientable surface without boundary). After a series of
intermediate results [87,222,223], these problems were shown to be solv-
able in optimal linear time by Lazarus and Rivaud [173] (see also Dey
and Guha [84]). The most basic algorithm for this problem, Dehn’s algo-

22 3. GRAPHS ON SURFACES: A SHORT SURVEY

rithm [77], has been largely generalized to other groups; see, e.g., Lyndon
and Schupp [182, Chapter 5]. The special case of the plane with obstacles,
where the input is a set of obstacle points and one or two piecewise-linear
curves avoiding these points, has also been investigated [24,25,46]; these
papers consider explicitly only the case of homotopy of paths, but some
of these results extend with little modifications to the free homotopy
setting.

A quite old topic, also connected to combinatorial group theory, is
the study of algorithms to determine whether a given set of cycles can
be moved by a homotopy so that they become simple and/or pairwise
disjoint. This has been a large subject of investigation [29, 65, 66, 69, 181,
209, 235].

There are several polynomial-time algorithms to deal with families
of curves encoded by normal coordinates [113, 219, 220], for example, to
compute the number of curves in such a representation. Such results
are impressive because the normal coordinates are compact: They can be
exponentially smaller than a naïve representation that would record the
ordered list of crossings of the edges of the triangulation along the curves
of the family.

There are also various computational topology results that explore
topological concepts like Reeb graphs and Morse theory in the special
case of surfaces [1, 70, 96].

3.3 Graph Algorithms for Embedded Graphs

In this section, we consider graph problems that can be solved more effi-
ciently when the graph is embedded in a low-genus surface.

First, the theory of Robertson and Seymour, and the concepts and
properties of tree-width, branch-width, and relatives, have algorithmic
implications for graphs embedded on a fixed surface; see, e.g., Bien-
stock and Langston [28] or Kawarabayashi and Mohar [156]. Examples
of algorithmic problems on graphs on surfaces exploiting successfully
these concepts include graph [157] and subgraph [33] isomorphism,
contraction-checking [152], induced cycles [163], and optimization con-
nectivity problems like minimum Steiner tree and traveling salesman
problems for graphs of small branch-width using dynamic program-
ming [216] and other decompositions [34, 80].

As mentioned above, for a fixed surface Σ, there exists a finite set of
graphs OΣ such that a graph embeds on Σ if and only if it has no minor
in OΣ. One strong motivation for developing algorithms for surface-
embedded graphs is that they can be viewed as an indication of the
difficulty of building algorithms for H-minor-free graphs, in the same
way that algorithms for planar graphs can sometimes be generalized to
graphs on surfaces, possibly using very different techniques. There are
indeed results for graphs embedded on any fixed surface that generalize
to H-minor-free graphs, for any fixed H. For example, the existence and
linear-time construction of small separators for planar graphs by Lipton

3.3. GRAPH ALGORITHMS FOR EMBEDDED GRAPHS 23

and Tarjan [180] has been extended to graphs embeddable on a fixed
surface [4,100,124], and has then been shown to “almost” hold (i.e., with
a near-linear complexity) for H-minor-free graphs, for any fixed H [160].
Shortest paths can be computed in linear time in planar graphs [140], and
the approach extends to H-minor-free graphs [236]. There are other ex-
amples of extensions of results on surface-embedded graphs to H-minor
free graphs [52, 78, 215].

The recent bidimensionality theory provides efficient approximation or
fixed-parameter tractable algorithms for a host of graph problems on
some graph classes; such classes include the families of H-minor-free
graphs and bounded-genus graphs. This is a vast and developing theory,
so we refer to Demaine and Hajiaghayi [79] for a survey; results of this
theory for graphs of bounded genus include efficient fixed-parameter al-
gorithms and kernelization results for domination, vertex cover, match-
ing, and feedback vertex set problems [78, 120], and subexponential
algorithms for Hamiltonian cycle and related problems [92].

There exist other efficient approximation algorithms for graphs on
surfaces that rely on random partitions [175] and stochastic planarization
with low distortion [35, 145, 227].

As mentioned earlier, some algorithms of Part II allow to compute
shortest curves or graphs that simplify the topology of the surface. Such
curves are used as building blocks for computing efficiently maximum
flows [53], minimum s–t cuts [51], global minimum cuts [108], replace-
ment paths [110], traveling salesman tours [196], approximate distance
oracles [154], bipartite matchings [73], and some expansion parame-
ters [198] for graphs on surfaces. Such techniques have proven useful
also for planar graph problems [105, 112].

Finally, other results on surface-embedded graphs include computing
the girth of the graph [91], vertex-disjoint paths and cycles [226], possi-
bly in prescribed homotopy classes [225] (though in the latter, no explicit
algorithm is given). Rather different problems are concerned with the
compact encoding of a surface mesh [50], the maintenance of a minimum
spanning tree of an evolving graph on a surface [100], and the computa-
tion of the genus of a surface-embedded graph by a simple randomized,
local process [21].

24 3. GRAPHS ON SURFACES: A SHORT SURVEY

25

Part II

Shortest Curves and Graphs
on Surfaces

CHAPTER 4

MODELS: COMBINATORIAL AND

CROSS-METRIC SURFACES

The material of this chapter was first introduced in an article co-
authored with Jeff Erickson [G].

This part contains our algorithmic results for computing shortest paths,
cycles, and graphs with prescribed topological properties on surfaces.
How can we efficiently compute shortest non-null-homotopic or non-
null-homologous cycles, or shortest paths or cycles homotopic to given
paths or cycles? How can we compute shortest cut graphs on a given
surface?

One difficulty for developing algorithms for such purposes is that
one needs a convenient framework to describe the input and output of
the algorithms. In this chapter, we introduce the discrete models used
in our algorithms to represent curves on surfaces. These models have
become a standard formalism for representing possibly crossing curves
on a surface when studying topological problems [G,H,L,N,R,45,47,51,
108, 111, 115, 121, 167]. Less powerful models appeared earlier [C, F]. For
simplicity, we only describe these models on surfaces without boundary;
although they extend to surfaces with boundary, this extension is slightly
more complicated and does not bring much new insight.

Since we want to compute shortest curves and graphs with given
topological properties on surfaces, we need to be able to describe which
(sets of) curves are allowed and the way to measure their length. As
the previous chapter witnesses, graphs on surfaces appear in various
disciplines. The way to represent a surface algorithmically, as well as
curves on that surface, may depend on the viewpoint. Consider for ex-
ample the problem of computing a shortest non-null-homotopic cycle on
a surface. In topological graph theory and in the context of algorithms
for graphs on surfaces, one is usually given a graph cellularly embedded
on a surface, and one wants to determine the length of the shortest non-
null-homotopic closed walk in that graph, which is called the edge-width
(see Chapter 6). In computational geometry, computer graphics, and
geometry processing, a surface is often described as a triangular mesh,

28 4. MODELS: COMBINATORIAL AND CROSS-METRIC SURFACES

namely, a set of flat triangles in R3, the vertices of which are given with
explicit coordinates. In mathematics, it may be more relevant to consider
an arbitrary Riemannian surface and to study the properties of shortest
curves under some topological constraints.

Therefore, a variety of models could be relevant for the problems we
consider. In this document, we restrict ourselves to two models, the com-
binatorial surface model and the cross-metric surface model, which we de-
scribe next. This has several advantages. First, all the results and proof
techniques in Part II can be rigorously given within these models. Also,
these models do not require excessive formalism. Finally, they are algo-
rithmically simple; in particular, computing shortest paths on such sur-
faces amounts to computing shortest paths in (weighted) graphs. Short-
est path computations are a basic building block used by all our algo-
rithms, and we prefer to avoid such a fundamental primitive to rely on
complicated shortest path computations on piecewise-linear surfaces.

As a drawback, these models may appear a bit far from computa-
tional geometry or application viewpoints. However, in Section 4.3, we
briefly indicate that our results extend to other, more geometric models,
at the price of additional technicalities and some increase in the complex-
ity bounds.

4.1 Combinatorial Surfaces

The combinatorial surface model is probably the simplest conceivable algo-
rithmic model for considering curves on surfaces, and is natural when the
problem involves a graph on a surface. A combinatorial surface (Σ, G)

is the data of a surface Σ (without boundary), together with a cellular
embedding G of a graph with non-negative weights on the edges. In
this model, the only allowed curves are walks in G; the length of a curve
is the sum of the weights of the edges traversed by the curve, counted
with multiplicity. Therefore, the curves on a combinatorial surface are
just walks in the graph G. In general, a given vertex or edge of G may be
used by several curves (or several pieces of the same curve).

The complexity of a combinatorial surface (Σ, G) is the number of
edges of G, which is also, up to a multiplicative constant, the size of a
data structure needed to represent that combinatorial surface (in the real
RAM model—refer back to Section 2.4.2).

4.2 Cross-Metric Surfaces

While relatively natural, the combinatorial surface model is rather weak,
in particular because the notion of (self-)crossing between curves is not
well-defined. Imagine that two curves on a combinatorial surface (Σ, G)

share an edge of G. It is possible to define in a natural way whether these
two curves cross or whether they “run along” without crossing; however,
in the first case, the location of the crossing point is not well-defined.

4.2. CROSS-METRIC SURFACES 29

The cross-metric surface model is a dual and refined formulation of
the combinatorial surface model that allows to encode precisely where
curves cross on the surface, which is needed for almost all results in
Part II. For example, the main result of Section 7.1 is an algorithm for
computing shortest homotopic curves in combinatorial surfaces; how-
ever, in the intermediate steps of the algorithm, switching to the cross-
metric surface model is crucial. In Chapter 8, we give an algorithm to
determine whether two graph embeddings on a surface are isotopic; the
(unweighted version of the) cross-metric surface model is used, because
it contains exactly the information needed by the algorithm.

4.2.1 Definition and Properties

A cross-metric surface (Σ, G∗) is a surface Σ together with a cellular em-
bedding G∗ of a graph with non-negative weights on the edges. Un-
like the combinatorial surface model, however, the only paths and cycles
on Σ that we consider are those in general position with respect to G∗,
meaning that they intersect the edges of G∗ only transversely and away
from the vertices. The length of a curve γ is defined to be the sum of the
weights of the dual edges that γ crosses, counted with multiplicity. To
emphasize this usage, we sometimes refer to the weight of a dual edge as
its crossing weight.

In other words, a cross-metric surface is a usual topological surface
with a discrete notion of metric: Two points within the same face of G∗

are at distance zero, and the length of a path that crosses an edge of G∗ is
the weight of that edge.

To any combinatorial surface (Σ, G), we can associate by duality a
cross-metric surface (Σ, G∗), where G∗ is (as notation suggests) the dual
graph of G. To any curve on a combinatorial surface, traversing edges
e1, . . . , ep, we can associate a curve in the corresponding cross-metric sur-
face, crossing edges e∗1 , . . . , e∗p, and conversely. This transformation pre-
serves the lengths of the curves. We can easily construct shortest paths
on a cross-metric surface by restating the usual algorithms (for example,
Dijkstra’s algorithm) on G in terms of the dual graph G∗.

The complexity of a cross-metric surface (Σ, G∗) is, as one can expect,
the number of edges of G∗; it is, up to a multiplicative constant, the space
needed to represent the cross-metric surface.

4.2.2 Curves on Cross-Metric Surfaces, Algorithmically

We can represent an arbitrary set of possibly (self-)intersecting curves
in general position on a cross-metric surface (Σ, G∗) by maintaining the
combinatorial arrangement of G∗ and of the curves, i.e., the map associ-
ated with the union of the curves. This data structure thus encodes the
crossings between curves and their relative positions unambiguously.

The initial arrangement is just the graph G∗, without any additional
curve. We embed each new curve such that every crossing point of the

30 4. MODELS: COMBINATORIAL AND CROSS-METRIC SURFACES

new curve and the existing arrangement, and every self-crossing of the
new curve, creates a vertex of degree four.

Whenever we split an edge e∗ of G∗ to insert a new curve, we give
both sub-edges the same crossing weight as e∗. Each segment of the curve
between two intersection points becomes a new edge, which is, unless
noted otherwise, assigned weight zero.

4.3 Discussion

In this section, we briefly discuss other possible computational models
for curves on surfaces.

4.3.1 Other Graph-Based Models

In graph algorithms, many problems deal with vertex-disjoint paths and
cycles. When studying such problems in the specific case of graphs on
surfaces, it would make sense to restrict the combinatorial surface model
described above by requiring each vertex of the graph to carry at most one
piece of curve. In other words, one would consider vertex-disjoint curves
in a cellular graph.

While this model is very relevant for topological graph theory, it has
several important limitations. First, it is obviously restricted to curves
without crossings. Moreover, important topological objects such as one-
vertex cut graphs (Chapter 5) do not always exist, since the number of
curves passing through a given vertex is limited by half of the degree of
that vertex. Also, subpaths of shortest homotopic paths may not be short-
est homotopic paths, because of the restriction that a path must have no
repeated vertex. In short, most basic properties used in subsequent chap-
ters do not extend to that setting. This does not mean that nothing is
possible algorithmically; for example, vertex-disjoint paths can be com-
puted in polynomial time for a fixed number of pairs of endpoints [226];
see also the results of Chapter 9.

A variant of this setting would be to forbid crossings between curves
but to allow “non-crossing” curves. In other words, one would keep
track of the ordering of the curves running along each edge of the graph,
and pretend that no crossing occurs at a vertex if the cyclic ordering of
the curves around that vertex is parenthesized. This is what was done in
the (weaker) predecessors of the cross-metric surface model [C, F].

4.3.2 More Geometric Models

From a computational geometry or mathematical perspective, more ge-
ometric models would be preferable, where curves can go anywhere on
the surface, and where their length would be measured in a more “con-
tinuous” way.

Ideally, one would consider a general Riemannian surface and com-
pute, e.g., shortest non-null-homotopic or non-null-homologous cycles.

4.4. NOTATIONAL CONVENTIONS FOR PART II 31

Of course, the difficulty here is that it is not clear how to specify the in-
put surface, and that computing shortest paths in such a generality is un-
feasible. However, several of the structural results we prove on shortest
curves and graphs with prescribed topological properties in the cross-
metric model hold also for smooth Riemannian surfaces, by similar ar-
guments. Related problems, such as the existence of a shortest cut graph,
have been studied earlier in a Riemannian setting [67].

An apparently more tractable model would be to represent a surface
by a finite family of Euclidean triangles (specified by the coordinates of
their vertices in the Euclidean plane) together with the information of the
pairs of edges that are attached together. However, no exact algorithm
for computing shortest paths in this setting is known: All shortest path
algorithms in piecewise-linear surfaces [61, 188] implicitly assume that
a shortest path on the surface between two points in the same triangle
belongs to that triangle, and that property does not hold in general; see
the discussion by Erickson [107, Section 2.3].

So let us restrict ourselves to cases where the previous property
holds; this is, for example, always the case if the triangulated surface
is embedded in some Euclidean space. Under this restriction, it turns
out that the algorithms in Part II extend, with slightly higher, but still
polynomial-time complexities, to this setting (with the exception of the
results in Chapter 6, for which such a model is irrelevant). However,
proving our results in such a setting leads to additional technicalities
which we do not want to describe here in detail. One difficulty is that
two shortest paths in this model may overlap along common subpaths
and then diverge. Defining whether such paths cross, and where, re-
quires additional, rather painful formalism. Even defining the desired
output of the algorithms is rather tedious. For example, among all cut
graphs with a single given vertex, a shortest one may not exist: There
exists a sequence of cut graphs converging towards a shortest one, but
the limit object may contain two edges that partly overlap. One benefit
of the cross-metric surface model is that it provides a unified framework
that avoids such pathological phenomena and their irrelevant technical
distractions.

4.4 Notational Conventions for Part II

We now introduce common notations for the material in Part II. We de-
note by Σ a surface without boundary of genus g. We use the convention
that (Σ, G) is a combinatorial surface and that (Σ, G∗) is the dual cross-
metric surface, and we freely switch between both models by duality.
Furthermore, n denotes the complexity of (Σ, G) or (Σ, G∗).

32 4. MODELS: COMBINATORIAL AND CROSS-METRIC SURFACES

CHAPTER 5

BASICS: CUT LOCI AND APPLICATIONS

This chapter presents material originally from the author’s course
notes [K, Chapter 4], to which the reader is referred for more details.
These results were included in two subsequent articles [L, N] (one
written with Sergio Cabello and Francis Lazarus).

In this chapter, we give algorithms to compute various shortest objects
with prescribed topological properties on surfaces: a shortest non-disk-
bounding loop, a shortest non-separating loop, or a shortest cut graph
with a given vertex set. These basic building blocks are used in subse-
quent parts of this manuscript as well as in other works; their interest
stems from the fact that cutting along them simplifies the topology of the
surface. Considering shortest such curves is useful both for theoretical
and applied purposes; these curves enjoy structural properties that are
exploited later.

Some of the results in this chapter were proved before by other au-
thors. However, for those results, we give different proofs and algo-
rithms. This has the advantage that all algorithms in this chapter are
presented in a simple and unified way and rely on a single common tool,
the cut locus.

In this chapter and in the whole Part II, (Σ, G∗) is a cross-metric sur-
face without boundary of genus g and complexity n. Here are the results
of this chapter.

Theorem 5.1 (Erickson and Har-Peled [109]). In (Σ, G∗), computing a
shortest non-disk-bounding or non-separating loop based at a given point can
be done in O(n log n) time.

Recall that, by definition, the adjectives “disk-bounding” and “separat-
ing”, and there negations, apply only to simple loops. Also, we implicitly
assume in this theorem that the surface is not a sphere; otherwise, every
loop is disk-bounding and separating.

This result was first proved by Erickson and Har-Peled [109]. The
algorithms and the proofs we present, taken from the author’s course
notes [K] and published in a subsequent article [L], are different, but

34 5. BASICS: CUT LOCI AND APPLICATIONS

the new technique is needed for the results in Chapter 6; furthermore, it
avoids a clever but tedious complexity analysis in one case [109, Lemma
5.4].

Computing a shortest non-disk-bounding or non-separating cycle
(without prescribed basepoint) is then easy: Run O(n) instances of the
algorithm in Theorem 5.1, each with a basepoint in a different face of G∗,
and return the shortest overall loop.

Here is another result proved in this chapter.

Theorem 5.2 ([N]). In (Σ, G∗), computing a shortest cut graph with a given
vertex set of cardinality k can be done in O(n log n + (g + k)n) time.

In particular, a shortest cut graph with a single prescribed vertex—
also known as a system of loops—can be computed in O(n log n + gn)
time. This very important special case was known before, see Erickson
and Whittlesey [114]; our proof of the more general theorem is also sim-
pler, and one part of this proof was further simplified by Erickson [107];
we present only the simplest proof.

5.1 Topology: Cut Loci

5.1.1 Definition

Let P be a set of vertices of G. A cut locus of P is a subgraph C of G∗ that
partitions the surface Σ into a set of disks, each disk containing the set
of points of the surface with the same closest point in P. Informally, let
water flood the faces of G∗, starting simultaneously from the source set P.
Every edge of G∗ acts as a barrier and delays the flood by a time equal
to its crossing weight; after this delay is elapsed, water crosses that edge
only if the opposite face has not yet been flooded. Then the cut locus C is
the set of edges of G∗ not crossed by water during this process.

More precisely (see Figures 5.1(a–b) and 5.2(a–b)), let F be a spanning
forest of shortest paths in G, starting from every vertex of P simultane-
ously. In other words, F is a spanning subgraph of G, each connected
component of F is a tree containing exactly one point of P, and F con-
tains the shortest path from every vertex of G to its nearest vertex in P. A
cut locus of P is, by definition, obtained from G∗ by removing the duals
of the edges of F.

One can view Σ\\C as the set of faces of G∗ attached together along
the duals of the edges in the forest F. Since the faces of G∗ are disks, and
since attaching disks in a tree-like fashion gives a family of disks, we see
that Σ\\C is a union of disjoint disks. Furthermore, each disk contains a
single point of P.

5.1.2 Remarks

The cut locus is not uniquely defined, because there may be several short-
est path forests F. However, if the weights of G∗ are generic (which the

5.1. TOPOLOGY: CUT LOCI 35

(a)

p

(b)

p

(c)

p
Figure 5.1. A cut locus of a single point P = {p} on a double-torus. (a) The
graph G∗ is shown in light lines, and the visible part of the spanning tree F of G
is highlighted. (b) The cut locus C is highlighted; its edge set is the edges of G∗

not crossed by F. (c) The primitive loops σ(e), for three edges e of C.

reader may safely assume to help intuition), then there is a unique cut
locus.

Also, the cut locus resembles the Voronoï diagram of P, widely used
in computational geometry [31]. However, each edge of the Voronoï dia-
gram bounds two cells containing different points of P, while an edge of
the cut locus can have the same edge on both sides (cf. the case where P
is a single vertex). So the Voronoï diagram is a subset of the cut locus.

5.1.3 Primitive Paths

For e ∈ E(C), let σ(e) be a shortest path among all paths with endpoints
in P that cross edge e; see Figures 5.1(c) and 5.2(c). By construction of
the cut locus, σ(e) crosses only edge e of C, exactly once, and is the con-
catenation of two shortest paths, one on each side of e. Such a path σ(e)
is called primitive. We may furthermore assume that all the primitive
paths are pairwise disjoint, except at common endpoints: Indeed, let p
be a point of P, in face f of G∗; within f , the primitive paths are all short-
est paths with p as an endpoint, and can therefore be chosen so as to be
disjoint except at p.

The following crucial lemma relates, for any A ⊆ E(C), the topology
of Σ \ (P ∪ σ(A)) to that of C− A.

Lemma 5.3. Let A ⊆ E(C). Then there exists a deformation retraction from
X := Σ \ (P∪ σ(A)) to Y := C− A. In other words, there exists a continuous

36 5. BASICS: CUT LOCI AND APPLICATIONS

(a) (b)

(c) (d)

Figure 5.2. A closeup of the construction of a cut locus on a surface with a
“dense” set of points P. The graph G is a triangulation. (a) The graph G, with
vertex set P (shown as disks) and the spanning forest F (highlighted). (b) The
cut locus C. (c) Each face of C is obtained by attaching faces of G∗ in a tree-like
fashion, and is therefore a disk. (d) A set of primitive paths.

a2

a3

a1
p

Figure 5.3. A schematic view of the retraction in the proof of Lemma 5.3, within
a single face f of C. Here, A = {a1, a2, a3}.

map h : [0, 1] × X → X such that h(0, ·) is the identity, h(1, X) ⊆ Y, and
h(t, ·)|Y is the identity for each t ∈ [0, 1].

Proof. Consider a face f of the cut locus C (Figure 5.3); it is a disk contain-
ing a single point p of P. We can retract f \ (σ(A)∪ {p}) onto (∂ f) \ (A∩
C). Gluing these retractions together gives us a deformation retraction of
Σ \ (P ∪ σ(A)) onto C \ (A ∩ C), which in turn retracts onto C− A.

Computing the cut locus can be done in O(n log n) time using Dijk-
stra’s algorithm in G to compute the shortest path forest F. In the same
amount of time, one can label each edge e of C by its σ-weight, namely,
the length of σ(e).

5.2. ALGORITHMS 37

5.2 Algorithms

Recall that we aim at computing various shortest objects on (Σ, G∗):

1. a shortest non-disk-bounding loop based at a given point p of Σ;

2. a shortest non-separating loop based at a given point p of Σ;

3. a shortest cut graph with vertex set exactly P, where P is a given
non-empty set of points in Σ. (This implies that each point of P
must be incident to at least one edge of the cut graph.)

For consistency of notation, in the first two cases, we let P = {p}. Fur-
thermore, to simplify the exposition, we assume that P is a subset of ver-
tices of G.

At a high level, the algorithms for all three problems are all the same:
They compute a shortest primitive object of the desired type. We focus
on this problem now, and later justify the correctness of the algorithms
by proving that the shortest desired objects are primitive. As we shall
see, the key to compute shortest primitive objects is Lemma 5.3: It allows
to read off the topology of a (set of) primitive path(s) directly on the cut
locus.

5.2.1 Shortest Non-Disk-Bounding Loop

A primitive loop σ(e) bounds a disk if and only if Σ \ σ(e) has a compo-
nent that is an open disk; equivalently, by Lemma 5.3, C− {e} has a con-
nected component that is a tree. (See Figure 5.1(c).) Therefore, it suffices
to find all candidate edges e, those such that C − {e} has no tree compo-
nent; assuming we can do this, the algorithm will return σ(e′), where e′

is the minimum-σ-weight candidate edge.
The condition of e being candidate does not depend on the surface,

but merely on the “position” of e in the cut locus C. In other words, we
have turned a topological problem on a surface into a graph problem.
Not surprisingly, this problem can be solved in linear time: After itera-
tively removing a degree-one vertex of the graph with its incident edge,
exactly the candidate edges remain. From the minimum-σ-weight candi-
date edge e, computing the corresponding loop σ(e) is easy.

5.2.2 Shortest Non-Separating Loop

A primitive loop σ(e) separates Σ if and only if Σ \ σ(e) has two con-
nected components; equivalently, by Lemma 5.3, C − {e} has two con-
nected components. (Refer again to Figure 5.1(c).) In other words, e is a
bridge of the graph C. Again, it now suffices to solve a graph problem:
Our candidate edges are now the non-bridge edges of C; finding them
can be done in linear time using depth-first search, relying on a similar
technique as in the computation of the biconnected components [3, Sec-
tion 5.3].

38 5. BASICS: CUT LOCI AND APPLICATIONS

(a)

p

(b)

p
Figure 5.4. Continuation of Figure 5.1. (a) The complement of a spanning tree
of the cut locus C. (b) The shortest cut graph with vertex p.

5.2.3 Shortest Cut Graph with Prescribed Vertex Set

A set of primitive paths σ(A), A ⊆ E(C), is a cut graph including every
vertex of P if and only if Σ \ (P ∪ σ(A)) is an open disk; equivalently,
by Lemma 5.3, C − A is a tree; this means that E(C) \ A is the edge set
of a spanning tree of C. So the algorithm computes the edge set A of a
maximum-σ-weight spanning tree of C (so that the σ-weight of E(C) \ A
is minimized), and returns σ(E(C) \ A). See Figure 5.4 for an illustration
in the case of a single vertex.

Computing a maximum-weight (or minimum-weight) spanning tree
in a graph can be done in linear randomized time [153] or near-linear
deterministic time [58]. Computing the paths σ(E(C) \ A) from A is not
difficult and can be done in time linear to their total complexity; each of
the paths has complexity O(n), and Euler’s formula implies that there
are g + k− 1 paths, so this last step takes O((g + k)n) time.

5.3 Optimality via Algebraic Structures

In this section, we explain why the key structural result holds: The short-
est object that we want to compute is primitive, for algebraic reasons.

5.3.1 Shortest Non-Disk-Bounding Loop

The relevant algebraic structure here is homotopy. The following lemma is
standard and intuitive (though a formal proof requires some machinery
such as the universal cover):

Lemma 5.4. Let ` be a simple loop. Then ` is null-homotopic if and only if it
bounds a disk.

We also have:

Lemma 5.5. Some shortest non-null-homotopic loop is primitive.

5.3. OPTIMALITY VIA ALGEBRAIC STRUCTURES 39

Proof. Let ` be a shortest non-null-homotopic loop; let e1, . . . , ek be the
edges of C crossed by `, in this order. The loop ` is homotopic to σ(e1) ·
σ(e2) · · · σ(ek);1 therefore, one of the loops σ(ei) is non-null-homotopic.
Furthermore, by definition, σ(ei) is no longer than `. So σ(ei) is a shortest
non-null-homotopic loop.

So let ` be a shortest non-null-homotopic loop, which we can assume
to be primitive (Lemma 5.5). It is simple, and is therefore non-disk-
bounding (Lemma 5.4). On the other hand, any non-disk-bounding loop
is non-null-homotopic (again by Lemma 5.4), hence longer than `. There-
fore, ` is a shortest non-disk-bounding loop, and is primitive, which had
to be proved.

5.3.2 Shortest Non-Separating Loop

The strategy follows the very same principles, with homology in place
of homotopy, so we omit the proof. We indicate only that the homo-
logical counterpart of Lemma 5.4 is stated as follows, as mentioned in
Section 2.5.2.

Lemma 5.6. Let ` be a simple loop. Then ` is null-homologous if and only if it
is separating.

5.3.3 Shortest Cut Graph with Prescribed Vertex Set

Here, the relevant algebraic structure is the homology vector space rel-
atively to the point set P, denoted by H1(Σ, P). Define a P-path to be a
path intersecting P exactly at its endpoints. The crux of the matter is to
prove the following topological lemma, generalizing Lemma 5.6.

Lemma 5.7 ([N, Proposition 3]). Let Q be a set of P-paths that are pairwise
disjoint except at common endpoints. Then Q is a cut graph with vertex set
exactly P if and only if the relative homology classes of Q constitute a basis
of H1(Σ, P).

The proof of the following lemma is identical to that of Lemma 5.5.

Lemma 5.8. A shortest P-path among all P-paths whose relative homology class
is outside a given vector subspace of H1(Σ, P) is primitive.

Now comes the simplified argument by Erickson [107] (removing a
matroid argument used earlier [N]): Let q1, . . . , qj be a shortest family
of P-paths forming a basis of H1(Σ, P). If one of these P-paths, say qi,
is not primitive, we may replace it with a shortest P-path homologi-
cally independent with q1, . . . , qi−1, qi+1, . . . , qj; that P-path is primitive
(Lemma 5.8). Continuing, we may assume that all the qi’s are primi-
tive. To summarize, some shortest family of P-paths forming a basis of
H1(Σ, P) is primitive.

Since these P-paths are primitive, they are simple except at common
endpoints, so Lemma 5.7 implies that they form a cut graph with vertex

1This is the only place where the algebraic structure of the homotopy group is used!

40 5. BASICS: CUT LOCI AND APPLICATIONS

set exactly P. On the other hand, any cut graph with vertex set exactly P
corresponds to a basis of H1(Σ, P) (again by Lemma 5.7), so it must be
longer than q1, . . . , qj. Bottom line: A shortest cut graph with vertex set
exactly P is made of primitive paths.

5.4 Remarks and Extensions

5.4.1 Reformulations

Homotopy and homology. In proving the above structural results,
we have shown a few results that are interesting in their own right
and worth emphasizing. A shortest non-null-homotopic loop is simple
(and therefore a shortest non-disk-bounding loop). A shortest non-null-
homologous loop is simple (and therefore a shortest non-separating
loop). A shortest family of P-paths forming a basis of H1(Σ, P) is made
of disjoint simple paths (and therefore a shortest cut graph with vertex
set exactly P).

Combinatorial surfaces. Although this chapter focuses on the cross-
metric setting, it is worth reformulating some results in the combinatorial
surface model. Given a surface Σ with a weighted cellularly embedded
graph G, we can compute a shortest non-null-homotopic (or non-null-
homologous) closed walk (without basepoint) in G in O(n2 log n) time.
Furthermore, it is easy to prove that this closed walk has no repeated ver-
tices, so that it is also a shortest non-disk-bounding (or non-separating)
closed walk in G.

Similarly, if P is a subset of vertices of G, we can compute a shortest
set of walks in G with endpoints in P that forms a basis of H1(Σ, P). In
general, the walks are neither simple nor pairwise disjoint; however, their
union forms a cut graph of Σ, and actually a shortest cut graph among
all cut graphs obtained by taking unions of P-paths (where the length of
each edge of G is counted with multiplicity).

5.4.2 Extensions

Improvements in special cases. One of the bottlenecks in our algo-
rithms is the O(n log n)-term for computing the cut locus. However,
computing the cut locus can be done in O(n) time in two special cases,
and the overall complexity can be reduced accordingly:

• if the graph is unweighted, because Dijkstra’s algorithm can be re-
placed by breadth-first search;

• if the surface is fixed, because O(
√

n)-size separators exist and
can be computed in O(n) time (see Gilbert et al. [124] and Epp-
stein [100]), so that the linear-time shortest path algorithm by Hen-
zinger et al. [140] applies.

5.4. REMARKS AND EXTENSIONS 41

Surfaces with boundary. We have entirely dismissed the case of sur-
faces with boundary above (as will also be the case in most forthcom-
ing chapters). Indeed, surfaces with boundary are usually no harder to
deal with than surfaces without boundary. For example, to compute a
shortest non-separating loop on a surface with boundary, attach a disk to
each boundary component, with infinite crossing weight, and compute
a shortest non-separating loop in the resulting surface; this is a shortest
non-separating loop in the original surface. To compute a shortest non-
disk-bounding loop, use a similar construction, but attaching a handle
(instead of a disk) to each boundary component.

However, the case of the annulus is important. As it turns out, on an
annulus, a shortest non-disk-bounding cycle corresponds to a minimum
cut in the dual graph, which can be computed in O(n log log n) time with
a recent algorithm [147]. Here is an equivalent reformulation:

Theorem 5.9 (Italiano et al. [147]). Assume Σ is the sphere. Computing
a shortest closed walk in G separating two given faces of G can be done in
O(n log log n) time. The output cycle has no repeated vertices.

5.4.3 Notes

Other decompositions. In the algorithm for computing a shortest cut
graph, prescribing the vertex set of the cut graph is crucial; indeed, in
general, Erickson and Har-Peled [109] prove that computing the short-
est cut graph is NP-hard, and show how to compute a cut graph whose
length is within an O(log2 g)-factor of the optimum in O(g2n log n) time.

In the case of one single vertex, the algorithm computes a shortest set
of loops with a fixed basepoint that generates the homology group. Er-
ickson and Whittlesey [114] give an algorithm for the same problem, re-
moving the basepoint condition; in other words, they compute the short-
est family of cycles generating the first homology group. Extensions are
known for arbitrary simplicial complexes [40,88]; variants are solvable in
arbitrary dimension [59].

Besides cut graphs, there are other types of topological decomposi-
tions of surfaces. Lazarus et al. [172], based on earlier work by Vegter
and Yap [245], describe an optimal algorithm to compute a (not necessar-
ily shortest) canonical system of loops: a one-vertex cut graph where the
loops appear around the vertex in a prescribed cyclic order. Brahana [37],
early in the 1920’s, describes a combinatorial algorithm for this purpose;
in fact, the classification theorem for surfaces is usually proved by show-
ing that every surface without boundary has a canonical system of loops.

Other decompositions are conceivable. No algorithm for computing
the shortest pants decomposition is known, but Eppstein [101] gives ef-
ficient approximation algorithms, in the case of the punctured Euclidean
or hyperbolic plane. Octagonal decompositions will be introduced in
Section 7.1.3. One could also consider decompositions such sets of dis-
joint simple cycles cutting the surface into a 0-genus surface (also called
cut systems [136]), or into punctured tori. In all cases, no algorithm is

42 5. BASICS: CUT LOCI AND APPLICATIONS

known to compute such shortest decompositions, even approximately
(except in the case mentioned above), and no NP-hardness proof is
known.

Bibliographic notes. The expression cut locus used in this chapter has
been used in this context by Erickson and Whittlesey [114]. It comes from
Riemannian geometry: The cut locus of a point p in a Riemannian man-
ifold is essentially the set of points q with several shortest paths from p.
Our notion of cut locus extends the standard one to several points, and
translates the Riemannian case to the cross-metric surface setting.

Variants of the cut locus have been used in enumerative combina-
torics for graphs on surfaces (also called maps in this context). In partic-
ular, Miermont [186], building upon previous works by Schaeffer [221]
and several other authors [36, 56], exhibits a bijection between bipartite
quadrangulations with a given marked subset of vertices and cellularly
embedded graphs (both structures need some additional information).
At a very high level, the cellularly embedded graph is a cut locus of the
quadrangulation with respect to the marked vertices.

The length of the shortest non-disk-bounding cycle on a surface is a
quantity that appears in different scenarios. In topological graph theory,
in the context of embedded graphs, it is called the edge-width (see Chap-
ter 6). In Riemannian geometry, it is called the systole of the surface; see,
e.g., Berger [23].

Eppstein [100], with his tree-cotree decomposition, introduces ideas
used later by Erickson and Whittlesey [114]. In particular, Eppstein notes
that the minimum-weight spanning tree in a graph and the maximum-
weight spanning tree in the dual are disjoint.

The argument of Lemma 5.5 appears, in a different form, in a paper by
Thomassen [238]; see also Mohar and Thomassen [191, Section 4.3]. More
abstractly, Thomassen defines the 3-path condition for a family of cycles
in a graph, and shows that the shortest cycle in every family satisfying
that condition can be computed in cubic time. In our terms, the shortest
cycle in the family is primitive. Shortest cycles with an odd number of
edges, and shortest one-sided cycles, can also be computed in cubic time.
Incidentally, a simple variant of our algorithm computes a shortest one-
sided loop through a given vertex in O(n log n) time.

CHAPTER 6

MORE SHORTEST NON-TRIVIAL CYCLES

The results of this chapter appeared in joint articles with Sergio Ca-
bello and Francis Lazarus [L, M].

In this chapter, we carry on with algorithms to compute shortest non-
disk-bounding or non-separating cycles on a cross-metric surface (Σ, G∗).
In both algorithms, the techniques are very similar, so it is useful to define
a non-trivial cycle as a non-disk-bounding or non-separating cycle, de-
pending on the context. (The terminology comes from the fact that a non-
disk-bounding loop is non-trivial in homotopy, while a non-separating
loop is non-trivial in homology.) We again assume that the surface Σ is
not the sphere, for otherwise every cycle is disk-bounding and separat-
ing.

In graph algorithms, problems generally have different flavors de-
pending on which kind of graph is considered: Is the graph weighted or
unweighted, is it directed or undirected? In Chapter 5, we considered
only the “standard” case of graphs where edges are undirected and have
non-negative weights. We now study the other possibilities, heavily re-
lying on the techniques from the previous chapter.

In Section 6.1, we consider a more restricted case, namely, the case
where the graph is unweighted and undirected; we show how to com-
pute shortest non-trivial cycles more efficiently than in the standard
case, and also develop output-sensitive and approximation algorithms.
In Section 6.2, we consider the more general setting of weighted, directed
graphs, and provide efficient algorithms.

6.1 Unweighted, Undirected Case

In this section, we assume that the edge weights of the graph G (and con-
sequently also of G∗) are all equal to one, and we study the computation
of shortest non-trivial loops and cycles.

A first remark is that one can compute shortest non-trivial loops
in (Σ, G∗) in O(n) time: Indeed, the algorithms of Chapter 5 apply, but
an O(log n)-factor can be removed, because that factor is due to the ap-
plication of Dijkstra’s algorithm when computing the cut locus, and this

44 6. MORE SHORTEST NON-TRIVIAL CYCLES

algorithm can be replaced by a breadth-first search in the unweighted
case. Consequently, we can compute shortest non-trivial cycles in O(n2)

time. We shall give more efficient algorithms in some cases.

6.1.1 Our Results

Theorem 6.1 ([L]). Assume G is unweighted. Given an integer k, we can
compute in O(gnk) time a shortest non-trivial cycle in (Σ, G∗) if it has length
at most k, or correctly report that the length of every non-trivial cycle is larger
than k.

By running the algorithm of Theorem 6.1 for exponentially increasing
values of k, it is straightforward to obtain an efficient output-sensitive
algorithm:

Corollary 6.2. Assume G is unweighted. We can compute a shortest non-trivial
cycle in (Σ, G∗) in O(gnk) time, where k is the length of the output cycle.

We can also compute almost-shortest non-trivial cycles. Call a non-
trivial cycle α-short if its length is at most α times the length of the short-
est non-trivial cycle. Erickson and Har-Peled [109, Corollary 5.8] give
an algorithm to compute a 2-short non-trivial cycle in O(gn) time (see
Lemma 6.5 below). The following theorem is an enhancement over their
result.

Theorem 6.3 ([L]). Assume G is unweighted. Let ε be such that 0 < ε < 1.
We can compute a (1 + ε)-short non-trivial cycle in (Σ, G∗) in O(gn/ε) time.

6.1.2 Applications

The edge-width and face-width of an unweighted cellularly embedded
graph G on a surface Σ are important parameters introduced in the field
of topological graph theory [191, Chapter 5]. The edge-width of G is the
length of the shortest non-disk-bounding cycle in G. The face-width of G
is a variant of this concept: It is the minimum number of points of the
image of G met by a non-disk-bounding closed curve on Σ. Is is easy to
see that the face-width of G equals half the edge-width of the vertex-face
incidence graph of G, also called radial graph [191, Proposition 5.5.4].
One also has the concept of non-separating edge-width or face-width,
where non-disk-bounding is replaced by non-separating. Our results
imply that all these parameters can be computed efficiently.

Our Theorem 6.1 also strengthens a result by Kawarabayashi and Mo-
har [157, Corollary 1], where it is shown that there is a linear-time algo-
rithm to decide whether the face-width of a graph on a fixed surface is
bounded from above by a constant. Their approach is based on graph
minors, has an exponential dependency on the genus and the face-width,
relies on an unknown, though theoretically computable, list of minimal
graphs, and deals only with the face-width, not the edge-width.

Algorithms for computing or approximating the edge-width or face-
width of a graph are also useful for planar problems. Kawarabayashi and

6.1. UNWEIGHTED, UNDIRECTED CASE 45

Reed [159] prove that, given a fixed integer k, there exists a linear-time al-
gorithm to determine whether a given graph can be drawn in the plane
with at most k crossings. As a subroutine, they have a graph embedded
with bounded face-width on a surface with bounded genus, and they
need to compute a short non-contractible cycle in the radial graph. Our
Corollary 6.2 allows to compute a shortest such cycle in linear time, while
they rely on a 2-approximation algorithm [109, Corollary 5.8] (Lemma 6.5
below). Using this 2-approximation instead of the real face-width as com-
puted by our algorithm affects exponentially the running-time; however,
this is hidden in the O(·)-notation because the face-width is O(1) since
the surface is considered to be fixed.

In some special cases, it is known that the edge-width or face-width k
of an embedded graph is always sublinear in n; as the running-time of
the algorithm of Corollary 6.2 is O(gnk), this allows us to give a bet-
ter bound on the running-time of that algorithm (compared to the naïve
bound O(gn2)) in those cases. For example, the edge-width of a triangu-
lation and the face-width of an arbitrary cellularly embedded graph can
be computed in O(n3/2g1/2 log g) time, by results by Hutchinson [144]
and Cabello and Mohar [47, Lemma 13 and Theorem 14], respectively.

Other results involving the edge-width or face-width have the fol-
lowing form: For every fixed surface Σ, if an embedded graph G has
edge-width or face-width large enough, then it has some particular prop-
erties [81, 157, 190, 212, 239, 249]. Our Theorem 6.1 provides a linear-time
algorithm to test whether such hypotheses are fulfilled. See also Fiedler
et al. [119] for another result relating the face-width of a graph in the
projective plane to its orientable genus.

6.1.3 Output-Sensitive Algorithm: Proof of Theorem 6.1

In a nutshell, the algorithm for Theorem 6.1 goes as follows. (1) We first
compute a set of vertices A of G such that a non-trivial cycle has to use
some vertex of A. (2) For every vertex a in A, we compute the shortest
non-trivial cycle passing through a that stays within a distance at most
k/2 from a (if it exists). The key idea in our approach is to find an efficient
way to carry Step (2) simultaneously for several basepoints that are far
apart on the surface. This idea, in turn, requires to choose A in Step (1)
adequately. Here is the proof in more detail.

The tool to work with several basepoints in parallel is contained in
the following lemma.

Lemma 6.4. Let U1, . . . , Ut be each a union of closed faces of G∗, such that the
Ui’s have disjoint interiors. For each i, let si be a vertex of G in Ui. In O(n)
time, we can compute a shortest loop in (Σ, G∗) among all non-trivial loops that,
for some i, are based at si and stay in Ui, or correctly report that no such loop
exists.

Proof. Let P be the set of all vertices si. We define crossing weights on
the edges of G∗ (or weights on G, by duality) as follows: The weight
of an edge of G∗ is one if its incident faces are in some common set Ui,

46 6. MORE SHORTEST NON-TRIVIAL CYCLES

and (symbolically) infinite otherwise. Then we compute the cut locus C
of P with respect to these weights; this takes O(n) time since Dijkstra’s
algorithm can be replaced by a variant of breadth-first search. We can
also compute, in the same amount of time, the length of each path σ(e),
again called the σ-weight of e ∈ E(C). One easily proves that the shortest
non-trivial loop we seek (if it exists at all) is primitive. In other words, we
are looking for the minimum-σ-weight edge among all candidate edges:
the edges e of C with weight one such that σ(e) is a non-trivial loop.

Now, in O(n) time, we remove some edges of C to transform it into
a cut graph C′. The edges removed from C cannot be incident to faces in
the same set Ui, so they are not candidate edges. As in Section 5.2, we can
determine which edges e of C′ are such that σ(e) is a trivial loop in O(n)
total time. So we can determine all candidate edges in O(n) time.

Proof of Theorem 6.1. Let r be an arbitrary vertex of G. We apply Theo-
rem 5.2 to compute a shortest cut graph C with vertex set P = {r} (here
all weights are unit weights). Let A be the set of vertices of G in a face
of G∗ meeting C. Since every cycle in the disk Σ\\C is trivial, every non-
trivial cycle crosses C; hence, a shortest non-trivial cycle meets A.

From Section 5.3.3, we know that C is made of primitive loops. In
particular, for each integer i, the set Ai of vertices of A at distance exactly i
from r has cardinality O(g). For each j, 0 ≤ j ≤ k, we put the points of

Aj, A(k+1)+j, A2(k+1)+j, . . .

into O(g) batches, each containing at most one element from each of
these Ai. Doing this for each j, we obtain a partition of A into O(gk)
batches such that any two vertices in the same batch are at distance at
least k + 1 from each other.

Now, consider a single batch {a1, . . . , at}. For each i, let Ui be the
union of the faces of G∗ at distance at most k/2 from ai; the Ui’s are pair-
wise disjoint. We can thus apply Lemma 6.4: If there exists a non-trivial
loop based at some ai that has length at most k, we obtain a shortest such
loop.

We apply this step for every batch. If a non-trivial loop of length
at most k was found during at least one step, the algorithm returns the
shortest one. Otherwise, each non-trivial cycle has length at least k + 1.

The set A and the O(gk) batches can be computed in O(n) time. Then
the O(n)-time algorithm of Lemma 6.4 is applied once for each of the
O(gk) batches; thus the total running-time is O(gnk).

6.1.4 Approximation Algorithm: Proof of Theorem 6.3

We will need the following lemma from Erickson and Har-Peled [109];
we sketch a proof for convenience.

Lemma 6.5 (Erickson and Har-Peled [109, Corollary 5.8]). In O(gn) time,
one can compute a 2-short non-trivial cycle in (Σ, G∗).

6.2. WEIGHTED, DIRECTED CASE 47

Proof. Again, let C be the shortest cut graph with a single vertex r, chosen
arbitrarily. Every non-trivial cycle must cross C; since each loop in C
is primitive, every non-trivial cycle must cross one of the O(g) shortest
paths whose union is C. Given a shortest path p, we show below how
to compute in O(n) time a non-trivial cycle crossing p and whose length
is at most twice the length of a shortest non-trivial cycle crossing p; this
concludes.

Let p be a shortest path. One can compute a short non-trivial cycle
crossing p by putting infinitesimal crossing weights on the edges of G∗

crossed by p, computing a shortest non-trivial loop ` based at some given
point of p, shortening it by moving the basepoint along p, and restoring
the original weights on the edges. This takes O(n) time; furthermore,
in the original metric, a simple argument shows that the resulting non-
trivial cycle has length at most twice the length of a shortest non-trivial
cycle intersecting p.

Proof of Theorem 6.3. Let k be the (unknown) length of a shortest non-
trivial cycle, and let k′ (k ≤ k′ ≤ 2k) be the 2-approximation computed
by Lemma 6.5. We compute the set A (here we freely reuse the notations
of the proof of Theorem 6.1). A shortest non-trivial cycle has to inter-
sect A. We add a detour to it so that it intersects Ai, for some i multiple
of dεk′/4e; the length of the detour is at most 2 dεk′/4e − 2 ≤ εk′/2. This
detour makes the cycle longer by a factor of at most 1+ ε, since the initial
cycle has length k ≥ k′/2.

Hence, it suffices to compute a shortest non-trivial loop of length at
most (1 + ε)k based at some vertex of Ai, where i is a multiple of dεk′/4e.
The same batching technique as in the proof of Theorem 6.1 will work,
but now only O(g/ε) batches are needed.

6.2 Weighted, Directed Case

In this section, we assume that the edges of G are weighted, but that
the weights are asymmetric: Each edge of G bears two weights, one for
each of its two orientations. The length of an (oriented) walk in (Σ, G) is
the sum of the weights of the oriented edges of G traversed by the walk,
counted with multiplicity. Some weights can be infinite, so that shortest
curves will avoid at all costs using the edge in the corresponding direc-
tion; hence we can represent weighted directed graphs in this model.

This asymmetric set-up may seem rather unnatural if we think of
edge weights to be lengths; on the other hand, many graph problems
consider weighted, directed graphs (flow and cut problems, for exam-
ple). If we want to develop algorithms for directed graphs on surfaces, it
is reasonable to study basic topological tasks in this setting.

In the cross-metric model, this translates as follows: The length of an
(oriented) curve in (Σ, G∗) is still the sum of the weights of the edges
of G∗ crossed by this curve, but now each weight depends on the orien-
tation of each crossing.

48 6. MORE SHORTEST NON-TRIVIAL CYCLES

Figure 6.1. A shortest non-trivial directed loop may self-cross. (In this example,
all the weights are infinite except those used by the oriented loop.)

Our first algorithm computes shortest non-null-homotopic or non-
null-homologous loops in O(n log n) time, and therefore has the same
complexity as in the undirected case (Theorem 5.1). Hence shortest
non-trivial cycles can be computed in O(n2 log n) time. Furthermore,
we give another algorithm to compute shortest non-trivial cycles in
O(g1/2n3/2 log n) time; this is more efficient in the case of low genus. For
such low genus surfaces, the current best algorithms, by Erickson and
Nayyeri [111] and Fox [121], have respective complexities O(g2n log n)
for the shortest non-separating cycle and O(g3n log n) for the shortest
non-disk-bounding cycle.

We note that our latter algorithm applies in particular to the undi-
rected setting, and is better than naïvely applying O(n) times Theo-
rem 5.1. However, such a subquadratic result (for fixed surfaces) was
already known [43, 47, 167], the best record, due to Cabello et al., being
O(g2n log n) [44].

The combinatorial model is more adequate for the proofs, so we state
our results in this model, although the theorems translate immediately to
the cross-metric model.

6.2.1 General Algorithm

Theorem 6.6 ([M]). Assume G has asymmetric lengths. In O(n2 log n) time,
we can compute a shortest non-trivial closed walk in (Σ, G).

The proof of Theorem 6.6 is a direct consequence of the following lemma.

Lemma 6.7. Assume G has asymmetric lengths; let s be a vertex of G. In
O(n log n) time, we can compute, in (Σ, G), a shortest non-null-homotopic or
non-null-homologous closed walk based at s.

Such closed walks may have self-crossings, see Figure 6.1; this is of
course in contrast with the undirected set-up, and partly explains why
it is simpler to stay in the combinatorial model. However, it is easy
to prove that a shortest non-null-homotopic (or non-null-homologous)
closed walk has no repeated vertices, if no basepoint is fixed.

Proof of Lemma 6.7. For concreteness, we focus on the homotopic case
first, the homological case being a simple variant. Let T be a shortest
path tree in G from the source s; it contains a shortest path from s to
every vertex of G. Similarly, let R be a reversed shortest path tree in G to

6.2. WEIGHTED, DIRECTED CASE 49

the sink s: it contains a shortest path from every vertex of G to s. Since the
weights are asymmetric, T and R can be very different. If e is an oriented
edge of G, with initial endpoint x and final endpoint y, we let τT(e) be
the closed walk based at s that follows the unique path in T from s to x,
traverses edge e, and follows the unique path in T from y to s. Similarly,
τT,R(e) is the closed walk based at s that follows the unique path in T
from s to x, traverses e, and follows the unique path in R from y to s.

It turns out that some shortest non-null-homotopic closed walk pass-
ing through s is the shortest closed walk of the form τT,R(e) such that
τT(e) is non-null-homotopic. This is quite surprising: In general, τT,R(e)
can be non-null-homotopic while τT(e) is null-homotopic and vice-versa.
The proof relies on a sequence of exchange arguments similar to but more
complicated than those used in the proof of Lemma 5.5. While highly
non-trivial, it does not contain any new major ingredient, so we omit the
proof.

There remains to show that we can determine in O(n) time which
edges e are such that τT(e) is non-null-homotopic. This is easy using the
same techniques as in Section 5.2.2. More precisely, let C be the graph
obtained from G∗ by removing the dual of the edges in T; C is a cut
graph, which is the analog of the cut locus. Thus the edges e such that
τT(e) is null-homotopic are those such that the dual of e splits C into two
components, one of which is a tree, and we know how to find them in
O(n) time.

If a shortest non-null-homologous closed walk is desired, the only
difference is that one needs to compute the bridge edges of C instead.

6.2.2 Algorithm for Low-Genus Graphs

Theorem 6.8 ([M]). Assume G has asymmetric lengths. In O(g1/2n3/2 log n)
time, we can compute a shortest non-trivial closed walk in (Σ, G).

Proof. We use a divide-and-conquer approach using separators. If G has
O(1) vertices, we can just apply Lemma 6.7 for each vertex in turn. For
the general case, we compute an O(

√
gn)-size separator for G in O(n)

time [100,124]. This is a set W ⊆ V(G) of vertices of G such that G−W is
the disjoint union of two subgraphs H1 and H2, each with at most 2n/3
vertices. We can compute a shortest non-trivial closed walk intersect-
ing W in O(g1/2n3/2 log n) time by applying Theorem 6.6 for each vertex
of W in turn. If a shortest non-trivial closed walk does not meet W, then
it belongs entirely to H1 or H2.

To compute the shortest non-trivial closed walk in H1 (and similarly
in H2), the idea is to erase from G all the vertices not in H1 together with
their incident edges, and to apply induction in this new graph. However,
by doing this, the graph may become non-cellular, so one needs to add
edges with infinite weights. With some care, this step can be achieved in
O(n) time.

The analysis of the recursion yields a running-time of O(g1/2n3/2×
log n), as claimed. However, a subtlety arises here: To obtain this com-
plexity, it is necessary that, at each step, the number of edges of the graph

50 6. MORE SHORTEST NON-TRIVIAL CYCLES

undirected directed

w
ei

gh
te

d

O(n2 log n) [109]
O(g3/2n3/2 log n) non-sep
gO(g)n3/2 non-db

}
[47]

gO(g)n log n [167]
O(g3n log n) [43]
O(g2n log n) [44]
gO(g)n log log n [147]

O(n2 log n) [M]
O(g1/2n3/2 log n) [M]
2O(g)n log n non-sep [111]
O(g2n log n) non-sep
gO(g)n log n non-db

}
[106]

O(g3n log n) non-db [121]

un
w

ei
gh

te
d O(n3) [238] (see [191])

O(n2) [L]
O(gnk) [L]
O(gn) for 2-short [109]
O(gn/ε) for (1 + ε)-short [L]

O(n2) [M]
O(gnk) [L, M, in preparation]

Table 6.1. Time complexities of the various algorithms to compute a shortest
non-trivial cycle (in both the combinatorial and cross-metric models). “Non-
sep” and “non-db” mean non-separating and non-disk-bounding, respectively;
k is the size of the output. Within each category, the results are listed in chrono-
logical order. The best complexities known to date are in bold (there can be
several of them in each category due to the tradeoff between g, n, and k).

be linear in the number of its vertices. This is the case if the graph has no
face of degree one or two (Lemma 2.2). So an easy but crucial preprocess-
ing step is necessary at each call of the recursion: It consists of modifying
the input graph to remove such faces. We omit the details.

The O(g1/2) factor appears only because genus g graphs have sep-
arators of size O(

√
gn). The same algorithm works (with a different

running-time) for surface-embedded graphs with small separators, for
example, graphs with bounded tree-width [M, Theorem 6].

6.3 Concluding Remarks

We have omitted the case of unweighted, directed graphs in our descrip-
tion, because it is perhaps more esoteric. However, applying the tech-
niques of this chapter, we can obtain the counterparts of Theorem 6.1 and
Corollary 6.2 in the directed case also. Table 6.1 summarizes the known
algorithms to compute shortest non-separating or non-disk-bounding cy-
cles in all four settings (directed or undirected, weighted or unweighted).

Some open cases remain open. For example, no approximation algo-
rithm is known to compute efficiently an almost-shortest non-trivial cycle
in the directed, unweighted case. In the directed setting, it is not known
how to compute a shortest non-trivial simple loop through a given base-
point.

CHAPTER 7

OTHER SHORTEST CURVES WITH

PRESCRIBED TOPOLOGICAL PROPERTIES

The first section of this chapter is a condensed version of an article
written with Jeff Erickson [G]. The second section presents results
obtained with Erin Chambers, Jeff Erickson, Francis Lazarus, and
Kim Whittlesey [H]; the NP-hardness proof in that section is taken
from a joint article with Sergio Cabello and Francis Lazarus [O].

In the last two chapters, we have studied algorithms to compute short-
est non-disk-bounding (or, equivalently, non-null-homotopic) and non-
separating (or, equivalently, non-null-homologous) loops and cycles. In
this chapter, we consider the computation of shortest curves with other
prescribed topological properties.

In the first section, we study the following problems: Given a path,
compute a shortest path homotopic to it. Similarly, given a cycle, com-
pute a shortest cycle (freely) homotopic to it. We give efficient algorithms
for both problems. The techniques rely on the use of (a finite part of) the
universal cover of Σ, which we build using techniques from combinato-
rial hyperbolic geometry.

Then, in Section 7.2, we consider the problem of computing a short-
est splitting cycle, i.e., a cycle that is simple, separating, but non-disk-
bounding. It turns out that this problem is NP-hard; however, we give
a near-linear algorithm for fixed genus. At a high level, the algorithm
enumerates gO(g) homotopy classes, one of which necessarily contains a
shortest splitting cycle; this technique has been recycled later [51, 112].

It is worth noting at this point that other topological types of cycles
have been considered. Erickson and Worah [115] give algorithms, us-
ing rather different techniques, to compute a shortest essential cycle on
a surface possibly with boundary: a simple cycle that is neither disk-
bounding nor homotopic to a boundary component. Their algorithms
run in O(n2 log n) time, or O(n log n) time if the surface is fixed. Ca-
bello et al. [45] compute a non-separating cycle that is as short as possible
within its homotopy class in O(n log n) time (one has no control over the
homotopy class of the output cycle, however).

52 7. OTHER SHORTEST CURVES

The multiplicity of a curve on (Σ, G∗) is the maximum number of
times an edge of G∗ is crossed by that curve.

7.1 Tightening Curves

In this section, we consider the problem of computing shortest homo-
topic paths and cycles on a combinatorial surface. This is a shortest path
problem with a natural topological constraint, and it has been studied
in the case of the plane with obstacles [24, 63, 98], or, more generally, in
locally Euclidean triangulated manifolds [141]. While these special cases
are inspiring, they all consider surfaces with boundary; as it turns out,
the case of surfaces without boundary requires additional tools. Other
works (not presented here) solve the problem for simple curves [C, E, F],
with worse time complexities. A subsequent more heuristic work [248]
considers the same problem, but the complexity of the algorithm is not
studied and turns out to be exponential in the worst case.

7.1.1 Our Results

For simplicity of exposition, in this section, we essentially focus on ori-
entable surfaces of genus at least two, without boundary; this is the most
instructive case. (We will occasionally digress on the case of the torus.)

Theorem 7.1 ([G]). Assume Σ is orientable, of genus at least two. Let p
be a walk in (Σ, G) with complexity k. After a preprocessing step that takes
O(gn log n) time, we can compute a shortest walk in (Σ, G) homotopic to p in
O(gnk) time.

Theorem 7.2 ([G]). Assume Σ is orientable, of genus at least two. Let γ

be a closed walk with complexity k. After a preprocessing step that takes
O(gn log n) time, we can compute a shortest closed walk freely homotopic to γ

in O(gnk log log(nk)) time.1

It should be emphasized that these theorems are stated in the combi-
natorial model: The input and output curves are walks on the graph G,
possibly with repeated vertices and edges. (Actually, the output of the al-
gorithms may have self-crossings, and it is not clear how to convert it to
the cross-metric setting within the indicated time bounds.) However, as
we shall see, the proof techniques heavily rely on the cross-metric setting.

In the case of genus one (the torus), after some adaptations in the
proofs, the results above are still valid, but with an additional O(k) fac-
tor.2 While Theorem 7.1 extends to non-orientable surfaces (by taking
their orientable double cover), Theorem 7.2 does not. Specifically, the
technique does not seem to extend to one-sided closed walks.

1The published version indicates a running-time of O(gnk log(nk)). However,
the recent result by Italiano et al. [147], stated in Theorem 5.9, improves this to
O(gnk log log(nk)).

2We believe that this factor can be removed (unpublished work with Laurent Jouhet
during his Master’s internship).

7.1. TIGHTENING CURVES 53

Figure 7.1. An octagonal decomposition built by our algorithm.

Figure 7.2. Universal cover of an octagonal decomposition.

7.1.2 Overview of the Techniques

Let us say that a family of curves is tight if each curve in the family is as
short as possible in its homotopy class.

The preprocessing step consists of computing a tight octagonal de-
composition. An octagonal decomposition is an arrangement of simple
cycles on the surface in which every vertex has degree four and every
face has degree eight. See Figure 7.1. (As a side remark, we note that
similar tight decompositions arise in the context of Teichmüller theory;
specifically, if we start with a pants decomposition Γ and add, for each
cycle γ in Γ, a new cycle crossing γ twice, we obtain a hexagonal decom-
position [117, Chapter 3]. We could consider hexagonal decompositions
instead of octagonal ones without any modification.)

On the other hand, consider a tiling of the unit open disk with oc-
tagons, where each vertex has degree four; see Figure 7.2. (Such a tiling
is a tiling of the hyperbolic plane with regular right-angled octagons, but
we will not need this fact.) The surface equipped with the octagonal de-
composition, and the unit disk equipped with the octagonal tiling, look
alike locally. Actually, there is a well-defined projection π from the unit
disk onto the surface that is, locally, a homeomorphism; in particular, it
maps the interior of each octagon in the plane bijectively onto the interior
of an octagon on the surface. In technical terms, the octagonal tiling of
the disk is a covering space of the surface Σ (see any textbook on alge-
braic topology, e.g., Stillwell [229, Section 1.4], for the formal definition

54 7. OTHER SHORTEST CURVES

p1 p2

x
y

(a)

p̃1

p̃2

x̃

p̃1

x̃

(b) (c)

Figure 7.3. (a) Two paths p1 and p2, with endpoints x and y. (b) Two lifts p̃1
and p̃2 of these paths in the universal cover, starting from the same lift x̃ of x.
The fact that these two lifts have different final endpoints witnesses the fact that
p1 and p2 are not homotopic. (c) The relevant space of p̃1.

and properties). Actually, since every loop in a disk is contractible, the
octagonal tiling of the disk is a model for the universal cover Σ̃ of the
surface Σ.

A lift of a path p in Σ is a path p̃ in Σ̃ such that π ◦ p̃ = p. If p is a
path in Σ, with initial endpoint x, and x̃ ∈ π−1({x}), there is a unique
lift p̃ of p with initial endpoint x̃. Furthermore, two paths p1 and p2 in Σ
with the same endpoints are homotopic if and only if they have lifts in Σ̃
with common endpoints; see Figure 7.3(a–b).

Let us focus on tightening walks first (Theorem 7.1). The problem can
be reformulated as computing a shortest path in Σ̃ between the endpoints
of a lift of p. Of course, this does not help much, since Σ̃ is infinite. The
general approach to solve this problem is as follows:

1. Compute a lift p̃ of the input walk p in the universal cover Σ̃ of Σ;

2. build a suitable part R̃ of the universal cover of Σ, containing the
endpoints of p̃;

3. compute the shortest path p̃′ in R̃ between the endpoints of p̃;

4. return the projection of p̃′ in Σ.

Of course, R̃ has to be “large enough” to contain the (unknown) short-
est path in Σ̃ between the endpoints of p̃, but “small enough” to obtain
a good complexity. This is where the tight octagonal decomposition is

7.1. TIGHTENING CURVES 55

useful: As it turns out, p̃′ can cross a lift of a cycle in the tight octagonal
decomposition only if p̃ does.

The free homotopy version is more delicate, because the lift of a cycle
in the universal cover is not a cycle, but a path (unless the input cycle is
contractible), so a different strategy is needed.

7.1.3 Preprocessing Step: Tight Octagonal Decompositions

The preprocessing step consists in applying the following result:

Theorem 7.3. Assume Σ is orientable, of genus at least two. In O(gn log n)
time, we can compute an octagonal decomposition of (Σ, G∗) made of tight cy-
cles. Furthermore, the multiplicity of each cycle is O(1).

We will omit the proof of this result, which is quite long and technical.
The main steps of the construction are shown in Figure 7.4. Essentially,
the algorithm combines the following operations (all ultimately relying
on shortest paths computations with Dijkstra’s algorithm):

i. Cut the surface along some already computed curves, obtaining a
surface with boundary;

ii. paste a disk or a torus along a boundary component of a surface;

iii. compute a shortest path;

iv. compute a shortest non-separating loop with a given basepoint
(Theorem 5.1);

v. on a topologically simple surface, compute a shortest cycle homo-
topic to a given boundary (we can handle this case separately).

Moreover, to get an efficient running-time, algorithms by Reif and Fred-
erickson [122, 208] and by Cabello et al. [45] are used as subroutines.

The main difficulties for the proof of Theorem 7.3 are (1) to bound the
multiplicity of each cycle, and (2) to prove that every output cycle is tight.
(1) follows from a careful analysis of the construction and from technical
lemmas bounding the multiplicity during the operation (v). The follow-
ing central lemma ensuring (2) is a consequence of Hass and Scott [133]
(see Farb and Margalit [116, Lemma 3.16] for a related result in the area
of mapping class groups):

Lemma 7.4. Let α and β be each either a cycle or a path with endpoints on
the boundary of Σ. Assume that α and β are simple and disjoint. Furthermore,
assume that α is tight in Σ, and, if it is a cycle, assume it is non-contractible.
Then β is tight in Σ\\α if and only if β is tight in Σ.

7.1.4 Shortest Homotopic Walks

Let D be a tight octagonal decomposition of a cross-metric surface (Σ, G∗)
without boundary, and let D̃ be the set of all lifts of all cycles in D to the

56 7. OTHER SHORTEST CURVES

Figure 7.4. The construction of an octagonal decomposition. In a first step, the
algorithm computes tight paths that split the surface into an annulus. Then,
going “backwards”, a pants decomposition is computed. Finally, some cycles
must be computed within pairs of adjacent pairs of pants.

7.1. TIGHTENING CURVES 57

universal cover Σ̃; refer back to Figure 7.2. As noted above, combina-
torially, D̃ is a tessellation of the hyperbolic plane with right-angled oc-
tagons, meeting four at a vertex. With this analogy in mind, we call any
lift of a cycle in D to the universal cover Σ̃ a line. A line separates the
plane into two half-spaces.

Let p̃ be a lift of the input path p, with endpoints x̃ and ỹ. Define the
relevant space of p̃, denoted by R̃, to be the union of the octagons acces-
sible from x̃ by crossing only lines of D̃ that are crossed by p̃; see Fig-
ure 7.3(c). In other words, it is the intersection of all half-spaces bound-
ing ˜̀ and containing x̃, for all lines ˜̀not crossed by p̃, and is thus a convex
polygon.

Lemma 7.5. Some shortest path in Σ̃ between x̃ and ỹ is contained in R̃.

Proof. Let p̃′ be a shortest path between x̃ and ỹ, with as few crossings
with D̃ as possible. It turns out that p̃′ crosses each line at most once.
This concludes, because every line ˜̀ separates the plane, and thus every
path from x̃ to ỹ has to cross ˜̀ with the same parity (an odd number of
times if ˜̀ separates x̃ and ỹ, even otherwise).

To prove that fact, two side results are needed, whose proofs are omit-
ted:

i. Every subpath of a line is tight;

ii. two distinct lines cross at most once.

Now, assume that p̃′ crosses a line ˜̀at least twice, at points ũ and ṽ. By (i),
the subpath of ˜̀ between ũ and ṽ is a shortest path, so we can replace the
part of p̃′ between ũ and ṽ with a path running along the corresponding
part of ˜̀, without increasing the length of p̃′. Furthermore, using (ii),
one proves that this exchange results in a path with fewer line crossings,
which contradicts our choice of p̃′.

The algorithm computes the relevant space R̃, the shortest path be-
tween x̃ and ỹ in that space, and projects that path back onto the surface.
Correctness follows directly from Lemma 7.5. We omit the construction
of the relevant space and several other details.

Once R̃ is built, there remains to compute a shortest path in that space,
which takes linear time because it amounts to computing a shortest path
in a planar graph, which is feasible in linear time [140]. So the complexity
is linear in the size of R̃, which is O(n) times the number of octagons
in it. As it turns out, with some technical tweaks, the number of lines
crossed by the input path p is O(gk). It then follows from combinatorial
properties of the regular tiling of the hyperbolic space, already noted by
Dehn [77], that the number of octagons in R̃ is also O(gk), whence the
overall O(gnk) time complexity.

As mentioned above, surprisingly, the case of the torus (g = 1) is a
priori more expensive computationally. To see this, consider the analog
of an octagonal decomposition in the case of genus one. In this case, the
decomposition used is a pair of cycles crossing exactly once on the torus,

58 7. OTHER SHORTEST CURVES

and they lift to a tessellation of the Euclidean plane with squares. If p̃
is a path in this plane, with endpoints x̃ and ỹ, the relevant space of p̃
is the intersection of all half-spaces bounding ˜̀ and containing x̃, for all
lines ˜̀not crossed by p̃. There are cases where the relevant space consists
of Ω(k2) squares: for example, if the lift p̃ crosses k/2 “horizontal” lines
and k/2 “vertical” lines.

This also explains why the complexity of the algorithm (Theorem 7.1)
is linear in k in the case of genus two or more, but its analog for the torus
has (a priori) a running-time that is quadratic in k. (Not surprisingly, the
torus has no octagonal decomposition.)

7.1.5 Shortest Freely Homotopic Closed Walks

Let γ be a closed walk in (Σ, G). To compute a shortest closed walk freely
homotopic to γ, the previous approach has to be adapted. Instead of
lifting γ to the universal cover Σ̃ of Σ, we lift it to its annular cover Σ̂γ:
this is a covering space that is homeomorphic to an open annulus, in
which (at least) one lift γ̂ of γ is a cycle.

One can still define a subspace R̂ of Σ̂γ, a subset of octagons contain-
ing γ̂ that must contain a shortest cycle homotopic to γ̂. This space R̂ is
actually the projection onto Σ̂γ of a convex polygon in Σ̃. More specifi-
cally, let γ5 denote the fifth power of γ, i.e., the cycle winding five times
around γ, and let p̃ be a path that is a lift of γ5 in the universal cover. The
relevant space of γ̂ in Σ̂γ is the projection onto Σ̂γ of the relevant space
of p̃.

Then, combinatorially, R̂ is a gluing of octagons that is an annulus,
and γ̂ is a cycle that separates the two boundaries of the annulus. We
have to compute a shortest cycle homotopic to γ̂ in this annulus; this
is a shortest simple cycle separating the two boundaries of the annulus,
which can be done efficiently, using the result of Theorem 5.9 by Italiano
et al. [147].

7.2 Shortest Splitting Cycles

In Chapter 5, we have seen algorithms to compute shortest non-disk-
bounding and non-separating cycles. The efficiency of the algorithms
follows from the fact that whether a cycle is non-disk-bounding or non-
separating can be seen in a suitable homotopy or homology group. Com-
puting a shortest disk-bounding or a shortest separating cycle is trivial:
Just return a small cycle not intersecting G∗.

Henceforth, let us assume that Σ is orientable. For the purpose of this
discussion, let us say that two simple cycles on Σ have the same topologi-
cal type if there is a self-homeomorphism of Σ that maps one to the other.
It is not hard to prove that two simple cycles have the same topological
type if and only if both are non-separating, or both are separating and
the genera of the surfaces cut by these cycles correspond. It is natural
to ask for algorithms that compute shortest cycles of a given topological

7.2. SHORTEST SPLITTING CYCLES 59

type. So far, we know how to compute a shortest non-separating cycle;
the case of a shortest disk-bounding cycle is trivial. Therefore, there re-
mains to study the complexity of computing a shortest separating cycle
that splits the surface into two subsurfaces of given non-zero genera.

Let us say that a cycle is splitting if it is simple and separating,
but does not bound a disk. (Since Σ is orientable, splitting cycles exist
only when the genus is at least two.) We study the problem of com-
puting a shortest splitting cycle. (Computing a splitting cycle, with-
out length constraint, is easy.) In particular, we prove that this prob-
lem is NP-hard, but that it becomes easy if g is fixed, by giving an
O(n log n + gO(g)n log log n)-time algorithm. Furthermore, it is easy to
see that the algorithm extends without modification if one requires a
cycle splitting the surface into two subsurfaces of prescribed genera.

The crucial property of shortest splitting cycles that we prove and use
in the algorithm is (roughly) the following: There exists a bound (in our
case, O(g)) on the number of crossings between a shortest splitting cycle
and an arbitrary shortest path. This structural property is basically the
only one used; it implies that one can enumerate a set of gO(g) candidate
free homotopy classes, one of which is guaranteed to contain a shortest
splitting cycle.

In particular, the technology developed for our algorithm was ap-
plied subsequently in other contexts. Chambers et al. [51] use it to com-
pute a minimum (s, t)-cut in surface-embedded graphs (they note that
a minimum (s, t)-cut corresponds to a certain shortest null-homologous
subgraph in the dual graph, and show that such subgraphs can be de-
composed into cycles, each of which crosses a shortest path O(g) times).
Erickson and Nayyeri [112] study the following computational geometry
problem: In the plane, given a set of p polygonal obstacles, a set of dis-
tinct pairs of points (si, ti) on the boundary of these polygonal obstacles,
compute a set of shortest disjoint paths connecting the pairs (si, ti) and
avoiding the obstacles.3 Although the problem seems to be unrelated to
surface graphs, the same techniques apply. Erickson and Nayyeri prove
that a path in the solution crosses a shortest path 2O(p) times, and this
bound is enough to apply the technique above.

7.2.1 NP-hardness

Theorem 7.6 ([H]). Computing a shortest splitting loop or cycle in an arbitrary
cross-metric surface is NP-hard.

The proof technique was later refined [O] to prove Theorem 9.1. We
present an outline of the proof of Theorem 7.6 using the refined tech-
nique. The NP-hardness proof proceeds by reduction from the following
NP-complete problem: Determine whether a given planar graph H with
maximum degree 3 has a Hamiltonian cycle [146, Lemma 2.1]. So let H
be such a graph. See Figure 7.5 for an overview of the reduction.

3More precisely, instead of disjointness, one requires the paths to be non-crossing,
because otherwise shortest disjoint paths do not exist: In the limit case, the paths are

60 7. OTHER SHORTEST CURVES

s

(a)

2

3

4

5

6
7

8

9

1
2
3
4
5
6
7
8
9

1

(b) (c)

Figure 7.5. Overview of the reduction from Hamiltonian cycle in planar graphs
with maximum degree 3. (a) An original instance H with a solution; s is an
arbitrary vertex of H. (b) The corresponding graph H′; the small black and
white disks inside the faces indicate their color. (c) A part of the corresponding
surface (only a part of the middle gray area is shown; the zig-zag boundary is
actually closed with a disk).

We transform the instance into another planar graph H′ (see Fig-
ure 7.5(b)), each face of which is labeled with either a number (a given
number appearing exactly twice), or a color, “black” or “white”. It turns
out that H has a Hamiltonian cycle if and only if there is an oriented
closed walk without repeated vertices in H′ that has the faces with the
same color on the same side, and that has both faces with the same
number on the same side.

Then a surface Σ containing H′ is built (Figure 7.5(c)) by connecting
all the white faces of H′ with tunnels to a “top” sphere, connecting all the
black faces of H′ with tunnels to a “bottom” sphere, and connecting the
pairs of faces of H′ with the same number using annuli. Now, H has a
Hamiltonian cycle if and only if H′ has a closed walk without repeated
vertices that splits (or separates) Σ.

H′ is not cellular on Σ, but we can make it cellular by adding edges;
let G be the resulting graph. We assign appropriate weights on G: essen-
tially, unit weights on each edge coming from H, infinitesimally small
weights on the edges in H′ but not in H, and infinitely large weights on
the edges in G but not in H′. Then H has a Hamiltonian cycle if and

non-crossing, but not strictly disjoint.

7.2. SHORTEST SPLITTING CYCLES 61

only if the length of a shortest splitting cycle in the cross-metric surface
(Σ, G∗) is at most |V(H)|+ 1/2, which concludes the high-level descrip-
tion of the proof of Theorem 7.6.

As a side note, it is also easy to deduce that the same problem, re-
stricted to unweighted cross-metric surfaces, is NP-hard. To see this, af-
ter the reduction above, subdivide each edge of G (with infinitesimally
small weight, unit weight, or infinitely large weight) with an adequate
number of unweighted subedges. On the other hand, we can see two
open problems:

• Is it NP-hard to compute a shortest loop or cycle in a cross-metric
surface that splits Σ into surfaces of prescribed genera?

• Does the shortest splitting cycle problem admit good approxima-
tion algorithms?

7.2.2 Algorithm: Enumeration of Homotopy Classes

Theorem 7.7 ([H]). In an orientable cross-metric surface (Σ, G∗), computing
a shortest splitting cycle can be done in O(n log n) + gO(g)n log log n time.4

The main structural property used by our algorithm is the following:

Proposition 7.8. Let C be a shortest cut graph with a single arbitrary vertex.
Let γ be a shortest splitting cycle, crossing C a minimum number of times. Then
γ crosses O(g) times each loop in C.

This bound is tight: loops in C can be crossed Ω(g) times by γ.

Proof. From Section 5.3.3, we know that each loop ` in C is primitive,
and can therefore be split into two shortest paths. So let p be a shortest
path that is a subpath of some loop `; we prove that γ crosses p at most
O(g) times.

The intersection points of γ ∩ p partition γ into segments. Contract-
ing p on the surface to a single point p0, the segments now become a
set of pairwise disjoint simple loops L with basepoint p0. The goal is to
bound the number of these loops.

As a warm-up, let us prove that no face of the embedded graph L is
a monogon. If it were the case, before contracting p to a point, we would
have a disk on Σ bounded by a subpath of p and a subpath of γ. Pushing
the subpath of γ across the subpath of p would result in a splitting cycle
that has fewer crossings with C, and is no longer than γ (since p is a
shortest path). So L has no monogon.

At this point, it would suffice to prove that L has no bigon. Because
then, Lemma 2.2 implies that |L| = O(g), as desired. This statement is not
quite true. What is true, and sufficient for our purposes, is that L has no
loop, the two incident faces of which are both bigons. This is proved by

4The running-time is gO(g)n log n in the published version, but Theorem 5.9 by Ital-
iano et al. [147] allows to decrease the complexity by using their algorithm as a subroutine
in the algorithm of Kutz [167].

62 7. OTHER SHORTEST CURVES

p
a b c x y z

u

v

w

p
a b c x z

u
v

w
y

Figure 7.6. One case of the exchange argument. The paths u, v, and w corre-
spond to loops in the surface where path p is contracted to a point; in that sur-
face, v has one bigon on each side. The exchange argument shows that such a
situation is impossible, by finding a shorter splitting cycle with fewer crossings
with p.

an exchange argument similar to, but more complicated than, the mono-
gon argument above: If we have a loop L with two incident bigons, we
can modify γ by removing some segments from γ and connecting the
resulting endpoints with paths running along p; the orientation of some
segments is reversed. We omit the full proof, as it is rather technical and
distinguishes several subcases; one of the simplest cases is illustrated in
Figure 7.6.

The crossing sequence of a cycle γ records the intersections of γ with
the loops in C, in cyclic order along γ. Any two cycles with the same
crossing sequence are homotopic, although two homotopic cycles can
have different crossing sequences. A crossing sequence is simple if it
can be generated by a simple cycle; non-simple cycles can have simple
crossing sequences.

Proposition 7.8 implies that some shortest splitting cycle γ crosses
O(g) times each loop in C. Our algorithm enumerates a superset of all
simple crossing sequences that satisfy this property. For this purpose,
cut Σ along C, obtaining a polygonal schema: a 4g-gon D where sides need
to be glued by pairs to reobtain Σ. This cutting operation also cuts the
unknown splitting cycle γ into segments that cut across D. Because γ

is simple, no two of these segments cross. The segments of γ can be
grouped into subsets according to which pair of loops of C they meet on
the boundary of D (Figure 7.7). We abstract and dualize the polygonal
schema by replacing each edge of the polygonal schema with a vertex
and connecting vertices that correspond to consecutive edges. Now, each
subset of segments corresponds to a diagonal between two vertices of the
dual 4g-gon. Since no two segments cross, these diagonals cannot cross.
In particular, all the diagonals belong to some triangulation of the dual
polygon.

Thus the candidate crossing sequences of a shortest splitting cycle
are described by weighted triangulations, which consist of a triangulation
of the dual polygon, each of whose edges is weighted with an integer
between 0 and O(g). The label of an edge in the triangulation represents
the number of times that the cycle runs along that edge. There are gO(g)

such labelings, which we can enumerate in constant amortized time per

7.2. SHORTEST SPLITTING CYCLES 63

a
b

a

b
c

d

c

d

(a)

a
b

a

b
c

d

c

d

2

1

1

1

142

(b)

a
b

a

b
c

d

c

d

2

4 1

1
0 0

0 1

1

20

0

0

(c)

Figure 7.7. (a) A splitting cycle on a double-torus (g = 2). (b) The correspond-
ing subsets of segments as weighted diagonals of the dual polygon; each label
indicates the number of segments contained in a subset. (c) The corresponding
weighted triangulation.

labeling.
A weighted triangulation corresponds to a splitting cycle if and only

if it corresponds to a single cycle that is both separating and non-disk-
bounding. These conditions can be tested by computing the topology
of each component of the surface cut along the cycle(s). Moreover, this
can be done in O(g2) time per weighted triangulation, by performing the
computations in the abstract surface obtained by gluing the edges of the
polygonal schema D by pairs, ignoring the O(n) internal complexity of
this polygonal schema.

For each weighted triangulation corresponding to a splitting cycle,
we need to compute a shortest cycle with that crossing sequence. Our
method is inspired from Hershberger and Snoeyink [141] (compare also
with Kutz [167]) and similar in spirit to that used to compute shortest
freely homotopic closed walks (Section 7.1.5). Essentially, one can build a
part of the annular cover of the candidate splitting cycle, obtained by glu-
ing together copies of the polygonal schema D, compute a shortest closed
walk in that annulus that separates the two boundaries of the annulus
(Theorem 5.9), and project back to Σ; this takes O(g2n log log n) time.
One subtlety is that the cycle found is not necessarily simple, though it
has the correct homotopy type; with some work, one can remove self-
intersections in O(g2n log g) time by combining a result by Takahashi et
al. [233, Theorem 2] with a linear-time algorithm for shortest paths in
planar graphs by Henzinger et al. [140].

64 7. OTHER SHORTEST CURVES

65

Part III

More Results
for Curves and Graphs

on Surfaces

CHAPTER 8

TESTING ISOTOPY OF GRAPHS

The results of this chapter were obtained with Arnaud de Mesmay
during his Master’s internship and Ph.D. [R].

In this chapter, we give an algorithm for the following problem: Given a
graph embedded on an orientable surface in two different ways, is there
a continuous motion from the first embedding to the second that keeps
the graph embedded at all times during the deformation? In other words,
does there exist an isotopy between these two graph embeddings?

8.1 Context and Result

8.1.1 Motivations

As an important special case, consider a finite set of obstacle points P in
the plane, and two embeddings G1 and G2 of the same graph G into R2 \
P. Does there exist a “morph” between G1 and G2 (possibly moving the
vertices and bending the edges) that avoids passing over any obstacle?
Such questions are relevant for morphing applications: To compute a
morph between two images, it is helpful to first build a deformation be-
tween compatible graphs representing the most salient features of the
images (see, e.g., Gotsman and Surazhsky [125]). It is sometimes desir-
able to add some topological requirements on the morph, e.g., to force
some area of the deforming image to always cover a fixed point of the
plane during the deformation. Such requirements can be encoded using
obstacle points, since a face of the graph containing an obstacle point has
to contain it during the whole deformation. Another potential applica-
tion area is cartography and geographic information systems, where it
is often needed to simplify a map, but one needs to check that the sim-
plified map is still correct topologically. In this field, testing homotopy
for paths in the punctured plane is already useful [46], but we believe it
is even more relevant to test for isotopy of graphs. For example, does a
simplified version of a road network leave the houses or villages on the
appropriate side of the simplified roads?

68 8. TESTING ISOTOPY OF GRAPHS

More generally, assume that we have a triangulated surface in R3, and
two embeddings G1 and G2 of the same graph G on that surface: Each
graph Gi is encoded by its combinatorial arrangement with the triangu-
lation. Can we continuously move G1 to G2? In this setting, the graphs
G1 and G2 might represent textures on the surface, and the question is
whether one can continuously move one texture so that it coincides with
the other.

8.1.2 Our Result

Let G be a graph, and G1 and G2 be two embeddings of G on an orientable
surface Σ. (In particular, the correspondence between the vertices and
edges of G1 and G2 is known.)

G1 and G2 are encoded as follows. We assume that a fixed surface Σ is
given, together with a fixed cellular graph embedding H on Σ. The em-
bedding G1 is assumed to be in general position with respect to H, and
is described by the combinatorial arrangement of G1 with H, and sim-
ilarly for the embedding G2. Equivalently, though we will not use this
terminology, one can assume that (Σ, H) is an unweighted cross-metric
surface, and consider that G1 and G2 are graphs drawn (not simultane-
ously) in this cross-metric surface. We emphasize that our algorithm does
not consider the intersections between G1 and G2, which are not given in
the input. Here is our main result.

Theorem 8.1 ([R]). Let Σ be an orientable surface, possibly with boundary;
let H be a fixed graph cellularly embedded on Σ. Let G1 and G2 be two graph
embeddings of the same graph G on Σ, each in general position with respect to H.
Given the combinatorial arrangements of G1 with H (respectively, G2 with H),
of complexity k1 (respectively, k2), we can determine whether G1 and G2 are
isotopic in O(k1 + k2) time.

In particular, the general position assumption implies that G1 and G2

are in the interior of Σ. The role of H is solely to provide a reference
framework on which all graphs are drawn; its complexity is necessar-
ily smaller than k1 (or k2). We emphasize that, in the conclusion of the
theorem, the isotopy has to map each vertex or edge in G1 to the corre-
sponding vertex or edge in G2.

8.1.3 Known Variants

Theorem 8.1 can be derived easily from known techniques when G is a
cycle. Indeed, as mentioned in Section 3.2, an algorithm by Lazarus and
Rivaud [173] allows to decide in optimal linear time whether two cycles
on an orientable surface are homotopic and, on the other hand, homo-
topy and isotopy are almost the same concept for simple cycles [103]:
Two simple cycles are isotopic if and only if either (1) they are non-
contractible and homotopic or (2) they are contractible (disk-bounding)
and they are the boundaries, with the same orientation (clockwise or
counterclockwise), of disks on the surface.

8.2. MAIN IDEAS FOR THE PROOF 69

Another variant is known, where the input is the data of two embed-
dings G1 and G2 of G such that each vertex of G is at the same position
in G1 and G2, and one wants to decide whether there exists an isotopy
between G1 and G2 that does not move the vertices. Although never de-
scribed explicitly, it follows from previous works [F, G] that this can be
done in polynomial time.

An ambient isotopy of a surface is a self-homeomorphism of Σ that
is isotopic to the identity;1 namely, a homeomorphism h1 : Σ → Σ such
that there exists a continuous family of self-homeomorphisms (ht)t∈[0,1] :
Σ → Σ where h0 is the identity. Two graph embeddings are ambient
isotopic if there exists an ambient isotopy of the surface that takes one to
the other. It is known that two graph embeddings in the interior of Σ are
isotopic if and only if they are ambient isotopic (this fact actually follows
from our proof).

We mention in passing that our problem is quite related to the theory
of mapping class groups: If G1 and G2 are cellularly embedded on Σ, a
self-homeomorphism of Σ that maps G1 to G2 represents a unique ele-
ment of the mapping class group, and our problem amounts to testing
whether this element is the identity. This problem has already been tack-
led computationally [26, 234], but the inputs of these algorithms are dif-
ferent and their complexities are not made explicit and are much higher
than linear, so that these results do not help.

Alexander’s theorem (see, e.g., Farb and Margalit [116, Lemma 2.1]) is
the most basic result on mapping class groups. We mention it for further
use:

Theorem 8.2 (Alexander’s theorem). Let D be a disk and h : D → D be
a self-homeomorphism that restricts to the identity on the boundary ∂D of D.
Then h is an ambient isotopy.

8.2 Main Ideas for the Proof

8.2.1 Overview

If two graph embeddings G1 and G2 of the same graph G are (ambient)
isotopic, then clearly (1) some oriented self-homeomorphism of the sur-
face maps G1 to G2; and (2) if γ is a cycle in G (possibly with repeated
vertices), its images in G1 and G2 are homotopic.

It was shown by Ladegaillerie [168] that such necessary conditions
are, in fact, sufficient. However, the second condition is not algorithmic,
since there are infinitely many cycles in G. The complexity of the cycles
in Ladegaillerie’s proof is not made explicit, but would be too large to
obtain a linear complexity.2 We therefore reprove Ladegaillerie’s charac-
terization, also providing an explicit set of cycles Γ in G of linear overall

1This is not the standard definition, but a slight adaptation more suitable for our pur-
poses.

2Actually, one of our earlier attempts followed Ladegaillerie’s technique more closely
and had an additional O(g) factor in the complexity.

70 8. TESTING ISOTOPY OF GRAPHS

e3

e1

e3

e1e2 e2

Figure 8.1. Two embeddings G1 and G2 of a one-vertex graph with three loop
edges on the sphere with four punctures. These two embeddings are not iso-
topic (even if the vertex is allowed to move), although there exists an oriented
self-homeomorphism of the surface sending one to the other, and the four cycles
following the boundaries of the faces are homotopic in G1 and G2.

complexity that have to be tested for homotopy. Our algorithmic results
then follow relatively easily using known techniques.

We note that finding such a set Γ is not straightforward. In particular,
a natural candidate for Γ would be the set of all facial cycles in G1 (and
thus in G2). However, Figure 8.1 shows that the condition is not fulfilled,
even in the case where the surface is the sphere with four punctures.

Before reproving Ladegaillerie’s characterization, we first need an-
other characterization, of independent interest, on the existence of an iso-
topy between certain stable curves.

8.2.2 Stable Curves

Let Γ be a family of cycles in general position on Σ. A 0-gon in Γ is a
simple cycle in Γ that bounds a disk containing no piece of Γ in its interior.
Recall that a k-gon of Γ, for k ≥ 1, is a face of the arrangement of Γ of
degree k that is a disk. We say that Γ is stable if its arrangement contains
no k-gon for k ≤ 3.

Proposition 8.3. Let Σ be an orientable surface and let Γ1 = (γ1,1, . . . , γ1,n)

and Γ2 = (γ2,1, . . . γ2,n) be two stable families of cycles on Σ. There exists
an ambient isotopy of Σ mapping each curve γ1,j of Γ1 to the corresponding
curve γ2,j of Γ2, not necessarily pointwise, but preserving the orientations of the
curves, if and only if the following conditions are satisfied:

• There exists an oriented self-homeomorphism h of Σ mapping each curve
in Γ1 to the corresponding curve in Γ2, not necessarily pointwise, but
preserving their orientations, and

• each curve of Γ1 is homotopic to the corresponding curve of Γ2.

It is obvious that, if there exists an ambient isotopy, then both condi-
tions are satisfied; the hard part is to prove the converse.

It follows from a result by de Graaf and Schrijver [76] that each sta-
ble family is minimally crossing: Each cycle has the minimum number

8.2. MAIN IDEAS FOR THE PROOF 71

of self-intersections among all cycles in general position in its homotopy
class, and similarly each pair of cycles has the minimum number of inter-
sections among all pairs of cycles in general position in their respective
homotopy classes. Indeed, de Graaf and Schrijver prove that one can
make any family of cycles in general position minimally crossing via a
sequence of Reidemeister moves that do not increase the number of cross-
ings; the definition of stability implies that no Reidemeister move at all
is possible. Our proof uses some techniques of that paper. Let us sketch
it for the case g ≥ 2, b = 0.

Under this assumption, by the uniformization theorem, Σ can be
endowed with a hyperbolic metric of constant curvature −1. It is stan-
dard [41] that every free homotopy class contains a unique geodesic (a
cycle that is a shortest path in the neighborhood of all its points), which
is also a shortest homotopic cycle. Recycling the technique from de Graaf
and Schrijver [76], we may assume, after applying an ambient isotopy of
the surface, that each cycle in Γ1 (or Γ2) is in a neighborhood of the unique
geodesic homotopic to that cycle. The arrangement of these geodesics
forms a graph K on Σ. It turns out that the vertices of K have degree
four; at such places, exactly two geodesics cross. (If there were a vertex
of degree at least six, then three pieces of cycles would cross pairwise in
the neighborhood of that vertex, which would imply the existence of a
k-gon for k ≤ 3.) If every edge of K is used exactly once by exactly one
cycle in Γ1 (respectively, Γ2), then it is not hard to build an isotopy from
Γ1 to Γ2, by pushing the piece of Γ1 that runs along an edge of K to the
corresponding piece of Γ2. This is the gist of the proof, though there are
technical details in the case where several pieces of cycles run along a
given edge of K; we omit these details.

8.2.3 Ladegaillerie’s Characterization Revisited

We reprove and strengthen Ladegaillerie’s result [168]:

Proposition 8.4. Let G1 and G2 be two graph embeddings of a graph G on Σ.
Assume that there is an oriented self-homeomorphism h of Σ mapping G1 to G2.
There exists a family Γ of cycles in G such that the following holds: If, for each
cycle γ in Γ, the images of γ in G1 and G2 are homotopic, then there exists an
ambient isotopy of Σ mapping G1 to G2 (pointwise). Furthermore, the cycles
in Γ use each edge of G O(1) times times in total and can be computed in linear
time.

(By virtue of our definition of cycle, the cycles in Γ may repeat edges and
vertices.)

The idea for the proof of Proposition 8.4 is to build a family of stable
curves Γ1 in a tubular neighborhood of G1 such that G1 is included in the
union of Γ1 and of the faces of the arrangement of Γ1 that are disks. It
is essentially possible to build such a family in linear time, but we omit
the construction; see Figure 8.2 for an example. We obtain a family of
cycles Γ in G whose images under G1 are slight perturbations of Γ1, and
that use each edge of G at most twice in total.

72 8. TESTING ISOTOPY OF GRAPHS

(a)

(b)

Figure 8.2. (a) A graph embedding G1. (b) The corresponding family Γ, made of
three cycles.

Recall that h is an oriented self-homeomorphism of Σ mapping G1

to G2. Therefore, Γ2 := h(Γ1) is a stable family as well. Assume that the
images of Γ in G1 and G2 are homotopic. By construction, this implies
that each cycle in Γ1 is homotopic to the corresponding cycle in Γ2. Our
goal is to prove that some ambient isotopy maps G1 to G2; in other words,
that there is an ambient isotopy i such that i|G1 = h|G1 .

The above homotopy assumption implies with Proposition 8.3 that
some ambient isotopy maps each curve in Γ1 to the corresponding curve
in Γ2, preserving the orientations of these curves. It does not, in general,
imply that some ambient isotopy maps each curve in Γ1 to the corre-
sponding curve in Γ2 pointwise. However, it turns out that, by adding a
few curves in Γ, we can make sure that such an isotopy exists; we omit
the details.

In other words, if we denote by j this isotopy, we have that j|Γ1 = h|Γ1 .
Furthermore, since h and j have the same orientation, they map each face
of Γ1 to the corresponding face of Γ2.

Let f be a face of Γ1 that is a disk. Since j|∂ f = h|∂ f , Alexander’s
theorem (Theorem 8.2) implies that there is another isotopy j′ that is the
identity outside f and such that j′ ◦ j| f = h| f . By applying this operation
for each face f that is a disk, we obtain the existence of an ambient iso-
topy i such that i| f = h| f for each such face f , and still i|Γ1 = h|Γ1 . Finally,
since G1 is included in the union of Γ1 and of the faces of Γ1 that are disks,
we obtain i|G1 = h|G1 , which proves Proposition 8.4.

8.2.4 Algorithm

It is now time to describe the algorithm for Theorem 8.1. Given the com-
binatorial arrangements of G1 and H (respectively, G2 and H) on Σ, the
algorithm first checks that there exists an oriented self-homeomorphism
of Σ mapping G1 to G2. This is relatively easy; let us illustrate first the
case where G1 and G2 are cellularly embedded. In this case, this amounts

8.3. CONCLUSION 73

to checking that the combinatorial maps of G1 and G2 are isomorphic and
have the same orientation. To check that they are isomorphic, if we are
using for example the flag representation as described in Section 2.4.2,
we know the bijection between the flags of G1 and those of G2, and we
have to check that they commute with the three involutions vi, ei, and fi.
To check that the maps have the same orientation, we have to check that
a flag in G1 has the same orientation as the corresponding flag in G2. All
of this can be done in linear time.

In the general case, G1 and G2 are not necessarily cellular; in particu-
lar, one has to keep track of the topology of each face of G1 and of the list
of boundary components of each such face, and similarly for G2. How-
ever, this can still be done in linear time with a bit more bookkeeping.

Assuming the oriented homeomorphism test succeeds, by Proposi-
tion 8.4, there remains to perform homotopy tests for cycles in G1 and G2,
which can be done in linear time in their complexities using the afore-
mentioned algorithm by Lazarus and Rivaud [173]. In total, our algo-
rithm is linear in the complexity of the combinatorial arrangements of G1

with H and of G2 with H.

8.3 Conclusion

It is also interesting to test isotopy of graphs, where some vertices of
the graph are required to be fixed. Also, if we allow the input graph
embeddings to meet the boundary, there is a difference between ambient
isotopy fixing the boundary, ambient isotopy that allows to move the
boundary points, and graph isotopy. It appears that all these cases are
tractable using simple variations of our algorithm.

There remain several open problems. First, our algorithm only works
in the orientable case, as it relies on the existence of an orientable homeo-
morphism. Most works on mapping class groups consider the orientable
case only [116]; as the question we study is rather related, this may be an
indication that the problem is much harder in the non-orientable case.

It may be natural to consider testing isotopy of graphs on surfaces,
when the mapping between the edges and vertices of both embeddings is
not specified. In other words, we have two embedded graphs G1 and G2

on Σ, and we want to determine whether there is an isotopy of the sur-
face that maps the image of G1 to the image of G2. If the graph is con-
nected, then there is a linear number of possible ways of choosing the
isomorphism between G1 and G2, because the isomorphism between the
two embedded graphs is uniquely determined once the correspondence
between two given flags is chosen; therefore, there is a quadratic-time
algorithm. However, in the disconnected case, this is not true anymore,
and the problem seems related to the isomorphism test problem.

Finally, it is tempting to generalize the results of Section 7.1 from cy-
cles to graphs, namely, to compute shortest graph embeddings within
a given isotopy class; we suspect the problem to be much harder, and
solving it, even for graphs with one vertex, would be very interesting.

74 8. TESTING ISOTOPY OF GRAPHS

CHAPTER 9

TESTING THE EXISTENCE OF CYCLES

WITHOUT REPEATED VERTICES

This chapter presents the results of an article written with Sergio
Cabello and Francis Lazarus [O].

In this chapter, we consider closed walks without repeated vertices on
graphs; this corresponds to the usual graph-theoretic notion of cycle. To
avoid confusion, let us call a real cycle a closed walk in a graph that has
no repeated vertex and is not reduced to a single vertex.

Let G be a graph cellularly embedded on a surface Σ. It is not al-
ways the case that G contains a real cycle of a given topological type (e.g.,
disk-bounding, separating, etc.); for example, if G is a cut graph, it con-
tains no real disk-bounding or separating cycle. It is clear from the re-
sults in Chapter 5 that there always exists a real cycle that is non-disk-
bounding (respectively, non-separating). However, given a vertex v of G,
there does not always exist such a cycle containing v (for a trivial ex-
ample, consider the case where v has degree one); so what if we want
to determine whether there exists a non-separating (or non-contractible)
real cycle passing through a given vertex? We exhibit a strong dichotomy
in the complexity of these problems, depending on the topological prop-
erty required: These problems are either NP-hard or solvable in (optimal)
linear time.

In the same spirit but for weighted graphs, Cabello [42] studies the
complexity of computing a shortest real cycle of a given topological type.
He provides a polynomial-time algorithm to compute a shortest disk-
bounding real cycle in a surface-embedded graph (if such a cycle exists),
and proves that it is NP-hard to compute a shortest disk-bounding real
cycle through a given vertex, or a shortest separating real cycle. In con-
trast to Part II and to the result by Cabello [42], here we do not insist in
finding shortest real cycles.

Another related result by Kobayashi and Kawarabayashi [163] is an
algorithm to determine whether there exists an induced real cycle through
a given set of k vertices of G; in particular, if G is embedded on a fixed
surface and k is constant, the problem is solvable in linear time.

76 9. EXISTENCE OF CYCLES WITHOUT REPEATED VERTICES

(a) no restriction (b) one prescribed vertex
(1) disk-bounding linear-time linear-time
(2) non-disk-bounding (linear-time) linear-time
(3) non-separating (linear-time) linear-time
(4) separating NP-hard NP-hard
(5) splitting NP-hard NP-hard

Table 9.1. Complexities of computing real cycles of a given topological type
(Theorem 9.1).

9.1 Results

Theorem 9.1 ([O]). Let G be a graph cellularly embedded on a surface Σ with-
out boundary. The problem of computing a real cycle of a given topological type,
possibly requiring the cycle to pass through a prescribed vertex of G, has the
complexity indicated in Table 9.1. If no such real cycle exists, it is possible to
decide it within the same time bounds.

(In the table, the known results, following from Chapter 5, are denoted
in parentheses.) Case (4a) solves an open problem mentioned by Mohar
and Thomassen [191, Problem 4.3.3(b)].

We also prove that the NP-hard problems of Table 9.1 are somehow
fixed-parameter tractable:

Theorem 9.2 ([O]). Let G be a graph of complexity n, cellularly embedded on
a surface Σ of genus g without boundary. Let k ≥ 1 be an integer. The problem
of determining a real cycle of length at most k that is separating (respectively,
splitting), possibly requiring it to pass through a given vertex, can be solved in
2O(g+k)n log n time.

9.2 Proof Overview

9.2.1 Proof Overview of Theorem 9.1

The NP-completeness proof in Theorem 9.1 (Cases (4) and (5)) follows
from the same ideas as the ones in Section 7.2.1, used to prove NP-
hardness of computing the shortest splitting cycle; we omit the details.

Case (1) of Theorem 9.1 (disk-bounding case) is proved by the follow-
ing simple but delicate argument; for concreteness, let us focus on Case
(1a). If there exists a disk-bounding real cycle, let e be an edge of the
boundary of the disk, incident to a face f that lies inside the disk. Every
cycle that is included in the boundary of f is contractible. It is not always
the case that the boundary of f is a real cycle; however, there exists a real
cycle, the edge set of which contains e and is included in the boundary
of f . The algorithm therefore computes, for each edge e and each face f
incident to e, a real cycle containing e and included in the boundary of f
(if it exists); if that cycle is contractible (equivalently, disk-bounding), it
returns it and halts; if no such cycle is contractible, then the graph has no
contractible real cycle.

This algorithm can be implemented so as to run in linear time: With-
out getting into the details, note that the overall complexity of the cycles

9.3. CONCLUSION 77

is linear; testing for contractibility can be done in overall linear time by
a result by Lazarus and Rivaud [173] (though we provide a more direct
algorithm for our specific case).

Cases (2b) and (3b) of Theorem 9.1 (the non-disk-bounding and non-
separating cases) can be proved as follows. For concreteness, let us as-
sume that we want to determine whether there exists a real non-disk-
bounding cycle passing through vertex s. Using an exchange argument, it
is equivalent to determine whether there exists a real non-disk-bounding
cycle (not necessarily passing through s) in the subgraph H of G that is
the union of the blocks of G containing s. (Recall that a block of G is a
maximal set of edges of G in which every pair of edges is contained in
some real cycle.) Then the problem becomes to determine whether H
contains a non-disk-bounding cycle, which can be done using cut locus
techniques, and specifically Lemma 6.4.

9.2.2 Proof Overview of Theorem 9.2

The proof of Theorem 9.2 relies on the color-coding paradigm of Alon et
al. [7]. The basic idea is the following: Randomly color the vertices of G
in one of k colors; determine whether there exists a separating or split-
ting cycle that is colorful, namely, has all its vertices colored differently.
Repeating this algorithm 2Θ(k) times ensures that, if a separating or split-
ting real cycle of length at most k exists, it will be colorful for at least one
coloring with probability Ω(1). Furthermore, this simple randomized
strategy can be derandomized. So we are left with determining, given
a coloring, whether there exists a separating or splitting colorful cycle.
Note that all colorful cycles are real by construction, so we do not have
to care about repeated vertices anymore; this is the whole point of using
color-coding.

As it turns out, determining a separating or splitting colorful cycle (if
it exists) can now be done using dynamic programming. For the (easier)
separating case, we build a graph with 2k2g|V| vertices, where V is the
vertex set of G; each vertex of that graph corresponds to a path using
one of the 2k subsets of the k colors and corresponding to one of the 2g

possible homology classes. Our problem amounts to decide the existence
of certain paths of length k in this graph.

9.3 Conclusion

Our results extend to surfaces with boundary. It would be interesting to
generalize these results to graphs that are embedded on a surface Σ, but
possibly not cellularly embedded. Using the same data structure as the
one sketched in Chapter 8 for storing non-cellularly embedded graphs,
we believe that the results of this chapter extend without much modifi-
cations to this setting.

There remain a couple of interesting open questions. We only consid-
ered the existence of real cycles passing through a single prescribed ver-
tex. What if we prescribe two (or more) vertices? Our techniques seem

78 9. EXISTENCE OF CYCLES WITHOUT REPEATED VERTICES

to break down. The techniques by Kobayashi and Kawarabayashi [163]
may be useful. Finally, in the splitting case, we did not consider the prob-
lem of requiring, in addition, that the splitting cycle cuts Σ into surfaces
of prescribed genera.

CHAPTER 10

COMBINATORICS OF IRREDUCIBLE

TRIANGULATIONS

The material of this chapter is a submitted joint work with Alexan-
dre Boulch and Atsuhiro Nakamoto [Q]; these results were obtained
during Alexandre’s pre-Master (M1) internship.

Let Σ be a surface of genus g with b boundary components. A triangula-
tion of Σ is an embedded graph G without loops or multiple edges, each
face of which is a 3-gon. (It should also be required that moreover, two
distinct triangles do not share three vertices and three edges, though this
only happens when Σ is the sphere, which is irrelevant for the rest of the
discussion.) More concisely, it is the one-dimensional skeleton of some
simplicial complex homeomorphic to Σ.1

Contracting an edge of the triangulation (identifying two adjacent
vertices in the simplicial complex; see Figure 10.1) is allowed if this re-
sults in another triangulation of the same surface. An irreducible triangu-
lation, sometimes called minimal triangulation, is a triangulation in which
no edge can be contracted. Every triangulation can be reduced to an irre-
ducible triangulation by iteratively contracting some of its edges.

We provide a bound on the size of an irreducible triangulation of Σ.
We first put our result in context and then give a glimpse at the proof
technique.

10.1 Previous Results and Motivations

Irreducible triangulations have been much studied, but only in the con-
text of surfaces without boundary, with results of two types. First, the
(numbers of) irreducible triangulations of low-genus surfaces have been
computed [16, 170, 228, 230–232]. A second series of results proves that
finitely many irreducible triangulations exist [17, 18, 149] and shows that
the number of vertices of an irreducible triangulation is linear in the
genus [148, 187, 193].

1In some contexts, a triangulation of a surface is simply an embedded graph such that
each face is a 3-gon. Our definition is more restrictive, since on every surface there exists

80 10. COMBINATORICS OF IRREDUCIBLE TRIANGULATIONS

Figure 10.1. Contraction of an edge of a triangulation.

The interest of irreducible triangulations also lies in the fact that some
problems on triangulations of surfaces are automatically solved if one
can solve them for irreducible triangulations. (This was actually one of
our initial motivations for studying irreducible triangulations and their
structural properties, though we did not succeed in proving such a re-
sult.) For example, Barnette conjectured in 1982 [191, Conjecture 5.9.3]
that, on a triangulation of an orientable surface with genus g ≥ 2, there
always exists a splitting cycle without repeated vertices. It is easy to see
that if one can prove this fact for irreducible triangulations, then it holds
for all triangulations. More generally, again on an orientable surface of
genus g, Mohar and Thomassen [191, Conjecture 5.9.5] conjectured that
for every h, 0 < h < g, there exists a cycle without repeated vertices that
splits the surface into two surfaces of genus h and g− h, respectively. (See
also the discussion by Sulanke [231, Sect. 5].) Irreducible triangulations
have also been used in the context of diagonal flips on surfaces [194,195].

10.2 Our Result

Here is the result of this chapter.

Theorem 10.1 ([Q]). Let Σ be a surface of genus g with b boundary compo-
nents. Then every irreducible triangulation of Σ has O(g + b) vertices.

Before, this result was only known in the case b = 0 (albeit with a
smaller multiplicative constant hidden in the O(·) notation). This bound
is asymptotically tight. Furthermore, the previous techniques used to
prove Theorem 10.1 in the case of surfaces without boundary do not seem
to extend to the case b ≥ 1. In fact, our proof, when specialized to the case
b = 0, is significantly different from and simpler and more natural than
the other techniques. These former proofs, by Nakamoto and Ota [193]
and Joret and Wood [148], rely on a deep theorem by Miller [187] stating
that the Euler genus of a graph is additive over 2-vertex amalgams (iden-
tification of two vertices of disjoint graphs). While the method yields the
current best bounds on the number of vertices, it seems a bit unnatural to
use the genus of a graph to derive a result on graphs embedded on a fixed
surface. Another paper [62] claims a linear bound without using Miller’s
theorem, but this part of their paper has a flaw (personal communication
with the authors).2

an embedded graph made of a single vertex and only 3-gons.
2Specifically, in the proof of their Lemma 3, the authors incorrectly claim that there

are at most g pairwise non-homologous cycles on an orientable surface of Euler genus g.

10.3. A GLIMPSE AT THE PROOF 81

(a)
(b)

Figure 10.2. (a) In thin lines, two edges e1 and e2 of the matching M, with the
other edges of the 3-cycles γe1 and γe2 in thick lines; one of the edges belongs
to both 3-cycles. (b) In bold lines, a connected component of the graph P, a tree
plus one edge. In thin and bold lines, a connected component of the graph Γ.

10.3 A Glimpse at the Proof

Since our goal is only to convey the main ideas, we restrict ourselves
to the case g ≥ 1, b = 0: Even though our result is not new in this
special case, our proof for the general case requires only some technical
adjustments. Some refinements of the technique also allow for a better
numerical constant in the O(·) bound.

So let G be an irreducible triangulation of Σ. Actually, the only (sim-
ple, and essentially already known) properties of G that we use are the
following:

1. the degree of every vertex of G is at least four [230, Theorem 1];

2. every edge of G belongs to a non-contractible (equivalently, non-
disk-bounding) 3-cycle (cycle of length three) [17, Lemma 1];

3. no ten 3-cycles of G are pairwise edge-disjoint, pairwise homo-
topic, and non-contractible (equivalently, non-disk-bounding) [17,
Lemma 9].

The main idea is to bound the number of edges of a matching of G
(a set of edges with pairwise disjoint endpoints) by O(g); once this is
done, a simple argument involving Euler’s formula and using Property 1
concludes. So let M be a matching of G.

By Property 2, each edge e of G belongs to some non-contractible 3-
cycle γe. Since M is a matching, every edge of G belongs to at most two
cycles γe1 and γe2 (Figure 10.2(a)). It is easy to see that, up to removing
at most half of the elements of the matching M, we can assume that the
cycles γe, e ∈ M, are edge-disjoint. It now suffices to prove that the
number of edges of this new matching (still denoted by M) is O(g).

We then partition the cycles γe, e ∈ M, according to their homotopy
classes. Since, by Property 3, there are at most ten cycles γe in each homo-
topy class, then, again up to removing a constant fraction of the elements
in the matching M, we can assume that the cycles γe, e ∈ M, are in dis-
tinct homotopy classes.

82 10. COMBINATORICS OF IRREDUCIBLE TRIANGULATIONS

Finally, for each edge e of M, let pe be the path of length two defined
by γe \ e. Note that the paths pe are edge-disjoint. We orient each edge
of each path pe towards the endpoint of pe it is incident to. Let P be the
union of the paths pe. Since M is a matching, every vertex of P is the
final endpoint of at most one oriented edge of P. It follows that P is a
pseudoforest (Figure 10.2(b)): Every connected component of P is a tree
plus possibly a single additional edge. Up to removing one edge e of M
per connected component of P, we can assume that P is a forest; again, it
is not too hard to see that this removes at most a constant fraction of M.

Now, consider the graph Γ that is the union of the cycles γe, for e ∈ M;
this is an embedded graph containing P. We contract each tree of P in the
graph Γ on the surface Σ. (This operation is different from the contraction
of an edge of a triangulation, as described in the beginning of this chap-
ter: Here we do not remove loops or multiple edges. It is always legal
to contract the edges of a forest in this sense; in contrast, it is never legal
to contract a loop, or the edges of a cycle.) This yields a graph Γ′ where
each edge is a loop and corresponds to an edge of M. Let T be a tree
on Σ meeting Γ′ exactly at its vertex set. Contracting T, we transform Γ′

into a one-vertex graph Γ′′. Each edge of Γ′′ is a loop, which corresponds
to some cycle γe and has been obtained from γe by a homotopy. So Γ′′

cannot contain a monogon or a bigon, for otherwise one cycle γe would
be contractible, or two cycles γe1 and γe2 would be homotopic, which is
not the case by one of the earlier steps of our construction.

Bottom line: By Lemma 2.2, Γ′′ has O(g) edges. So M also has O(g)
edges; since we successively reduced M, but removing at most a constant
fraction of the edges of M at each step, this is also true for the original
matching. Hence every matching of G has O(g) edges, which concludes.

83

Part IV

Other Works and Perspectives

CHAPTER 11

OTHER WORKS

This chapter presents three results, obtained with Alexander Schrij-
ver [I]; with Erin Chambers, Jeff Erickson, Sylvain Lazard, Francis
Lazarus, and Shripad Thite [J]; and with Grégory Ginot and Xavier
Goaoc [P].

Here, we present succinctly three works that are not concerned with
graphs on surfaces. All of them make a crucial use of some topological
tools at various levels of sophistication.

11.1 Shortest Vertex-Disjoint Paths in Planar Graphs

In this section, we consider a special case of the shortest vertex-disjoint
paths problem, which is stated as follows. Given

• a directed graph G with n arcs,

• non-negative weights (lengths) on the edges of G,

• an arbitrary number k of pairs of vertices (s1, t1), . . . , (sk, tk),

compute vertex-disjoint paths in G connecting the pairs (s1, t1), . . . ,
(sk, tk), of minimum total length.

The problem is known to be NP-hard. Actually, even deciding the
existence of such vertex-disjoint paths is NP-hard, even when the graph
is planar and undirected [165, 207].

11.1.1 Our Result

We give an efficient algorithm in a special case (see Figure 11.1(a)):

Theorem 11.1 ([I]). The shortest vertex-disjoint paths problem described above
is solvable in O(kn log n) time if we assume that:

• G is planar and

• there exist distinct faces s 6= t of G such that s1, . . . , sk are incident to s,
and similarly (t1, . . . , tk) are incident to t.

86 11. OTHER WORKS

s3

s4

t1

t4

t3

t2

s1

s2

(a)

s1

(b)

Figure 11.1. (a) An instance of the problem in Section 11.1 and a solution (in bold
lines). (b) A portion of the graph G′ obtained from the graph G; each vertex of G
is replaced by a “ring”, and each new vertex has degree at most three. The thin
arcs on the rings have length zero.

In particular, we may assume without loss of generality that G is con-
nected and that t is the unbounded face of G. Furthermore, up to renum-
bering, we can assume that s1, . . . , sk appear in clockwise order around
face s. Then clearly, the terminals t1, . . . , tk must appear also in clockwise
order around face t, for otherwise no vertex-disjoint paths can exist.

While these restrictions may seem rather strict, it is not clear at all that
it is possible to obtain a polynomial-time algorithm if they are relaxed in
any way. A subsequent paper [164] extends this result to the case where
the terminals si and ti lie on the boundaries of at most two faces (a face
may possibly mix some si’s and some ti’s), but only in the case k ∈ {2, 3}.

11.1.2 Sketch of Proof

The first step to prove Theorem 11.1 is to transform G into another
graph G′ so that now the problem becomes a problem of edge-disjoint
paths in G′; without entering into the details, we illustrate the construc-
tion in Figure 11.1(b). The proof of this reduction relies on an (elementary
but non-trivial) topological argument.

Edge-disjoint paths problem can be modeled by flows, and this al-
lows us to use classical tools from combinatorial optimization. One first
computes a minimum-cost flow in G′, with unit capacities and with costs
equal to lengths; this corresponds to vertex-disjoint paths in G of mini-
mum total length between {s1, . . . , sk} and {t1, . . . , tk}; however, we have
no control over the connections: s1 may be connected to an arbitrary ti.
Therefore, in a second step, we need to “rotate” the flow clockwise or
counterclockwise to modify these connections. It follows from stan-
dard techniques that the initial minimum-cost flow can be computed
in O(kn log n) time using k shortest path computations in the residual
graph. To rotate the flow, one needs to compute a minimum-cost cy-
cle separating the two faces s and t in G, oriented in the appropriate
direction (clockwise or counterclockwise), in the residual graph; this is

11.2. HOMOTOPIC FRÉCHET DISTANCE IN THE PLANE WITH OBSTACLES 87

possible using a minimum cut in the dual residual graph in O(n log n)
time. A convexity argument shows that the number of rotations needed
is at most 2k, which overall gives an O(kn log n)-time algorithm.

11.1.3 Final Remark

It is interesting to note that minimum-cost flows with given “rotation”
correspond to minimum-cost flows within a given homology class; each
rotation transforms a flow that has minimum cost in its homology class
into another. This is reminiscent from subsequent algorithms that com-
pute maximum flows in surface-embedded graphs [53].

11.2 Homotopic Fréchet Distance in the Plane With
Obstacles

11.2.1 Fréchet Distance

Let a, b : [0, 1]→ M be two curves in an arbitrary metric space M. A well-
studied measure of similarity between two such curves is the Fréchet dis-
tance [8]. While other metrics, such as the Hausdorff distance, exist, they
are not specific to the case of curves and not well-adapted to them in
practice, because they only consider the images of the curves as sets and
are oblivious to the “order” in which the image of each curve is traversed.
The Fréchet distance has been much studied, extended, and applied; we
refer to a recent sample of the existing literature and references therein
[15, 38, 39, 71, 93, 131].

The Fréchet distance F(a, b) between two curves a and b is also called
the dog-leash distance because of its following informal definition: It is the
minimum length of a leash required to connect a dog and its owner as
they walk along their respective curves a and b from one endpoint to
the other. (Both the man and the dog are allowed to adjust their speed,
but not to backtrack.) More formally, let dist(u, v) denote the distance
between points u and v in the metric space M. A reparameterization of
a curve c has the form c ◦ α, where α is a bijective, increasing map from
[0, 1] onto [0, 1]. The Fréchet distance is defined as follows:

F(a, b) = inf
a′ reparameterization of a
b′ reparameterization of b

(
max
0≤t≤1

dist
(
a′(t), b′(t)

))
.

This definition allows the “leash” to switch discontinuously, without
penalty, from one side of an obstacle or a mountain to another.

11.2.2 Our Result

We introduce a continuity requirement on the motion of the leash. We
require that the leash cannot switch discontinuously from one position
to another; in particular, the leash cannot jump over obstacles, and can
sweep over a mountain only if it is long enough. We define the homotopic

88 11. OTHER WORKS

Fréchet distance between two curves a and b as the Fréchet distance with
this additional continuity requirement. More formally, a leash map is a
continuous function ` : [0, 1]2 → M such that `(·, 0) is a reparameteriza-
tion of a, and `(·, 1) is a reparameterization of b. A leash map describes
the continuous motion of a leash between a dog walking along a and
its owner walking along b; the curve `(t, ·) is the leash at time t. The
length of a leash map `, denoted by len(`), is the maximum length of any
leash `(t, ·). Finally, the homotopic Fréchet distance F(a, b) between two
curves a and b is the infimum, over all leash maps ` between a and b, of
the length of `:

F(a, b) = inf
leash map
` : [0,1]2→M

(
max
0≤t≤1

len(`(t, ·))
)

.

When M is a simple polygon, both the standard and the homotopic
Fréchet distance coincide, but not in more general environments like
the boundary of a convex polyhedron or the plane with obstacles. In
particular, when M is the plane minus a finite set of obstacle points,
these obstacles are completely ignored by the Fréchet distance, while our
definition takes them into account.

The motion of the leash defines a correspondence between the two
curves that can be used to morph between the two curves—two points
joined by a leash morph into each other [97]. Thus, the homotopic Fréchet
distance can be thought of as the minimal amount of deformation needed
to transform one curve into the other.

Efficiently computing the homotopic Fréchet distance in general met-
ric spaces is an open problem. We present a polynomial-time algorithm
for a special case of this problem, which is to compute the homotopic
Fréchet distance between two polygonal curves in the plane minus a set
of polygonal obstacles.

Theorem 11.2 ([J]). Let M be the plane R2 minus a set of polygonal obstacles.
Given two polygonal curves a and b, we can compute the homotopic Fréchet
distance between a and b in M in O(n9 log n) time, where n is the total size of
the input.

11.2.3 Sketch of Proof

Here is a very high-level description of our algorithm. Assume first that
we somehow know a single leash, say `(0, ·), of a leash map ` realizing
the homotopic Fréchet distance. Then we can lift `(0, ·) to the universal
cover M̃ of M to a lift ˜̀(0, ·), and similarly build the lifts ã and b̃ of a
and b that touch the endpoints of ˜̀(0, ·). As it turns out, it now suffices
to compute the homotopic Fréchet distance between ã and b̃ in M̃: Es-
sentially, M̃ is an “infinite simple polygon”, in which the standard and
homotopic Fréchet distances coincide. We can compute this Fréchet dis-
tance in polynomial time by adapting the seminal paper by Alt and Go-
dau [8]; however, for this extension, a couple of additional technical de-
tails are needed, including a careful convexity argument and an adapta-

11.3. HELLY-TYPE THEOREMS FOR FAMILIES OF DISCONNECTED SETS 89

tion of Alt and Godau’s use of the parametric search technique originally
by Megiddo [185] (see also van Oostrum and Veltkamp [243]).

There remains to find the adequate lifts ã and b̃ in M̃, since we do not
know a priori how the optimal leash winds around the obstacles, or more
formally the homotopy class of the leash map relatively to the curves a
and b. For this purpose, we prove that, in the relative homotopy class of
an optimal leash map, there exists a path p from a point on a to a point
on b that has a special structure: It consists of either a straight-line seg-
ment, or of the concatenation of a straight-line segment to a vertex of a
polygon obstacle, a shortest path to another vertex of a polygon obstacle,
and a straight-line segment. This characterization, which heavily relies
on properties of shortest paths and funnels [57, 141, 174] in the universal
cover M̃, shows that only a polynomial number of candidate relative ho-
motopy classes of leash maps need to be considered, at least one of which
is guaranteed to realize the homotopic Fréchet distance. This concludes
a high-level view of the algorithm.

11.2.4 Other Recent Results

Independently and almost simultaneously to this paper, Cook and Wenk
presented an algorithm to compute the Fréchet distance between two
curves in the case where the ambient metric space M is a simple poly-
gon [71]. Our and their papers rely on some common technical lemmas;
it is also possible that their method allows to improve the running-time
of our algorithm. Finally, at least two recent works study further the
homotopic Fréchet distance: Chambers and Letscher [54] develops a
variant, the height of a homotopy, that is, in our notations above, the
infimum, over all leash maps `, of the maximum length of `(·, t). Har-
Peled et al. [130] provide a polynomial-time algorithm to approximate
the homotopic Fréchet distance in another case, where the ambient met-
ric space is a obtained by attaching together Euclidean triangles to give a
topological disk.

11.3 Helly-Type Theorems for Families of Discon-
nected Sets

Last but not least, we provide a new topological Helly-type theorem and
apply it to problems in combinatorial geometry.

11.3.1 Our Main Result

Helly’s original theorem [137] states that, whenever a finite family F

of convex sets in Rd has empty intersection, then some subset of F of
size at most d + 1 has empty intersection. In such a situation, we say
that the Helly number of F is at most d + 1. Helly himself gave a more
general, topological version of this theorem [138], showing that the same
conclusion holds if F is a good cover in Rd, meaning a finite family of

90 11. OTHER WORKS

F1

F2

F3

(a)

∼−→

F1

F2

F3
(b)

proj−→

F1

F2

F3
(c)

Figure 11.2. (a) A family F = {F1, F2, F3} of objects in the plane, satisfying
the hypotheses of Theorem 11.3. (b) The multinerve M(F) of F , a simplicial
poset with the same homology as the union of F . Each vertex of M(F) cor-
responds to a connected component of one object in F . Each edge of M(F)
corresponds to a connected component of the intersection of two objects in F .
More generally, each simplex of dimension i of M(F) corresponds to a con-
nected component of the intersection of i + 1 objects in F . (c) The nerve N(F)
of F, a “squashed” version of M(F).

open sets such that the intersection of every subfamily of F either is
empty or has the homotopy type of a point.

We show an extended version of this result, allowing each subfamily
to intersect in more than one connected component. Recall that a ho-
mology cell is a topological space that has the Q-homology of a point.
(We point out that the definition of homology we consider here is much
more general than that defined in Chapter 2; we refer the reader to any
textbook in algebraic topology, for example Hatcher [135], for an intro-
duction to homology. Also, technically we should consider reduced ho-
mology, but we omit this precision for simplicity.)

Theorem 11.3 ([P]). Let F be a family of open sets in Rd such that the inter-
section of every subfamily of F is the disjoint union of at most r homology cells.
Then the Helly number of F is at most r(d + 1).

The bound r(d+ 1) is tight. This theorem generalizes results obtained
in the last twenty years by Amenta [9], Matoušek [184], and Kalai and
Meshulam [150].

11.3.2 Sketch of Proof

Our proof combines several ingredients. One ingredient is an extension
of the nerve theorem. The nerve N(F) of a family F of sets is a sim-
plicial complex that encodes the intersection patterns of its subfamilies.
More precisely, it is a simplicial complex with vertex set F ; a subfamily
G ⊆ F is a simplex if and only if G has non-empty intersection. The
nerve theorem states that, if F is a good cover, then its nerve has the
same homotopy type as the union of the objects in F . We generalize
the nerve theorem to handle families F that satisfy the hypotheses of
Theorem 11.3. More precisely, we define the multinerve M(F) of such
a family F to be (essentially) the set of all connected components of the
intersections of any subfamily of F , ordered by reverse inclusion. One
can “almost” represent M(F) by a simplicial complex: The simplices of

11.3. HELLY-TYPE THEOREMS FOR FAMILIES OF DISCONNECTED SETS 91

dimension i are the connected components of the intersections of subfam-
ilies of cardinality i + 1; see Figure 11.2. However, it may happen that,
for example, two edges are connected to the same vertices. Therefore,
M(F) is a more general simplicial poset that is, intuitively, a blown-up
version of the nerve N(F). We generalize the nerve theorem and prove
that M(F) is homologically equivalent to the union of the objects in F ,
using spectral sequence arguments from algebraic topology. (We suspect
that such a result can also be obtained by extending more combinatorial
proofs of the nerve theorem [30].)

It is not too hard to prove that, if N(F) has trivial homology in di-
mension k and higher, then the Helly number of F is at most k + 1. In
particular, if F is a good cover, then N(F) has the same homology as
the union of the objects in F (by the nerve theorem), hence has trivial
homology in dimension d and higher; so the Helly number of F is at
most d + 1. Thus Helly’s topological theorem follows quite directly from
the nerve theorem. The strategy of the proof of Theorem 11.3 is simi-
lar: We show that N(F) has trivial homology in dimension r(d + 1)− 1
and higher. One thing that we know is that M(F) has trivial homology
in dimension d and higher, by our generalization of the nerve theorem.
Therefore, the missing link is (roughly) a connection between the homol-
ogy of M(F) and that of N(F). We obtain such a relation by extending
a proof by Kalai and Meshulam [151], who prove it in the case where
M(F) is a simplicial complex. Their rather technical proof, using Leray
numbers and also spectral sequences, extends for our purposes, although
some steps need to be adapted in a non-trivial way.

Incidentally, Eckhoff and Nischke [95] have given an alternative,
more combinatorial proof of Kalai and Meshulam’s result. While we are
enthusiastic about this simpler proof technique, it does not seem that
adapting it instead of that by Kalai and Meshulam would allow us to
obtain Theorem 11.3.

11.3.3 Applications

The original motivation for this work lies in geometric transversal theory.
Typical results in this area are of the following form: Let F = {F1, . . . , Fn}
be a family of convex sets in Rd. For each i, let ϕ(Fi) be the set of lines that
intersect Fi. Under which circumstances can one ensure that the Helly
number of the ϕ(Fi)’s is bounded? In other words, is there some num-
ber k such that, if every k-tuple of objects in F is pierced by some line,
then all the objects of F are simultaneously pierced by some line? Many
such results have been found in this field, often using ad hoc techniques,
in particular in the case where F is a set of parallelotopes in Rd [218],
of disjoint translates of a planar convex set [242], or of disjoint unit balls
in Rd [64, 72].

We give a generic method that handles all these cases simultaneously,
sometimes giving a better bound on the Helly number than previously
known. The idea is that, in many cases, the sets of lines ϕ(Fi) “almost”
satisfy the hypotheses of Theorem 11.3. In particular, let G ⊆ F . If the

92 11. OTHER WORKS

Fi’s are pairwise disjoint, then the intersection of ϕ(G) can have several
connected components, corresponding (under mild conditions) to the ge-
ometric permutations of the objects in G , namely, the possible orderings of
G along a line that pierces all of them. Theorem 11.3 thus applies to the
family ϕ(G), except in two respects:

• the ϕ(Fi)’s do not lie in some space Rk, but in some Grassmannian
manifold of dimension 2d− 2;

• for small subfamilies G ⊂ F , the topology of each connected com-
ponent of ϕ(G) is not necessarily a homology cell.

We can further extend Theorem 11.3 to handle these cases; while the first
point is easy to take care of, the second point is more delicate and requires
additional technicalities, which we omit.

93

CHAPTER 12

PERSPECTIVES

We conclude with some open questions and perspectives on topological
algorithms for graphs on surfaces, along with some more long-term re-
search directions on surfaces embedded in R3.

Other shortest decompositions. As already mentioned in Section 5.4.3,
there are many conceivable ways of decomposing a surface topologically;
for many purposes, it is useful to compute shortest such decompositions.
Rather surprisingly, this is currently feasible only for cut graphs with pre-
scribed vertex set (Theorem 5.2) and shortest homology bases [114, The-
orem 4.3]. In both cases, an underlying algebraic structure allows for a
greedy strategy to yield the optimal decomposition. Are some other opti-
mal decompositions computable in polynomial time? Are the remaining
ones NP-hard to compute, and, in the affirmative, does there exist effi-
cient approximation strategies? In particular, is computing the shortest
cut graph, without prescribing the vertex set, fixed-parameter tractable
with respect to the genus? Is it W[1]-hard?

Graph drawing on surfaces. Here is an interesting but not well-defined
problem, generalizing the graph drawing problem to surfaces: Given a
graph G and a surface Σ, build a “nice” embedding of G on Σ. If Σ is
fixed, one can check in linear time whether G can be embedded on Σ,
and, in the affirmative, build an embedding [158, 189]; can we somehow
compute an embedding with some bounds on its length? To have an
“aesthetic” embedding, probably other objective functions than the sum
of the lengths of the edges should be optimized.

Deformations. We can determine whether two curves or graphs are ho-
motopic or isotopic. Assuming this is the case, how hard is it to actually
compute a homotopy or isotopy? For most purposes, one would like
to determine, in some sense, an “optimal” deformation. For example,
let us measure the complexity of an isotopy on a cross-metric surface
(Σ, G∗) by the number of times the evolving curve has to pass over a

Wordle on left page created with http://www.wordle.net/.

http://www.wordle.net/

96 12. PERSPECTIVES

vertex of G∗. Can we compute (possibly approximately) a minimum-
complexity isotopy between two given isotopic simple cycles? Related
results may prove useful [246]. Alternatively, the complexity of a ho-
motopy could be measured by the homotopic Fréchet distance (see Sec-
tion 11.2), for which there exists a recent approximation algorithm on
topological disks [130].

Implementation. All the polynomial-time algorithms we described for
graphs on surfaces are, in principle, not hard to implement, and should
run efficiently in practice, as they do not require heavy data structures,
and as there is no hidden huge constant in the O(·) notations. While this
document was slanted towards theoretical results and not towards possi-
ble applications, computer graphics (among others) use basic topological
operations on surfaces; one can expect that they would benefit from the
possibility of computing optimal curves or graphs satisfying some topo-
logical properties, as these and related problems are considered from a
somewhat more heuristic perspective in this field [D, 127–129, 178, 247,
250]. Developing a unified implementation of these algorithms to make
them directly useable would hopefully arouse interest from other com-
munities, in which such results are probably regarded by many as too
theoretical. I implemented some years ago (partly with Laurent Jouhet
during his Master’s internship) a prototype for computing a shortest cut
graph with one specified vertex, using a generic data structure for cross-
metric surfaces that would be also suitable for the other algorithms; much
to my regret, the project did not go further due to lack of time and man-
power, but I believe it would be useful to have an off-the-shelf imple-
mentation, probably as a CGAL package, of (a subset of) the algorithms
described in Part II.

Surfaces embedded in R3. As a more long-term goal, I would like
to develop algorithms for graphs and surfaces embedded in R3 (or S3).
Probably the most central open problem in computational topology in R3

is the complexity of the unknotting problem: determine whether a closed
polygonal curve in R3 is a trivial knot. The unknotting problem is known
to be in NP [132], and it has been open for a long time whether it lies in P,
although a very recent preprint claims that it is the case if the Generalized
Riemann Hypothesis holds [166].

Studying the complexity of the unknotting problem directly seems
hard; instead, some related problems can be expected to be more tractable
algorithmically. There exist recent topological algorithms in three dimen-
sions, and we only mention a couple of examples from computational ge-
ometry and related fields that we find inspiring: knot invariants [2, 211],
linklessly embeddable graphs [155], homology generators of geometric
objects in R3 [83], homology handle and tunnel loops [86], and recon-
struction of surfaces in R3 from their boundaries under some assump-
tions [102]. In general, topological problems in three dimensions have
been studied from a practical point of view, notably by the computer

97

graphics community, but remain relatively unexplored from a more the-
oretical viewpoint.

For example, given a surface Σ in R3, one may try to compute a sim-
ple cycle γ on Σ that bounds a compressing disk (namely, γ is not con-
tractible in Σ but bounds a disk intersecting Σ exactly at its boundary);
similarly, one could aim at finding several “independent” such cycles.
(As a preliminary study reveals, computing a single such cycle is feasi-
ble in polynomial time.) An aforementioned recent work [86] solves the
problem where the condition of having compressing disks is replaced
with arbitrary compressing surfaces.

Recent papers consider a discrete version of the Plateau problem,
where the goal is to compute a minimum-area surface whose boundary
is a closed polygonal curve in R3 [85, 94] (see also Erickson [107] for a
survey of older related results). The problem, adequately discretized, can
be solved in polynomial time. Assuming a “certificate” that the closed
curve is unknotted, can we compute the minimum-area disk bounded by
that curve? Can normal surfaces prove useful for studying this problem?

In general, topological questions on two-dimensional simplicial com-
plexes are undecidable (notably from the homotopy viewpoint). Which
such questions become decidable, or even solvable in polynomial time,
for two-dimensional simplicial complexes embedded in R3?

98 12. PERSPECTIVES

99

INDEX

G− E, 7
G−V, 7
α-short, 44
·, concatenation, 10
\\, cut, 10
X, closure, 7
∂X, boundary, 7
σ-weight, 36
σ(e), 35
3-path condition, 42

annular cover, 58
annulus, 8
arrangement, 29
asymmetric weights, 47

basepoint, 9
bidimensionality theory, 23
bigon, 14
block, 77
boundary, 7

components, 9
bridge, 37

cellular, 11
classification theorem, 9
combinatorial group theory, 21
combinatorial surface, 28
complex of curves, 19
complexity

of combinatorial surface, 28
of cross-metric surface, 29

computational topology, 21
concatenation, ·, 10
conjugacy problem, 21
contractible, 15
contraction, 79
covering space, 53
cross-metric surface, 29
crossing number, 21

curve, 10
cut graph, 10
cut locus, 34
cut, \\, 10
cycle, 9
cylinder, 8

deformation retraction, 35
degree, 10
disk, 8
disk-bounding, 10
double-torus, 8
dual graph, 13

E(G), 7
edge-width, 42, 44
embedding, 10
endpoint, 9
essential, 51
Euler genus, 14
Euler’s formula, 14

F(G), 10
face, 10
face-width, 44
flag, 11
Fréchet distance, 87
fundamental group, 15

general position, 29
genus, 9

of graph, 18
k-gon, 14, 70
graph minor theorem, 18

H1(Σ), 16
H1(Σ, P), 16
handle, 8
Helly number, 89
homology, 16

100 INDEX

boundary, 15
cycle, 15

homology cell, 90
homotopic, 14
homotopic Fréchet distance, 88
homotopy, 14, 15

free, 15
group, 15

hyperbolic metric, 71

incident, 10
isotopy, 15, 67

ambient, 69

leash map, 88
lift, 54
loop, 9

map, 11
mapping class group, 19
matching, 81
matrix integral, 20
minimally crossing, 70
minor, 18

closed, 18
monogon, 14
multinerve, 90
multiplicity, 52
Möbius strip, 8

nerve, 90
non-trivial, 43
normal curve, 19
normal surface, 19
null-homotopic, 15

octagonal decomposition, 53
orientable, 9
orientation, 13

pair of pants, 19
pants

complex, 19
decomposition, 19

path, 9
piecewise-linear, 9
planar, 10
polygonal schema, 62
primitive, 35

radial graph, 44
real cycle, 75
real RAM, 12
relative homology, 16
relevant space, 57
reversal, 10

S1, 9
separating, 10
α-short, 44
σ(e), 35
simple, 10
simplicial poset, 91
sphere, 8
splitting cycle, 59
stable, 70
surface, 7
system of loops, 34

canonical, 41
systole, 42

Teichmüller space, 20
tight, 53
topological graph theory, 18
torus, 8
train track, 19
triangulation, 79

irreducible, 79
minimal, 79

uniformization theorem, 20
universal cover, 54
unknotting problem, 96

V(G), 7

walk, 7
closed, 7

weight
σ-, 36
crossing, 29

word problem, 21

REFERENCES

Articles (co-)signed by the author are listed alphabetically; other refer-
ences are listed numerically.

List of Publications

The list is ordered by date of first publication. Each paper is listed once,
even if it appears in multiple versions.

[A] Éric Colin de Verdière, Michel Pocchiola, and Gert Vegter. Tutte’s barycen-
ter method applied to isotopies. Computational Geometry: Theory and Appli-
cations, 26(1):81–97, 2003.
Conference version in Proceedings of the 13th Canadian Conference on Computational
Geometry (CCCG), pages 57–60, 2001.

[B] David Cohen-Steiner, Éric Colin de Verdière, and Mariette Yvinec. Con-
forming Delaunay triangulations in 3D. Computational Geometry: Theory
and Applications, 28(2–3):217–233, 2004.
Conference version in Proceedings of the 18th Annual ACM Symposium on Computa-
tional Geometry (SOCG), pages 199–208, 2002.

[C] Éric Colin de Verdière and Francis Lazarus. Optimal system of loops on an
orientable surface. Discrete & Computational Geometry, 33(3):507–534, 2005.
[pp. 27, 30, and 52]
Conference version in Proceedings of the 43rd Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 627–636, 2002.

[D] Pierre Alliez, Éric Colin de Verdière, Olivier Devillers, and Martin Isen-
burg. Centroidal Voronoi diagrams for isotropic surface remeshing. Graph-
ical Models, 67(3):204–231, 2005. [p. 96]
Conference version in Proceedings of the International Conference on Shape Modelling
and Applications (SMI), pages 49–58, 2003.

[E] Éric Colin de Verdière and Francis Lazarus. Optimal pants decompositions
and shortest homotopic cycles on an orientable surface. Journal of the ACM,
54(4):Article 18 (27 pages), 2007. [p. 52]
Conference version in Proceedings of the 12th International Symposium on Graph Draw-
ing (GD), volume 2912 of Lecture Notes in Computer Science, pages 478–490, 2003.

[F] Éric Colin de Verdière. Raccourcissement de courbes et décomposition de sur-
faces. PhD thesis, Université Paris 7, 2003. [pp. 17, 27, 30, 52, and 69]

[G] Éric Colin de Verdière and Jeff Erickson. Tightening nonsimple paths and
cycles on surfaces. SIAM Journal on Computing, 39(8):3784–3813, 2010. [pp.
27, 51, 52, and 69]
Conference version in Proceedings of the 17th ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 192–201, 2006.

102 REFERENCES

[H] Erin W. Chambers, Éric Colin de Verdière, Jeff Erickson, Francis Lazarus,
and Kim Whittlesey. Splitting (complicated) surfaces is hard. Computational
Geometry: Theory and Applications, 41(1–2):94–110, 2008. [pp. 27, 51, 59,
and 61]
Conference version in Proceedings of the 22nd Annual ACM Symposium on Computa-
tional Geometry (SOCG), pages 421–429, 2006.

[I] Éric Colin de Verdière and Alexander Schrijver. Shortest vertex-disjoint
two-face paths in planar graphs. ACM Transactions on Algorithms, 7(2), Ar-
ticle 19 (13 pages), 2011. [p. 85]
Conference version in Proceedings of the 25th Annual International Symposium on The-
oretical Aspects of Computer Science (STACS), pages 181–192, 2008.

[J] Erin W. Chambers, Éric Colin de Verdière, Jeff Erickson, Sylvain Lazard,
Francis Lazarus, and Shripad Thite. Homotopic Fréchet distance between
curves—or, walking your dog in the woods in polynomial time. Computa-
tional Geometry: Theory and Applications, 43(295–311), 2010. [pp. 85 and 88]
Conference version in Proceedings of the 24th Annual ACM Symposium on Computa-
tional Geometry (SOCG), pages 101–109, 2008.

[K] Éric Colin de Verdière. Algorithms for graphs on surfaces. Course notes, 2008
(first version published). Current version available at http://www.di.ens.
fr/~colin/cours/algo-graphs-surfaces.pdf. [p. 33]

[L] Sergio Cabello, Éric Colin de Verdière, and Francis Lazarus. Algorithms
for the edge-width of an embedded graph. Computational Geometry: Theory
and Applications, 45:(215–224), 2012. [pp. 27, 33, 43, 44, and 50]
Conference version in Proceedings of the 26th Annual ACM Symposium on Computa-
tional Geometry (SOCG), pages 147–155, 2010.

[M] Sergio Cabello, Éric Colin de Verdière, and Francis Lazarus. Finding short-
est non-trivial cycles in directed graphs on surfaces. In Proceedings of the
26th Annual ACM Symposium on Computational Geometry (SOCG), pages
156–165, 2010. [pp. 43, 48, 49, and 50]

[N] Éric Colin de Verdière. Shortest cut graph of a surface with prescribed ver-
tex set. In Proceedings of the 18th European Symposium on Algorithms (ESA),
part 2, volume 6347 of Lecture Notes in Computer Science, pages 100–111,
2010. [pp. 27, 33, 34, and 39]

[O] Sergio Cabello, Éric Colin de Verdière, and Francis Lazarus. Finding cycles
with topological properties in embedded graphs. SIAM Journal on Discrete
Mathematics, 25:1600–1614, 2011. [pp. 51, 59, 75, and 76]

[P] Éric Colin de Verdière, Grégory Ginot, and Xavier Goaoc. Multinerves
and Helly numbers of acyclic families. In Proceedings of the 26th Annual
ACM Symposium on Computational Geometry (SOCG), 2012, to appear. [pp.
85 and 90]
ArXiv preprint 1101.6006 [math.CO], 2011.

[Q] Alexandre Boulch, Éric Colin de Verdière, and Atsuhiro Nakamoto. Irre-
ducible triangulations of surfaces with boundary. Submitted to journal.
ArXiv preprint 1103.5364 [math.CO], 2011. [pp. 79 and 80]

[R] Éric Colin de Verdière and Arnaud de Mesmay. Testing graph isotopy on
surfaces. In Proceedings of the 26th Annual ACM Symposium on Computational
Geometry (SOCG), 2012, to appear. [pp. 27, 67, and 68]

http://www.di.ens.fr/~colin/cours/algo-graphs-surfaces.pdf
http://www.di.ens.fr/~colin/cours/algo-graphs-surfaces.pdf

REFERENCES 103

References by Other Authors

[1] Pankaj K. Agarwal, Herbert Edelsbrunner, John Harer, and Yusu Wang.
Extreme elevation on a 2-manifold. Discrete & Computational Geometry,
36(4):553–572, 2006. [p. 22]

[2] Pankaj K. Agarwal, Herbert Edelsbrunner, and Yusu Wang. Computing
the writhing number of a polygonal knot. Discrete & Computational Geom-
etry, 32(1):37–53, 2004. [p. 96]

[3] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design and
analysis of computer programs. Addison-Wesley, 1974. [pp. 12 and 37]

[4] Lyudmil Aleksandrov and Hristo Djidjev. Linear algorithms for parti-
tioning embedded graphs of bounded genus. SIAM Journal on Discrete
Mathematics, 9(1):129–150, 1996. [p. 23]

[5] Pierre Alliez, Ucelli Giulana, and Marco Attene. Recent advances in
remeshing of surfaces. In Leila De Floriani and Michela Spagnuolo, edi-
tors, Shape analysis and structuring. Springer-Verlag, 2007. [p. 17]

[6] Pierre Alliez and Craig Gotsman. Recent advances in compression of
3D meshes. In Neil A. Dodgson, Michael S. Floater, and Malcolm A.
Sabin, editors, Advances in multiresolution for geometric modelling, pages 3–
26. Springer-Verlag, 2005. [p. 17]

[7] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the
ACM, 42(4):844–856, 1995. [p. 77]

[8] Helmut Alt and Michael Godau. Computing the Fréchet distance between
two polygonal curves. International Journal of Computational Geometry &
Applications, 5:75–91, 1995. [pp. 87 and 88]

[9] Nina Amenta. A new proof of an interesting Helly-type theorem. Discrete
& Computational Geometry, 15:423–427, 1996. [p. 90]

[10] James W. Anderson, Hugo Parlier, and Alexandra Pettet. Small filling sets
of curves on a surface. Topology and its Applications, 158:84–92, 2011. [p. 18]

[11] Kenneth Appel and Wolfgang Haken. Every planar map is four-colorable.
AMS, Providence, Rhode Island, 1989. [p. 18]

[12] Dan Archdeacon. The nonorientable genus is additive. Journal of Graph
Theory, 10(3):363–383, 1986. [p. 18]

[13] Dan Archdeacon. Topological graph theory. A survey. Congressus Numer-
antium, 115:5–54, 1996. [p. 18]

[14] Mark Anthony Armstrong. Basic topology. Undergraduate Texts in Math-
ematics. Springer-Verlag, 1983. [pp. 7 and 19]

[15] Boris Aronov, Sariel Har-Peled, Christian Knauer, Yusu Wang, and Carola
Wenk. Fréchet distance for curves, revisited. In Proceedings of the 14th
European Symposium on Algorithms (ESA), pages 52–63, 2006. [p. 87]

[16] David Barnette. Generating the triangulations of the projective plane.
Journal of Combinatorial Theory, Series B, 33:222–230, 1982. [p. 79]

[17] David W. Barnette and Allan Edelson. All orientable 2–manifolds have
finitely many minimal triangulations. Israel Journal of Mathematics, 62:90–
98, 1988. [pp. 79 and 81]

104 REFERENCES

[18] David W. Barnette and Allan Edelson. All 2–manifolds have finitely many
minimal triangulations. Israel Journal of Mathematics, 67:123–128, 1989.
[p. 79]

[19] Edward A. Bender and E. Rodney Canfield. The number of rooted maps
on an orientable surface. Journal of Combinatorial Theory, Series B, 53(2):293–
299, 1991. [p. 20]

[20] Edward A. Bender, Zhicheng Gao, and L. Bruce Richmond. The map
asymptotics constant tg. Electronic Journal of Combinatorics, 15:Article R51,
2008. [p. 20]

[21] Itai Benjamini and László Lovász. Global information from local observa-
tion. In Proceedings of the 43rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 701–710, 2002. [p. 23]

[22] Sylvia Benvenuti and Riccardo Piergallini. The complex of pants decom-
positions of a surface. Topology and its Applications, 156:399–419, 2008.
[p. 19]

[23] Marcel Berger. What is a systole? Notices of the AMS, 55(3):374–376, 2003.
[p. 42]

[24] Sergei Bespamyatnikh. Computing homotopic shortest paths in the plane.
Journal of Algorithms, 49(2):284–303, 2003. [pp. 22 and 52]

[25] Sergei Bespamyatnikh. Encoding homotopy of paths in the plane. In
LATIN 2004: Theoretical Informatics, 6th Latin American Symposium, volume
2976 of Lecture Notes in Computer Science, pages 329–338. Springer-Verlag,
2004. [p. 22]

[26] Mladen Bestvina and Michael Handel. Train-tracks for surface homeo-
morphisms. Topology, 34(1):109–140, 1995. [p. 69]

[27] Jérémie Bettinelli. The topology of scaling limits of positive genus random
quadrangulations. Annals of Probability, 2012. To appear. [p. 20]

[28] Daniel Bienstock and Michael A. Langston. Algorithmic implications of
the graph minor theorem. In Handbook of operations research and manage-
ment science, volume Networks and distribution. Elsevier, 2003. [p. 22]

[29] Joan S. Birman and Caroline Series. An algorithm for simple curves on
surfaces. Journal of the London Mathematical Society, Second Series, 29:331–
342, 1984. [p. 22]

[30] Anders Björner. Nerves, fibers and homotopy groups. Journal of Combina-
torial Theory, Series A, 102(1):88–93, 2003. [p. 91]

[31] Jean-Daniel Boissonnat and Mariette Yvinec. Algorithmic Geometry. Cam-
bridge University Press, UK, 1998. [p. 35]

[32] Béla Bollobás and Oliver Riordan. A polynomial of graphs on surfaces.
Mathematische Annalen, 323:81–96, 2002. [p. 18]

[33] Paul Bonsma. Surface split decompositions and subgraph isomorphism
in graphs on surfaces. In Proceedings of the 29th Annual Symposium on The-
oretical Aspects of Computer Science (STACS), pages 531–542, 2012. [p. 22]

[34] Glencora Borradaile, Erik D. Demaine, and Siamak Tazari. Polynomial-
time approximation schemes for subset-connectivity problems in
bounded-genus graphs. In Proceedings of the 26th Annual Symposium
on Theoretical Aspects of Computer Science (STACS), pages 171–182, 2009.
[p. 22]

REFERENCES 105

[35] Glencora Borradaile, James R. Lee, and Anastasios Sidiropoulos. Ran-
domly removing g handles at once. Computational Geometry: Theory and
Applications, 43(8):655–662, 2010. [p. 23]

[36] Jérémie Bouttier, Philippe Di Francesco, and Emmanuel Guitter. Planar
maps as labeled mobiles. Electronic Journal of Combinatorics, 11:Article 69,
2004. [p. 42]

[37] Henry R. Brahana. Systems of circuits on 2-dimensional manifolds. Annals
of Mathematics, 23:144–168, 1921. [p. 41]

[38] Kevin Buchin, Maike Buchin, and Yusu Wang. Exact algorithms for par-
tial curve matching via the Fréchet distance. In Proceedings of the 20th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 645–
654, 2009. [p. 87]

[39] Kevin Buchin, Maike Buchin, and Carola Wenk. Computing the Fréchet
distance between simple polygons in polynomial time. In Proceedings of
the 22nd Annual Symposium on Computational Geometry (SOCG), pages 80–
87. ACM, 2006. [p. 87]

[40] Oleksiy Busaryev, Sergio Cabello, Chao Chen, Tamal K. Dey, and Yusu
Wang. Annotating simplices with a homology basis and its applications.
arXiv:1107.3793, 2011. [p. 41]

[41] Peter Buser. Geometry and spectra of compact Riemann surfaces, volume 106
of Progress in Mathematics. Birkhäuser, 1992. [p. 71]

[42] Sergio Cabello. Finding shortest contractible and shortest separating cy-
cles in embedded graphs. ACM Transactions on Algorithms, 6(2), 2010.
[p. 75]

[43] Sergio Cabello and Erin W. Chambers. Multiple source shortest paths in
a genus g graph. In Proceedings of the 18th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 89–97, 2007. [pp. 48, 50, and 105]

[44] Sergio Cabello, Erin W. Chambers, and Jeff Erickson. Multiple source
shortest paths in embedded graphs. arXiv:1202.0314. Full version of [43],
2012. [pp. 48 and 50]

[45] Sergio Cabello, Matt DeVos, Jeff Erickson, and Bojan Mohar. Finding one
tight cycle. ACM Transactions on Algorithms, 6(4):Article 61, 2010. [pp. 27,
51, and 55]

[46] Sergio Cabello, Yuanxin Liu, Andrea Mantler, and Jack Snoeyink. Test-
ing homotopy for paths in the plane. Discrete & Computational Geometry,
31:61–81, 2004. [pp. 17, 22, and 67]

[47] Sergio Cabello and Bojan Mohar. Finding shortest non-separating and
non-contractible cycles for topologically embedded graphs. Discrete &
Computational Geometry, 37(2):213–235, 2007. [pp. 27, 45, 48, and 50]

[48] Sergio Cabello and Bojan Mohar. Adding one edge to planar graphs
makes crossing number hard. In Proceedings of the 26th Annual Symposium
on Computational Geometry (SOCG), pages 68–76. ACM, 2010. [p. 21]

[49] J. Scott Carter. How surfaces intersect in space: an introduction to topology.
World Scientific, 1993. [p. 19]

[50] Luca Castelli Aleardi, Éric Fusy, and Thomas Lewiner. Schnyder woods
for higher genus triangulated surfaces, with applications to encoding.
Discrete & Computational Geometry, 42(3):489–516, 2009. [p. 23]

106 REFERENCES

[51] Erin Chambers, Jeff Erickson, and Amir Nayyeri. Minimum cuts and
shortest homologous cycles. In Proceedings of the 25th Annual Symposium
on Computational Geometry (SOCG), pages 377–385. ACM, 2009. [pp. 23,
27, 51, and 59]

[52] Erin W. Chambers and David Eppstein. Flows in one-crossing-minor-free
graphs. In Proceedings of the 21st International Symposium on Algorithms and
Computation (ISAAC), part 1, number 6506 in Lecture Notes in Computer
Science, pages 241–252, 2010. [p. 23]

[53] Erin W. Chambers, Jeff Erickson, and Amir Nayyeri. Homology flows,
cohomology cuts. In Proceedings of the 41st Annual ACM Symposium on
Theory of Computing (STOC), pages 273–282, 2009. [pp. 23 and 87]

[54] Erin W. Chambers and David Letscher. On the height of a homotopy.
In Proceedings of the 21st Canadian Conference on Computational Geometry
(CCCG), pages 103–106, 2009. [p. 89]

[55] Guillaume Chapuy. A new combinatorial identity for unicellular maps,
via a direct bijective approach. Advances in Applied Mathematics, 47(4):874–
893, 2011. [p. 20]

[56] Guillaume Chapuy, Michel Marcus, and Gilles Schaeffer. A bijection for
rooted maps on orientable surfaces. SIAM Journal on Discrete Mathematics,
23(3):1587–1611, 2009. [pp. 20 and 42]

[57] Bernard Chazelle. A theorem on polygon cutting with applications. In
Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 339–349, 1982. [p. 89]

[58] Bernard Chazelle. A minimum spanning tree algorithm with inverse-
Ackermann type complexity. Journal of the ACM, 47(6):1028–1047, 2000.
[p. 38]

[59] Chao Chen and Daniel Freedman. Measuring and computing natural gen-
erators for homology groups. Computational Geometry: Theory and Applica-
tions, 43(2):169–181, 2010. [p. 41]

[60] Jianer Chen, Saroja P. Kanchi, and Arkady Kanevsky. A note on ap-
proximating graph genus. Information Processing Letters, 61:317–322, 1997.
[p. 21]

[61] Jindong Chen and Yijie Han. Shortest paths on a polyhedron. International
Journal of Computational Geometry & Applications, 6:127–144, 1996. [p. 31]

[62] Siu-Wing Cheng, Tamal K. Dey, and Sheung-Hung Poon. Hierarchy of
surface models and irreducible triangulations. Computational Geometry:
Theory and Applications, 27(2):135–150, 2004. [pp. 17 and 80]

[63] Siu-Wing Cheng, Jiongxin Jin, Antoine Vigneron, and Yajun Wang. Ap-
proximate shortest homotopic paths in weighted regions. In Proceedings
of the 21st International Symposium on Algorithms and Computation (ISAAC),
volume 6507 of Lecture Notes in Computer Science, pages 109–120, 2010.
[p. 52]

[64] Otfried Cheong, Xavier Goaoc, Andreas Holmsen, and Sylvain Petitjean.
Hadwiger and Helly-type theorems for disjoint unit spheres. Discrete &
Computational Geometry, 1–3:194–212, 2008. [p. 91]

[65] David R. J. Chillingworth. Simple closed curves on surfaces. Bulletin of
the London Mathematical Society, 1:310–314, 1969. [p. 22]

REFERENCES 107

[66] David R. J. Chillingworth. An algorithm for families of disjoint simple
closed curves on surfaces. Bulletin of the London Mathematical Society, 3:23–
26, 1971. [p. 22]

[67] Jaigyoung Choe. On the existence and regularity of fundamental domains
with least boundary area. Journal of Differential Geometry, 29(3):623–663,
1989. [p. 31]

[68] Julia Chuzhoy. An algorithm for the graph crossing number problem.
In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing
(STOC), pages 303–312, 2011. [p. 21]

[69] Marshall Cohen and Martin Lustig. Paths of geodesics and geometric
intersection numbers. I. In Combinatorial group theory and topology (Alta,
Utah, 1984), volume 111 of Annals of Mathematical Studies, pages 479–500.
Princeton University Press, 1987. [p. 22]

[70] Kree Cole-McLaughlin, Herbert Edelsbrunner, John Harer, Vijay Natara-
jan, and Valerio Pascucci. Loops in Reeb graph of 2-manifolds. Discrete &
Computational Geometry, 32(2):231–244, July 2004. [p. 22]

[71] Atlas F. Cook IV and Carola Wenk. Geodesic Fréchet distance inside a
simple polygon. ACM Transactions on Algorithms, 7(1):Article 9, 2010. [pp.
87 and 89]

[72] Ludwig Danzer. Über ein Problem aus der kombinatorischen Geometrie.
Archiv der Mathematik, 8:347–351, 1957. [p. 91]

[73] Samir Datta, Arjun Gopalan, Raghav Kulkarni, and Raghunath Tewari.
Improved bounds for bipartite matching on surfaces. In Proceedings of the
29th Annual Symposium on Theoretical Aspects of Computer Science (STACS),
pages 254–265, 2012. [p. 23]

[74] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried
Schwarzkopf. Computational Geometry: Algorithms and Applications.
Springer-Verlag, Berlin, 1997. [p. 11]

[75] Mark de Berg, Marc van Kreveld, and Stefan Schirra. Topologically correct
subdivision simplification using the bandwidth criterion. Cartography and
GIS, 25:243–257, 1998. [p. 17]

[76] Maurits de Graaf and Alexander Schrijver. Making curves minimally
crossing by Reidemeister moves. Journal of Combinatorial Theory, Series B,
70(1):134–156, 1997. [pp. 70 and 71]

[77] Max Dehn. Transformation der Kurven auf zweiseitigen Flächen. Mathe-
matische Annalen, 72:413–421, 1912. [pp. 21, 22, and 57]

[78] Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dim-
itrios M. Thilikos. Subexponential parameterized algorithms on bounded-
genus graphs and H-minor-free graphs. Journal of the ACM, 52(6):866–893,
2005. [p. 23]

[79] Erik D. Demaine and MohammadTaghi Hajiaghayi. The bidimensionality
theory and its algorithmic applications. The Computer Journal, 51(3):292–
302, 2008. [p. 23]

[80] Erik D. Demaine, MohammadTaghi Hajiaghayi, and Bojan Mohar. Ap-
proximation algorithms via contraction decomposition. Combinatorica,
pages 533–552, 2010. [p. 22]

108 REFERENCES

[81] Matt DeVos, Ken-ichi Kawarabayashi, and Bojan Mohar. Locally pla-
nar graphs are 5-choosable. Journal of Combinatorial Theory, Series B,
98(6):1215–1232, 2008. [p. 45]

[82] Tamal K. Dey, Herbert Edelsbrunner, and Sumanta Guha. Computational
topology. In Bernard Chazelle, Jacob E. Goodman, and Richard Pollack,
editors, Advances in Discrete and Computational Geometry – Proc. 1996 AMS-
IMS-SIAM Joint Summer Research Conf. Discrete and Computational Geom-
etry: Ten Years Later, number 223 in Contemporary Mathematics, pages
109–143. AMS, 1999. [pp. 1 and 21]

[83] Tamal K. Dey and Sumanta Guha. Computing homology groups of sim-
plicial complexes in R3. Journal of the ACM, 45(2):266–287, 1998. [p. 96]

[84] Tamal K. Dey and Sumanta Guha. Transforming curves on surfaces. Jour-
nal of Computer and System Sciences, 58:297–325, 1999. [p. 21]

[85] Tamal K. Dey, Anil N. Hirani, and Bala Krishnamoorthy. Optimal homol-
ogous cycles, total unimodularity, and linear programming. In Proceedings
of the 42nd Annual ACM Symposium on Theory of Computing (STOC), pages
221–230, 2010. [p. 97]

[86] Tamal K. Dey, Kuiyu Li, Jian Sun, and David Cohen-Steiner. Computing
geometry-aware handle and tunnel loops in 3D models. ACM Transactions
on Graphics, 27(3), 2008. [pp. 96 and 97]

[87] Tamal K. Dey and Haijo Schipper. A new technique to compute polygo-
nal schema for 2-manifolds with application to null-homotopy detection.
Discrete & Computational Geometry, 14(1):93–110, 1995. [p. 21]

[88] Tamal K. Dey, Jian Sun, and Yusu Wang. Approximating loops in a short-
est homology basis from point data. In Proceedings of the 26th Annual
Symposium on Computational Geometry (SOCG), pages 166–175. ACM, 2010.
[p. 41]

[89] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tol-
lis. Graph drawing. Prentice Hall, Upper Saddle River, NJ, 1999. [p. 1]

[90] Reinhard Diestel. Graph theory. Springer-Verlag, 2000. Available at http:
//diestel-graph-theory.com/. [p. 7]

[91] Hristo N. Djidjev. A faster algorithm for computing the girth of planar and
bounded genus graphs. ACM Transactions on Algorithms, 7(1):Article 3,
2010. [p. 23]

[92] Frederic Dorn, Fedor V. Fomin, and Dimitrios M. Thilikos. Fast subexpo-
nential algorithm for non-local problems on graphs of bounded genus. In
Proceedings of the 10th Scandinavian Workshop on Algorithm Theory (SWAT),
volume 4059 of Lecture Notes in Computer Science, pages 172–183. Springer-
Verlag, 2006. [p. 23]

[93] Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the
Fréchet distance for realistic curves in near linear time. In Proceedings of
the 26th Annual Symposium on Computational Geometry (SOCG), pages 365–
374. ACM, 2010. [p. 87]

[94] Nathan M. Dunfield and Anil N. Hirani. The least spanning area of a knot
and the optimal bounding chain problem. In Proceedings of the 27th Annual
Symposium on Computational Geometry (SOCG). ACM, 2011. [p. 97]

http://diestel-graph-theory.com/
http://diestel-graph-theory.com/

REFERENCES 109

[95] Jürgen Eckhoff and Klaus-Peter Nischke. Morris’s pigeonhole principle
and the Helly theorem for unions of convex sets. Bulletin of the London
Mathematical Society, 41:577–588, 2009. [p. 91]

[96] Herbert Edelsbrunner, John Harer, and Afra Zomorodian. Hierarchical
Morse-Smale complexes for piecewise linear 2-manifolds. Discrete & Com-
putational Geometry, 30:87–107, 2003. [p. 22]

[97] Alon Efrat, Leonidas J. Guibas, Sariel Har-Peled, Joseph S. B. Mitchell,
and T. M. Murali. New similarity measures between polylines with ap-
plications to morphing and polygon sweeping. Discrete & Computational
Geometry, 28:535–569, 2002. [p. 88]

[98] Alon Efrat, Stephen G. Kobourov, and Anna Lubiw. Computing homo-
topic shortest paths efficiently. Computational Geometry: Theory and Appli-
cations, 35:162–172, 2006. [p. 52]

[99] Joanna A. Ellis-Monaghan and Irasema Sarmiento. A recipe theorem for
the topological Tutte polynomial of Bollobas and Riordan. European Jour-
nal of Combinatorics, 32(6):782–794, 2011. [p. 18]

[100] David Eppstein. Dynamic generators of topologically embedded graphs.
In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 599–608, 2003. [pp. 11, 23, 40, 42, and 49]

[101] David Eppstein. Squarepants in a tree: sum of subtree clustering and
hyperbolic pants decomposition. ACM Transactions on Algorithms, 5(3),
2009. [p. 41]

[102] David Eppstein and Elena Mumford. Self-overlapping curves revisited.
In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 160–169, 2009. [p. 96]

[103] David B. A. Epstein. Curves on 2-manifolds and isotopies. Acta Mathe-
matica, 115:83–107, 1966. [p. 68]

[104] Jeff Erickson. Computational topology, 2009. Course notes available at
http://compgeom.cs.uiuc.edu/~jeffe/teaching/comptop/. [p. 21]

[105] Jeff Erickson. Maximum flows and parametric shortest paths in planar
graphs. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 794–804, 2010. [p. 23]

[106] Jeff Erickson. Shortest non-trivial cycles in directed surface graphs. In Pro-
ceedings of the 27th Annual Symposium on Computational Geometry (SOCG),
pages 236–243. ACM, 2011. [p. 50]

[107] Jeff Erickson. Combinatorial optimization of cycles and bases. In Afra
Zomorodian, editor, Computational topology, Proceedings of Symposia in
Applied Mathematics. AMS, 2012. [pp. 31, 34, 39, and 97]

[108] Jeff Erickson, Kyle Fox, and Amir Nayyeri. Global minimum cuts in
surface embedded graphs. In Proceedings of the 23rd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1309–1318, 2012. [pp. 23
and 27]

[109] Jeff Erickson and Sariel Har-Peled. Optimally cutting a surface into a disk.
Discrete & Computational Geometry, 31(1):37–59, 2004. [pp. 33, 34, 41, 44, 45,
46, and 50]

[110] Jeff Erickson and Amir Nayyeri. Computing replacement paths in
surface-embedded graphs. In Proceedings of the 22nd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1347–1354, 2011. [p. 23]

http://compgeom.cs.uiuc.edu/~jeffe/teaching/comptop/

110 REFERENCES

[111] Jeff Erickson and Amir Nayyeri. Minimum cuts and shortest non-
separating cycles via homology covers. In Proceedings of the 22nd Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1166–1176,
2011. [pp. 27, 48, and 50]

[112] Jeff Erickson and Amir Nayyeri. Shortest non-crossing walks in the plane.
In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 297–308, 2011. [pp. 23, 51, and 59]

[113] Jeff Erickson and Amir Nayyeri. Tracing compressed curves in triangu-
lated surfaces. In Proceedings of the 28th Annual Symposium on Computa-
tional Geometry (SOCG). ACM, 2012. To appear. [p. 22]

[114] Jeff Erickson and Kim Whittlesey. Greedy optimal homotopy and homol-
ogy generators. In Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1038–1046, 2005. [pp. 34, 41, 42, and 95]

[115] Jeff Erickson and Pratik Worah. Computing the shortest essential cycle.
Discrete & Computational Geometry, 44(4):912–930, 2010. [pp. 27 and 51]

[116] Benson Farb and Dan Margalit. A primer on mapping class groups. Princeton
University Press, 2011. [pp. 19, 20, 55, 69, and 73]

[117] Albert Fathi, François Laudenbach, and Valentin Poénaru, editors.
Travaux de Thurston sur les surfaces. Société Mathématique de France, 1991.
Séminaire Orsay, Reprint of the 1979 edition, Astérisque No. 66-67. [pp.
20 and 53]

[118] Anna Felikson and Sergey Natanzon. Double pants decompositions of
2-surfaces. Moscow Mathematical Journal, 11(2):231–258, 2011. [p. 20]

[119] J. R. Fiedler, J. P. Huneke, R. B. Richter, and N. Robertson. Computing the
orientable genus of projective graphs. Journal of Graph Theory, 20(3):297–
308, 1995. [p. 45]

[120] Fedor V. Fomin and Dimitrios M. Thilikos. Fast parameterized algorithms
for graphs on surfaces: linear kernel and exponential speed-up. In Pro-
ceedings of the 31st International Colloquium on Automata, Languages and Pro-
gramming (ICALP), pages 581–592, 2004. [p. 23]

[121] Kyle Fox. Faster shortest non-contractible cycles in directed surface
graphs. arXiv:1111.6990, 2011. [pp. 27, 48, and 50]

[122] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs,
with applications. SIAM Journal on Computing, 16(6):1004–1022, 1987.
[p. 55]

[123] Merrick L. Furst, Jonathan L. Gross, and Lyle A. McGeoch. Finding a
maximum-genus graph imbedding. Journal of the ACM, 35(3):523–534,
1988. [p. 21]

[124] John R. Gilbert, Joan P. Hutchinson, and Robert Endre Tarjan. A separator
theorem for graphs of bounded genus. Journal of Algorithms, 5(3):391–407,
1984. [pp. 23, 40, and 49]

[125] Craig Gotsman and Vitaly Surazhsky. Guaranteed intersection-free poly-
gon morphing. Computers and Graphics, 25(1):67–75, 2001. [p. 67]

[126] Jonathan L. Gross and Thomas W. Tucker. Topological graph theory. Wiley,
1987. [pp. 11 and 18]

REFERENCES 111

[127] Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. Geometry images. In
Proceedings of the 29th Annual Conference on Computer Graphics and Interac-
tive Techniques (SIGGRAPH), pages 355–361, 2002. [p. 96]

[128] Xianfeng Gu and Shing-Tung Yau. Global conformal surface parameter-
ization. In Proceedings of the Eurographics/ACM Symposium on Geometry
Processing, pages 127–137, 2003. [pp. 17 and 96]

[129] Igor Guskov and Zoë J. Wood. Topological noise removal. In Proceedings
of Graphics Interface, pages 19–26, 2001. [pp. 17 and 96]

[130] Sariel Har-Peled, Amir Nayyeri, Mohammad Salavatipour, and Anasta-
sios Sidiropoulos. How to walk your dog in the mountains with no magic
leash. In Proceedings of the 28th Annual Symposium on Computational Geom-
etry (SOCG). ACM, 2012. To appear. [pp. 89 and 96]

[131] Sariel Har-Peled and Benjamin Raichel. The Fréchet distance revisited and
extended. In Proceedings of the 27th Annual Symposium on Computational
Geometry (SOCG), pages 448–457. ACM, 2011. [p. 87]

[132] Joel Hass, Jeffrey C. Lagarias, and Nicholas Pippenger. The computational
complexity of knot and link problems. Journal of the ACM, 46(2):185–211,
1999. [pp. 19 and 96]

[133] Joel Hass and Peter Scott. Intersections of curves on surfaces. Israel Journal
of Mathematics, 51(1–2):90–120, 1985. [p. 55]

[134] Allen Hatcher. Pants decompositions of surfaces. Manuscript avail-
able at http://www.math.cornell.edu/~hatcher/Papers/pantsdecomp.
pdf, 2000. [p. 19]

[135] Allen Hatcher. Algebraic topology. Cambridge University Press, 2002.
Available at http://www.math.cornell.edu/~hatcher/. [p. 90]

[136] Allen Hatcher and William Thurston. A presentation for the mapping
class group of a closed orientable surface. Topology, 19(3):221–237, 1980.
[p. 41]

[137] Eduard Helly. Über Mengen konvexer Körper mit gemeinschaftlichen
Punkten. Jahresbericht der Deutschen Mathematiker-Vereinigung, 32:175–176,
1923. [p. 89]

[138] Eduard Helly. Über Systeme von abgeschlossenen Mengen mit gemein-
schaftlichen Punkten. Monatshefte für Mathematik und Physik, 37:175–176,
1930. [p. 89]

[139] Michael Henle. A combinatorial introduction to topology. Dover Publica-
tions, 1994. [pp. 7 and 19]

[140] Monika R. Henzinger, Philip Klein, Satish Rao, and Sairam Subramanian.
Faster shortest-path algorithms for planar graphs. Journal of Computer and
System Sciences, 55(1, part 1):3–23, 1997. [pp. 23, 40, 57, and 63]

[141] John Hershberger and Jack Snoeyink. Computing minimum length paths
of a given homotopy class. Computational Geometry: Theory and Applica-
tions, 4:63–98, 1994. [pp. 52, 63, and 89]

[142] Peter Hliněný and Marcus Chimani. Approximating the crossing number
of graphs embeddable in any orientable surface. In Proceedings of the 21st
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 918–
927, 2010. [p. 21]

http://www.math.cornell.edu/~hatcher/ Papers/pantsdecomp.pdf
http://www.math.cornell.edu/~hatcher/ Papers/pantsdecomp.pdf
http://www.math.cornell.edu/~hatcher/

112 REFERENCES

[143] John Hopcroft and Robert Tarjan. Efficient planarity testing. Journal of the
ACM, 21(4):549–568, 1974. [p. 21]

[144] Joan P. Hutchinson. On short noncontractible cycles in embedded graphs.
SIAM Journal on Discrete Mathematics, 1(2):185–192, 1988. [p. 45]

[145] Piotr Indyk and Anastasios Sidiropoulos. Probabilistic embeddings of
bounded genus graphs into planar graphs. In Proceedings of the 23rd An-
nual Symposium on Computational Geometry (SOCG), pages 204–209. ACM,
2007. [p. 23]

[146] Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter. Hamil-
ton paths in grid graphs. SIAM Journal on Computing, 11(4):676–686, 1982.
[p. 59]

[147] Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian
Wulff-Nilsen. Improved algorithms for Min Cut and Max Flow in undi-
rected planar graphs. In Proceedings of the 43rd Annual ACM Symposium
on Theory of Computing (STOC), pages 313–322, 2011. [pp. 41, 50, 52, 58,
and 61]

[148] Gwenaël Joret and David R. Wood. Irreducible triangulations are small.
Journal of Combinatorial Theory, Series B, 100:446–455, 2010. [pp. 79 and 80]

[149] Martin Juvan, Aleksander Malnic̆, and Bojan Mohar. Systems of curves
on surfaces. Journal of Combinatorial Theory, Series B, 68:7–22, 1996. [pp. 18
and 79]

[150] Gil Kalai and Roy Meshulam. Intersections of Leray complexes and
regularity of monomial ideals. Journal of Combinatorial Theory, Series A,
113:1586–1592, 2006. [p. 90]

[151] Gil Kalai and Roy Meshulam. Leray numbers of projections and a topo-
logical Helly-type theorem. Journal of Topology, 1(3):551–556, 2008. [p. 91]

[152] Marcin Kamiński and Dimitrios M. Thilikos. Contraction checking in
graphs on surfaces. In Proceedings of the 29th Annual Symposium on The-
oretical Aspects of Computer Science (STACS), pages 182–193, 2012. [p. 22]

[153] David R. Karger, Philip N. Klein, and Robert E. Tarjan. A randomized
linear-time algorithm to find minimum spanning trees. Journal of the ACM,
42(2):321–328, 1995. [p. 38]

[154] Ken-ichi Kawarabayashi, Philip N. Klein, and Christian Sommer. Linear-
space approximate distance oracles for planar, bounded-genus and
minor-free graphs. In Proceedings of the 38th International Colloquium on Au-
tomata, Languages and Programming (ICALP), part 1, pages 135–146, 2011.
[p. 23]

[155] Ken-ichi Kawarabayashi, Stephan Kreutzer, and Bojan Mohar. Linkless
and flat embeddings in 3-space and the unknot problem. In Proceedings
of the 26th Annual Symposium on Computational Geometry (SOCG), pages
99–106. ACM, 2010. [p. 96]

[156] Ken-ichi Kawarabayashi and Bojan Mohar. Some recent progress and ap-
plications in graph minor theory. Graphs and combinatorics, 23:1–46, 2007.
[p. 22]

[157] Ken-ichi Kawarabayashi and Bojan Mohar. Graph and map isomorphism
and all polyhedral embeddings in linear time. In Proceedings of the 40th
Annual ACM Symposium on Theory of Computing (STOC), pages 471–480,
2008. [pp. 22, 44, and 45]

REFERENCES 113

[158] Ken-ichi Kawarabayashi, Bojan Mohar, and Bruce Reed. A simpler linear
time algorithm for embedding graphs into an arbitrary surface and the
genus of graphs of bounded tree-width. In Proceedings of the 49th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 771–780,
2008. [pp. 21 and 95]

[159] Ken-ichi Kawarabayashi and Bruce Reed. Computing crossing number in
linear time. In Proceedings of the 39th Annual ACM Symposium on Theory of
Computing (STOC), pages 382–390, 2007. [pp. 21 and 45]

[160] Ken-ichi Kawarabayashi and Bruce Reed. A separator theorem in minor-
closed classes. In Proceedings of the 51st Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 153–162, 2010. [p. 23]

[161] Béla Kerékjártó. Vorlesung über Topologie. Springer-Verlag, 1923. [p. 8]

[162] Lutz Kettner. Using generic programming for designing a data structure
for polyhedral surfaces. Computational Geometry: Theory and Applications,
13:65–90, 1999. [p. 11]

[163] Yusuke Kobayashi and Ken-ichi Kawarabayashi. Algorithms for finding
an induced cycle in planar graphs and bounded genus graphs. In Pro-
ceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1146–1155, 2009. [pp. 22, 75, and 78]

[164] Yusuke Kobayashi and Christian Sommer. On shortest disjoint paths in
planar graphs. Discrete Optimization, 7(4):234–245, 2010. [p. 86]

[165] M. R. Kramer and J. van Leeuwen. The complexity of wire-routing and
finding minimum area layouts for arbitrary VLSI circuits. In Franco P.
Preparata, editor, VLSI-Theory, volume 2 of Advances in Computing Re-
search, pages 129–146. JAI Press, Greenwich, Connecticut, 1984. [p. 85]

[166] Greg Kuperberg. Knottedness is in NP, modulo GRH. arXiv:1112.0845,
2011. [p. 96]

[167] Martin Kutz. Computing shortest non-trivial cycles on orientable surfaces
of bounded genus in almost linear time. In Proceedings of the 22nd Annual
Symposium on Computational Geometry (SOCG), pages 430–438. ACM, 2006.
[pp. 27, 48, 50, 61, and 63]

[168] Yves Ladegaillerie. Classes d’isotopie de plongements de 1-complexes
dans les surfaces. Topology, 23(3):303–311, 1984. [pp. 69 and 71]

[169] Sergei K. Lando and Alexander K. Zvonkin. Graphs on surfaces and their
applications. Springer-Verlag, 2004. [pp. 11 and 21]

[170] Serge Lawrencenko. The irreductible triangulations of the torus. Ukrain-
skiĭ Geometricheskiĭ Sbornik, 30:52–62, 1987. [p. 79]

[171] F. Lazarus and A. Verroust. Three-dimensional metamorphosis: a survey.
The Visual Computer, 14:373–389, 1998. [p. 17]

[172] Francis Lazarus, Michel Pocchiola, Gert Vegter, and Anne Verroust. Com-
puting a canonical polygonal schema of an orientable triangulated sur-
face. In Proceedings of the 17th Annual Symposium on Computational Geome-
try (SOCG), pages 80–89. ACM, 2001. [p. 41]

[173] Francis Lazarus and Julien Rivaud. On the homotopy test on surfaces.
arXiv:1110.4573, 2011. [pp. 21, 68, 73, and 77]

[174] D. T. Lee and Franco P. Preparata. Euclidean shortest paths in the presence
of rectilinear barriers. Networks, 14(3):393–410, 1984. [p. 89]

114 REFERENCES

[175] James R. Lee and Anastasios Sidiropoulos. Genus and the geometry of
the cut graph. In Proceedings of the 21st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 193–201, 2010. [p. 23]

[176] Charles E. Leiserson and F. Miller Maley. Algorithms for routing and test-
ing routability of planar VLSI layouts. In Proceedings of the 17th Annual
ACM Symposium on Theory of Computing (STOC), pages 69–78, 1985. [p. 17]

[177] Bruno Lévy and Jean-Laurent Mallet. Non-distorted texture mapping for
sheared triangulated meshes. In Proceedings of the 25th Annual Conference
on Computer Graphics (SIGGRAPH), pages 343–352, 1998. [p. 17]

[178] Xin Li, Xianfeng Gu, and Hong Qin. Surface mapping using consis-
tent pants decomposition. IEEE Transactions on Visualization and Computer
Graphics, 15:558–571, 2009. [pp. 17 and 96]

[179] Sóstenes Lins. Graph-encoded maps. Journal of Combinatorial Theory, Se-
ries B, 32:171–181, 1982. [p. 11]

[180] Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar
graphs. SIAM Journal on Applied Mathematics, 36(2):177–189, 1979. [p. 23]

[181] Martin Lustig. Paths of geodesics and geometric intersection numbers. II.
In Combinatorial group theory and topology (Alta, Utah, 1984), volume 111 of
Annals of Mathematical Studies, pages 501–543. Princeton University Press,
1987. [p. 22]

[182] Roger C. Lyndon and Paul E. Schupp. Combinatorial group theory, vol-
ume 89 of A Series of Modern Surveys in Mathematics. Springer-Verlag, 1977.
[p. 22]

[183] Justin Malestein, Igor Rivin, and Louis Theran. Topological designs.
arXiv:1008.3710, 2010. [p. 18]

[184] Jiří Matoušek. A Helly-type theorem for unions of convex sets. Discrete &
Computational Geometry, 18:1–12, 1997. [p. 90]

[185] Nimrod Megiddo. Applying parallel computation algorithms in the de-
sign of serial algorithms. Journal of the ACM, 30:852–866, 1983. [p. 89]

[186] Grégory Miermont. Tessellations of random maps of arbitrary genus. An-
nales Scientifiques de l’École normale supérieure, Quatrième série, 42:725–781,
2009. [pp. 20 and 42]

[187] Gary L. Miller. An additivity theorem for the genus of a graph. Journal of
Combinatorial Theory, Series B, 43(1):25–47, 1987. [pp. 18, 79, and 80]

[188] Joseph S. B. Mitchell, David M. Mount, and Christos H. Papadimitriou.
The discrete geodesic problem. SIAM Journal on Computing, 16(4):647–668,
1987. [p. 31]

[189] Bojan Mohar. A linear time algorithm for embedding graphs in an arbi-
trary surface. SIAM Journal on Discrete Mathematics, 12(1):6–26, 1999. [pp.
21 and 95]

[190] Bojan Mohar and Neil Robertson. Flexibility of polyhedral embeddings
of graphs in surfaces. Journal of Combinatorial Theory, Series B, 83(1):38–57,
2001. [p. 45]

[191] Bojan Mohar and Carsten Thomassen. Graphs on surfaces. Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press,
2001. [pp. 11, 18, 42, 44, 50, 76, and 80]

REFERENCES 115

[192] Lee Mosher. What is a train track? Notices of the AMS, 50(3):354–356, 2003.
[p. 19]

[193] Atsuhiro Nakamoto and Katsuhiro Ota. Note on irreducible triangula-
tions of surfaces. Journal of Graph Theory, 20(2):227–233, 1995. [pp. 79
and 80]

[194] Seiya Negami. Diagonal flips of triangulations on surfaces, a survey. Yoko-
hama Mathematical Journal, 47:1–40, 1999. [p. 80]

[195] Seyia Negami. Diagonal flips in triangulations of surfaces. Discrete Math-
ematics, 135(1–3):225–232, 1994. [p. 80]

[196] Shayan Oveis Gharan and Amin Saberi. The asymmetric traveling sales-
man problem on graphs with bounded genus. In Proceedings of the 22nd
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 967–
975, 2011. [p. 23]

[197] János Pach. Towards a theory of geometric graphs. Number 342 in Contem-
porary Mathematics. AMS, 2004. [p. 1]

[198] Viresh Patel. Determining edge expansion and other connectivity mea-
sures of graphs of bounded genus. In Proceedings of the 18th European Sym-
posium on Algorithms (ESA), number 6346 in Lecture Notes in Computer
Science, pages 561–572, 2010. [p. 23]

[199] Stephen Patrias. Simple closed curves on surfaces with intersection num-
ber at most one. Manuscript available at http://www.math.uchicago.
edu/~may/VIGRE/VIGRE2009/REUPapers/Patrias.pdf, 2009. [p. 18]

[200] Michael J. Pelsmajer, Marcus Schaefer, and Daniel Štefankovič. Removing
even crossings on surfaces. Electronic Notes in Discrete Mathematics, 29:85–
90, 2007. [p. 21]

[201] Robert C. Penner. Combinatorics of train tracks. Princeton University Press,
1992. [p. 19]

[202] Grisha Perelman. The entropy formula for the Ricci flow and its geometric
application. arXiv:math/0211159, 2002. [p. 20]

[203] Grisha Perelman. Finite extinction time for the solutions to the Ricci flow
on certain three-manifolds. arXiv:math/0307245, 2003. [p. 20]

[204] Grisha Perelman. Ricci flow with surgery on three-manifolds.
arXiv:math/0303109, 2003. [p. 20]

[205] Dan Piponi and George Borshukov. Seamless texture mapping of subdivi-
sion surfaces by model pelting and texture blending. In Proceedings of the
27th Annual Conference on Computer Graphics (SIGGRAPH), pages 471–478,
2000. [p. 17]

[206] Tibor Rado. Über den Begriff der Riemannschen Fläche. Acta scientiarum
mathematicarum (Szeged), 2:101–121, 1924. [p. 8]

[207] Prabhakar Raghavan. Randomized rounding and discrete ham-sandwich the-
orems: provably good algorithms for routing and packing problems. PhD the-
sis, University of California, Berkeley, California, 1986. Report UCB/CSD
87/312. [p. 85]

[208] John H. Reif. Minimum s − t cut of a planar undirected network in
O(n log2(n)) time. SIAM Journal on Computing, 12(1):71–81, 1983. [p. 55]

[209] Bruce L. Reinhart. Algorithms for Jordan curves on compact surfaces.
Annals of Mathematics, 75(2):209–222, 1962. [p. 22]

http://www.math.uchicago.edu/~may/VIGRE/VIGRE2009/REUPapers/Patrias.pdf
http://www.math.uchicago.edu/~may/VIGRE/VIGRE2009/REUPapers/Patrias.pdf

116 REFERENCES

[210] Gerhard Ringel. Map color theorem. Springer-Verlag, 1974. [p. 18]

[211] Neil Robertson, Paul Seymour, and Robin Thomas. Sachs’ linkless em-
bedding conjecture. Journal of Combinatorial Theory, Series B, 64:185–227,
1995. [p. 96]

[212] Neil Robertson and Paul D. Seymour. Graph minors. VII. Disjoint paths
on a surface. Journal of Combinatorial Theory, Series B, 45:212–254, 1988.
[p. 45]

[213] Neil Robertson and Paul D. Seymour. Graph minors. XVI. Excluding a
non-planar graph. Journal of Combinatorial Theory, Series B, 89(1):43–76,
2003. [p. 19]

[214] Neil Robertson and Paul D. Seymour. Graph minors. XX. Wagner’s con-
jecture. Journal of Combinatorial Theory, Series B, 92:325–357, 2004. [p. 18]

[215] Juanjo Rué, Ignasi Sau, and Dimitrios M. Thilikos. Dynamic program-
ming for minor-free graphs. In preparation, cited in [217]. [p. 23]

[216] Juanjo Rué, Ignasi Sau, and Dimitrios M. Thilikos. Dynamic program-
ming for graphs on surfaces. In Proceedings of the 37th International Collo-
quium on Automata, Languages and Programming (ICALP), volume 6198 of
Lecture Notes in Computer Science, pages 372–383, 2010. [p. 22]

[217] Juanjo Rué, Ignasi Sau, and Dimitrios M. Thilikos. Dynamic program-
ming for graphs on surfaces. arXiv:1104.2486, 2011. [p. 116]

[218] Luis Santaló. Un theorema sobre conjuntos de paralelepipedos de aristas
paralelas. Publ. Inst. Mat. Univ. Nat. Litoral, 2:49–60, 1940. [p. 91]

[219] Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič. Computing
Dehn twists and geometric intersection numbers in polynomial time.
In Proceedings of the 20th Canadian Conference on Computational Geometry
(CCCG), pages 111–114, 2008. [p. 22]

[220] Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič. Algorithms for
normal curves and surfaces. In Proceedings of the 8th International Con-
ference on Computing and Combinatorics (COCOON), pages 370–380, 2002.
[p. 22]

[221] Gilles Schaeffer. Conjugaison d’arbres et cartes combinatoires aléatoire. PhD
thesis, Université Bordeaux I, 1998. [p. 42]

[222] Haijo Schipper. Determining contractibility of curves. In Proceedings of the
8th Annual Symposium on Computational Geometry (SOCG), pages 358–367.
ACM, 1992. [p. 21]

[223] Haijo Schipper. The word problem: a geometric approach. In Proceedings
of the 4th Canadian Conference on Computational Geometry (CCCG), pages
59–65, 1992. [p. 21]

[224] Saul Schleimer. Notes on the complex of curves. Expository notes avail-
able on the author’s webpage, 2006. [p. 19]

[225] Alexander Schrijver. Disjoint circuits of prescribed homotopies in a graph
on a compact surface. Journal of Combinatorial Theory, Series B, 51(1):127–
159, 1991. [p. 23]

[226] Alexander Schrijver. Free partially commutative groups, cohomology,
and paths and circuits in directed graphs on surfaces. Preprint available
on the author’s webpage, 2008. [pp. 23 and 30]

REFERENCES 117

[227] Anastasios Sidiropoulos. Optimal stochastic planarization. In Proceed-
ings of the 51st Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 163–170, 2010. [p. 23]

[228] Ernst Steinitz and Hans Rademacher. Vorlesungen über die Theorie der
Polyeder. Springer-Verlag, 1934. [p. 79]

[229] John Stillwell. Classical topology and combinatorial group theory. Springer-
Verlag, New York, second edition, 1993. [pp. 7, 19, and 53]

[230] Thom Sulanke. Generating irreducible triangulations of surfaces.
arXiv:math/0606687, 2006. [pp. 79 and 81]

[231] Thom Sulanke. Irreducible triangulations of low genus surfaces.
arXiv:math/0606690, 2006. [pp. 79 and 80]

[232] Thom Sulanke. Note on the irreducible triangulations of the Klein bottle.
Journal of Combinatorial Theory, Series B, 96:964–972, 2006. [p. 79]

[233] Jun-ya Takahashi, Hitoshi Suzuki, and Takao Nishizeki. Shortest non-
crossing paths in plane graphs. Algorithmica, 16:339–357, 1996. [p. 63]

[234] Itaru Takarajima. A combinatorial representation of curves using train
tracks. Topology and its Applications, 106:169–198, 2000. [p. 69]

[235] Ser Peow Tan. Self-intersections of curves on surfaces. Geometriae Dedicata,
62(2):209–225, 1996. [p. 22]

[236] Siamak Tazari and Matthias Müller-Hannemann. Shortest paths in linear
time on minor-closed graph classes, with an application to Steiner tree
approximation. Discrete Applied Mathematics, 157(4):673–684, 2009. [p. 23]

[237] Carsten Thomassen. The graph genus problem is NP-complete. Journal of
Algorithms, 10(4):568–576, 1989. [p. 21]

[238] Carsten Thomassen. Embeddings of graphs with no short noncontractible
cycles. Journal of Combinatorial Theory, Series B, 48(2):155–177, 1990. [pp.
42 and 50]

[239] Carsten Thomassen. Five-coloring maps on surfaces. Journal of Combina-
torial Theory, Series B, 59(1):89–105, 1993. [pp. 18 and 45]

[240] Dylan P. Thurston. On geometric intersection of curves on surfaces.
Available at http://www.math.columbia.edu/~dpt/DehnCoordinates.
ps, 2008. [p. 19]

[241] William T. Tutte. A census of planar maps. Canadian Journal of Mathematics,
15:249–271, 1963. [p. 20]

[242] Helge Tverberg. Proof of Grünbaum’s conjecture on common transversals
for translates. Discrete & Computational Geometry, 4:191–203, 1989. [p. 91]

[243] René van Oostrum and Remco C. Veltkamp. Parametric search made
practical. Computational Geometry: Theory and Applications, 28:75–88, 2004.
[p. 89]

[244] Gert Vegter. Computational topology. In Jacob E. Goodman and Joseph
O’Rourke, editors, Handbook of Discrete and Computational Geometry, chap-
ter 32, pages 517–536. CRC Press LLC, Boca Raton, FL, second edition,
2004. [pp. 1 and 21]

[245] Gert Vegter and Chee K. Yap. Computational complexity of combinato-
rial surfaces. In Proceedings of the 6th Annual Symposium on Computational
Geometry (SOCG), pages 102–111. ACM, 1990. [p. 41]

http://www.math.columbia.edu/~dpt/DehnCoordinates.ps
http://www.math.columbia.edu/~dpt/DehnCoordinates.ps

118 REFERENCES

[246] Yusu Wang. Measuring similarity between curves on 2-manifolds via
minimum deformation area. Manuscript, 2008. [p. 96]

[247] Zoë Wood, Hugues Hoppe, Mathieu Desbrun, and Peter Schröder. Re-
moving excess topology from isosurfaces. ACM Transactions on Graphics,
23(2):190–208, 2004. [pp. 17 and 96]

[248] Xiaotian Yin, Miao Jin, and Xianfeng Gu. Computing shortest cycles using
universal covering space. The visual computer, 23:999–1004, 2007. [p. 52]

[249] Xingxing Yu. Disjoint paths, planarizing cycles, and spanning walks.
Transactions of the American Mathematical Society, 349:1333–1358, 1997.
[p. 45]

[250] Wei Zeng, Miao Jin, Feng Luo, and Xianfeng David Gu. Canonical homo-
topy class representative using hyperbolic structure. In Proceedings of the
International Conference on Shape Modelling and Applications (SMI), pages
171–178, 2009. [p. 96]

[251] Afra Zomorodian. Computational topology. In Mikhail J. Atallah, editor,
Algorithms and Theory of Computation Handbook. Chapman & Hall, 2009.
[pp. 1 and 21]

[252] Afra Zomorodian. Topological data analysis. In Afra Zomorodian, editor,
Computational topology, Proceedings of Symposia in Applied Mathematics.
AMS, 2012. [p. 17]

[253] Alexander Zvonkin. Matrix integrals and map enumeration: an accessible
introduction. Computers and Mathematics with Applications: Mathematical
and Computer Modelling, 26(8–10):281–304, 1997. [p. 21]

Abstract

The common idea underlying most of the works presented in this habilitation
thesis is the study of algorithms for topological problems regarding curves and
graphs on surfaces. These results belong to the field of computational topology,
with tight connections to topological graph theory and graph algorithms.

A motivation for these works is the recent development of graph algorithms
that are efficient in the case where the input graph is drawn without crossings on
a fixed surface. Very often, these algorithms need to make the graph planar by
cutting or removing vertices and edges; our results are relevant for this purpose.
Moreover, the data of a graph with a drawing of it on a surface gives rise to new
natural problems, such as the computation of shortest paths in the graph among
those that are homotopic (deform continuously on the surface) to a given path.
Finally, forgetting about the graph, our algorithms can also be viewed as a way
of topologically simplifying or decomposing a surface, a problem that arises in
particular in computer graphics.

After a survey on graphs on surfaces in various areas, we revisit in a unified
way our results for computing shortest curves or graphs with prescribed topo-
logical properties on surfaces. We move on with other algorithmic and combi-
natorial results on graphs on surfaces that are more related to topological graph
theory. Finally, we present more succinctly our other recent works on algorithms
in the plane or on results in combinatorial geometry, which also use topological
tools at various levels of sophistication.

Résumé

La démarche commune à la plupart des travaux présentés dans ce mémoire
d’habilitation est l’étude d’algorithmes pour des problèmes topologiques sur les
courbes et graphes tracés sur les surfaces. Ces résultats s’inscrivent dans le do-
maine de la topologie algorithmique, avec des liens forts en théorie topologique
des graphes et algorithmique des graphes.

Une motivation pour ces travaux est le foisonnement récent d’algorithmes
de graphes efficaces dans le cas où le graphe donné en entrée est dessiné sans
croisement sur une surface fixée. Ces algorithmes ont très souvent besoin de
transformer le graphe en un graphe planaire par découpage ou suppression
de sommets et d’arêtes ; nos résultats s’inscrivent dans cette problématique. De
plus, la donnée d’un graphe avec un dessin de celui-ci sur une surface donne
naissance à des problèmes naturels comme le calcul de plus courts chemins
dans ce graphe parmi ceux qui s’obtiennent à partir d’un chemin donné par
déformation (homotopie) sur la surface. On peut aussi, en faisant abstraction
du graphe, voir les algorithmes que nous proposons comme permettant de
simplifier ou de décomposer topologiquement une surface, un problème qui se
pose notamment en infographie.

Après un panorama sur les graphes sur les surfaces dans diverses disci-
plines, nous revisitons, de façon unifiée, nos résultats sur le calcul de plus
courtes courbes ou graphes possédant des propriétés topologiques données sur
les surfaces. Nous poursuivons avec d’autres résultats algorithmiques et combi-
natoires sur les graphes sur les surfaces, plus reliés à la théorie topologique des
graphes. Enfin, nous présentons de façon plus succincte nos autres travaux ré-
cents d’algorithmique dans le plan ou de géométrie combinatoire, qui utilisent
également des outils topologiques plus ou moins sophistiqués.

	Introduction
	I Preliminaries and survey on graphs on surfaces
	Preliminaries
	Graphs on surfaces: a short survey

	II Shortest curves and graphs on surfaces
	Models: combinatorial and cross-metric surfaces
	Basics: cut loci and applications
	More shortest non-trivial cycles
	Other shortest curves

	III More results for curves and graphs on surfaces
	Testing isotopy of graphs
	Existence of cycles without repeated vertices
	Combinatorics of irreducible triangulations

	IV Other works and perspectives
	Other works
	Perspectives
	
	Index
	References

