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The thesis was originally written in French, except Chapters 4 and 5, which are
also in English in the original version. This document is a translation by the
author.
Errors and typos might have been introduced during the translation (or even
exist in the French version). If you find such errors, I would really appreciate the
feedback.
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Introduction

Decomposing, deforming, shortening while preserving topol-

ogy

Decomposing, deforming and shortening are elementary operations on geometric
objects. This thesis is concerned with these three elementary operations, with a
leitmotiv: we wish that they preserve topological properties of the object.

Topology is a quite recent field of geometry: although isolated observations
were made quite early (Euler’s formula was already known by Descartes, in the
17th century), this field really emerged in the middle of the 19th century (see [45,
p. 235], [98]). Topology leaves out the metric and projective characteristics of
the objects, such as distance, area, angle, alignment; the topological properties
are those which can be derived merely from the notions of neighborhood and
continuous map. An important notion is the notion of homeomorphism (bijective
bicontinuous map): in topology, two homeomorphic objects (etymologically, which
have the same shape) will be regarded as identical.

We will thus consider decompositions, deformations and shortenings which
maintain and/or give prominence to topological properties.

To decompose an object means to subdivide it into simpler objects. We will
for instance decompose a surface into surfaces which are topologically simpler,
and decompose the tridimensional space into tetrahedra in such a way that they
fit a given shape. Such a decomposition enables to understand the topology of
the object.

To deform an object into another is to find a continuous geometric transfor-
mation between these objects. We will compute deformations which preserve the
topology between two embeddings of a given graph in the plane.

To shorten an object means to transform it into an object which has a “size”
as small as possible. We will shorten, by deformations, curves drawn on surfaces
and graphs embedded in the plane.

Our works are of algorithmic nature: the goal is to effectively compute such op-
erations on geometric objects. They are quite theoretic, but are motivated by the
manipulation of geometric objects, of increasing complexity, by computers. One
immediately thinks about tridimensional models which proliferate on the Internet
and in video games, but we should also mention the domain of computer-aided
design (CAD), whose industrial impacts are very important, biology, because the
knowledge of the shape of a molecule is a crucial step towards the understand-
ing of its function [131], or robotics, where the movements of the objects must
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be planned carefully [87]. Decomposing a mesh, deforming a polyhedral model
into another one, computing shortest paths, are problems which occur in the real
world.

Shortening of curves and decomposition of surfaces

Our main contribution is concerned with the shortening of curves on surfaces
while preserving topological properties of these curves. It belongs to the domain
of computational topology . This expression appeared for the first time, to our
knowledge, in a paper by Vegter and Yap in 1990 [154]. It is a field of computa-
tional geometry whose purpose is “to identify and formalize topological questions
in computer applications and to study algorithms for topological problems” [51]
(see also [11, 153]). In other words, it is sometimes justified and fruitful to study
topological questions independantly from any geometry, with a specific vocab-
ulary and adequate techniques (borrowed especially to algebraic topology and
combinatorial topology), in order to put them back afterwards in their geometric
framework.

This constatation might be not new, but it is at least formalized and justi-
fied with the apparition of this domain. Topology has always had an important
place in the field of computational geometry. The study of line arrangements [80]
leads naturally to the theory of oriented matroids [17], which are a natural topo-
logical axiomatization. The topological methods [159] (homology, fixed-points and
equipartition theorems) enable to solve questions arising from discrete and compu-
tational geometry. The problem of embedding a space into another also has a deep
topological part: graph embeddings, knot theory and decidability of the existence
of homeomorphisms. The importance of topology is strengthened nowadays, no-
tably because of the applications (geometric modeling, meshes, biogeometry) [51].
Topology can thus be viewed as a characteristic being more or less present in any
problem of computational geometry.

The area of computational topology concerned with this work is the algo-
rithmic study of surfaces and curves drawn on them. Fundamental questions
(deformation, homeomorphy, decomposition) arise in applications in computer
science and have close relations with topology. The underlying topological prob-
lems had never been studied from the algorithmic viewpoint. Important theorems
have been found since the beginning of the 20th century, which classify surfaces
up to homeomorphism or which give necessary and sufficient conditions so that
two curves are homotopic (admit a continuous transformation between them).
In these two examples, results dating back to one century are constructive and
also enable to effectively compute a homeomorphism between these surfaces or a
homotopy between these curves. There remained to give efficient algorithms for
these problems and to study precisely their complexity.

Our study is about the shortening (we will also use the term optimization)
of families of curves on surfaces while preserving some of their topological prop-
erties. It is thus a specialization of the problem of shortest paths computation,
a fundamental problem in combinatorial optimization [137, Chapters 6–9]. More
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precisely, a graph embedding on a surface being fixed, we are looking for the short-
est embedding which is isotopic to that embedding, with fixed vertices; a family of
simple, pairwise disjoint cycles being fixed, we are looking for the shortest family
of simple, pairwise disjoint cycles whose cycles are homotopic to the cycles of the
former family. Our goal is thus to fix the topology and to “improve” as much as
possible the geometry of these curves (paths of the graph embedding, or cycles),
in the sense that the computation of a shortest curve among the curves which
have the same topological properties yields a more canonical representation.

To solve this problem, we will use decompositions of the surface into surfaces
which are topologically simple. We will give greedy algorithms which allow to
shorten the curves of these decompositions, while maintaining topological prop-
erties of the curves. These algorithms work in a framework where the curves are
drawn on the vertex-edge graph of a polyhedral surface. We will show that the
resulting curves are, individually (i.e., independantly from the other curves of the
decomposition), shortest curves among the curves on the vertex-edge graph which
are topologically equivalent. Hence, to optimize a curve or a family of curves, it
will be sufficient to extend this family into a topological decomposition of the
surface, to shorten this decomposition, and to remove the curves which were pre-
viously added. We will show that this leads to algorithms which are polynomial
in their input and in the longest-to-shortest edge ratio of the vertex-edge graph.

The interest of this work in practice is to be able to shorten, not only a single
curve on a surface, but also decompositions of the surface into topologically simple
surfaces: cutting a surface into a topological disk (a region homeomorphic to a
disk) is often the first stage of the parameterization process, which aims at creating
a correspondence between a surface and a planar region, and which is a recurrent
problem in computer graphics.

Other contributions

This thesis contains two other contributions.
The first one, which is an extension of our D.E.A. work, focuses on the de-

formation of graphs embeddings in the plane and, to a smaller extent, on their
shortening. In contrast to the previous work, we consider here graphs rectilin-
early embedded in the plane, and the vertices will move: we wish to create a
continuous family of embeddings (isotopy) between two given embeddings. Let
us consider a planar graph for which some vertices are fixed in the plane; Tutte’s
barycentric embedding theorem [152] yields an effective and simple way to com-
pute the embedding which minimizes the sum of the squares of the lengths of the
edges among all embeddings satisfying this constraint (shortening). By changing
certain coefficients, one can in fact create a deformation between two graph em-
beddings. Apart from the study of this deformation process, our work consisted
in giving another proof of Tutte’s theorem and in refuting its natural generaliza-
tion in higher dimension. Tutte’s theorem is often used in the second stage of
the parameterization process: it enables to create a homeomorphism between a
topological disk and a planar region. The creation of deformations with the help
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of this theorem is motivated by the generation of morphings between two objects.
The last contribution of this thesis is concerned with conforming Delaunay

triangulations in three dimensions (one should say “tetrahedralizations”). A poly-
hedral object in the tridimensional space being fixed, we wish to decompose the
space into simplexes (tetrahedra, triangles, edges, and vertices) which fit the shape
of the object, i.e., each face of the object must be a union of simplexes: we shall
say that the triangulation conforms to the polyhedral object. We additionally
impose that this triangulation is the Delaunay triangulation of a finite number of
points (containing in particular the vertices of the polyhedral object). We give
an algorithm to compute such a conforming Delaunay triangulation where the
number of inserted points is quite small in practice. The motivation of this work
comes from mesh generation and geometric modeling, where it is often desirable
to decompose the space into cells conforming to a geometric object. The interest
of Delaunay triangulations is that the shapes of the cells are often reasonable and
that they have numerous well-studied and exploited features.

Organization of the document

This dissertation is made of five chapters.
The first three chapters are concerned with the optimization of curves on

surfaces and the decomposition of surfaces. The first chapter introduces the main
notions of topology and combinatorial topology that we will use. The second
chapter presents an overview of the previous works which have a link with our
work. The third chapter contains our results on this topic.

The last two chapters are about the two other works included in this thesis: in
Chapter 4, we revisit Tutte’s barycentric theorem, from the point of view of the
deformation of graph embeddings. Finally, in Chapter 5, we describe an algorithm
for computing conforming Delaunay triangulations in 3D.

Chapter 1 introduces the notions used in Chapters 2 and 3, which are indepen-
dant. Each of the chapters 4 and 5 can be read independantly from the remaining
part of the thesis.

Chapter 3 extends the results and simplifies the proofs of [40]; it contains, with
minor modifications, the paper [41]; it introduces new techniques which are easier
to use from the algorithmic point of view. The content of Chapter 4 has been
published in [42] and in a preliminary version of this paper. Chapter 5 contains
nearly literally the paper [38].
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Chapter 1

Topology of surfaces

The purpose of this chapter is to present the main notions and results of topology
used in Chapters 2 and 3 of this dissertation. Proofs will thus be omitted in most
cases. The reader can choose to skip this chapter and to come back whenever
needed, to skim through it, or to read it entirely. The index indicates in boldface
the pages of this chapter in which the terms are defined.

We refer the interested reader to [92, 6], which are quite elementary books
devoted to this topic, and which we used for the redaction of this chapter; in the
absence of any other indication, the proofs of the results presented in this chapter
can be found in these books. Related books are also [145] for a description of
more diversified topics, [114, 91] about algebraic topology, and [117] for graphs
embedded on surfaces.

1.1 Surfaces, curves and graphs embeddings

In this section, we recall the usual notions in topology of curves and surfaces, and
also the notion of embedded graph.

1.1.1 Surfaces

A topological space is a set X with a collection O of subsets of X, called open
sets, satisfying the three following axioms:

• the empty set and X are open;

• any union of open sets is an open set;

• any finite intersection of open sets is open.

There is, in particular, no notion of metric (distance, angle, area) in a topo-
logical space. On the other hand, one can, with the notion of neighborhood (a
neighborhood of x ∈ X is a set containing an open set containing x), define the
notion of continuity, of limit, of continuous map, and so on. The topological
spaces considered in this thesis are assumed to be Hausdorff, which means that
two distinct points have disjoint neighborhoods. If X and Y are two topological
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spaces, a map f : X → Y is a homeomorphism if it is continuous, bijective, and
if its inverse f−1 is also continuous.

A surface is a topological space in which each point has a neighborhood home-
omorphic to the unit disk {(x, y) ∈ R

2 | x2 + y2 < 1} or to the unit half-disk
{(x, y) ∈ R

2 | x2 + y2 < 1, x ≥ 0}. The boundary of a surface M, denoted
by ∂M, is the set of the points of this surface which have no neighborhood home-
omorphic to the unit disk. The interior of M is the complementary part of its
boundary.

A surface is thus “abstract”: the only knowledge we have of it is the neighbor-
hoods of each point. A surface is not necessarily embedded in R

3.
A topological space X is compact if any set of open sets whose union is X

admits a finite subset whose union is still X. Unless otherwise specified, the
surfaces considered here are compact.

1.1.2 Curves, connectivity, and the Jordan–Schönflies theorem

Let X be a topological space. A path in X is a continuous map p : [0, 1] → X; its
endpoints are p(0) and p(1). A path is simple if it is one-to-one. A closed path
in X, or loop, is a path whose endpoints coincide; they are called the basepoint of
the loop. A loop ` is simple if `|[0,1) is one-to-one. The relative interior of a path
p : [0, 1] → X (possibly closed) is the map p|(0,1).

An infinite path in X is a continuous map p : R → X; it is simple if it is
one-to-one; its relative interior is the infinite path itself.

A cycle is a continuous map γ : S1 → X (where S1 denotes the unit circle).
A cycle differs from a loop because a loop has (equal) endpoints; on a cycle, no
point is distinguished. A cycle γ is simple if γ is one-to-one. The relative interior
of a cycle is the cycle itself. It is sometimes convenient to view a cycle as an
infinite path γ : R → X such that γ(.) = γ(1 + .). If γ is a cycle (considered as a
map from R into X), the loops associated to γ are the loops which have the form
γ(x + .)|[0,1], where x ∈ R.

A curve denotes a path, possibly closed, an infinite path, or a cycle. The
image set, or image, of a curve c : I → X is the set c(I) ⊆ X. We will sometimes,
by abuse of notation, identify a curve with its image set.

Let X be a topological space. X is connected 1 if, for any points a and b in
X, there exists a path in X whose endpoints are a and b. If X is connected, we
shall say that a curve c separates X if X \ c is not connected. The connected
components of a topological space X are the classes of the equivalence relation on
X defined by: a is equivalent to b if there exists a path between a and b.

Theorem 1.1 (Jordan–Schönflies — see [148]) Let γ be a simple cycle in R
2.

Then there exists a homeomorphism of R
2 to R

2 such that the image of γ by this
homeomorphism is the unit circle t 7→ (cos(2πt), sin(2πt)).

Figure 1.1 illustrates this theorem. In particular, any simple cycle in R
2

separates R
2 into two connected components (Jordan curve theorem).

1In this thesis, the only type of connectivity considered is connectivity by arcs.
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Figure 1.1: Illustration of the Jordan–Schönflies theorem.

1.1.3 Graphs and embeddings of graphs

A graph G = (V,E) is the data of a set of vertices V and of a set of edges E,
each edge having two (possibly equal) vertices which are its endpoints. There are
numerous variations on the notion of graph:

• the graph can be oriented (each edge e has a source vertex and a target
vertex) or not (the endpoints of each edge are not distinguished);

• multiple edges can be allowed or not (that is, the fact that several edges can
have the same endpoints);

• loops (that is, edges whose two endpoints are equal) can be allowed or not;

• the graph can be finite (that is, V and E are finite sets) or not.

From this notion of graph, one defines the notions of an edge incident to a vertex,
of two adjacent vertices, of degree of a vertex, of connectivity of the graph, of
path, and of closed path. We will assume that the reader is familiar with all these
notions, and refer for example to [44, Section 5.4] or [20]. Let us mention that,
in this dissertation, multiple edges and loops will be allowed unless otherwise
specified, and that the graphs considered will be finite except in very few cases.

We now introduce the notion of embedding of a graph G = (V,E) in a topo-
logical space X, which is a way to represent G with points for its vertices and
paths for its edges. More precisely, it is the data of two maps:

• ΓV which associates to each vertex of G a point of X;

• ΓE which associates to each edge e of G a path in X between the images
by ΓV of the endpoints of e,

in such a way that:

• the map ΓV is one-to-one (two distinct vertices are sent to different points
of X);

• for each edge e, the relative interior of ΓE(e) is one-to-one (the image of an
edge is a simple path, except possibly at its endpoints);

• for all distinct edges e and e′, the relative interiors of ΓE(e) and ΓE(e′) are
disjoint (two edges cannot cross);
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• for each edge e and for each vertex v, the relative interior of ΓE(e) does not
meet ΓV (v) (no edge passes through a vertex).

The faces of a graph embedding are the connected components of the com-
plementary part of the image of the vertices and edges of this graph. A graph is
said to be planar if it admits an embedding in R

2.

1.2 Polyhedral surfaces

1.2.1 Definition and properties

We will give a way to build surfaces by gluing together polygons along their edges.
Let us consider a topological space made of a disjoint union P of simple

polygons (i.e., without holes, i.e., homeomorphic to the closed unit disk). Let us
choose an orientation of the edges of the polygons of P , and let A = (A1, . . . , An)

be a partition of these edges. One can create the quotient space P ′ obtained from
P by identification, or gluing, of the edges of Ai for all i (following the prescribed
orientations of the edges). This set can be provided with a topology [92, p. 116].
We shall say that the n edges of P ′ are the sets A1, . . . , An. This identification
of edges naturally induces an identification on the vertices of the polygons of P :
two vertices are identified on the surface if they are the sources, or the targets, of
two edges of P belonging to a same set Ai.

The topological space P ′ is not necessarily a surface, since the identifications
can create points which have no neighborhood homeomorphic to the unit disk or
half-disk. The following definition aims at excluding such cases.

A polyhedral surface is a topological space obtained by identifications of edges
and vertices of a finite number of simple polygons (called faces of the polyhedral
surface), in such a way that:

• the resulting space is a surface;

• two distinct edges or vertices of a given polygon are not identified on the
surface;

• the intersection of two distinct polygons is either empty, a common vertex,
or a common edge.

See Figure 1.2.
This in particular implies that:

• an edge is incident to two polygons (or one single polygon if it is on the
boundary of the surface);

• for each vertex v, the polygons having v as a vertex can be ordered in a
cyclic or linear sequence P1, P2, . . . , Pk, P1 or P1, P2, . . . , Pk, so that two
consecutive polygons in this sequence are identified along an edge incident
to v (Figure 1.3).

A polyhedral surface is a surface. The converse is non-obvious:
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Figure 1.2: Construction of a polyhedral surface (a cube) with six squares.
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Figure 1.3: The polygons incident to some vertex v can be ordered cyclically (if
v is a point interior to the surface) or linearly (if v is a point on the boundary).

Theorem 1.2 (see [148] or [57]) Any (compact) surface is homeomorphic to a
polyhedral surface.

This amounts to saying that, on any compact surface, one can embed a finite
graph G = (V,E) such that:

• each face of G is homeomorphic to the open unit disk, and incident to at
least three edges;

• the boundary of each face is made of a cycle which alternates with distinct
vertices and edges;

• the closure of two distinct faces are disjoint, or share exactly one vertex or
one edge.

This theorem implies that, in order to study the topology of surfaces, it is
sufficient to restrict ourselves to polyhedral surfaces.

The vertex-edge graph of a polyhedral surface is the graph induced by the ver-
tices and edges of the polyhedral surface. A combinatorial surface, or triangulated
surface, is a polyhedral surface whose faces are triangles. A homeomorphism be-
tween a triangulated surface and a surface M yields a triangulation of M. Since
any polygon can be triangulated, any surface admits a triangulation.

1.2.2 Cutting surfaces

The Jordan–Schönflies theorem enables to define rigorously the cutting of a surface
M along a simple curve c. The key is the following lemma:
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Lemma 1.3 Let M be a surface, and let c be a simple, possibly closed path, whose
relative interior is in the interior of M. Then there exists a triangulation T of
M such that the image of c is a (simple) path in the vertex-edge graph of T .

To prove the existence of T is quite easy if we can find a triangulation of M
whose vertex-edge graph intersects c at a finite number of points. Indeed, it is
then sufficient to subdivide each triangle t along each piece of c which crosses t

(such a piece separates t by the Jordan curve theorem). But the difficulty is that
one must get rid of the possibly infinite number of intersections. This lemma
can be shown by adapting the proofs of the fact that any compact surface is
triangulable (for example the proof in [57]).

Epstein [67, Appendix] states a theorem which is a bit different, but his
method enables in particular to prove this result. Let us fix a triangulation of
M. The idea is to take real numbers 0 = a0 < a1 < . . . < an−1 < an = 1 such
that, for each i, c|[ai,ai+1] is included in a disk, and to prove by induction on i,
using the Jordan–Schönflies theorem, that there exists a homeomorphism of M
which sends c|[0,ai] into a piecewise linear curve (with respect to a given initial
triangulation).

This lemma enables in particular to define the topological space obtained by
cutting M along a simple path c: let T be a triangulation given by Lemma 1.3; one
defines this space as the combinatorial surface obtained from T by removing the
identifications of the edges contained in c. Iterating the process, it is possible to
cut the surface along a graph embedding whose edges have their relative interiors
in the interior of M.

In Chapter 3, we will repeatedly use the cutting of a surface along a simple
curve or along several simple, pairwise disjoint curves.

1.3 Classification and decomposition of surfaces

1.3.1 Topological invariants

We introduce here quantities which can be computed for a polyhedral surface S,
but which are topological invariants in the sense that, if S and S ′ are homeomor-
phic surfaces, then these quantities are equal for S and S ′. Two trivial examples
of topological invariants of a polyhedral surface S are the number of its connected
components and the number of its boundaries (more precisely, the number of con-
nected components of its boundary): it is obvious that these quantities depend
in fact solely on the underlying surface M.

Let S be a polyhedral surface. The boundary of a polygon of S is a cycle of
edges, which can be oriented in two different ways. Choosing an orientation of
this polygon yields an orientation of the edges of its boundaries. S is orientable if
it is possible to orient each of its polygons in such a way that each edge incident
to two polygons is oriented in opposite ways by these two polygons (Figure 1.4); if
this is possible, such a choice of orientation is called an orientation of the surface,
which is said to be oriented.
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Figure 1.5: Two orientations of crossings between two curves c and c′. A: c′ pierces
c from left to right. B: c′ pierces c from right to left.

Let c and c′ be two curves on a surface, having for intersection a unique point
p. We shall say that c and c′ cross if there exists a neighborhood U of p and a
homeomorphism of this neighborhood into the unit disk which sends c ∩ U and
c′ ∩ U into two secant line segments. On an oriented surface, one can define
without ambiguity the orientation of a crossing between c and c′ (Figure 1.5).

Let S be a polyhedral surface with V vertices, E edges and F faces. The
Euler characteristic of S, denoted by χ(S), is the signed integer V − E + F .

Theorem 1.4 Let S and S ′ be two polyhedral surfaces which are homeomorphic.
Then:

• S is orientable if and only if S ′ is orientable;

• χ(S) = χ(S ′).

In other words, the Euler characteristic and the orientability are topological
invariants. Let us give an idea of the proof. A polyhedral surface being fixed,
one can subdivide one or several faces, by decomposing them into smaller faces.
It is easy to see that such a subdivision changes neither the orientability of the
surface nor its Euler characteristic (Figure 1.6). To prove the previous result, it is
thus sufficient to prove that S and S ′ can be subdivided in such a way that these
refinements are the same. It is possible to represent S and S ′ as embedded graphs
G and G′ on a same surface M (see the previous section). If G and G′ intersect at
a finite number of points, it seems plausible that it is possible to find a common
subdivision for G and G′. What makes the proof difficult is that, a priori, G and
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Figure 1.6: A subdivision of the surface changes neither its orientability nor its
Euler characteristic.

Figure 1.7: Any compact surface is homeomorphic to a sphere (here, a paral-
lelepiped) to which are glued g handles and removed b open disks. Here, g = 2

and b = 3.

G′ can have an infinite number of intersection points. It is nevertheless possible
to show that G and G′ have combinatorially equivalent subdivisions.

All surfaces considered in this thesis are orientable, and we often omit this
restriction.

1.3.2 Classification theorem and polygonal schemata

1.3.2.1 Classification theorem

In the previous section, we have given topological invariants: two polyhedral
surfaces which have different invariants cannot be homeomorphic. Conversely, are
two surfaces with the same invariants homeomorphic? The following fundamental
theorem classifies the surfaces up to homeomorphism:

Theorem 1.5 (Classification theorem for surfaces) Let M be a compact, con-
nected, orientable surface. There exist two unique non-negative integers g and
b such that M is homeomorphic to a sphere to which are glued g handles and
removed b pairwise disjoint disks. In addition, χ(M) = 2 − 2g − b.

Figure 1.7 illustrates this theorem.
In particular, the number of boundaries b and the Euler characteristic char-

acterize the homeomorphy class of a compact, connected, orientable surface. The
integer g is thus a topological invariant, called the genus of the surface. An-
other consequence of this theorem is that the compact, orientable surfaces are all
embeddable in R

3.
Here are the values of g and b for a few surfaces (Figure 1.8):
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Figure 1.8: From left to right: a cylinder, a torus, and a double-torus.

• for a sphere, g = 0 and b = 0;

• for a disk, g = 0 and b = 1;

• for a cylinder, g = 0 and b = 2;

• for a torus, g = 1 and b = 0;

• for a double-torus, g = 2 and b = 0.

We will say that a surface is a topological sphere (resp. disk) if it is homeo-
morphic to a sphere (resp. to a disk).

1.3.2.2 Sketch of proof and polygonal schemata

We will give the method of the proof, which is instructive. In the course of this
description, we will introduce the notions of polygonal schema, reduced polygonal
schema, and canonical polygonal schema, which are families of curves decomposing
the surface into a disk. The origin of the proof can be found in the paper by
Brahana [21]; most textbooks in topology give this proof (see for example [74,
Chapter 4]). By Theorem 1.2, we can assume that M is a polyhedral surface.
The first stage of the proof consists in showing that M admits a polygonal schema,
i.e., a pattern.

A polygonal schema of a connected surface M is the data of a simple polygon
with an identification of its edges (choice of an orientation and partition of the
edges), such that we obtain the surface M by performing these identifications.
The interest of a polygonal schema is that it defines a surface in a particularly
simple way: it suffices to give the list of the edges on the boundary of the polygon
by indicating which identifications have to be done (see Figures 1.9 and 1.10, and
also Figure 1.2, middle part). In the case of a surface with boundary, the edges of
the polygonal schema corresponding to the edges of the boundary of the surface
are identified with no other edge of the schema.

Any graph embedded on M, which has exactly one face and such that this
face is a topological disk, gives rise to a polygonal schema of M by cutting this
graph along its edges (see Figures 1.9 and 1.10). By abuse of language, we will
also say that such a graph is a polygonal schema of M.

Intuitively, any connected polyhedral surface M admits a polygonal schema,
built by removing as many edge identifications as possible while maintaining the
connectivity of the surface. Formally, let us consider the dual graph G∗ = (V ∗, E∗)

of the vertex-edge graph G = (V,E) of M: it is the graph whose vertices are the
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Figure 1.10: On the left, a polygonal schema of the double-torus, of the form
ābc̄b̄dcd̄agf ḡef̄ ē. On the right, the surface obtained after identification of the
edges on the boundary of the schema.

faces of M and such that two vertices are linked with an edge if the corresponding
faces of the polyhedral surface are adjacent (Figure 1.11). The dual graph of M
is connected; if one computes a spanning tree T ∗ of this graph and removes all
identifications of edges on the polyhedral surface except the ones corresponding
to edges of T ∗, one gets a polygonal schema (Figure 1.11D).

The remaining part of the proof consists in transforming the polygonal schema
to prove that the surface admits a polygonal schema of a very particular form.
These elementary operations are cut-and-paste operations: one cuts the polygonal
schema into two pieces, which are then glued along edges which must be identified
on the surface, so that this operation does not change the surface itself. See
Figure 1.12. With such operations, one proves that the surface admits a reduced
polygonal schema, then a canonical polygonal schema.

Let us assume that M is boundaryless; a reduced polygonal schema of M is a
polygonal schema of M in which all vertices of the boundary of the schema are
identified into a single point on the surface2. After identification of the edges of the
polygonal schema, one obtains a set of closed paths which are simple and pairwise
disjoint, except at some vertex v0, where they all meet; the complementary part
in M of these closed paths yields a topological disk. Such a set of loops is called

2Let us emphasize that this notion is independent from any triangulation of M. In particular,
the paths of a polygonal schema are not necessarily included in the vertex-edge graph of M, if
M is polyhedral.



1.3 Classification and decomposition of surfaces 23

PSfrag replacements

A B C D

Figure 1.11: The creation of a polygonal schema of a polyhedral surface (here,
with three boundaries and with genus zero). A: The surface. B: The dual graph
G∗ of the vertex-edge graph. C: A spanning tree T ∗ of this graph. D: Cutting
of the surface along the dual edges of G∗ \ T ∗. The edges in bold lines must be
paiwise identified to get again the surface.
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Figure 1.12: Surgery of a polygonal schema.

a fundamental system of loops, and v0 is the basepoint of this system.
There is no standard definition of a reduced polygonal schema on a surface

with boundary. We shall take the following definition: if M has at least one
boundary, a reduced schema of M is a polygonal schema such that, after identifi-
cation of the edges and vertices, each boundary of M contains exactly one vertex
of the schema, and such that there is at most one vertex outside the boundary of
M. Any polygonal schema can be transformed into a reduced polygonal schema.

A canonical polygonal schema of a surface M is a polygonal schema in which
the boundary of the polygon has the form

a1b1ā1b̄1 . . . agbgāg b̄g c1d1c̄1 . . . cbdbc̄b or aā, (1.1)

where (g, b) ∈ N
2 \ {(0, 0)}. (The edges di are identified with no other edge

and thus correspond to the boundary of the surface.) The particular case aā

corresponds to the case where the surface is the sphere. See Figure 1.13 for an
example of a canonical schema of a sphere with 4 boundaries, and Figure 1.14 for
an example on the double-torus. It is possible to prove that any canonical schema
is reduced, and that any reduced schema can be transformed into a canonical
schema.

Hence, any compact, connected, orientable surface is homeomorphic to the
surface obtained by identifying the edges of a polygonal schema defined by For-
mula (1.1), for some (g, b) ∈ N

2 (by convention, g = b = 0 if the schema has the
form aā). One proves that the Euler characteristic of such a surface is 2− 2g − b,
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Figure 1.13: A polygonal schema on a sphere with 4 boundaries.
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Figure 1.14: A: A canonical polygonal schema of the double-torus. B: The iden-
tification of the edges of the schema. C: We get a double-torus containing a set
of loops which are simple and pairwise disjoint except at a common point, such
that cutting the surface yields a topological disk: a fundamental system of loops
of the double-torus.
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Figure 1.15: Two representations of a pair of pants.

Figure 1.16: A pants decomposition of a triple-torus.

and that a sphere with g handles glued and b disjoint open disks removed admits
a canonical polygonal schema defined by Formula (1.1).

Given a compact, orientable surface having k connected components, its genus
g is the sum of the generi of its connected components, and its number of bound-
aries b is the sum of the numbers of boundaries of its connected components.
Using the previous theorem, we see that the Euler characteristic of such a surface
is 2k − 2g − b.

1.3.3 Pants decompositions

We now introduce another type of surface decomposition, which will be used in
Chapter 3. A pair of pants is a surface with genus 0 and with 3 boundaries
(Figure 1.15). A pants decomposition (see [90] or [149, p. 269]) of M is a set of
simple, pairwise disjoint cycles such that cutting M along these cycles yields pairs
of pants (Figure 1.16). Any compact, connected, orientable surface whose Euler
characteristic is negative (which excludes the sphere, disk, cylinder and torus)
admits a pants decomposition. One can create a pants decomposition of a surface
by cutting iteratively this surface along an essential cycle, i.e., a simple cycle such
that no connected component of the surface cut along this cycle is a disk or a
cylinder. A pants decomposition is made of 3g + b − 3 cycles.
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Figure 1.17: The two cycles on this double-torus are freely homotopic, but not
homotopic when considered as loops with basepoint v.

1.4 Homotopy, isotopy, and universal covering space

The notions of homotopy and isotopy enable to determine if it is possible to
deform one curve into another one. The universal covering space is a space which
enables to make homotopy computations.

1.4.1 Homotopy

Let p and q be two paths on a surface M. The concatenation of p and q, denoted
by p.q, is the path defined by:

• (p.q)(t) = p(2t), if 0 ≤ t ≤ 1/2;

• (p.q)(t) = q(2t − 1), if 1/2 ≤ t ≤ 1.

A reparameterization of a path p is a path of the form p◦ϕ, where ϕ : [0, 1] → [0, 1]

is bijective and increasing. If the paths are considered up to reparameterization,
the concatenation is associative. The inverse of a path p, denoted by p−1, is the
map t 7→ p(1 − t).

The notion of homotopy corresponds to the intuitive idea of deformation. Two
paths p and q on M, having both a and b as endpoints, are homotopic if there
exists a continuous family of paths whose endpoints are a and b between p and q.
More formally, a homotopy between p and q is a continuous map h : [0, 1]×[0, 1] →
M such that h(0, .) = p, h(1, .) = q, h(., 0) = a, and h(., 1) = b. This definition
applies in particular to the case of loops.

Two cycles γ and γ ′ are homotopic if there is a continuous family of cycles
joining γ to γ ′, i.e., a continuous map h : [0, 1] × S1 → M such that h(0, .) = γ

and h(1, .) = γ ′.
Homotopy of cycles (also called free homotopy) and homotopy of loops (also

called homotopy with fixed basepoint) are two equivalence relations which are quite
different, see Figure 1.17 for an example. A loop (resp. a cycle) is contractible if
it is homotopic to a constant loop (resp. to a constant cycle).

Let v0 be a point of M. The relation “is homotopic to” partitions the set of
loops with basepoint v0 into homotopy classes. Let us denote by [`] the homotopy
class of a loop `. The set of homotopy classes can be equipped with the law
“ .” defined by [`].[`′] = [`.`′], and, with this law, the set of homotopy classes of
loops with basepoint v0 is a group, called the fundamental group of (M, v0) and
denoted by π1(M, v0) or more concisely π1(M), whose unit element is the class
of contractible loops.
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Figure 1.18: Two homotopic simple paths are not necessarily isotopic. Here, the
surface considered is the plane minus one disk; paths p (in dashed lines) and q

(in solid lines), which have a and b as endpoints, are simple, homotopic, but not
isotopic.

In particular, the fundamental group of the disk or the sphere is trivial: two
paths having the same endpoints are homotopic. The fundamental group of the
cylinder is Z (the homotopy class of a loop is the same as the signed number of
times it winds around the hole), and the fundamental group of the torus is Z

2.
(The fundamental group of the pair of pants is the free group with two generators.)

Free homotopy can be interpreted within the fundamental group, as follows.
It can be proved easily that two cycles γ and γ ′ are homotopic if and only if, for
any two loops ` and `′ associated repectively to γ and γ ′, there exists a path β

joining `(0) to `′(0) such that the loop β−1.`.β.`′−1 is contractible. Two loops `

and `′ with basepoint v0 are thus homotopic as cycles if [`] and [`′] are conjugates
in the fundamental group.

1.4.2 Isotopy

An isotopy h between two simple curves (paths, loops, or cycles) is a homotopy
such that the curves remain simple during the whole deformation: for each t ∈
[0, 1], h(t, .) must be a simple curve (path, loop, or cycle).

For simple curves, the notions of homotopy and isotopy are close but not
identical. Two homotopic simple paths are not necessarily isotopic, as proved by
a counterexample due to Feustel [71], drawn on Figure 1.18. Nevertheless, there
are cases where two homotopic simple paths must be isotopic:

Lemma 1.6 Let D be a closed disk, and c1 and c2 be two simple paths in D

with the same endpoints, and which intersect the boundary of D precisely at their
endpoints. Then c1 and c2 are isotopic in the interior of D augmented with tbe
endpoints of c1.

This result is a simple consequence of the Jordan–Schönflies theorem (and is even
trivial if the relative interiors of c1 and c2 are disjoint).

For two simple loops, we have the following theorem by Epstein [67, Theo-
rem 4.1]:

Theorem 1.7 Let `1 and `2 be two simple, homotopic, non-contractible loops on
an orientable surface. Then `1 and `2 are isotopic.
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(This theorem is false if the loops are contractible, because two simple cycles,
bounding a disk and oriented in opposite directions, are not isotopic. The ori-
entability of the surface is also necessary.)

1.4.3 A few simple results

The same paper [67] by Epstein contains several results related to homotopy of
curves on surfaces, which will be used in Chapter 3 and deserve to be mentioned
here. They are quite intuitive. Two of these results describe the surfaces obtained
by cutting along some loops:

Theorem 1.8 (Epstein [67, Theorem 1.7]) Let ` be a simple, contractible loop on
a surface. Then ` is the boundary of a topological disk.

Lemma 1.9 (Epstein [67, Lemma 2.4]) Let γ and γ ′ be two simple, pairwise
disjoint, homotopic but non-contractible cycles. Then γ and γ ′ bound a cylinder.

A loop ` and a signed integer k being fixed, the kth power of ` is the concate-
nation of |k| times the loop ` (if k ≥ 0) or `−1 (if k < 0).

Lemma 1.10 (Epstein [67, Lemma 4.3]) Let ` be a non-contractible loop on an
orientable surface, and k ≥ 1. Then the kth power of ` is non-contractible.

More precisely:

Theorem 1.11 (Epstein [67, Theorem 4.2 and Lemma 4.3]) Let ` be a non-
contractible loop on an orientable surface. Let k ≥ 2. Then there exists no simple
loop homotopic to the kth power of `.

1.4.4 Universal covering space

Informally, the universal covering space of a surface M is a surface M̃ such that it
is possible to lift curves from M into M̃ and such that two paths are homotopic in
M if and only if these paths can be lifted to paths which have the same endpoints
in M̃. The universal covering space is thus a tool to compute homotopy.

1.4.4.1 Examples

Let M be the annulus (which is homeomorphic to a cylinder) depicted on Fig-
ure 1.19A. If this annulus is cut along the dashed line segment, we obtain a
rectangle; if we glue together infinitely many copies of this rectangle, we obtain
an “infinite strip”, depicted on Figure 1.19B, which will be denoted by M̃. There
is a natural “projection” π from M̃ onto M, such that a path in M can be lifted
to a path (in fact, infinitely many paths) in M̃. We see that two paths c and c′

are homotopic in M if two lifts of c and c′ starting at the same vertex of M̃ have
the same targets. The two loops represented on the figure are not homotopic,
because one of them is contractible (its lifts in M̃ are closed curves), and the
other one is non-contractible (its lifts are not closed).
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Figure 1.19: A: An annulus M and two loops with the same basepoint (in black).
B: Its universal covering space M̃, with lifts of these loops. The vertices of M̃ in
black are the lifts of the basepoint.
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Figure 1.20: A: A torus. B: A polygonal schema of the torus. C: The universal
covering space of the torus.

The same figure can be drawn for the torus (Figure 1.20A). If this torus
M is viewed as a canonical polygonal schema (Figure 1.20B), a square whose
opposite sides will be identified to obtain M, its universal covering space consists
of infinitely many copies of this polygonal schema glued along the sides of the
schema: hence, it is the plane (Figure 1.20C).

1.4.4.2 Definition and properties

Precisely, a universal covering space of a connected surface M is the data of a
pair (M̃, π), where:

• M̃ is a (possibly non-compact) surface which is simply connected, i.e., every
loop in M̃ is contractible;

• π is a continuous map from M̃ onto M, called projection, which is a local
homeomorphism: any point x of M has an open, connected neighborhood U

such that π−1(U) is a disjoint union of open sets (Ui)i∈I and π|Ui
: Ui → U

is a homeomorphism.

It is known that each connected surface has a universal covering space (see [114,
Chapter 5]). On the other hand, two universal covering spaces are isomorphic
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(that is, there is a homeomorphism between them which “projects” to the identity
map). This enables to speak without ambiguity of the universal covering space of
a surface M.

A lift of a path p is a path p̃ in M̃ such that π ◦ p̃ = p. An automorphism
of (M̃, π) is a homeomorphism h : M̃ → M̃ which preserves the structure of the
covering: π ◦ h = π.

The main properties of (M̃, π) that we will use are:

• the lift property : let p be a path in M whose source is y; let x ∈ π−1(y).
Then there exists a unique path p̃ in M̃, whose source is x, such that
π ◦ p̃ = p;

• the homotopy property : two paths p1 and p2 with the same endpoints are
homotopic in M if and only if they have two lifts p̃1 and p̃2 sharing the
same endpoints in M̃;

• the intersection property : a path p in M self-intersects if and only if either
a lift of p self-intersects, or two lifts of p intersect.

The notion of lift is defined in a similar way for the other types of curves: a
lift of an infinite path p : R → M is an infinite path p̃ such that π ◦ p̃ = p. A lift
of a cycle γ (considered as a map from R into M such that γ(.) = γ(1 + .)) is an
infinite path γ̃ : R → M̃ such that π ◦ γ̃ = γ.

1.4.4.3 A construction of the universal covering space

Let M be a connected polyhedral surface. It is possible [92, pp. 209–212] to
describe in full generality a construction of the universal covering space of M. We
will only give an idea of the construction in the case where the polyhedral surface
M has no vertex in its interior (following the description by Hershberger and
Snoeyink [94]). Schipper [135] and Dey and Schipper [54] have given algorithms
to build the universal covering space in the case of boundaryless surfaces.

The algorithm maintains a portion S of the universal covering space of M
which has been built, which is a topological disk. S is made of copies of polygons
of M (in other words, the image, by π, of each point of S is known). The edges
of S can be of two types: there are active edges, beyond which the construction
of the universal covering space needs to be proceeded, and inactive edges, which
are still incident to two polygons in S (or to one polygon, if they project to the
boundary of M). Initially, S consists of a copy of one single polygon of M, and all
the edges of this copy are active, except the edges which project to the boundary
of M. The following process is iterated:

• let p be a polygon of S with an active edge a;

• let p′ be a copy of the polygon of M adjacent to π(p) through π(a);

• we glue p′ to p via the edge a;

• the edges of p′ which do not project to the boundary of the surface are made
active, except a, which is made inactive.
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Figure 1.21: The construction of the universal covering space of a pair of pants
(a polygon with two holes of the plane). The active edges are depicted in bold
lines. A: The polyhedral surface itself. B: Initialization of the construction with
one single polygon. C: After one elementary step, S consists of two polygons. D:
A few stages later. E, F, G: Continuation of the process. Several polygons of S

project to a same polygon of M.

Figure 1.22: On top, the construction of the universal covering space of an annulus
represented by a triangulation whose vertices are all on the boundary. The dual
graph of the triangulation is represented. At the bottom, an example showing
that the same construction will fail if there are vertices of the triangulation in the
interior of M: in this example, the algorithm does not construct the universal
covering space, but an object containing a vertex incident to infinitely many
triangles.
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Figure 1.21 presents an example of this construction. This process is, of course,
infinite (except in the case of the sphere or the disk). To show that the map π

is a local homeomorphism, the acyclicity of the dual graph G∗ of the vertex-edge
graph G of M is crucial (this comes from the fact that the vertices of G are on
the boundary of the surface), see Figure 1.22. On the other hand, it is clear that
the space built by the algorithm is simply connected, because the dual graph of
its vertex-edge graph is a tree.

1.4.4.4 Properties of curves in the universal covering space

The Jordan curve theorem gives a separation property for cycles in the plane.
The following lemma, which will be used in Chapter 3, extends this property to
the case where the space is the universal covering space of a surface.

Lemma 1.12 Let M be a surface and (M̃, π) be its universal covering space. Let
c be a simple curve on M which is:

• either a path which intersects ∂M exactly at its endpoints,

• or a cycle in the interior of M.

Then each lift c̃ of c in M̃ separates M̃ into two connected components.

Proof. A proof can be found in [24, p. 417]; we give an intuition of a possible
proof. We will exhibit a construction of the universal covering space of M for
which it will clearly appear that the lifts of c are separating (we hence implicitely
use the uniqueness of the universal covering space up to isomorphism).

Let us cut M along c, thus obtaining a surface M′. The boundary of M′ is
made of pieces coming from the boundary of M and of other pieces coming from
the cutting of M along c. Let (M̃′, π) be the universal covering space of M′.
The boundary of M̃′ is made of pieces which are lifts of c, and of pieces which
are lifts of pieces of boundaries of M′.

For each piece c̃1 of boundary of M̃′ which is a lift of c, we create a copy
M̃′

c̃1
of M̃′. We then glue c̃1 to a portion of boundary of M̃′

c̃1
which has the

opposite orientation. We thus obtain a surface whose boundary is also made of
pieces which are lifts of c or lifts of pieces of boundaries of M′. We continue the
construction, by gluing to this surface new copies of M̃′.

The topological space obtained is clearly simply connected (the dual graph of
the copies of M̃′ glued together is a tree, and each copy is simply connected). It
remains to prove that it is a surface which is a covering space of M. Moreover,
each lift of c separates this surface into two connected components.
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Chapter 2

Previous works

The main contribution of this thesis, in Chapter 3, is based on the study and the
computation of shortest paths on surfaces, within a given homotopy class. In this
chapter, we present an overview of the existing related results. We will survey
successively:

• the works considering the computation of shortest paths, in a graph and on
a surface;

• the results of computational topology related to the problems of homotopy
and decomposition of surfaces into polygonal schemata;

• the algorithms concerned with the computation of shortest paths within a
given homotopy class;

• the application domains of all these works.

We will situate our work among these results when they appear. Reading this
chapter is not necessary to understand the next one.

We have chosen not to describe here a state of the art of the works related
to Chapters 4 and 5: it seemed more interesting to describe in detail the related
works of one single contribution. However, these two chapters both contain a
presentation, much more concise than the present chapter, of their related works.

2.1 Computation of shortest paths

A part of our work is directed towards the shortening of curves. In this section,
we focus on the problem of computing shortest paths. Our goal here is not to
give an exhaustive view of the domain: several chapters of textbooks and papers
are devoted to this topic (we refer the interested reader to [137, Chapters 6–9]
and [115]). We simply indicate a few significant works which will be cited later in
the thesis. We first examine the problem of computing shortest paths in a graph,
then in a planar region, and finally on a polyhedral surface (each polygon being
Euclidean).
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2.1.1 Shortest paths in graphs

By their generality, graphs appear in many problems, being either geometric (em-
bedded on a surface or in the space) or abstract (modeling connections between
persons, entities, networks, . . . ). The computation of shortest paths in graphs is
a fundamental problem in combinatorial optimization.

Schrijver [137, Chapters 6–9] has recently described in an extensive way the
various algorithms to compute shortest paths in graphs; we refer the interested
reader to this book (see also [44, pp. 514–578]). There are several variations of
the problem: is it an oriented graph or not? is the graph weighted, or do all edges
have unit weights? if it is weighted, can the weights be negative? are we looking
for a shortest path between two points, or for the set of shortest paths from a given
point, or for the set of all shortest paths in the graph? We restrict ourselves to
the case of a weighted non-oriented graph G = (V,E), with non-negative weights,
for which we want to compute a shortest path between two vertices s and t.
Quite surprisingly, most algorithms solving this problem compute, with the same
complexity, a shortest path between s and all vertices of the graph. In fact, they
compute a spanning tree of G, rooted at s, such that all simple paths in this tree
starting at s are shortest paths.

Dijkstra’s well-known method [56], dating back to 1959, builds such a tree.
Let us first explain how to compute the distance between s and all vertices of the
graph. The algorithm maintains:

1. for each vertex v, a value d(v) ∈ R+ ∪ {+∞} which equals the (possibly
infinite) length of a path from s to v; initially, the map d equals 0 at s and
+∞ for all other vertices. The value of d(v) will only decrease in the course
of the algorithm and will reach, at the end, the distance between s and v;

2. a set U ⊆ V , initially empty, of vertices for which the value of d is exactly
the distance to vertex s;

3. the following property: at each stage of the algorithm, for any edge (u, v),
u ∈ U and v ∈ V \U , d(v) is smaller or equal than d(u)+ |uv|. (|uv| denotes
the length of edge (u, v).)

The algorithm consists in finding iteratively v ∈ V \U such that d(v) is minimal.
In this situation, the distance between s and v must be equal to d(v); v is thus
appended to U . To maintain the third property, the algorithm proceeds to a
relaxation step: for each vertex v′ incident to v, if d(v′) > d(v)+ |vv′|, we let d(v′)

be d(v) + |vv′|. The process is continued until U = V .
The algorithm can be easily adapted to compute a tree of shortest paths rooted

at s: each vertex different from s maintains the value of its father, updated at
each relaxation step. From the complexity viewpoint, the difficulty is to access
quickly to the vertex of V \ U whose value of d is miminal. Using this method
with Fibonacci heaps, one can compute a tree of shortest paths in time O(|E| +
|V | log |V |).

Many variations of the problem have been studied; let us mention a result
which is useful in our context, due to Henzinger, Klein, Rao, and Subramanian [93]
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Figure 2.1: The funnel algorithm. On the left, the triangles strip joining vertices
s and t, and edges e1, . . . , e11. In the middle, a funnel defined by s and edge v1v2.
On the right, the search of the shortest path from s to v3 amounts to finding in
which “sector” is v3.

in 1997. Let G be a planar, non-oriented graph. There exists an algorithm with
linear complexity O(|E|) to compute a shortest path between s and each vertex
of G. The cornerstone of their method is the existence, for a planar graph, of
good separators, which are “small” sets of vertices separating the graph into “not
too large” connected components; they also use relaxation steps as in Dijkstra’s
method.

2.1.2 Shortest paths in a planar region

Now, let us consider the more geometric case of the computation of shortest paths
on a surface. We will treat of the case of a planar region and of a polyhedral
surface. We refer the reader interested by geometric shortest paths in general
to [115].

We start with the case of a simple polygon (i.e., without holes) in the plane.
The funnel algorithm, by Lee and Preparata [107], enables to compute a shortest
path between two vertices s and t in a simple polygon P . We start by triangulating
the interior of P without adding new vertices (see for example [19, p. 278]); let
T be such a triangulation. The dual graph of T is a tree, and the set of triangles
joining s to t is a strip of triangles B. The shortest path between s and t is
necessarily in B. Let us call e1, . . . , en the list of interior edges of B, in the order
from s to t (Figure 2.1, left). To compute the shortest path between s and t, it
is sufficient, knowing the shortest path between s and the endpoints of ei, to be
able to compute the shortest path between s and the endpoints of ei+1.

Let v1 and v2 be the endpoints of ei. The crucial fact used in the algorithm
is the structure of the shortest paths c1 (resp. c2) between s and v1 (resp. s and
v2). Starting from s, c1 and c2 may overlap at the beginning, until some vertex
a, where they diverge and follow concave chains to vertices v1 and v2; hence the
suggestive term of funnel, which denotes the area comprised between a, v1, and
v2 (Figure 2.1, middle part). This simple structure enables, given the shortest
paths c1 and c2, to deduce the shortest path between s and the vertex v3 of
edge ei+1 distinct from v1 and v2: it suffices to determine in which “sector” of
the plane, delimited by the supporting lines of the line segments of c1 and c2

touching the funnel, is v3 (Figure 2.1, on the right). If the triangulation is given,
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the computation of the shortest path between s and t can be done in time linear
in the number of triangles of the strip B (in fact, it is theoretically possible to
triangulate P in linear time [30]).

We have just considered the problem of computing a shortest path in a sim-
ple polygon. But what about a polygonal planar region (the plane minus some
obstacles for example)? Two main approaches are known. The first one lies in
the computation of the visibility graph of the scene (see for example [46, Chap-
ter 15] or [5]), which contains all shortest paths between vertices. In the second
approach, the propagation of a “wave” from a vertex s is simulated, and the time
at which this wave reaches the target vertex t is the distance between s and t. In
other words, we maintain the set of points at a certain distance of s. The paper by
Hershberger and Suri [95] gives an optimal algorithm, in time O(n log n), where
n is the number of vertices of the scene, to compute a shortest path.

To conclude, let us mention a paper by Papadopoulou [124] which is related
to our work. The problem is the following: let P be a simple polygon, and let
(si, ti) be k pairs of points on the boundary of P ; if it exists, compute the family
of k shortest paths which are simple and pairwise disjoint between si and ti,
i = 1, . . . , k. Of course, it may well happen that such a family does not exist: for
example, if k = 2 and if the order of the vertices on the boundary of the polygon
is s1, s2, t1, t2, any path between s1 and t1 must cross any path between s2 and
t2. Paths are supposed to be disjoint in a weak sense: they are allowed to go
along together, but not to cross (in other words, there exists an arbitrarily small
perturbation which makes the paths simple and pairwise disjoint). The algorithm
by Papadopoulou has complexity O(k + n log k), where n is the complexity of
the polygon. In Chapter 3, we will also have to find a family of shortest paths
which are simple and pairwise disjoint, but in the case of a surface which is not
necessarily planar and while maintaining the homotopy class.

2.1.3 Shortest paths on polyhedral surfaces

Let us now start the computation of shortest paths on a polyhedral surface. The
topological definition of a polyhedral surface has been given in Chapter 1; we add
to this definition a metric property: each polygon must be isometric to a polygon
of the Euclidean plane (in particular, the lengths of the identified edges must
match together).

We have to distinguish between the notion of shortest path and the notion
of geodesic, which is a path locally minimal, that is, a local perturbation of this
path increases its length. A shortest path is a geodesic, the converse being false.
Starting with a path between two points, it is possible to deform it into a geodesic
by local optimizations; on the contrary, to compute a shortest path, such methods
are not sufficient. We will only focus on shortest paths computations, not on
geodesics.

An intermediate problem is to compute the sequence of edges crossed by the
shortest path. A crucial property is the unfolding property: if a shortest path
crosses an edge e, and if we flatten the two polygons incident to e, then the shortest
path is a line segment in this representation. If the sequence of edges crossed by
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the shortest path is known, this property shows that the funnel algorithm can be
used in the corresponding strip of triangles to compute the shortest path. From a
theoretical viewpoint, it is possible to study [118, 1] the sequences of edges crossed
by all shortest paths on a convex polyhedron, which yields an indication on the
structure of these shortest paths.

Mitchell, Mount, and Papadimitriou [116] have given an algorithm to compute
exact shortest paths on a (not necessarily convex, and of arbitrary topology)
polyhedral surface, in time O(n2 log n), where n is the complexity of the surface.
Their method relies on the “continuous Dijkstra” technique: a point s being fixed,
the algorithm computes a subdivision of the polyhedron such that, in each region,
the shortest paths to s cross the same edges of the surface. Chen and Han [31]
have shown that the problem is solvable in time O(n2). Their method is to build
a tree of sequences of edges crossed by the shortest paths (without subdividing
the surface); they manage to bound the size of the tree.

Approximation algorithms have also been developed. Generally, the vertex-
edge graph of the surface is refined in a particular way, and the shortest path is
computed within this graph. In practice, these algorithms have a good behaviour
and are quite simple to implement [99]; it is even possible to bound the quality
of the approximation [104]. “Fast marching methods” can also be used: they
simulate the propagation of a wave from a starting point, see [138, pp. 289–298].

On the other hand, computing a shortest path in R
3 with obstacles is much

more difficult: Canny and Reif [27] have shown that this problem is NP-complete.
Approximation algorithms are developed.

2.2 Curves on surfaces: homotopy and decomposition

The topology of surfaces, as briefly described in the last chapter, dates back to
the first half of the 20th century. We will here focus on the algorithmic aspects
of this domain, by pointing out the problems of homotopy of curves on surfaces.
This way, we restrict ourselves to a small part of computational topology; we will
not try to mention problems related to homology, and our discussion will conduct
us only very concisely to Morse theory. For general references on computational
topology, we refer the reader to publications [153, 11, 51]. Moreover, we defer to
the next section the topics concerning the shortening of curves while preserving
their homotopy class, which are more directly related to our works.

In a first part, we will describe the algorithms for computing polygonal schemata,
which are often the preliminary step to solve homotopy problems on surfaces.
Then, methods enabling to decide if two curves are homotopic will be described,
since it is quite a central problem. Finally, we will more concisely mention the
existing techniques to decide if a curve is homotopic to a simple curve, or to
“uncross” a set of curves.

Unless otherwise specified, the surface M is a triangulated surface (the algo-
rithms often extend to the case where M is polyhedral), and the curves are cycles
or possibly closed paths in the vertex-edge graph of M.
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Figure 2.2: Paths going along the vertex-edge graph of a polyhedral surface M.
For each edge e of this graph, the order, from left to right, of the edges of the
paths going along e is known.

2.2.1 Surface decomposition

2.2.1.1 Reduced or canonical schemata

For a given surface M, the existence of a polygonal schema has been known since
the end of the 19th century: the classical proof of the classification theorem for
surfaces exactly amounts to showing that each surface has a canonical polygonal
schema. This proof is effective: starting with a polygonal schema, it yields a way
to compute a canonical schema, as noted in 1921 by Brahana [21].

Let us first emphasize that there may exist no reduced polygonal schema
whose loops are on the vertex-edge graph G of a surface M. If the surface is
boundaryless, of genus g, the basepoint of the corresponding system of loops
must have degree at least 4g, which is of course not always the case. Hence, it is
necessary to draw loops outside G. In fact, from an algorithmic point of view, this
is not necessary: it is sufficient to assume that several loops can go along a same
edge of G, so that it is possible to “spread them apart” to make them simple and
pairwise disjoint. In Chapter 3, we will also have to deal with paths which “go
along” each other on the vertex-edge graph; see Figure 2.2, and, for more details,
Section 3.1, page 60.

Lazarus, Pocchiola, Vegter, and Verroust [105] have worked on the computa-
tion of a canonical schema in the case of a combinatorial surface. They have given
two algorithms with optimal complexity O(gn), for a boundaryless orientable sur-
face M. Their first algorithm, sketched in [154], is incremental: the principle is
to maintain, at each step of the algorithm, a surface S whose boundary is a sim-
ple cycle on the vertex-edge graph of M. At the beginning, S is the surface M
with one triangle removed. The surface is shrinked by iteratively removing trian-
gles incident to its boundary. When the removal of such a triangle modifies the
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topology of the boundary (which is not a simple cycle any more), there are two
cases according to whether this removal disconnects S or not. If it does, the algo-
rithm is recursively run on each of its connected components (if the genus of the
component is non-zero). Otherwise, this topological modification of the bound-
ary enables to compute a pair of loops, which will be part of the final canonical
polygonal schema, and the algorithm is run on the surface cut along these loops.

The previous method directly builds a canonical schema. On the contrary, the
second algorithm proposed in [105] is based on the use of Brahana’s method [21]:
a polygonal schema is computed, which is then put under reduced form, and then
under canonical form. The computation of an initial schema is made simply by
computing a subgraph G′ of G such that its complementary part is an open disk
(see Section 1.3.2). In fact, G′ has 2g independant cycles, and these cycles will
play a part in the following, because they generate the fundamental group of M.
A reduced schema is obtained by extending the cycles of G′ into loops having a
common basepoint, then it is transformed into a canonical schema by proceeding
combinatorially to so-called “Brahana transformations”, which are cut-and-paste
operations; the difficulty resides in the obtention of an overall O(gn) complexity.

2.2.1.2 Short schemata

In 2002, Erickson and Har-Peled [68] considered the problem of finding the short-
est polygonal schema of a surface. Let M be a polyhedral surface, possibly
non-oriented, of genus g and with k boundaries; assume that each edge has a
non-negative weight. The goal is to cut M along some of its edges to obtain a
topological disk, while minimizing the sum of the weights of the edges of the cut-
ting. (Here, each edge of the surface contains at most one path of the polygonal
schema.) The paper contains several results:

• this problem is NP-hard, even in the case where all edges have unit weights.
It is indeed possible to reduce this problem to the problem of the rectilinear
Steiner tree: if n points on a square grid of size m × m are fixed, finding
the shortest tree in the grid which contains all points is NP-hard;

• there is an algorithm to solve this problem in time nO(g+k). Let G be the
shortest polygonal schema on M, considered as a subgraph of the vertex-
edge graph of M. Let Ĝ be the graph obtained from G by removing the
dangling edges which are not incident to the boundary of M, and by re-
moving the vertices of degree 2; Ĝ is proved to have O(g + k) vertices and
O(g + k) edges; then an exhaustive search is performed;

• the authors also gave a polynomial algorithm to compute an O(log2 g)-
approximation of the shortest polygonal schema. Their approach consists
in cutting iteratively the surface along short essential cycles, until surfaces of
zero genus are obtained, and then in cutting these surfaces with a spanning
tree joining the boundaries of these surfaces. They also gave a method to
compute exactly the shortest essential cycle in the vertex-edge graph of M.
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2.2.1.3 Other types of decompositions

We wished to limit our description to the case of the decompositions by polygonal
schemata, because they are the closest to our work. However, there exist other
types of topological decompositions of surfaces.

In the conclusion of [68], the existence of pants decompositions of surfaces
is mentioned, but, to our knowledge, no algorithm on this subject exists in the
literature.

Morse–Smale complexes constitute an important type of surface decomposi-
tion. A property is that they depend on a map f : M → R (if M is embedded
in R

3, f can be the “height function” of the surface). The idea is to decompose
M along the flow lines of f passing through critical points of f . This is math-
ematically well-studied; difficulties occur in the polyhedral case. Edelsbrunner,
Harer, and Zomorodian [63] have given an algorithm to compute Morse–Smale
complexes decomposing a surface M. This approach can be generalized to higher
dimensions [62].

Another problem [28] is the decomposition of a two-dimensional simplicial
complex, which is, a priori, not a surface, into surfaces: the complex is cut along
its edges so that, after cutting, the complex is a union of surfaces.

2.2.2 Contractibility and homotopy tests

The two following questions have received much attention, in the development of
algebraic topology and since the apparition of computational topology:

• the contractibility problem is as follows: on a combinatorial surface M,
decide if a closed path c is contractible. Another problem is to decide if
two given paths c1 and c2 are homotopic; it is trivially equivalent to the
contractibility problem since c1 and c2 are homotopic if and only if the
concatenation of c1 and of the inverse of c2 is a contractible closed path;

• the problem of deciding whether two given cycles γ1 and γ2 are homotopic.
Solving this problem clearly enables to solve the first one, a closed path
being contractible if and only if the corresponding cycle is contractible.
This problem is thus more difficult than the previous one.

We here indicate the two main approaches to solve these problems. Unless
otherwise specified, the surface M is without boundary.

2.2.2.1 Approach using the universal covering space

A first approach is based on the universal covering space. Let us assume that we
are able to build the universal covering space (M̃, π) of our surface M (or, at
least, a sufficiently large part of this covering space), and to build lifts of paths
of M in M̃. Then, deciding whether a path c is contractible reduces to lift c to
a path c̃, which is closed if and only if c is contractible.

Schipper [135] used this property. His algorithm incrementally builds the part
of the universal covering space containing the lift of a curve. This construction
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is based on the preliminary computation of a canonical polygonal schema of M;
then, copies of this polygonal schema are glued in the course of the algorithm.
With this construction, he can solve the contractibility problem in O(gn + g2k)

time, where k is the number of edges of the path, g is the genus of the surface
and n is its complexity.

Dey and Schipper [54] have improved the previous result: the contractibility
test can be achieved in O(n + k log g) time. The method is similar, but the
polygonal schema is not necessarily canonical any more, and its storage is done
in a more efficient way, which reduces the overall complexity.

The two previous papers also work in the non-orientable case (M is still
boundaryless). This method using the universal covering space is interesting by
itself. But this does not yield any algorithm to decide whether two cycles are
homotopic.

2.2.2.2 Algebraic approach

It is natural to reformulate these problems in algebraic terms. A path c is con-
tractible if and only if c represents the unit element of the fundamental group;
two cycles γ1 and γ2 are homotopic if and only if the homotopy classes of (any)
two loops `1 and `2 associated to γ1 and γ2 are conjugates.

Let us consider a polygonal schema P of M, on an orientable surface of genus
g. We assume for simplification that P is canonical: it has the form

a1b1ā1b̄1 . . . agbgāg b̄g.

Any path in M retracts on the edges of P . On the other hand, the fundamental
group of M, written π1(M), is generated by the paths of P . It is indeed the free
group with 2g generators

[a1], [b1], . . . , [ag], [bg],

quotiented by the relation

[a1][b1][ā1][b̄1] . . . [ag][bg][āg][b̄g] = 1 (2.1)

(1 denoting the unit element of π1(M)). It is thus possible to code the homotopy
class of a path by a reduced word (containing no factor of the form xx̄ or x̄x) on
the alphabet

A = {a1, ā1, b1, b̄1, . . . , ag, āg, bg, b̄g}. (2.2)

This coding is ambiguous because of Relation 2.1: several words correspond to a
same element of the universal covering space. The contractibility and homotopy
problems can thus be split into two subproblems:

• the translation of the curves into algebraic terms, by words representing
their classes in the fundamental group. This stage requires the computation
of a polygonal schema;

• the computation in the fundamental group, that is, determining whether
an element of this group, coded by a word, is the unit element, or if two
elements of this group are conjugates.
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Figure 2.3: Transformation of a boundaryless surface to a surface with boundary
by addition of handles. The surface M (on the left) is a sphere (a parallelepiped)
with two boundaries, and the surface M̄ (on the right) is a double-torus, that is,
a sphere with two handles. Any path in M is contractible in M if and only if it
is contractible in M̄.

Dehn [49], as far back as 1912, proved that the contractibility problem and the
homotopy problem for cycles were decidable, on boundaryless orientable surfaces.
He gave an algorithm to compute in the fundamental group, by coding, in a
non-ambiguous way, a homotopy class with a reduced word on the alphabet A.
However, he did not consider the problem of computing a polygonal schema, and
the complexity of his algorithm is not optimal. See [145, p. 186].

Nearly a century afterwards, in 1999, Dey and Guha [53] gave an optimal
algorithm to solve both problems. Their approach follows the two above steps.
They however avoid the computation of a canonical polygonal schema, as in [54].
The second step, more difficult, is algebraic; it relies on results of combinatorial
group theory [84]. Their result is that testing homotopy between two cycles with
complexity k1 and k2, on a possibly non-orientable surface of complexity n, can
be done in O(n + k1 + k2) time. Their study however excludes three surfaces of
low genus for which the result of group theory does not apply.

2.2.2.3 The surfaces with boundary

The papers cited above do not mention the homotopy tests on surfaces with
boundary. Nevertheless, any surface with boundary M can be extended to a
boundaryless surface M̄ containing M, by gluing a “handle” to each boundary,
see Figure 2.3. It is intuitively clear that a path included in M is contractible in
M if and only if it is contractible in M̄; a rigorous proof of this fact is immediate
by Seifert–Van-Kampen theorem, a classical theorem of algebraic topology (see
for example [145, pp. 124–132]). This, with the algorithm by Dey and Guha [53],
implies that the problem of determining whether two cycles are homotopic on an
orientable surface with boundary is possible in O(n + k1 + k2) time.

2.2.2.4 The case of the plane

To our knowledge, only one paper by Cabello, Liu, Mantler, and Snoeyink [25]
tackles the problem of testing the contractibility in the plane with obstacles.
(Later, in Section 2.3.3, page 49, we will see that other papers aim at computing
the shortest path homotopic to a given path in the plane, which in particular
solves this problem; but the complexity is not necessarily optimal.)
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Figure 2.4: The two notions of homotopy where the endpoints of the paths are
obstacles. First case, on the left: the endpoints of the paths are “pins”; both paths
p and q are homotopic, p having the possibility to rotate around its left endpoint
(a few stages of the homotopy are represented in dashed lines). Second case, on
the right: the obstacles are disks, and the paths p and q are not homotopic any
more.

Figure 2.5: The shortest path homotopic to a given simple path is not necessarily
simple. Ths surface here is the plane minus one disk.

Let P be a set of points in the plane, called obstacles; we wish to decide
whether two paths are homotopic in R

2 \ P . Actually, it is possible to define,
in addition to the usual notion of homotopy where the curves are disjoint from
the obstacles, two variations of homotopy where the endpoints of the paths are
themselves obstacles (Figure 2.4):

• the case where the endpoints of the paths are “pinned” on a point of P : a
path c is a continous map from the open set (0, 1) into the plane minus P ,
with lim0+ c and lim1− c belonging to P ;

• the case where the endpoints of the paths are “pushpins”: each point of P

is considered as a larger obstacle (a closed disk with radius ε); a path is
defined as above, but the endpoints of the paths are on the boundary of the
disk. Thus, two paths with the same source, one of them winding around
the obstacle and the other one going straight ahead, are considered as being
non-homotopic under this definition, although they were homotopic under
the previous definition.

We will have to run into these subtleties later; in fact, the proof of Theorem 3.2,
in Chapter 3, consists exactly in playing with these two definitions. The paper
by Cabello et al. [25] applies to the standard homotopy notion as well as the two
other ones. The case of the usual notion is more intricate in the manipulation
of simple paths, because the shortest path homotopic to a given simple path can
self-intersect, as shown in Figure 2.5. The same phenomenon occurs for loops, see
Figure 2.6.

Assume that p and q are two paths with complexity n, the set P containing
also n points. In the case where p and q are both simple, but can intersect
together, Cabello et al. have given an algorithm of complexity O(n log n) to test
whether p and q are homotopic in R

2 \ P . The method can be decomposed into
three stages:
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Figure 2.6: The shortest loop homotopic to a given simple loop is not necessarily
simple. The surface is the plane minus two disks.

• a compression of the paths p and q, to store them in a form which does not
contain their geometric properties but which keeps the information of their
homotopy classes. This is done by defining an aboveness relation containing
the points of P and the x-monotone subpaths of p and q;

• a canonization of these representations, using shortcuts of the unused parts;

• a comparison of the representations (this step is non-obvious, because, after
the canonization, two homotopic paths may have different representations).

If p and q are not necessarily simple, the authors give an algorithm with
complexity O(n3/2). We will not give the details of this algorithm which uses
many results and data structures of computational geometry (red-blue segments
intersections, orthogonal range queries, crossing number of a graph, and so on).
Testing the homotopy between non-simple paths p and q is indeed at least as
difficult as Hopcroft’s problem, which seems to be not solvable in less than O(n4/3)

time.

2.2.2.5 Extensions

All the questions raised in the case of the surfaces can be asked in the case of
more general objects. But undecidable problems appear. There are simplicial
complexes of dimension 2, or 4-manifolds, for which the contractibility problem
is not decidable: indeed, any group with a finite presentation is the fundamental
group of a simplicial complex of dimension 2 (and also of a manifold of dimension
4), and deciding, in such a group, if a given element is the unit element is in
general unsolvable. See Stillwell [145, p. 247], who mentions other related results.

The complexity of these problems for manifolds of dimension 3 is unknown,
but these problems are supposed to be very difficult: independantly from the
algorithmic questions, the classification of 3-manifolds is not known. A key ingre-
dient in this direction would be to prove Poincaré’s conjecture, which claims that
a boundaryless, compact, connected, simply connected 3-manifold is homeomor-
phic to S3. Recent works due to Perelman seem to be an important step towards
a proof of this conjecture [125, 126].

2.2.3 Uncrossing curves

Another question which received attention is the following: a curve (path or cycle)
on M being fixed, is there a simple curve homotopic to this curve? More generally,
a family of curves C = (C1, . . . , Cn) being fixed, how to “uncross” these curves,
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Figure 2.7: A tessellation of the hyperbolic disk with regular octogons (with the
hyperbolic metric).

in the following sense: find C ′ = (C ′
1, . . . , C

′
n) such that Ci and C ′

i are homotopic
for all i, the curves of C ′ having as few intersections as possible?

2.2.3.1 A not really constructive method

At which condition is a loop homotopic to a given simple loop? Poincaré gave, in
1904, a necessary and sufficient condition, on a boundaryless orientable surface
M. Remember that the universal covering space of the torus consists of a regular
tessellation of the plane with squares. Such a construction is impossible with the
Euclidean metric for surfaces of higher genus: for the double-torus, for instance,
it would be necessary to build a tessellation of the plane with regular octogons,
each vertex being incident to eight octogons. This is however possible using a
non-Euclidean metric: one can build a tessellation of the hyperbolic plane (also
called Poincaré’s disk) with such polygons (see Figure 2.7, and [149] for a detailed
description of this metric). Let ` be a loop, and let ˜̀be a lift of ` in the universal
covering space built as indicated; let a and b be the endpoints of `, and let ` ′ be the
projection onto M of the unique geodesic path between a and b; `′ is homotopic to
`. Let us consider the set of all lifts of `′; obviously, if they are all pairwise disjoint
except at their endpoints, then `′ is simple, and thus ` is homotopic to a simple
loop. Poincaré proved the converse statement: ` is homotopic to a simple loop if
and only if the lifts of `′ are pairwise disjoint, except at their endpoints. Hence, `

is simple if and only if the shortest loop homotopic to ` is simple. This noteworthy
fact is specific to the metric (Euclidean or hyperbolic, depending on the genus of
the surface), as we explained in Figure 2.6. Several decades where needed to turn
this constatation into a fully effective process (see [145, pp. 190–194]).

2.2.3.2 The algebraic viewpoint

Chillingworth also expressed interest in this problem: in [33], he gave a method
to determine whether a given cycle is homotopic to a simple cycle. His method
is algebraic and uses the winding number of a curve with a vector field. In [34],
his result is extended and enables to determine whether a family of cycles is
“uncrossable” (i.e., if this family is representable by a family of simple, pairwise
disjoint cycles, while keeping their homotopy classes). The method is quite similar,
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but it uses, apart from the winding numbers, a way to code the homotopy class of
a curve which consists in writing down the list of the paths of a polygonal schema
crossed by this curve. We will introduce in Chapter 3, page 68, a variation of this
code. However, this does not yield a way to compute a family of simple, disjoint
cycles, if such a family exists.

The works by Cohen and Lustig [37] and Lustig [112] are in the same vein: the
goal is to compute the minimal number of intersections between two cycles within
a given homotopy class. The cycles are given in an algebraic form (on a homotopy
basis obtained with a canonical schema), but the ideas use the hyperbolic disk.
The algorithm has been implemented.

2.2.3.3 The use of elementary uncrossing operations

de Graaf and Schrijver [48] have studied the following more general problem: a
family of cycles Γ = (γ1, . . . , γn) on a surface (possibly non-orientable and/or
with boundary) being fixed, how is it possible to transform Γ into a family Γ′ =

(γ′
1, . . . , γ

′
n) such that, for all i, γi and γ′

i are homotopic, while minimizing the
number of crossings of Γ′? They proved that this is always possible by using
a few elementary uncrossing operations, called Reidemeister moves, which do
never increase the number of intersections. Additionally, each cycle γ ′

i in Γ′ has
a minimal number of self-intersections in its homotopy class, and, for all i 6= j,
γ′

i and γ′
j cross a minimal number of times among all curves γi and γj in their

homotopy classes. This yields an algorithm (not so effective, though) to compute
such a Γ′. The proof of this result is quite difficult and relies on the study of
the properties of a (hypothetical) family of cycles which would not reduce to a
minimally crossing family by Reidemeister moves, the family having a minimal
number of cycles; it consists in showing the result for simple surfaces (sphere,
open disk, projective plane), then in proving the same result for more complex
surfaces by using a Euclidean or hyperbolic metric on them.

Let us note that Hass and Scott [88] had studied the same problem before,
in the particular case of a single curve; the type of result they obtain is a bit
different, since they look for disks bounded by one or two pieces of curves on the
surface, containing possibly other pieces of curves in their interior.

One of the elementary Reidemeister moves is the “uncrossing” of two cycles
which cross twice, thus bounding a topological disk. If one of the cycles is the
shortest cycle in its homotopy class, and if a Reidemeister move is possible, this
means that the other cycle can be shortened by proceeding to this Reidemeister
move, without changing the homotopy class (Figure 2.8). This constatation will
be generalized and used several times in the proofs of Chapter 3. A key ingredient
of these proofs is to show that some algorithm uncrosses curves, the uncrossing
being done with such moves.

2.3 Homotopic shortest paths

In this section, we continue our review of computational topology of curves on
surfaces, with an emphasis on the following problem: a curve c on a surface being
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Figure 2.8: One of the Reidemeister moves.

given, how to find a curve homotopic to c which is optimal, that is, as short as
possible within its homotopy class?1 In other words, how to shorten c as much as
possible while keeping its topological properties? More generally, we can consider
the simultaneous optimization of several simple, pairwise disjoint curves.

This question is not purely topological, contrary to the subjects described
in the previous section: metric questions are superimposed to the topological
problem. We will briefly discuss this problem on smooth surfaces in general, with
results asserting the existence of shortest homotopic cycles. We will then have
a more algorithmic viewpoint, in the case of the plane with obstacles, then of
locally Euclidean surfaces. These questions are in the heart of our thesis: we will
present in Chapter 3 our contribution in this domain.

2.3.1 Smooth surfaces

2.3.1.1 Hyperbolic surfaces

We have seen earlier that the case of paths in the hyperbolic disk is very special:
a loop is homotopic to a simple loop if and only if the shortest loop which is ho-
motopic to this loop is itself simple. This property remains true for any hyperbolic
surface, i.e., a surface locally isometric to the hyperbolic plane. In fact, in this
context, there is a unique closed geodesic cycle in each homotopy class, which is
itself the shortest cycle in its homotopy class [24, Theorem 1.6.6]. Any iterative
process which locally shortens a cycle will thus converge to an optimal cycle. This
yields an elementary algorithm to approximate optimal cycles on such surfaces,
see [24, Appendix].

2.3.1.2 Surfaces with a Riemannian metric

A Riemannian surface is a surface equipped with a metric, i.e., a positive definite
quadratic form on the tangent space at each point, form depending continuously
on the point of the surface. A surface smoothly embedded in R

3, equipped with
the induced metric (the distance between two points of the surface being the
length of the shortest path on the surface between these two points) is a simple
example of a Riemannian surface. A quantity which is intrinsic to each point of a
Riemannian surface is its (Gauß) curvature. Intuitively, the curvature of a surface
M at some point gives the following information. In the plane, the ratio between
the circumference and the radius of a circle equals 2π. This property no longer
holds in the general case: on a sphere, if r is small enough, the set of points at

1In Chapter 3, we will consider simple curves. We shall thus say that a curve is optimal if it
is simple and if there exists no shorter simple curve in its homotopy or isotopy class.
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(geodesic) distance r from a point p is a circle whose circumference is smaller than
2πr. On a horse saddle, or a crisps, the circumference is greater than 2πr. The
curvature of M at p is zero (resp. positive, resp. negative) if the circumference of
a circle with radius r centered at p, divided by r, tends to a limit equal to (resp.
greater than, resp. less than) 2π when r tends to 0. A hyperbolic surface is, in
fact, a Riemannian surface whose curvature is constant, equal to −1.

A result dating back to 1929, due to Lusternik and Schnirelmann [111], states
that each Riemannian surface which is homeomorphic to the sphere contains
at least three simple closed geodesics. In the general case, each simple, non-
contractible cycle admits at least one shortest homotopic cycle, and, furthermore,
each such cycle is necessarily simple if the surface is orientable (this is due to
Freedman, Hass, and Scott [75]). More generally, let us consider a finite number
of cycles on a Riemannian surface, each of them being as short as possible in its
homotopy class. What can we say on the crossings between these cycles? It seems
plausible that they have a minimal number of intersections allowed by their homo-
topy classes; this has also been showed in [75]. Conversely, Neumann-Coto [121]
proved that any minimally crossing finite set of cycles is a set of geodesics, as short
as possible in their homotopy classes, for some metric. For a general textbook on
closed geodesics, see [102].

2.3.1.3 Continuous transformations of curves into geodesics

Let us now mention several processes which enable to transform a curve drawn
on a Riemannian surface into a geodesic. These processes do not (in general)
compute shortest homotopic paths, but have been extensively studied.

Birkhoff’s process [16], found in 1917, yields a very simple way to this pur-
pose. The idea is, starting with a curve parameterized with its length, to sample
regularly this curve with a finite number of points, and to replace each piece of
curve between two consecutive points by a geodesic segment. We iterate by taking
as sample points the set of middle points of the geodesic segments obtained.

In 1993, Hass and Scott [89] gave an elementary algorithm to deform one or
several curves into geodesics. Unlike Birkhoff’s process, their process satisfies
in an obvious way the fact that the number of intersections or self-intersections
between curves can only decrease in the course of the algorithm. The idea is to
take a family of disks covering the surface, and to shorten each maximal piece of
curve by a shortest path within this disk.

Another type of curve evolution, using the curvature, is the following. Let us
consider a cycle drawn in the plane or on a Riemannian surface. Let the curve
evolve in the following way: each point of the surface moves in the direction of
its normal vector at each point, with some speed. This yields a family of partial
differential equations which arise frequently in physics (fluid mechanics, material
science), when the curve represents an interface between two regions (see [138]
for a textbook devoted to this topic). In particular, if each point of the curve
evolves with a speed proportional to the curve curvature at this point towards
the curvature center, it is a curve shortening problem. The behaviour of this
process has been well-studied. In the case of the plane, if the initial curve is
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simple, it remains simple during the whole evolution process; at some time, it
becomes and remains convex, and then retracts to one single point [82]. In the
case of Riemannian surfaces, the curve can converge to a point or to a closed
geodesic [83, 78]. It is thus a shortening process of cycles on a surface which
maintains the homotopy class and the simplicity during the whole deformation.

2.3.2 “Flat surfaces”

Hershberger and Snoeyink [94], in 1994, found an algorithm which computes the
shortest path homotopic to a given path, in the following realm. The surfaces
have a boundary, and are triangulated in such a way that the vertices of the
triangulation are on the boundary of the surface. In addition, each edge has a
length, and each triangle is provided with the Euclidean metric induced by the
length of its edges. An example of such a surface is a polygon with holes in the
plane: it is always possible to triangulate such a polygon without introducing new
vertices. Let M be such a surface.

The method lies in computing a portion S of the universal covering space of
M which contains a lift of the input path p. As the surface contains no vertex in
its interior, we know, according to Section 1.4.4.3, how to build S. Let us call a

and b the endpoints of p. We will prove that the shortest path q in M̃ between
a and b is inside S. If it were not the case, since the dual graph of M̃ is a tree,
q would cross twice, in opposite directions, an edge of S; this contradicts the
definition of a shortest path. It is thus sufficient to compute a shortest path in S

between a and b. The funnel algorithm (Section 2.1.2) applies as is to solve this
problem, although S is not necessarily isometrically embeddable in the plane.

The algorithm can be extended, with a simple modification, to compute the
shortest cycle homotopic to a given cycle.

2.3.3 The case of the plane

Two very recent papers treat of the optimization of a finite number of paths in
the particular case of the plane with obstacles: the goal is to use techniques from
computational topology to find efficient algorithms.

In 2002, Efrat, Kobourov, and Lubiw [65] worked on the following problem.
Let C = (C1, . . . , Cp) be a family of simple, pairwise disjoint paths in the plane;
let P be a set of n paths in the plane, containing the endpoints of the paths in C,
but no other point of C. The goal is to optimize the paths in C, that is, to find
a family C ′ = (C ′

1, . . . , C
′
p) of pairwise disjoint, simple paths such that Ci and C ′

i

are homotopic for all i, with the C ′
i as short as possible. (The authors consider

the first of the two homotopy models introduced for point obstacles, indicated in
Section 2.2.2.4, page 42, and not the usual homotopy notion.)

Actually, the resulting paths are allowed to intersect or to self-intersect, by
going along each other, provided they do not cross (we have described a similar
situation in the end of Section 2.1.2, page 36, when describing [124]). The reason
of this choice is that, without this convention, an optimal family C ′ would not
necessarily exist, the configuration space being an open set.
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The first step consists in the creation of “shortcuts” in the input paths, while
maintaining their simplicity. The crucial remark is then that many paths are in
fact made of O(n) polygonal x-monotone arcs, each of these arcs corresponding
to several overlapping pieces of paths. The second step is thus to shorten these
pieces, using the funnel algorithm, and with the help of the shortest paths which
have still been computed. Finally, the pieces of the paths are glued together, and
are the output of the algorithm.

An important restriction of this paper is that the usual homotopy notion is
not considered: the endpoints of the paths must belong to the obstacles. In this
particular case, two simple homotopic paths are isotopic (see [67, 71]). Addi-
tionally, each resulting path is a shortest path in a given homotopy class, and is
simple. We will find similar situations in Chapter 3.

Bespamyatnikh [13] improves the previous algorithm. By speeding up the sec-
ond step, he proves that only shortest paths computations in monotone polygons
need to be performed, thus obtaining an O(k + n log n) complexity, k being the
input and output size, and n being the number of obstacles. He also gives an
algorithm in the case where the input paths are not simple.

2.4 Applications

In this section, we review the applications of the fields we have introduced. We
will first focus on geodesics and shortest paths in general. Then we will explain
why surface decompositions are useful in several domains. Then, we will give
applications of the computations of shortest homotopic paths. The work that will
be presented in the next chapter falls into this category.

2.4.1 Applications of shortest paths

We exclude here the case of shortest paths in graphs, whose applications are
numerous, to focus on shortest paths (or geodesics) in metric spaces.

Shortest paths appear naturally in physics. The Snell–Descartes law indicates
how light refracts at the boundary between two homogeneous regions with dif-
ferent indices; it can be exactly formulated by saying that the travel of the light
between two points is the shortest path between these two points. Waves propa-
gate in the same way; radars and sonars exploit this property: they emit waves
and measure their return time. Applications of shortest paths can be found in
seismic analysis [138, pp. 298–304].

Shortest paths problems can also be found in robotics (see for example [101]
or [87]). In path planning problems for robots in a scene with obstacles, it is
natural to optimize the moves. The general problem is, of course, much more
complicated: the size of the robot must be taken into account, because it cannot
be assimilated to a point; generally, the optimized criterion is the execution time
of a given task, and the dynamics of the robot also plays a part.

A set of points P in a metric space being fixed, the Voronoi diagram of P is the
decomposition of the space induced by the sets of points of the space which have
the same nearest neighbor among all points of P . Voronoi diagrams in the plane
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have been extensively studied in computational geometry (see for example [19])
and are directly related to shortest paths problems. In particular, the computation
of a Voronoi diagram on a surface must use the notion of (geodesic) distance
between points of the surface.

In computer-aided design and geometric modeling, geodesics or shortest paths
are also used. A user who intends to draw a path between two points can specify
the two extremal points of the curve to be drawn, and then let a program find
the shortest path; if the result is unsatisfying, he/she can specify new control
points. The shortest path between two points is, in this situation, simply used
as a “canonical” choice. Of course, this notion is limited: a small perturbation of
the surface can change the shortest path between two points from all to all. But
the natural tool of the ruler is thus generalized to the case of a surface.

2.4.2 Applications of short cuttings of surfaces

We now indicate a few applications of the computations of surface decomposi-
tions (by polygonal schemata or pants decompositions). Short decompositions
are sought in most applications, which often concern computer graphics: in this
field, unusefully complicated drawings must be avoided.

2.4.2.1 Parameterization

Surface parameterization [72, 50] is an essential tool in computer graphics. Pa-
rameterizing a surface M means to put it into correspondence with a planar
domain (often a topological disk, but possibly several disks or several planar sur-
faces with holes). Of course, a bijective correspondence between M and a planar
region does exist only if M is an orientable surface with zero genus and at least
one boundary. In the general case, the parameterization problem is subdivided
into two subproblems:

1. first, the surface is split into planar surfaces (with the help of a polygonal
schema, or by cutting the surface into several topological disks; pants de-
compositions could also be useful). This step has an influence on the quality
of the parameterization: to avoid visible artefacts (in texture mapping or
in the creation of a mesh), the cut must be as short as possible. Chapter 3
will provide, among other things, a way to create such a decomposition with
short paths;

2. each of the resulting surfaces is thus put into correspondence (with a piece-
wise linear homeomorphism, the surface being usually polyhedral) to a pla-
nar region. We will see in Chapter 4 a way to create such a homeomorphism,
using Tutte’s barycentric embedding theorem. In practice, the distortion of
the correspondence generally has to be miminized; this is an important sub-
problem of the parameterization problem, and approaches such as [72] are
based on Tutte’s theorem.

We now mention a list of applications using parameterization.
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Visualization. Parameterizing a surface yields a representation of this surface in
the plane. This enables to view the whole surface (there are no hidden faces), and
to easily represent informations on it (if each point of the surface has a color, for
example); it is exactly what is done in cartography, by representing the earth on
a planar domain. Parameterization is the natural algorithmic tool corresponding
to the notions of atlases and charts in differential geometry. When the surface is
drawn as a polygonal schema, one has a pattern of the surface, which also enables
to visualize its topology.

Texture mapping. In computer graphics, a common operation is to give to a
given surface the aspect of some material (wood, cloth, . . . ). This is made by
texture mapping : the surface is put into correspondence with a rectangle contain-
ing some colored pattern representing the material, called texture [113, 109, 127].
The decomposition of the initial surface into planar surfaces is thus necessary. Of
course, when putting into correspondence the planar surface(s) with the texture,
care must be taken about the gluing conditions of the polygonal schema: oth-
erwise, discontinuities would appear in the texture where the surface has been
cut.

During the texture mapping on complex surfaces, a common technique consists
in cutting the surface along points whose curvature is maximal: this enables to
minimize the distortion induced by the parameterization. This reinforces the
interest of the cutting. In fact, it is possible, while cutting the surface into a
polygonal schema, to favour the cutting along regions of high curvature, by giving
a smaller weight to regions of high curvature. If this is not sufficient, it is still
possible to continue the cutting of the surface.

Mesh creation and numerical computations. Ordinary or partial differential
equations are very common in physics, and it is crucial to be able to simulate
them. Analysis methods by finite elements are used, i.e., the space is discretized
by a mesh [76]. The shape of the elements of the resulting mesh has a direct
influence on the efficiency of the numerical simulation: usually, elements as regular
as possible (no triangle with small angles) are sought, and a more refined mesh
at certain places is sometimes desirable.

For a surface of R
3, the computation of such a mesh can use a surface pa-

rameterization stage. Parameterization often enables to reduce the problem to
computations in the plane, which makes them simpler and faster (see for exam-
ple [150]).

Remeshing and compression. The apparition of three-dimensional scanners and
the always increasing size of meshes (several hundreds of millions of polygons for
the modeling of an airliner) lead to a new problem: how to deal with geometric
models?

Remeshing [4] a mesh of a surface is to find a new mesh which is geometrically
close to the initial mesh but which has a different number of elements (vertices,
edges, faces). This in particular enables to simplify the geometry: the mesh
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coming from a 3D scanner is extremely regular, and many points are geometrically
of poor significance (points located on flat regions, for example); they can be
removed. It is also possible to augment the geometry: starting with a rough
mesh, points can be added to smooth the object.

Remeshing a mesh also enables to compress it efficiently, for storage or trans-
mission purposes: in [86], a remeshing method is presented, in which the resulting
mesh is stored in a very compact way.

In the papers which have just been cited, a parameterization of the input
surface is used: this enables to work in the plane. This is also done in the
paper [2] that we wrote with P. Alliez, O. Devillers, and M. Isenburg, whose goal
is to remesh a tridimensional object: it is necessary to use a parameterization
stage, and thus to compute a polygonal schema. The parameterization is chosen
so that it is as conformal as possible (angles should be preserved as much as
possible), and it is proved that the distortion introduced by this parameterization
is not harmful for the result (more precisely, the effect of this distortion can be
compensated). In this precise case, decomposing the surface into a fundamental
system of loops instead of some polygonal schema is advisable: the vertices of the
polygonal schema must be treated separately, and it is better to minimize their
number.

2.4.2.2 Other applications in computer graphics

We now describe other problems in computer graphics for which a topological
decomposition of surfaces can be useful.

Multiresolution analysis and topology filtering. Multiresolution analysis con-
sists in the creation of a hierarchy of meshes, more or less refined, representing a
given surface. In order to do that, it is necessary to decompose the initial mesh
into topologically elementary surfaces; this enables to avoid the removal of handles
or holes during the mesh simplification [59, 79]. On the contrary, it one wishes to
filter the topology of a mesh, that is, to remove the “topological noise” constituted
by the small holes and the small handles, a cutting of the surface can also help.
Let us note however that, in this latter case, the use of the smallest essential cycle
may be more adequate (see the description of [68] in Section 2.2.1.2, page 39).

Geometric compression. We have explained above that surface parameteriza-
tion can be useful for the compression of geometric models. Independantly from
this, the decomposition of a surface (without explicitely computing a parameter-
ization) might be useful for compression purposes.

The compression of a mesh is usually subdivided into two stages [3]. The first
stage is the storage of the combinatorial part of the mesh, i.e., the underlying
combinatorial surface: incidence relations between vertices, edges, and faces. The
second stage is the storage of the geometry, i.e., the coordinates of the vertices.
During the first stage, it can help to have a planar simplicial complex, because
efficient algorithms to code planar triangulations are known [128]. Cutting the
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surface to get a topological disk can thus be useful for compressing the mesh
connectivity.

Metamorphoses. A discipline of computer graphics aims at creating metamor-
phoses, also known as morphings (see [106] for a general description and ref-
erences). These are continuous deformations between two (three-dimensional)
objects. These metamorphoses are frequently used nowadays for visual effects
(advertisings, movies, . . . ). One of the goals is the development of tools enabling
the automatic creation of metamorphoses between two surfaces of R3. In order for
such a transformation to exist, it is of course necessary that both surfaces have the
same topology. But this is not sufficient: there must exist a continuous family of
homeomorphisms of R

3 (called ambiant isotopy), which takes one surface into the
other. For example, the surface of a torus (embedded in the standard way in R

3)
and the surface of a knotted string both have the same topology, but we cannot
hope to create a continuous deformation without creating self-intersections in the
intermediate shapes. An intermediate stage to reach this ultimate goal (which
seems quite far!) can be to decompose the surfaces into polygonal schemata,
which at least allows to compute a homeomorphism between both surfaces. To
do this, canonical schemata must be used: if the lists of edges of the two polygonal
schemata are not the same (for example abāb̄cdc̄d̄ for one schema and abcdāb̄c̄d̄

for the other one), the correspondence between the schemata do not induce a
homeomorphism between the surfaces.

2.4.3 Applications of shortest homotopic paths

The results of Chapter 3 allow not only to shorten decompositions of surfaces, but
also to find a shortest simple path among all paths homotopic to a given simple
path. We here focus on applications of these results.

We have evoked the domain of robotics to justify the interest of shortest paths
computations. This remains true for shortest paths computations within a given
homotopy class: it can be necessary to force a robot to travel through certain
places. Optimizing a slalom (described with markers) reduces to computing a
shortest homotopic path with respect to the obstacle markers!

Shortest homotopic paths are also used in VLSI systems (Very Large-Scale
Integration): the problem is to be able to connect pins from several electronic
components of a chip, while minimizing the length of the wires. If all connec-
tions are in the plane, and if the topology of the net is prescribed, the problem
amounts to computing shortest homotopic paths with known homotopy classes. In
addition, it is necessary to detect whether these connections are possible without
crossings, that is, to force the wires to be simple and disjoint [108].

Another application domain is cartography and GIS (Geographic Information
Systems). Quite schematically, a geographic map is stored with polygonal lines,
separating the plane into regions. In many cases, a very high resolution is not
necessary (details would anyway be visible only from some zoom resolution), and
harmful (computation and display times are increased). It is thus necessary to be
able to simplify the geometry of a polygonal line, while maintaining, among others:
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the geometry of the curve (the new curve cannot be too far apart from the initial
curve), the position of the curve with respect to some points (after simplification,
the costal cities must appear on the earth), and the simplicity of the simplified
curve; see [47] for more details. The two last conditions are topological conditions
of homotopy and simplicity, considered in the next chapter.

A very concrete application of shortest simple homotopic path computations
has been presented to us2. Machines such as televisions emit an electromagnetic
field with an electron gun; this electron gun is made of a coil of brass winded on a
quite complicated surface by a robot. Several types of surfaces can be adequate,
but it is wished to minimize its size (particularly its depth) while maintaining
some properties of the field. It is thus necessary to be able to compute the
electromagnetic field created by such a coil, depending on the chosen surface. A
first step consists thus in computing the position of the wire; this exactly amounts
to computing a shortest path within a given homotopy class; this path is simple
because the wire does not overlap.

For all these applications, however, the surface is quite simple, and, in particu-
lar, it is difficult to imagine applications in the case of surfaces with handles. But
another application domain is computer-aided design, where surfaces considered
in practice can have non-zero genus. For example, an operator must draw a path
on a surface, along which the surface has to be cut. To get a nice drawing, it is
natural to wish to improve the geometry, that is, to replace the initial path by a
shortest path. But the topology prescribed by the user is not to be changed: the
new path must be in the same homotopy class as the old path, and must remain
simple. Our optimization algorithms achieve in particular this goal.

Discussion

The state of the art that we have just presented shows that the topological prob-
lems concerning curves on surfaces, from a fundamental and from the applications
viewpoints, are recognized to be interesting. In particular, the shortening of curves
within a given homotopy class and the decomposition of surfaces have been the
subject of active works. However, the results are improvements in some specific
cases, and the problems, which are difficult, are far from being solved in all cases.

Regarding the topological decompositions of surfaces, former works contain
algorithms to compute polygonal schemata. Often relying on classical proofs of
theorems of topology, exploited under a new viewpoint, they give asymptotical
bounds on the complexity of these problems and on the size of the resulting
schemata (see [154, 105]). These decompositions are, in particular, useful to com-
pute portions of the universal covering space [135, 54]. But they are geometrically
unsatisfying: for the applications, notably in computer graphics, it is necessary to
have decompositions of surfaces whose curves are shorter and regular. A possibil-
ity is to treat the curves of a decomposition by a geodesic smoothing, as suggested
at the end of [105], but this is not sufficient for complex surfaces (the notion of
geodesic is only local, contrary to the notion of shortest path). The problem is

2Personal communication by Dominique Michelucci, for which I thank him.
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thus not only topological, but also geometric: it is an optimization problem. The
paper by Erickson and Har-Peled [68] (published nearly at the same time as our
first work in this topic) is a first answer: a quite general problem is NP-difficult,
but there is an approximation algorithm in polynomial time. To our knowledge,
this algorithm has not been implemented; without any experimental results, it is
difficult to know if the approximation is reasonable in practice. Our work yields
a polynomial algorithm which solves exactly a slightly different problem.

Concerning the computations of homotopy of curves on surfaces, the con-
tractibility and homotopy tests have been well-studied [135, 54, 53], and there
are also algorithms to determine the minimal number of intersections between
curves in given homotopy classes [34, 37, 112]. When shortest homotopic paths
are considered (adding, this way, an optimization problem to the purely topolog-
ical questions, like in the previous paragraph), it appears that the problem has
been often raised and that solutions have been found in some particular cases (in
the plane [25, 65, 13], or on surfaces locally isometric to regions of the plane [94]),
using advanced methods and data structures from computational geometry, and,
sometimes, by mixing them in a very complex and clever way. But no general
approach has been given for this problem.

The contribution of the next chapter aims at progressing towards these two
directions. We consider a surface provided with a metric, and we try to optimize
a family of curves (to compute the shortest family which has the same topological
properties). This uses a decomposition of the surface into topologically elementary
surfaces; in particular, such a decomposition, or one single curve, can be optimized
with our algorithms.
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Chapter 3

Optimization of curves on

surfaces

Abstract. In this chapter, we wish to optimize families of curves,
that is, to shorten them while maintaining some of their topological
properties. Let M be an orientable surface; let G be a weighted graph
embedded on M. Let us agree that the length of a curve on M is
the sum of the weights of the edges of G crossed by the curve. This
includes in particular the case where the surface M is polyhedral, and
where the curves are paths in the vertex-edge graph of the surface.

We consider two types of families of curves to be optimized: a graph
embedding being fixed on M, we wish to find the shortest graph em-
bedding isotopic to the first embedding, with fixed vertices; a family
of simple, pairwise disjoint cycles being fixed, we wish to find the
shortest family of simple, pairwise disjoint cycles whose cycles are ho-
motopic to the cycles of the initial family. This in particular contains
the case of one single simple path or cycle, of a fundamental system
of loops, or of a pants decomposition.

The method we propose consists in extending these curves to a topo-
logical decomposition of the surface, which is optimized by greedy
processes. The analysis of these optimization processes yields results
of individual optimality of each of the curves of the resulting family,
and of simplicity of the shortest curve homotopic to a given simple
curve. We obtain algorithms to optimize families of curves in the
vertex-edge graph of a polyhedral surface which are polynomial in the
input of the algorithm and in the longest-to-shortest edge ratio of the
surface.

Introduction

Let M be a compact, connected, orientable surface, possibly with boundary. Let
G be a weighted graph embedded on M. The length of any curve c is defined to
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be the sum of the weights of the edges of G crossed by c (counting multiplicities).
In this chapter, we shall consider two types of embeddings of curves:

• embeddings of graphs on M, the graph having no isolated vertex, and hav-
ing possibly loops and multiple edges; in other words, a family of simple,
pairwise disjoint paths except possibly at common endpoints;

• embeddings of cycles on M, i.e., families of simple, pairwise disjoint cycles
on M.

The curves we will consider are the paths of an embedding of graph, or the cycles
of an embedding of cycles. An embedding of graph or of cycles will be denoted
by s = (s1, . . . , sn), where the si are the curves of the embedding.

We wish to optimize such embeddings, i.e., to shorten as much as possible
their curves (with fixed endpoints, in the case of an embedding of graph), while
maintaining some of their topological properties: we impose that the resulting
curves are homotopic or isotopic to the initial curves.

Let s = (s1, . . . , sn) be an embedding of graph or of cycles. To optimize s, we
will proceed as follows:

1. we extend s = (s1, . . . , sn) by adding curves, to obtain an embedding of
graph or of cycles (s1, . . . , sN ) (with N ≥ n) which decomposes the surface
M into topologically elementary surfaces (disks, cylinders, pairs of pants).
Such an embedding of graph or of cycles will be called cut system;

2. we optimize the cut system (s1, . . . , sN ) with a quite simple iterative step,
thus obtaining a cut system (s′1, . . . , s

′
N ). We prove that, for all i, s′i is a

curve which has the same topological properties as si and is as short as
possible among the curves having these properties;

3. we extract from (s′1, . . . , s
′
N ) the first n curves (s′1, . . . , s

′
n), which constitute

the desired optimal embedding s′.

More specifically, after Step 2:

• for cut systems by cycles, each cycle s′i is as short as possible among the
cycles homotopic to si;

• for cut systems by graph, each path s′i is as short as possible among the
simple paths isotopic to si in M minus the vertices of s which are not
endpoints of si.

The most difficult step is Step 2: although the optimization process is quite
simple to understand, the proof of optimality of the result is tricky, notably in
the case of cycles. The first step is not very difficult, and the third one is triv-
ial. Cut systems are close to polygonal schemata and pants decompositions, in
the sense that these also decompose a surface into topologically elementary sur-
faces. Besides, these processes can be applied to polygonal schemata and pants
decompositions.
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The curves of s are thus, each, individually, as short as possible among the
curves which have the same topological properties. In particular, this enables to
prove the following theorems:

• let c be a simple path whose endpoints are on the boundary of M, and
let C be the set of all (not necessarily simple) paths with minimal length
among the paths which are homotopic to c. There exists an element of C

which is simple (this result is false in general if the endpoints are not on the
boundary of M);

• let γ be a simple cycle, and let Γ be the set of all (not necessarily simple)
cycles with minimal length among the cycles which are homotopic to γ.
There exists an element of Γ which is simple;

• a fundamental system of loops s = (s1, . . . , sn) being fixed on M (assumed
to be boundaryless in this case), any shortest fundamental system of loops
t = (t1, . . . , tn) such that si is homotopic to ti for all i is made of loops ti
which are individually as short as possible among the simple loops homo-
topic to si;

• a pants decomposition s = (s1, . . . , sn) being fixed on M, any shortest
pants decomposition t = (t1, . . . , tn) such that si is homotopic to ti for all
i is made of cycles ti which are individually as short as possible among all
cycles homotopic to si.

An important particular case is the case where the surface M is a polyhedral
surface and where the graph G is the dual graph of the vertex-edge graph of M.
In this case, the curves can be regarded as being drawn “on” the vertex-edge graph
(in fact, in an arbitrarily small tubular neighborhood, several curves having the
possibility to go along a same edge while remaining disjoint): the length of a curve,
in the sense previously defined, coincides with the length of the corresponding path
in the vertex-edge graph. In this framework, the optimization processes yield an
effective way to compute the previously described optimal curves (or families of
curves). The complexity of the algorithms is polynomial in their input (complexity
of the surface and of the initial curves), and in the ratio between the largest and
the smallest weights of the edges of G.1 The implementation of these algorithms
does not yield particular difficulties: no complex data structure is required. The
optimization algorithms are very simple, the implementation of the completion of
a family of curves into a cut system would need more time to be implemented.
The only arithmetic operations required are the addition and the comparison on
real numbers (in fact, in the ring generated by the weights of the edges of G).

The complexity of these problems was previously unknown. Erickson and
Har-Peled [68] studied the related problem of computing the shortest polygonal
schema of a polyhedral surface, and proved that it is NP-hard, even in the case
where the weights equal one. Our work shows in particular that a simpler problem,

1The algorithm is thus polynomial, in the strictest sense, only if the ratio between the greatest
and the smallest weight is bounded from above by a strictly positive fixed constant.
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the problem of computing a shortest fundamental system of loops homotopic to
a given system, is polynomial (with unit weights).

Applications of optimization of curves, polygonal schemata or pants decom-
positions have been given in Section 2.4, pages 50–55, we will not further describe
these applications.

To the best of our knowledge, no algorithm had been previously developed,
even to optimize a single curve within a given homotopy class on a surface. To
optimize a path or a loop, there however exists a naïve method: lift this curve
into the universal covering space, compute a shortest path between the endpoints
of this lift, and project the resulting curve onto the surface. However, the final
curve may be non-simple (by projection onto the surface, self-intersections can
occur, see Figures 2.5 and 2.6, page 43). In some cases, it may be desirable to
allow self-intersections; but, if the input path is simple, it is natural to wish to
obtain a simple path as output. Furthermore, using this method, the number of
vertices of the universal covering space to explore can be exponential, hence also
the cost of the method, even with unit weights (see the Appendix to this chapter,
page 111).

This chapter has been the subject of publications [40, 41], written with F. Lazarus.
The statement and the proof of the optimality theorem for embeddings of cycles
are similar to those in [41]. The optimality theorem for embeddings of graphs is
stated under a really more general form than in [40] (the embeddings of graphs to
be optimized can have several vertices, contrary to fundamental systems of loops,
and on a surface which may have boundaries), and proved in a far simpler way
(the universal covering space is less used, and the reductions on crossing words
are only parenthesized). Sections 3.4 and 3.5 also have important differences with
these papers.

This chapter is organized as follows. We first present in more details the frame-
work and the notion of length we consider here. Then, the iterative optimization
processes and the statements of the two theorems concerning the optimality of
their results are presented; these theorems are then proved. Afterwards, we de-
scribe how to extend an embedding of graph or of cycles to a cut system. Finally,
we explain how all of this can be implemented.

3.1 Framework of the study

3.1.1 Definition of length

This section introduces notions which will be used in the whole chapter. M
denotes a compact, connected, orientable surface, possibly with boundary, and G

is a non-oriented graph embedded on M such that the relative interior of each
edge is in the interior of M. G is assumed to be weighted : each edge e of G has
a non-negative weight.

We shall consider families of curves (paths or cycles) drawn on M. We will
assume that these families are regular with respect to G, in the following sense:

• the set of intersection points between the curves and G is finite, and, at such
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points, exactly one piece of curve and one edge of G intersect and actually
cross;

• if a point is an endpoint of a path, it is in the relative interior of no curve;

• the set of (self-)intersection points between relative interiors of curves is
finite, and, at such points, exactly two pieces of curves intersect and actually
cross at this point;

• the relative interior of each curve is in the interior of M.

A curve is said to be regular if it constitutes itself a regular family of curves.
If a regular curve c crosses edges ek1

, . . . , ekn
of G, its length, denoted by |c|, is

defined as the sum of the weights of ek1
, . . . , ekn

, counting multiplicities. The
length of a regular family of curves s, denoted by |s|, is the sum of the lengths of
its curves.

Length additivity holds with this notion of length: if c1 is a path from a1 to
a2, and c2 is a path from a2 to a3, in such a way that the concatenation of c1 and
c2 is a regular path c, and such that a2 is not on G, then |c| = |c1|+ |c2|. We will
frequently use this length additivity.

To gain intuition, the reader can assume that all curves are piecewise linear
with respect to a fixed triangulation of M — such a surface being triangulable [57].
This does not cause harm to the interest of this chapter, and avoids topological
complications.

3.1.2 Particular case of a polyhedral surface

To illustrate the introduction of this notion of length, let us here give an important
particular case, to which we will restrict ourselves in Section 3.5. Assume that
M is a polyhedral surface, whose vertex-edge graph H is weighted.2

Let us choose for G the dual graph of H embedded on M, defined as follows.
(Here, the graph G can have vertices on the boundary of M, hence the definition
is slightly different from the definition given in Chapter 1.) There is one vertex
of G in each face of H and one edge of G crossing each edge of H which is in the
interior of M. Moreover, for each edge e of H on the boundary of M, a vertex
of G is put on e, and linked by an edge to the vertex of G which is in the face of
H incident to e. Thus, to each edge e of H corresponds exactly one edge e∗ of G,
whose weight is defined to be the weight of e.

Any path in H has a length, in the graph-theoretical sense (sum of the weights
of the edges of this path in H) equal to the length, in the previous sense (sum of
the weights of the edges of G crossed by the path). Each regular embedding of
graph or of cycles on M can be retracted onto a family of paths on H without
changing the homotopy classes of the curves, see Figure 3.1: each crossing of a
curve with an edge of G corresponds to an edge of a path in H; this transformation
is length-preserving. The resulting paths can fail to be simple or disjoint, because

2Note that we do not assume each polygon to be Euclidean. In particular, the triangle
inequality needs not be satisfied.
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Figure 3.1: A retraction of a regular embedding of graph or of cycles (a, b, c, d, e)

on H, in a neighborhood of a vertex of H whose incident edges are e1, . . . , e5.
The corresponding edges of G are denoted by e∗1, . . . , e

∗
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they can pass several times along a given edge or a given vertex; we will however
say that they are simple and pairwise disjoint in the sense that it is always possible
to perturb them (the perturbation being arbitrarily small) to get simple, disjoint
paths; this by analogy with the continuous case, where two paths can go along
arbitrarily close together while being disjoint.

From an algorithmic point of view, we are thus interested in the optimization
of curves on H which are simple and pairwise disjoint (in the previous sense).
The curves are paths on the graph H; as the curves are allowed to go together
along a same edge of H, we will assume that, for each edge e of H, the order of
the edges of the paths going along e from left to right is known. The fact that the
paths are simple and pairwise disjoint is expressed by a condition on the edges
of the paths arriving at each vertex of H; we will come back to this aspect in
Section 3.5. We could express all our results in this combinatorial framework;
however, for the proofs, we need to work with topological tools on these curves.
We thus choose to describe and prove our results in a framework where all curves
are « spread apart » on M.

3.2 Optimization theorems for cut systems

An embedding of graph on M is (in this chapter) a family of simple, disjoint paths,
except possibly at common endpoints. An embedding of cycles on M is a family
of simple, pairwise disjoint cycles on M.

We will define the notion of cut system, which is an embedding (of graph or of
cycles) decomposing the surface into topologically elementary surfaces. We will
present two theorems concerning the optimization of cut systems, one for graphs,
the other one for cycles.

M is a surface, and G is a graph embedded on M, such that the length of
a curve c on M is computed as being the sum of the weights of the edges of G

crossed by c, see Section 3.1.
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Figure 3.2: Two examples of cut systems by graph: on the left, on a torus, a cut
system by graph with one single vertex; on the right, on a sphere with two holes,
a cut system by graph with seven vertices.

3.2.1 Cut systems by graph

3.2.1.1 Main result

Definition 3.1 A cut system by graph of M is a regular embedding of graph
s = (s1, . . . , sN ) on M such that:

• no path of s is a contractible loop;

• for each i ∈ [1, N ], the surface obtained by cutting M along all paths of s

except si is a disjoint union of closed disks. Furthermore, the endpoints of
si are on the boundary of the disk containing si.

See Figure 3.2 for two examples. The set of vertices of s is the set of all
endpoints of paths in s. The closed disks defined by s (or s \ si) are the closed
disks obtained by cutting M along the corresponding paths.

Let s = (s1, . . . , sN ) be a cut system by graph, and let i ∈ [1, N ]. We define
the shortening operation, denoted by shrti, as follows. System s is transformed
into a family of paths s′ = (s′1, . . . , s

′
N ) such that:

• if k 6= i, s′k = sk;

• s′i has the same endpoints as si, is a simple path or loop3, and its relative
interior is in the same open face of s \ si as the relative interior of si;

• s′ is a regular embedding of graph;

• s′i is as short as possible among the paths satisfying the previous conditions.

There are infinitely many s′ satisfying these conditions; the set of such s′ is
denoted by shrti(s). In other words, computing an element of shrti(s) amounts
to shortening si in the face of s \ si it is contained in. It is quite easy to notice
(see Lemma 3.3 below) that each element s′ ∈ shrti(s) is a cut system by graph,
homotopic to s in M (in the following sense: sk and s′k are homotopic in M, for
each k), and not longer than s.

Each shortening operation can be viewed as a local optimization (a path is
shortened, taking into account the fact that it should not cross the other ones).

3Thus, s′i is a simple path, except that its endpoints can be the same point if si is a closed
path
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In this sense, it is a greedy process. The following theorem asserts that iterating
shortening operations shrti on a system yields, after stabilization of the lengths
of the paths, a global optimum for each of the paths taken individually. Let

shrt = shrtN ◦ shrtN−1 ◦ · · · ◦ shrt1,

i.e., shrt associates to any cut system the set of systems that can be obtained by
applying the N shortening operations successively.

Theorem 3.2 Let s0 = (s0
1, . . . , s

0
N ) be a cut system by graph; for each k ∈ N,

let sk+1 ∈ shrt(sk). Then there exists m ∈ N such that sm and sm+1 have the
same length. Moreover, under these conditions, for each i ∈ [1, N ]:

1. sm
i is a shortest path among all simple paths (or loops) isotopic to s0

i in
M minus the vertices of s0 which are not endpoints of s0

i ;

2. if the vertices of system s0 are all on the boundary of M, then sm
i is a

shortest path among all paths homotopic to s0
i in M.

We shall say that such a system sm is optimal.
Item 1 of Theorem 3.2 looks quite complicated. We now try to explain with a

few examples that all the ingredients of this conclusion are necessary. Then, we
will deduce a few important corollaries of this theorem.

3.2.1.2 Comments

Let us start with a simple lemma:

Lemma 3.3 Let s be a cut system by graph, and let i ∈ [1, N ]; let s′ ∈ shrti(s).
Then si and s′i are paths or loops which are isotopic in the open face of s \ si

containing si, to which the endpoints of si are appended.

Proof. Let M′ be the closed disk defined by s \ si containing si. Let us first
assume that the endpoints of si (and thus also of s′i) are disjoint on M. Then si

and s′i, viewed on M′, are two simple paths in M′, which intersect the boundary
of M′ precisely at their (common) endpoints. Hence, si and s′i are isotopic in the
interior of M′ to which their endpoints are appended, by Lemma 1.6, page 27.

If si (and hence also s′i) is a loop, the same reasoning applies: after cutting, the
loop si is transformed into a simple path (with distinct endpoints), for otherwise
it would be a loop in a disk, hence contractible, contradicting the definition of a
cut system by graph. The same is true for s′i.

In particular, si and s′i are isotopic in M minus all vertices of s which are
not endpoints of si. We will see later (Section 3.4) that each regular embedding
of graph in M can be extended to a cut system by graph whose vertices are the
same.

One can ask whether sm
i is not, in fact, a shortest path among all simple

paths homotopic to s0
i in M minus the vertices of s0 which are not endpoints of

s0
i . This is incorrect. Indeed, let us recall (Figure 1.18, page 27) that two simple
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Figure 3.3: The shortest path isotopic to a given path is not necessarily isotopic
to this path in M minus the vertices which are not its endpoints. Here, the small
disks represent the vertices of the cut system which are not the endpoints of q.

homotopic paths are not necessarily isotopic. If we consider a compact surface
containing Figure 1.18, and if we include q in a cut system by graph, which is then
optimized, the path corresponding to q will necessarily be strictly longer than p

by Lemma 3.3, and because p and q are not isotopic.4

Can we say that sm
i is a shortest path among all simple paths which are

homotopic or isotopic to s0
i in M? The answer is, again, negative: Figure 3.3

presents an example where the shortest path p homotopic or isotopic to q in M
is not homotopic to q in M minus the endpoints of q which are not its endpoints.
It is possible to build a cut system by graph containing q, and to optimize this
cut system: the path corresponding to q will necessarily be longer than p.

3.2.1.3 Two corollaries

Two embeddings of graph s and t are isotopic with fixed vertices if there exists
a continuous family of embeddings of graph, whose vertices are the vertices of s,
joining s to t. A corollary of Theorem 3.2 is the following:

Corollary 3.4 sm is a shortest cut system by graph among all cut systems by
graph isotopic, with fixed vertices, to s0.

Proof. System sm is isotopic, with fixed vertices, to s0 by Lemma 3.3. Let
t = (t1, . . . , tN ) be a cut system by graph isotopic, with fixed vertices, to s0. The
existence of such an isotopy immediately yields an isotopy between s0

i and ti, in
M minus the vertices of s0 which are not endpoints of s0

i . By Theorem 3.2, sm
i

cannot be longer than ti.

Let us consider the set E of all cut systems by graph belonging to a given class
of isotopy (with fixed vertices). E can be provided with a reflexive and transitive
relation defined by s � t if and only if, for all i ∈ [1, N ], |si| ≤ |ti|. The previous
corollary asserts the existence of a smaller element for this relation.

4In these examples, we do not give the underlying graph G, hoping that the intuition given
by the case of the Euclidean length will be sufficient to convince the reader; but everything
really works in our framework, with a suitable graph G.
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Figure 3.4: A cut system by cycles on a genus three surface with one boundary.

If the graph has only one vertex, we have:

Corollary 3.5 Let s be a cut system by graph having one single vertex. Then,
for each i, sm

i is a shortest loop among all simple loops homotopic to s0
i .

Proof. Loop sm
i is homotopic to s0

i . Let ti be a shortest loop among all simple
loops homotopic to s0

i . As s0
i and ti are simple, homotopic, and non-contractible,

ti is homotopic to s0
i by Epstein’s theorem (Theorem 1.7, page 27). But, by

Theorem 3.2, sm
i is a shortest loop among all simple loops isotopic to s0

i in M,
hence it cannot be longer than ti.

We will apply this corollary later to the case of fundamental systems of loops.
In the conclusion of Corollary 3.5, the word “simple” cannot be removed.

Indeed, the shortest loop homotopic to a given loop is not necessarily simple, as
proved on Figure 2.6, page 44.

3.2.2 Cut systems by cycles

Definition 3.6 A cut system by cycles of M is a regular embedding of cycles
s = (s1, . . . , sN ) on M such that:

• no cycle is contractible;

• the surface obtained by cutting M along the cycles of s is a union of (closed)
cylinders and pairs of pants, as well as the surface obtained by cutting M
along the cycles of s \ si, for each i ∈ [1, N ].

See Figure 3.4 for an example. We will see later that each compact, connected,
orientable surface, except the sphere and the disk, admit cut systems by cycles.
The surfaces defined by s (or s \ si) are the connected components of the surface
obtained by cutting M along the corresponding cycles; these are cylinders or pairs
of pants.

Let s = (s1, . . . , sN ) be a cut system by cycles, and let i ∈ [1, N ]. We define a
shortening operation, again denoted by shrti, as follows. System s is transformed
into a family of cycles s′ = (s′1, . . . , s

′
N ) such that:
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• if k 6= i, s′k = sk;

• s′i is simple, and is homotopic to si in the cylinder or the pair of pants
defined by s \ si in which si is;

• s′ is a regular embedding of cycles;

• s′i is as short as possible among all cycles satisfying the previous conditions.

Again, shrti(s) denotes the set of all such s′. This shortening operation thus
transforms a cut system by cycles into another cut system by cycles which is
homotopic (in the sense that sk and s′k are homotopic cycles for each k), and
which is not longer. Again, let

shrt = shrtN ◦ shrtN−1 ◦ · · · ◦ shrt1.

We now have the following optimality theorem:

Theorem 3.7 Let s = (s1, . . . , sN ) be a cut system by cycles. For each k ∈ N,
let sk+1 ∈ shrt(sk). For some m ∈ N, sm and sm+1 have the same length.
Under these conditions, for each i ∈ [1, N ], sm

i is a shortest cycle among all
(not necessarily simple) cycles which are homotopic to s0

i .

We shall again say that such a system is optimal. Consider now the set E of
cut systems by cycles which belong to a given homotopy class. It is possible to
provide E with a reflexive and transitive relation defined by s � t if and only if,
for each i ∈ [1, N ], |si| ≤ |ti|. The previous theorem asserts the existence of a
smaller element for this relation, and, furthermore, each smaller element is made
of cycles which are, individually, shortest cycles in their homotopy class.

3.2.3 Variations

Before proving these theorems, let us simply mention that there exist slight vari-
ations for the optimization processes. These variations relax the definition of a
cut system: the second condition of this definition is replaced by the weaker con-
dition that cutting M along s should yield a union of elementary surfaces (disks,
cylinders, or pairs of pants).

For the first variation, the operation shrti consists in shortening si in M cut
along the curves of s \ si (which is not necessarily a topological disk in the case
of cut systems by graph), while maintaining the homotopy class of si. We used
this approach in [40] for fundamental systems of loops. Actually, in that paper,
the complexity of the algorithm is not as good as in the present chapter (each
shortening step can require to look for a simple shortest homotopic path in some
cylinder), and the proof is longer. In the case of cycles, this also makes things more
tricky, because cutting M along s \ si can create spheres with four boundaries or
tori with one boundary.

A second variation is to define, for each i, two operations shrti and shrti,
consisting in shortening si, in the surface obtained by cutting M along s, on the
left (resp. right) of si. The algorithm has the same asymptotic complexity and
is as natural as the one presented here. But proofs seem slightly easier in the
present framework.
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3.3 Proofs of the optimization theorems for cut sys-

tems

This section contains the proofs of Theorems 3.2 and 3.7 of the last section. We
will start by proving the first theorem in a particular case where the proof is quite
short. We will then deduce the general case with a few topological considerations.
The proof of the second theorem uses arguments which are analogous to the first
theorem, but is really longer and more complex. The reason is that the whole
proof uses the universal covering space, and that it is necessary to first state
simple properties on curves on cylinders and pairs of pants which are as short as
possible in their homotopy class.

A key ingredient for the proofs of these theorems is the notion of crossing
word, which enables to code the way curves cross. We introduce it now.

3.3.1 Crossing words

3.3.1.1 Preliminaries on words

We first introduce some classical notions on words (see for example [97, Chapter 1]
or [7, Chapter 0]). Let X be a non-empty set of symbols; let X̄ be the set of
symbols {x̄, x ∈ X}. A letter is an element of X ∪ X̄ ; we call alphabet, and
denote by A, the set of these letters. A word on A is a finite sequence of elements
of A. The empty word is denoted by ε. The length of a word is the number of
its letters. Two words w1 and w2 being given, their concatenation is denoted by
w1w2. A word v is a factor of some word w if there exist two words u1 and u2

such that w can be written u1vu2.
Let w be a word. If w contains a factor of the form aā or āa, where a is some

symbol, let w′ be the word obtained by removing this factor from w; we shall say
that w′ is deduced from w by an elementary a-reduction. An elementary reduction
is an elementary a-reduction for some a. An (a-)reduction is a succession of zero,
one or several elementary (a-)reductions. A word is said (a-)irreducible if it can
be applied no elementary (a-)reduction.

Lemma 3.8 Let w be a word; there exists exactly one irreducible (resp. a-irreducible)
word w′ such that w reduces (resp. a-reduces) to w′.

Proof. The proof is elementary, but we mention it because the same techniques
will be used later. We prove the result in the case of reductions, the arguments
being the same in the case of a-reductions.

The proof relies on the confluence property : if w, w1, and w2 are words such
that w elementarily reduces to w1 and w2, then there exists w3 such that w1 and
w2 both reduce to w3. It is a simple case analysis: the factors of w removed to
obtain w1 and w2 are either the same in w, or disjoint in w, or they partly overlap
in w. If they are the same, the property is obviously true. If they are disjoint
in w, then it is also true, because we can take for w3 the word w where the two
factors have been removed. Otherwise, both factors partly overlap, and there is
a factor of w3 of the form aāa or āaā; then (up to swapping w1 and w2), the first
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reduction consists in the removal of the first two letters of this factor, and the
second one consists in the removal of the last two letters. It implies that, actually,
w1 = w2, and the result follows.

The lemma is deduced from this property by induction on the number of
letters of w. It is equals 0 or 1, the result is obvious. If w is not irreducible, let
w1 and w2 be any two words such that w elementarily reduces to w1 and w2; it is
sufficient to prove that each of w1 and w2 reduces to one single irreducible word,
which is the same for both words. We know that there exists w3 such that w1 and
w2 reduce to w3. By the induction hypothesis, each of w1, w2, and w3 reduces to
one single irreducible word, which must thus be the same for w1, w2, and w3; this
concludes the proof.

We will denote by red(w) (resp. reda(w)) the unique irreducible (resp. a-
irreducible) word w′ such that w reduces (resp. a-reduces) to w′. We will say that
a word w is parenthesized if red(w) = ε.5

Lemma 3.9 Let w1 and w2 be two words. Then w1w2 is parenthesized if and
only if w2w1 is parenthesized.6

Proof. By symmetry, it is sufficient to prove one implication. This is done by
induction on the length of w1w2, the result being trivial if the length equals 0 or
1. Let w be a factor in w1w2 of the form aā (the case āa being analogous).

If w is entirely contained in w1, let w′
1 be the word obtained from w1 by this

elementary reduction; by the induction hypothesis, and since w ′
1w2 is parenthe-

sized, w2w
′
1 is also parenthesized; then so is w2w1. The case where w is entirely

included in w2 can be treated in a similar way.
Hence, there remains the case where w1 = w′

1a and w2 = āw′
2. In this case,

since w1w2 is parenthesized, so is w′
1w

′
2, hence by the induction hypothesis, so is

w′
2w

′
1, hence so is āw′

2w
′
1a = w2w1.

3.3.1.2 Crossing word

Let C be a family of curves (paths, possibly closed or infinite, or cycles) which are
simple and pairwise disjoint, on an oriented surface. Let A be the set of letters of
the form c or c̄, where c ∈ C. Let p be a path intersecting C in a generic way (the
number of intersection points is finite, and, at such points, p crosses one curve
of C). Let us walk along p and, each time we encounter a crossing with a curve
c, let us write the letter c or c̄, according to the orientation of the crossing. The
resulting word is called the crossing word of p with C, denoted by C/p.

All surfaces considered will be assumed to be oriented. In particular, M
is provided with an orientation, which naturally induces an orientation of its
universal covering space (M̃, π).

The following lemmas show that the parenthesized words appear naturally in
the crossing words.

5Parenthesized words are also called Dyck words, see [12, p. 35].
6This lemma is obvious for the reader aware of the fact that the set of reduced words is a

group (the free group), since in a group u.v is the unit element if and only if v.u is the unit
element.
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Figure 3.5: A step of the proof of Lemma 3.10.

Lemma 3.10 Let C be a family of simple, pairwise disjoint curves on an oriented
surface, such that each of these curves separate the surface into two connected
components. Let p be a closed path intersecting generically C. Then the crossing
word C/p is parenthesized.

Proof. We prove the result by induction on the number of crossings between
p and the curves of C. The result is trivial if p does not cross any curve of C.
Hence, let us assume that there is at least one crossing between p and a curve
c ∈ C.

As p is a closed path, it must cross c at least once with the opposite orientation.
Consider now p as a cycle γ (i.e., let us forget the basepoint of p). The two
crossings split the cycle γ into two paths p1 and p2 (Figure 3.5). For k = 1, 2,
it is possible to extend pi to a closed path p′i, so that C/p′i = C/pi, by adding a
piece of a path which goes along a part of c. By the induction hypothesis, C/p1

and C/p2 are parenthesized. In addition, C/p equals, up to cyclic permutation,

c (C/p1) c̄ (C/p2) or c̄ (C/p1) c (C/p2).

By Lemma 3.9, we obtain that C/p is parenthesized.

The following lemma is a corollary of Lemma 3.10.

Lemma 3.11 Let C be a family of simple, pairwise disjoint paths in M, which
intersect ∂M exactly at their endpoints; also, let p be a contractible closed path
in M, intersecting C generically. Then, C/p is parenthesized.

Proof. In the universal covering space (M̃, π) of M, let us consider the set of
all lifts C̃ of the paths in C. These lifts are simple and pairwise disjoint, and each
of them separates M̃ into two connected components, by Lemma 1.12, page 32.

Let p̃ be a lift of p; as p is contractible, p̃ is closed. By Lemma 3.10, C̃/p̃ is
parenthesized. But C/p is obtained from this word by projection, that is, each
letter of C̃/p̃, which denotes a lift of some curve in C, is replaced by the projection
of this curve in M; thus C/p is parenthesized.
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3.3.2 Proof of Theorem 3.2

3.3.2.1 Proof of Theorem 3.2 in a particular case

Definition 3.12 A cut system by paths s = (s1, . . . , sN ) is a cut system by
graph such that the 2N endpoints of the paths si are pairwise disjoint and on the
boundary of M.

We will prove the following particular case of Theorem 3.2:

Theorem 3.13 Let s0 = (s0
1, . . . , s

0
N ) be a cut system by paths; for each k ∈ N,

let sk+1 ∈ shrt(sk). Then there exists m ∈ N such that sm and sm+1 have the
same length. Moreover, for each i ∈ [1, N ], sm

i is a shortest path among all paths
homotopic to s0

i in M.

Clearly, if s0 is a cut system by paths, then sk is also a cut system by paths, for
each k ∈ N.

Each surface considered here is assumed to be equipped with an embedding
of a weighted graph G, such that the length of a regular path is computed as
being the sum of the weights of the edges of G crossed by the path. The following
proposition will be used several times:

Proposition 3.14 Let D be a closed disk, and let b be a simple path on the
boundary of D. Assume that there is no simple path, in D, having the same
endpoints as b and which is shorter than b.

Let p be a regular path in D, whose endpoints are on b. Let b1 be the subpath
of b whose endpoints are the endpoints of p. Then |b1| ≤ |p|.

Proof. Let p′ be the path obtained from p after the removal of its loops; p′ is
simple and not longer than p. Now, if |b1| > |p| (Figure 3.6), then |b1| > |p′|;
but then, by replacing, in b, the subpath b1 by p′, we would obtain a simple path
having the same endpoints as b1, and whose length is smaller (p being regular, its
endpoints are not on G), which contradicts the hypothesis.

For i ∈ [1, N ], let ci be a path which “goes along” s0
i , as follows:

• ci is disjoint from all paths in s0;
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• there exist two paths pi and qi on ∂M, with length zero, whose relative
interiors do not meet any path of s0, and such that s0

i is homotopic to
pi.ci.qi.

In particular, ci has its endpoints on the boundary of M, and these endpoints do
not meet s0.

Let i ∈ [1, N ] be fixed. Let ti be a shortest path among all paths homotopic
to ci. In particular, ti is not necessarily simple. Note that if s0 and ti constitute a
regular family of paths then, by Lemma 3.11, s0/ti is parenthesized (since ti.c

−1
i

is contractible and ci does not cross s0). The idea of the proof is to show that the
shortening operations “uncross” s0 and ti.

Let s = (s1, . . . , sN ) be a cut system by paths at some stage of the process.
Let j ∈ [1, N ]; let r ∈ shrtj(s). Even if it means slightly perturbing ti, we may
assume that s (resp. r) and ti constitute a regular family. In the remaining part
of the proof, we will write the crossing words of r or s with ti in a slightly different
way, by omitting the “s” and the “r” (for example, we shall write 1 5 2 instead of
s1 s5 s2). This allows for example to say that s/ti = r/ti if ti crosses neither sj

nor rj. In a similar way, we will write redj instead of redsj
or redrj

.

Lemma 3.15 redj(s/ti) = redj(r/ti).

Proof. Let us consider a maximal subpath t̂i of ti which crosses no path of
s \ sj = r \ rj: t̂i belongs to a closed disk D defined by s \ sj , hence s/t̂i and r/t̂i
are only made of letters of the form j or ̄.7 These words are empty if sj is not
inside D; we now assume that sj belongs to D.

Paths sj and rj have the same endpoints, which are on the boundary of D,
and no other point of sj and rj is on the boundary of D. Moreover, t̂i has
its endpoints on the boundary of D, and these endpoints are different from the
endpoints of sj and rj. From this, it comes that sj separates the endpoints of
t̂i if and only if rj separates the endpoints of t̂i (Jordan curve theorem). If it is
the case, redj(s/t̂i) and redj(r/t̂i) both equal either j or ̄; otherwise, we have
redj(s/t̂i) = ε = redj(r/t̂i).

It is thus possible to write ti as a concatenation of paths t̂i,1, . . . , t̂i,n such that
each path t̂i,k intersects generically s, and such that, for each k, redj(s/t̂i,k) =

redj(r/t̂i,k). The result follows.

The following proposition proves, roughly but not exactly, that the application
of shrtj to s has for effect to proceed to all possible j-reductions on the crossing
word s/ti. This is in fact true if we accept to replace ti by a path t′i having the
same properties as ti:

Proposition 3.16 There exists a path t′i on M such that:

• t′i has the same properties as ti (the lengths and homotopy classes of ti and
t′i are equal; t′i and s (resp. r) constitute a regular family);

7In this proof, t̂i does not cross generically s because some endpoints of t̂i can be on s; it is
nevertheless possible to define in a natural way the crossing word, with the convention that the
intersections between s and the endpoints of t̂i are not taken into account.
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Proposition 3.16. Path ti is not necessarily simple and rj can cross other pieces
of ti.

• r/t′i = redj(s/ti).

Proof. If r/ti is j-irreducible, there is nothing to prove by Lemma 3.15. Assume
that some elementary j-reduction is possible on r/ti. Let r̂j and t̂i be the two
subpaths of rj and ti associated with this reduction. These two paths do not cross
r, hence are in a closed disk defined by r. It is obvious that |t̂i| ≤ |r̂j |, and there
is in fact equality by Proposition 3.14. We can thus “uncross” the intersections,
by replacing, in ti, the part t̂i by a path which goes along r̂j (Figure 3.7); this
changes neither the length of the path nor its homotopy class, and removes two
crossings. The proof is finished by induction.

Since s0/ti is parenthesized, the previous proposition also proves that, at some
stage of the process, s/ti is the empty word (up to changing ti by a path having the
same properties), because the length of s/ti strictly decreases at each application
of shrt. The following proposition aims at studying what happens once s and ti

are disjoint.

Proposition 3.17 Let us assume that s and ti are disjoint and that j = i. Then
|rj| = |ti|.

Proof. Path ti is in a topological disk defined by s. Up to removing the loops
of ti, which are contractible, we can assume that ti is simple. Thus, path pi.ti.qi

is also simple, and of the same length as ti; it has the same endpoints as sj and is
in a closed disk defined by s. Slightly perturb pi.ti.qi into a simple path ui which
meets ∂M exactly at its endpoints and which has the same length as ti. Then,
by definition of r ∈ shrtj(s), we have |rj | ≤ |ui| = |ti|. As ti is a shortest path
within its homotopy class, and because pi and qi have zero length, there is in fact
equality.

Let us conclude the proof of Theorem 3.13, which is a particular case of
Theorem 3.2.

Proof of Theorem 3.13. Let s and s′ ∈ shrtj(s) be two cut systems con-
sidered in the course of the optimization; by abuse of notation, we will write
s′ = shrtj(s) (which infers that, in the course of the optimization process, s′ is
chosen as element of shrtj(s)).
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Let i ∈ [1, N ], and let t0i be a shortest path among all paths homotopic to ci.
Assume that t0i and s0 constitute a regular family of paths. By Lemma 3.11, we
know that s0/t0i is parenthesized. By Proposition 3.16, it is possible to build a
sequence (tki )k∈N of shortest paths homotopic to t0i such that the length of the
crossing word sk/tki strictly decreases, until it becomes the empty word ε at some
stage p. By applying again i − 1 times Proposition 3.16, we get that there exists
ti, having the same properties as t0i , which does not cross shrti−1 ◦ · · · ◦ shrt1(s

p).
By Proposition 3.17, |sp+1

i | and |ti| have the same length.
The preceding reasoning still shows that, for each i, the sequence (|sk

i |)k∈N

becomes stationary at some point p + 1, and that, once it is the case, sp+1
i is a

shortest homotopic path. There remains to show that this sequence is stationary
as soon as two consecutive terms are equal, i.e., |sm| = |sm+1|. (This fact provides
a quite simple criterion to know when the optimization process can be stopped.)
Thus, let us assume that two cut systems s and s′ = shrt(s) have the same length,
and let i ∈ [1, N ]; it suffices to prove that si has the same length as ti (a shortest
path homotopic to ci).

The word s/ti is parenthesized; let us assume that an elementary j-reduction
is possible on this word, and let ŝj and t̂i be the two subpaths associated to this
reduction. We will prove that both endpoints have the same length. This will
imply that it is possible, like in Proposition 3.16, to modify ti without changing its
length nor its homotopy class to proceed to this j-reduction. Hence, by induction,
it will be possible to assume s/ti = ε (up to changing ti).

Assume j 6= 1; only (shrt1(s))1 appears in the word (shrt1(s))/t̂i. By Lemma 3.11,
this word is parenthesized and, by Proposition 3.14, it is possible to iteratively
proceed to the reductions, by replacing t̂i by a path t̂′i which has the same length
and the same homotopy class as t̂i, and which does not cross shrt1(s). By iterating
this process, we obtain the existence of some path t̂′′i , of the same length and the
same homotopy class as t̂i, which crosses no path of s′′ := shrtj−1 ◦ · · · ◦ shrt1(s).
Moreover, the endpoints of t̂′′i are on s′′j ; as the elements of shrtj(s

′′) have the
same length as s′′, then t̂′′i cannot be shorter than ŝj . Thus |ŝj| = |t̂′′i | = |t̂i|.

We can thus assume, up to a change of ti, that s/ti = ε. By applying i−1 times
Proposition 3.16, we can assume, up to changing ti, that (shrti−1 ◦ · · · ◦ shrt1(s)) /ti =

ε. Proposition 3.17 then proves that |(shrt(s))i| = |ti|; because |(shrt(s))i| = |si|,
we deduce that |si| = |ti|, which was to be proved.

3.3.2.2 Proof of Theorem 3.2 in the general case

We will use Theorem 3.13 to prove the more general Theorem 3.2. The idea is
to remove small disks to M around the vertices of the cut system by graph s0 to
obtain a surface with boundary M̂, to define from s0 a cut system by paths ŝ0 on
M̂, and to prove that the optimizations of s0 and ŝ0 are processed in the same
way.

We have seen that the map shrti is not defined in a unique way: there are
several s′i satisfying the required conditions so that s′ ∈ shrti(s). In particular,
intuitively, the exact position of s′i does not matter: if we deform a subpath of s′i
in the interior of a face of G, while keeping the paths simple and pairwise disjoint,
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it should be clear for the reader that the course of the optimization will remain
unchanged. We will now formalize this fact.

Let s be a cut system by graph; for each vertex v of s, let Dv be a closed disk
containing v in its interior8 and disjoint from G. We assume that Dv is chosen in
such a way that, for each j, sj crosses the boundary of Dv a minimal number of
times (as many times as sj has endpoints at v). We also assume that the disks
Dv are disjoint. The existence of such disks is easy to prove if we assume that all
the curves considered are piecewise linear with respect to a fixed triangulation of
M, and comes, in the general case, from Lemma 1.3, page 18.

Lemma 3.18 Let i ∈ [1, N ], and let s′ ∈ shrti(s). There exists s′′ ∈ shrti(s)

such that:

• si and s′′i coincide inside the disks Dv;

• the course of the optimization process is the same, starting with s′ or with
s′′. More precisely, let f be the composition, in an arbitrary order, of a finite
number of operations racj; then, for each element in f(s′), there exists an
element in f(s′′) whose curves have the same lengths.

Proof. We begin by building disks dv , D′
v, and D′′

v around each vertex v, in
such a way that:

dv @ Dv @ D′
v @ D′′

v ,

the notation A @ B meaning that the closure of A is included in the interior of B.
We may assume that the disks dv, D′

v, and D′′
v are disjoint from G and that the

disks D′′
v are pairwise disjoint. We may also assume that s′i meets the boundary

of dv a minimal number of times.
Let v be an endpoint of si. First assume that v has degree 1 (considered as

vertex of s), which implies that it is on the boundary of M, by the definition
of a cut system by graph. We will show that there exists a homeomorphism h1

from M to M, fixed outside D′′
v and at v, such that si and h1(s

′
i) are the same

inside Dv. We build a first homeomorphism which sends dv to D′
v, while fixing v

and M\ D′′
v (Figure 3.8, on the left and in the middle). By composition with a

second homeomorphism, fixing v and M\ D ′
v (Figure 3.8, on the right), we can

ensure that the image of s′i inside Dv is any simple path having v as endpoint
(Jordan–Schönflies theorem), hence in particular the piece of si which is inside
Dv.

If v has degree greater than 1, then the paths different from si decompose
the disk D′′

v into sectors (see Figure 3.9). If si is a closed path with basepoint v,
then the endpoints of si are in two different sectors of D′′

v : otherwise, si would be
the boundary of a face of s, which is a disk, and si would be contractible, thus
contradicting the definition of a cut system by graph. The same reasoning can be
applied as before in each sector of D ′′

v containing an endpoint of si.

8Here, the notions of closure, interior, and boundary are taken relatively to the ambiant
space M. In particular, if v is on the boundary of M, the interior of Dv contains a piece of
boundary of M. In this case, Dv shall be chosen so that its boundary is homeomorphic to a
closed disk.
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Figure 3.8: The creation of the homeomorphism in the proof of Lemma 3.18. The
path on the figure is a piece of s′i.
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Using the same technique, we can, for each sector of a disk D ′′
w containing no

endpoint of si, create a homeomorphism fixed outside this sector such that the
image of s′i by this homeomorphism does not enter Dw. Finally, we have built a
homeomorphism h, fixed on the vertices of s, on the paths of s \ si, and outside
the disks D′′

v , such that h(s′i) and si coincide in all disks Dv.
Let s′′ = h(s′); clearly, s′′ ∈ shrti(s). Furthermore, for any j and for any

systems t and t′, we have t′ ∈ shrtj(t) if and only if h(t′) ∈ shrtj(h(t)). This last
assertion shows that the course of the optimization is the same, continuing with
s′ or s′′: the lengths of the considered systems will be the same during the whole
optimization.

Proof of Theorem 3.2. Let V be the set of vertices of s. Let s and s′ ∈
shrti(s) be two cut systems by graph considered in the course of the optimization.
First of all, by Lemma 3.3, we know that si and s′i are isotopic in M minus the
elements of V which are not endpoints of si. In particular, si and s′i are homotopic
in M.

We build disks Dv, as indicated earlier, such that the paths s0 cross the
boundary of the disks Dv a minimal number of times. By Lemma 3.18, we may
assume that, at each shortening step, the subpaths of the paths of the system in
the interior of the disks Dv do not change.

Let U be the union of the interiors of the disks Dv; the space M̂ := M\U is
a surface with boundary. For any cut system by graph s considered in the course
of the optimization process, one sees that the intersection of s with M̂ is a cut
system by paths, denoted by ŝ. If s and s′ ∈ shrti(s) are two cut systems by
graphs considered, then ŝ′ belongs to shrti(ŝ). Indeed, to each simple path in
M̂, disjoint from ŝj for all j 6= i, having the same endpoints as ŝi, corresponds a
simple path (or loop) in M, disjoint from sj for j 6= i, having the same endpoints
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as si, its relative interior being in the same face of s \ si as the relative interior of
si; moreover, these paths have the same length.

The sequence (ŝk)k∈N thus satisfies ŝk+1 ∈ shrt(ŝk). We can apply Theo-
rem 3.13: there exists m ∈ N such that |ŝm+1| = |ŝm|, and, for any i, ŝm

i is a
shortest path among all homotopic paths in M̂.

In a first step, let us assume that all vertices of s0 are on the boundary of M;
let i ∈ [1, N ]. Let ti be a path homotopic to s0

i in M, as short as possible (but not
necessarily simple). Path ti is thus homotopic, in M, to some path t′i, of the same
length as ti, coinciding with s0

i inside each of the disks Dv. In particular, t′i does
not enter the disk Dv, if v is not an endpoint of s0

i . We obtain a path t̂′i, included
in M̂, having the same length as ti, homotopic in M to ŝ0

i . Since all vertices of
s0
i are on the boundary of M, this implies that t̂′i is homotopic in M̂ to ŝ0

i , and
thus that ŝm

i cannot be longer than ti. This proves Item 2 of Theorem 3.2. We
now prove the first item.

Let i ∈ [1, N ]. Call v0 and v1 the endpoints of s0
i ; let V ′ = V \ {v0, v1}. Let ti

be a shortest simple path (or loop) isotopic to s0
i in M\ V ′. To prove the result,

it suffices to prove that ŝm
i and ti have the same length.

Let h : [0, 1] × [0, 1] → M \ V ′ be an isotopy between s0
i and ti: for each

t ∈ [0, 1], h(t, .)|[0,1) is one-to-one, h(t, 0) = v0 and h(t, 1) = v1. For k = 0, 1,
h−1(Dvk

) is a neighborhood of the compact set [0, 1]×{k}; thus there must exist
ε > 0 such that

h([0, 1] × [0, ε]) ⊆ Dv0
and h([0, 1] × [1 − ε, 1]) ⊆ Dv1

.

Let h′ be the restriction of h to [0, 1] × [ε, 1 − ε]. Let r : M \ V → M \ U

be a continuous map which is the identity on M \ U and which sends, for each
v ∈ V , Dv \{v} to the boundary of Dv. Since h is an isotopy in M\V ′, and since
h(., k) = vk for k = 0, 1, the map h′′ := r ◦ h′ is well-defined, continuous, and its
image set is inside M̂. Furthermore:

• h′′(., ε) is on the boundary of Dv0
, and h′′(., 1 − ε) is on the boundary of

Dv1
;

• h′′(0, .) is the concatenation of some path on the boundary of Dv0
, of ŝ0

i ,
and of some path on the boundary of Dv1

;

• h′′(1, .) is the concatenation of some path on the boundary of Dv0
, of some

path t̂i which has the same length as ti, and of some path on the boundary
of Dv1

.

From this, we deduce that ŝ0
i is homotopic, in M̂, to a path which has the same

length as ti; hence |sm
i | = |ti|, which was to be proved.

3.3.3 Proof of Theorem 3.7

We now prove Theorem 3.7. The ideas are similar to the proof of Theorem 3.13,
but the proof is more sophisticated. This comes from the fact that we need to
shorten cycles within a given homotopy class in a cylinder or a pair of pants, in
contrast to the situation with embeddings of graphs. In this section, regularity of
families of curves is always assumed, although omitted in most statements.
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3.3.3.1 Crossing words sets

Let C be a family of curves (paths or cycles) on M, which are simple and pairwise
disjoint. We want to define the analogue of the crossing word between a given lift
of a cycle in M and the lifts of the curves in C.

We first introduce the notion of geometric lift. Recall from Chapter 1 that a
lift of a cycle γ : R → M (such that γ(1+.) = γ(.)) is an infinite path γ̃ : R → M̃
such that π ◦ γ̃ = γ. Let us introduce an equivalence relation ∼ on the lifts of γ

by: γ̃ ∼ γ̃ ′ if and only if there exists k ∈ Z such that γ̃(.) = γ̃ ′(k + .). From a
geometric point of view, two lifts which are in the same equivalence class are the
same (in particular, their image sets on M are the same). A geometric lift is an
equivalence class of this relation. Obviously, for a contractible cycle γ, the notions
of lift and of geometric lift coincide; by definition, they also coincide for paths.
This notion enables to define the crossing word between a path in M̃ and the
geometric lifts of the curves in C: indeed, since C contains simple and pairwise
disjoint curves, the geometric lifts of C correspond precisely to the connected
components of π−1(C̄), where C̄ ⊆ M means the union of the image sets of the
curves in C.

Let γ be a non-contractible cycle in M which intersects the curves in C gener-
ically, and let γ̃ a lift of γ. We wish to avoid the definition of the crossing word of
γ̃ with a set of geometric lifts, because this crossing word is potentially infinite.
Instead, we restrict ourselves to portions of γ̃, called lifted periods. A lifted period
of γ̃ is a path of the form γ̃(a + .)|[0,1] for some a ∈ R.

Let C̃ be the set of the geometric lifts of C. We will use the following con-
vention: if c is a curve in C, then the geometric lifts of c will be denoted by cα,
α ∈ Ic. (It is clear that the geometric lifts of a curve are enumerable, and we
can thus choose Ic ⊆ N, but the indexation set Ic does not matter at all.) We
consider the words on the alphabet made of the letters cα and c̄α, where cα ∈ C̃.
The crossing words set of γ̃ with C̃, denoted by [C̃/γ̃], is the set of crossing words
C̃/p̃, over all lifted periods p̃ of γ̃.9 Our first task will be to show that the crossing
words set [C̃/γ̃] is entirely determined once we know one of its elements.

We note that γ̃ induces an automorphism τγ̃ in M̃, as follows. Let v ∈ M̃.
Let p̃ be a lifted period of γ̃; consider a path β0 joining p̃(0) to v and call β1 the
lift of π(β0) starting at p̃(1). The target v′ of β1 satisfies π(v) = π(v′); intuitively,
γ̃ translates v to v′. It is readily seen that v′ does not depend on the choice of β0

and p̃. We therefore define τγ̃(v) := v′. In particular, τγ̃ sends a geometric lift of
a curve c ∈ C to another geometric lift of c.

Define a permutation φγ̃ over the set of words by the rule, if w is any word
and cα ∈ C̃: φγ̃(cαw) = w τγ̃(cα), φγ̃(c̄αw) = w τγ̃(cα), and φγ̃(ε) = ε.

Proposition 3.19 For any word w in [C̃/γ̃], we have: [C̃/γ̃] = {φn
γ̃ (w), n ∈ Z}.

Proof. First, let a1 < a2 be two real numbers such that exactly one crossing
occurs between the curves in C̃ and γ̃|[a1,a2]. For k = 1, 2, let wk = C̃/γ̃|[ak ,ak+1].

9In fact, we consider only the lifted periods whose endpoints are disjoint from lifts of C̃; this
to avoid a tedious definition of the crossings when an intersection occurs at an endpoint of p̃.
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We have w2 = φγ̃(w1); indeed,

τγ̃(cα ∩ γ̃|[a1,a2]) = τγ̃(cα) ∩ τγ̃(γ̃|[a1,a2])

= τγ̃(cα) ∩ γ̃|[a1+1,a2+1].

From this fact, it is easy to conclude.

If w is a word, we define [w]γ̃ to be the set {φn
γ̃ (w), n ∈ Z}. The sets of words

having this form are called the γ̃-words sets; in particular, the crossing words
set [C̃/γ̃] is a γ̃-words set. Note that φγ̃ does not affect the length of a word,
so that the length of a γ̃-words set is well-defined. Let W be a γ̃-words set. If
there exists w ∈ W containing a factor cαc̄α or c̄αcα, where cα ∈ C̃, we denote by
w′ the word resulting from removing this factor from w; we say that W (which
equals [w]γ̃) elementarily c-reduces to [w′]γ̃ . We define the elementary reductions,
(c)-reductions, and (c)-irreducible words set in the obvious way.

Lemma and Definition 3.20 Let c be a curve in C. Any γ̃-words set W c-
reduces (resp. reduces) to exactly one c-irreducible (resp. irreducible) γ̃-words set.
We define redc(W ) (resp. red(W )) to be this γ̃-words set.

Proof. We prove the result for reductions, the same argument holds for c-
reductions. Let w be a word; a simplification on w consists in either an elementary
reduction on w (removal of cαc̄α or c̄αcα), or in the removal of the first and last
letter of w, if the first is of the form cα (resp. c̄α) and the last of the form τγ̃(cα)

(resp. τγ̃(cα)). It is easily proved that W elementarily reduces to W ′ if and only
if, for any w ∈ W , there exists w′ ∈ W ′ such that w simplifies to w′.

We say that w and w′ are equivalent if [w]γ̃ = [w′]γ̃ . Let w be a word; suppose
that w1 and w2 are derived from w by a simplification. It can be shown by an easy
case analysis that there exist equivalent words w ′

1 and w′
2 such that, for i = 1, 2,

w′
i is derived from wi by zero or one simplification.

Let W be any γ̃-words set. Assume that W elementarily reduces to W1 and
W2. Let w ∈ W ; by the first paragraph, there exist w1 and w2 in W1 and W2

such that w simplifies to w1 and w2. It follows, by the second paragraph, that
there exists W3 deduced from W1 and W2 by zero or one elementary reduction.

We can now prove the result by induction on the length of γ̃-words sets; the
lemma is trivial if the length is 0 or 1. Assume that the lemma is true for all
γ̃-words sets of length at most n; let W be a γ̃-words set of length n + 1. If W

is reducible, consider any two γ̃-words sets, W1 and W2, derived from W by an
elementary reduction. By the preceding paragraph, W1 and W2 reduce (with zero
or one elementary reduction) to some W3. From our induction hypothesis, each
of W1, W2, and W3 yields only one irreducible γ̃-words set, which must hence be
the same for all these words sets. This concludes the proof.

Suppose that an elementary c-reduction is possible on [C̃/γ̃]. Fix a lifted
period p̃ of γ̃, such that this elementary reduction corresponds to a factor cαc̄α

or c̄αcα on C̃/p̃. Let a and a′ be the two intersection points corresponding to the
two letters of this factor, and cα

1 and p̃1 be the subpaths of cα and p̃ which are
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Figure 3.10: The fundamental operation of uncrossing two curves cα and p̃, cross-
ing at a and a′, corresponding to an elementary reduction on [C̃/γ̃]. Paths p̃1

and cα
1 are the subpaths of p̃ and cα between a and a′. Path p̃1 is not necessarily

simple, and cα
1 can cross other pieces of p̃.

between a and a′. The projections of these two subpaths on M are homotopic.
We will often use the following elementary operation of uncrossing (Figure 3.10):
we replace p̃1 by a path having the same endpoints which goes along cα

1 . The
effect of this operation is the removal of the two crossings a and a′. Let p̃′ be the
path p̃ after this operation, and let γ̃ ′ be the corresponding geometric lift of the
cycle γ′ for which p̃′ is a lifted period; [C̃/γ̃] elementarily reduces to [C̃/γ̃′], and
the cycles γ and γ ′ are homotopic.

Proposition 3.21 Let C be a family of simple, pairwise disjoint curves on M; let
C̃ be the set of geometric lifts of the curves in C. We assume that each element of
C̃ separates M̃ into two connected components. Let γ be a cycle in M, homotopic
to some cycle γ ′ disjoint from C, and let γ̃ be a lift of γ. Then red([C̃/γ̃]) = [ε]γ̃ .

Proof. Let p and p′ be the restrictions of γ and γ ′ to [0, 1]. There exists a path
β joining p(0) to p′(0) such that the path q := β−1.p.β.p′−1 is contractible in M.
Let q̃ be a lift of q, concatenation of the inverse of β0, p̃, β1, and the inverse of p̃′

(respectively lifts of β, p, β, and p′). We choose q̃ so that p̃ is a lifted period of γ̃.
Since p′ is disjoint from C̃, w := C̃/q̃ is the concatenation of C̃/(β0)−1, C̃/p̃,

and C̃/β1. Furthermore, τγ̃(β0) is equal to β1; hence, if the kth letter of C̃/β0

is equal to cα (resp. c̄α), then the kth letter of C̃/β1 is equal to τγ̃(cα) (resp.
τγ̃(cα)). It follows that [w]γ̃ reduces to [C̃/p̃]γ̃ = [C̃/γ̃]. Now, by Lemma 3.10, w

is parenthesized, so [w]γ̃ also reduces to [ε]γ̃ . Lemma 3.20 concludes.

3.3.3.2 Curves on cylinders and pairs of pants

In this section, we use crossing words to prove some basic facts regarding curves
on cylinders and pairs of pants. All surfaces considered here have corresponding
embedded graphs G used to compute the length of the curves.

For cycles. Let us study the existence, in pairs of pants or cylinders, of shortest
homotopic cycles which are simple.

Proposition 3.22 Let K be a cylinder or a pair of pants, and γ be a cycle ho-
motopic to a boundary of K. There exists a simple cycle homotopic to and not
longer than γ.



3.3 Proofs of the optimization theorems for cut systems 81

We will only give a proof when K is a pair of pants; the proof of the case where
K is a cylinder is simpler. The proof relies on the two following lemmas. Let p

be a shortest path between the two boundaries of K which are not homotopic to
γ; p can be chosen to be simple. Let K ′ be the cylinder obtained when cutting
K along p, and let p′ be a (simple) shortest path in K ′ joining one point of each
boundary of K ′.

Lemma 3.23 There exists a cycle γ ′, homotopic to and not longer than γ, which
does not cross p.

Proof. Let p̃ be the set of geometric lifts of p, and γ̃ be a lift of γ. [p̃/γ̃] reduces
to [ε]γ̃ by Proposition 3.21; if it is not empty, let γ̃1 and p̃1 be the subpaths of
γ̃ and of the element of p̃ corresponding to an elementary reduction. Since p

is a shortest path, |p̃1| ≤ |γ̃1|, and we can, like in Figure 3.10, proceed to the
elementary reduction by changing γ to another cycle, which is homotopic to and
not longer than γ, and has two crossings less than γ with p. The proof is finished
by induction on the number of crossings between γ and p.

Lemma 3.24 There exists a cycle γ ′′ in the cylinder K ′, not longer than γ ′,
homotopic to γ ′ in K ′, which crosses p′ exactly once.

Proof. Let γ̃ ′ be a lift of γ ′, and p̃′ be the set of the geometric lifts of p′ in the
universal covering space of K ′. γ′ is homotopic, in K ′, to its boundaries. The
crossing words set [p̃′/γ̃′] reduces to some irreducible words set [w]γ̃′ , where w

contains exactly one letter. Indeed, the number of letters with and without bar
in w differ by exactly one; if w contains more than one letter, then two letters
with and without a bar must be consecutive in w, which implies a possible ele-
mentary reduction. Hence, if γ ′ crosses p′ at least twice, an elementary reduction
is possible. Let γ̃ ′

1 and p̃′1 be the subpaths of γ̃ and of the element of p̃′ in the
universal covering space of K ′ corresponding to this reduction. Like in the proof
of Lemma 3.23, we can modify γ ′ to get a not longer, homotopic cycle which
crosses p′ twice less, the homotopy being taken in K ′. We finish by induction on
the length of [p̃′/γ̃′].

Proof of Proposition 3.22. By Lemmas 3.23 and 3.24, we may assume that
γ does not cross p, and crosses p′ exactly once, say at some point a. Cut the
cylinder K ′ along p′; we obtain two copies a′ and a′′ of a, and γ is transformed
into a path between a′ and a′′. Hence, a shortest path between a′ and a′′ leads to
a cycle in K ′ which can be chosen to be simple, not longer than γ, and homotopic
to γ in K.

In fact, the techniques used in the proof of this proposition yield an algorithm
to compute a shortest cycle homotopic to a given boundary of a cylinder or pair
of pants; this will be discussed in more details in Section 3.5.

For paths. Here are some results on shortest homotopic paths on cylinders or
pairs of pants.
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Proposition 3.25 Let K be a cylinder or a pair of pants, and γ be one boundary
of K. Assume γ is a shortest cycle among the simple cycles homotopic to γ. Let q

be a path in K whose endpoints are on γ and which is homotopic to a path whose
image set on K is inside the image set of γ. Then q∗, the shortest path on γ

homotopic to q, is not longer than q.

Again, we only give the proof for a pair of pants. Let p be a shortest path
between the two boundaries of K which are not homotopic to γ; p can be chosen
to be simple. Let K ′ be the cylinder obtained when cutting K along p.

Lemma 3.26 There exists a path q′, homotopic to and not longer than q, which
does not cross p.

Proof. Analogous to Lemma 3.23.

Proof of Proposition 3.25. By Lemma 3.26, and since q∗ = q′∗, we may
assume that q belongs to K ′. The proof is by induction on the number c(q) of
self-crossings of q. If c(q) = 0, then q is homotopic, in K ′, to a simple subpath of
γ, and the result follows from the minimality of γ. Assume that c(q) > 0, and that
the result is true for all smaller values of c(q). Let c1 be a simple closed subpath
of q, and let q1 be equal to the path q where c1 is removed; c(q1) = c(q) − 1.
The loop c1 is either contractible or freely homotopic to the boundaries of K ′, by
Theorem 1.11, page 28.

If c1 is contractible, then q∗ = q∗1. By the induction hypothesis, |q∗1 | ≤ |q1|;
we also have |q1| ≤ |q|, which concludes this case. If c1 is homotopic to γ or its
reverse, q is homotopic to q1.` or q1.`

−1, where ` is a loop associated with γ, and
thus |q∗| ≤ |q∗1|+ |γ|. Using the induction hypothesis, this cannot be greater than
|q1| + |γ|, which, in turn, cannot be greater than |q1| + |c1| = |q|.

For cut systems by cycles. Let us start with a simple proposition.

Proposition 3.27 Let s be a cut system by cycles of M. Let sk1
and sk2

be cycles
of s which are ± homotopic ( i.e., sk1

and sk2
are homotopic, or sk1

and the reverse
of sk2

are homotopic). Then there is a sequence sk1
= si1 , si2 , . . . , sip = sk2

of
± homotopic cycles of s such that two consecutive cycles in this sequence bound
a cylinder whose interior is disjoint from the cycles of s.

Proof. By Lemma 1.9, sk1
and sk2

bound a cylinder K. Any cycle of s inside
K must be ± homotopic to sk1

and sk2
, for otherwise such a cycle would be

contractible or non-simple. It follows that each component of the surface K cut
along all cycles of s is a cylinder. Hence the cycles of s in K can be ordered
sk1

= si1 , si2 , . . . , sip = sk2
so that two consecutive cycles in this sequence bound

a cylinder containing no other cycle of s.

Proposition 3.28 Let s be a cut system by cycles of M. Assume that γ is inside
one component K of the surface obtained by cutting M along s (K is a cylinder
or a pair of pants), and homotopic in M to a cycle sk. Then γ is homotopic, in
K, to one boundary of K.
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The difficulty of this proposition lies in the fact that γ can be non-simple;
otherwise, the same technique as the previous proposition could be applied. We
start with a simple lemma.

Lemma 3.29 Let K be a compact surface included in M whose boundaries are
non-contractible in M. Then any cycle inside K which is contractible (in M) is
also contractible in K.

Proof. Let (M̃, π) be the universal covering space of M; it is sufficient to
prove that π−1(K) is simply connected. If it were not the case, there would exist
a simple non-contractible cycle γ in π−1(K). Such a cycle bounds a disk D in M̃,
by Theorem 1.8, page 28, and D is not entirely contained in π−1(K). Therefore
a lift γ̃′ of a boundary γ ′ of K is inside D. This is impossible since γ̃ ′ contains
infinitely many lifts of some point of M (by Lemma 1.10, page 28).

Proof of Proposition 3.28. We again assume that K is a pair of pants. Let s̃

denote the geometric lifts of the cycles in s. Let γ ′ be a cycle “running along” sk: γ′

is simple, disjoint from all cycles of s, and homotopic, in the surface obtained after
cutting M along s\ sk, to sk. Let p and p′ be the restrictions of γ and γ ′ to [0, 1].
There exists a path β joining p(0) to p′(0) such that the path q := β−1.p.β.p′−1

is contractible in M. Let q̃ be a lift of q, concatenation of the inverse of a lift β 0

of β, a lift p̃ of p, a lift β1 of β, and the inverse of a lift p̃′ of p′.
Without loss of generality, assume that s̃/β0 is irreducible. If this crossing

word is empty, then q is contractible in K by Lemma 3.29, hence γ and γ ′ are
homotopic in K; so are γ and sk, and the proof is complete. Assume this crossing
word is non-empty.

Since p and p′ do not cross s, s̃/q̃ is the concatenation of s̃/(β0)−1 and s̃/β1.
Because s̃/β0 is irreducible, so are s̃/(β0)−1 and s̃/β1; since s̃/q̃ can be elementar-
ily reduced (because q is a closed path), there is exactly one possible elementary
reduction on this word, which concerns the last letter of s̃/(β0)−1 and the first
letter of s̃/β1. Hence, the first elements of s̃ crossed by β0 and β1 must be the
same, say sα

j . Let β′ be the beginning of β before its first crossing with s; we get
that β′−1.p.β′ is homotopic to the nth power of a loop `j associated to sj in M,
for some n. This homotopy can in fact be taken in K by Lemma 3.29. We now
have to prove that n ∈ {−1, 1}.

There exists a loop `k associated to sk, and a path δ, such that δ.`k.δ
−1 is

homotopic (in M) to the nth power of `j . Hence `k is homotopic to the nth power
of δ−1.`j .δ. Since `k is simple, it follows by Theorem 1.11 that |n| ≤ 1. Hence γ

is homotopic, in K, to sj or its reverse.

3.3.3.3 Proof of Theorem 3.7

Let us consider a cut system by cycles s = (s1, . . . , sN ) of M; let s̃ be the set of
all geometric lifts of s in M̃. For i ∈ [1, N ], let us choose an enumeration (sα

i )α∈Ii

of the geometric lifts of si.
Fix j ∈ [1, N ]; let r ∈ shrtj(s). We consider the set r̃ of all the geometric lifts

of the cycles in r, and we give an enumeration of the geometric lifts of rk, for each
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k, as follows. We choose the enumeration of the geometric lifts of rk, for k 6= j,
as the geometric lifts of sk (i.e., rα

k = sα
k ). It remains to define the enumeration

of the geometric lifts of rj . Let Pj be the surface defined by s \ sj which contains
sj. We first choose a cycle γj in Pj , so that γj is disjoint from sj and rj . (This
is always possible since sj is homotopic to a boundary of Pj .) Thus sj and γj

bound a cylinder in Pj by Lemma 1.9, page 28; the lifts of this cylinder in M̃ are
disjoint infinite strips which contain no lift of s or γj in their interior. We can thus
choose an enumeration of the geometric lifts of γj such that, for each α, sα

j and
γα

j bound a strip which contains no lift of s or γj in its interior. Doing the same
with γj and rj (which together bound a cylinder in Pj), we get an enumeration
of the geometric lifts of rj .

Finally, fix i ∈ [1, N ]; let ti be a shortest cycle among all cycles homotopic to si

(ti is not necessarily simple), and t̃i be a lift of ti. Henceforth, the crossing words
regarding the geometric lifts of s and r will be written by using the enumeration
described above, by omitting the “r” and the “s”. For example, we shall write
3
1

7
5

4
2 instead of s3

1 s7
5 s4

2. This allows to write, for example, that [r̃/t̃i] = [s̃/t̃i] if
ti does not cross rj nor sj.

Proposition 3.30 redj([r̃/t̃i]) = redj([s̃/t̃i]).

We denote by s̃j the set of geometric lifts of sj , with the enumeration induced
by s̃. The same holds for r̃j .

Lemma 3.31 Let p be a path in Pj whose endpoints are on the boundary of Pj,
and p̃ be a lift of p. Then s̃j/p̃ and r̃j/p̃ reduce to the same irreducible word.

Proof. We first assume sj and rj are disjoint; they bound a cylinder K inside
Pj . The lifts of K in the universal covering space of M are pairwise disjoint
infinite strips bounded by rα

j and sα
j , by the choice of the enumeration of the

geometric lifts of rj. Furthermore, p̃ has its endpoints outside these strips. Let
us split p̃ into subpaths p̃i, i = 1, . . . , n, each entering in exactly one strip, and
exactly once in this strip, and so that their endpoints are outside the strips.
Clearly, s̃j/p̃i and r̃j/p̃i reduce to the same irreducible word (there are two cases
according to whether p̃i enters and exits the strip through the same boundary or
not); the result follows.

For the general case, let γj be a simple cycle homotopic in Pj to rj and sj,
and which does not cross rj nor sj. We again enumerate the geometric lifts of γj

so that γα
j and rα

j (or sα
j ) bound an infinite strip. Applying the reasoning of the

above paragraph to sj and γj, and then to γj and rj , we get the result.

Proof of Proposition 3.30. Assume first that ti is contained in Pj. By Propo-
sition 3.21, we have red([r̃/t̃i]) = [ε]t̃i = red([s̃/t̃i]). But this also equals redj([r̃/t̃i])

and redj([s̃/t̃i]), and this concludes the proof. If ti is not entirely contained in
Pj , then let t′i be a maximal subpath of ti which is inside Pj , and t̃′i be a lift of t′i;
it is sufficient to prove that r̃j/t̃

′
i and s̃j/t̃

′
i reduce to the same irreducible word;

but this follows from Lemma 3.31.
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Proposition 3.32 There exists a cycle t′i, homotopic to and not longer than ti,
and a lift t̃′i of t′i, such that [r̃/t̃′i] is a t̃i-words set equal to redj([s̃/t̃i]).

Proof. By Proposition 3.30, [r̃/t̃i] j-reduces to redj([s̃/t̃i]). If [r̃/t̃i] is j-
irreducible, there is nothing to show. Otherwise, an elementary j-reduction is
possible on [r̃/t̃i]. We can apply Proposition 3.25 to the subpath of ti correspond-
ing to this j-reduction, and apply the uncrossing operation to ti. We obtain a lift
t̃′i of a cycle t′i which is homotopic to and not longer than ti. Clearly, τt̃i

= τt̃′i
,

which implies that the sets of t̃i- and t̃′i-words sets are equal. Furthermore, [r̃/t̃′i]

results from [r̃/t̃i] by this elementary j-reduction. By induction, we obtain the
desired t′i.

Proposition 3.33 Assume that ti is disjoint from s, and that ti and sk are ± ho-
motopic in the cylinder or pair of pants defined by s containing ti. Then, there
exists a cycle t′i, homotopic to and not longer than ti, which is disjoint from r, and
which is ± homotopic to rk in the cylinder or pair of pants defined by r containing
t′i.

Proof. Let K be the cylinder or pair of pants defined by s containing ti. The
proof is trivial if sj is not a boundary of K. If sj is ± homotopic to ti in K, then
either sj = sk, or K is the cylinder bounded by sj and sk. In both cases it is easy
to conclude: indeed, ti can be chosen to be simple by Proposition 3.22; it follows
that |rj| = |ti|, and we can take for t′i a slightly translated copy of rj or r−1

j .
There remains the case where sj is not ± homotopic to ti in K (and thus K is

a pair of pants). Pj contains ti; one boundary of Pj is a cycle γ homotopic to rj

in Pj, and another one is rk. The cycles rj and γ bound a cylinder K ′ in Pj , and
rj is optimal in K ′. Then, using Proposition 3.25, any component of ti in K ′ can
be swapped into the complementary part K of Pj , thus removing the crossings
with rj.

We now conclude the proof of Theorem 3.7.

Proof of Theorem 3.7. If s and s′ ∈ shrti(s) are two cut systems by cycles
considered in the course of the process, we will write by abuse of notation s ′ =

shrti(s). We let s̃0 be the geometric lifts of s0, enumerated in an arbitrary way.
By induction on n ∈ N, we construct an enumeration s̃n of the geometric lifts of
sn, this enumeration being chosen as in the beginning of Section 3.3.3.3.

Let t̃0i be a lift of a shortest cycle t0i homotopic to s0
i . By Proposition 3.21,

[s̃0/t̃0i ] reduces to [ε]t̃0
i
. By Proposition 3.32, we can construct a sequence (t̃ni )n∈N

of lifts of shortest homotopic cycles such that the length of [s̃n/t̃ni ] strictly de-
creases until it becomes empty at some stage n. By Proposition 3.28, tn

i and a
cycle sn

k are homotopic in the cylinder or pair of pants defined by sn containing
tni . By k − 1 applications of Proposition 3.33, and then using Proposition 3.22,
|sn+1

k | = |tni |. The cycles sn+1
k and sn+1

i are ± homotopic, hence, by Proposi-
tion 3.27, there is a finite sequence of p cylinders separating sn+1

k and sn+1
i . It

implies that, after p new applications of shrt, all the cycles in these cylinders must
have the length of sn+1

k ; in particular, |sn+1+p
i | = |tn+1+p

i |. From this discussion,



86 Optimization of curves on surfaces

it follows that the length of (sn
i )n∈N becomes stationary. It remains to prove that

all lengths remain unchanged once sn and sn+1 have the same lengths. Assume
s and s′ ∈ shrt(s) have the same length, and let i ∈ [1, N ]; we shall prove that si

has the same length as ti (a shortest cycle homotopic to si).
[s̃/t̃i] reduces to the empty words set; assume that an elementary j-reduction

is possible. Let t̂i and ŝj be the associated subpaths of t̃i and of the lift of sj. We
will prove that both subpaths have the same length. It will follow that we can
modify ti without changing its length nor its homotopy class to proceed to the
j-reduction in [s̃/t̃i]; hence by induction we will be able to assume that [s̃/t̃i] = ε.

If j 6= 1, only geometric lifts of (shrt1(s))1 appear in the word shrt1(s̃)/t̂i; by
Lemma 3.10, this word is parenthesized. By Proposition 3.25, we can iteratively
remove all the crossings between t̂i and shrt1(s̃). t̂i is replaced this way by a path
with the same endpoints t̂′i that does not cross shrt1(s̃). Iterating the process, we
get the existence of a path t̂′′i in M̃, not longer than t̂i, with the same endpoints
as t̂i, and which crosses no lift of s′′ := shrtj−1 ◦ . . . ◦ shrt1(s). Furthermore,
s′′j = sj is optimal in the cylinders and in the pairs of pants it bounds, because s′′

has the same length as shrtj(s
′′). It follows, by Proposition 3.25, that ŝj cannot

be longer than t̂′′i . Hence |ŝj | = |t̂′′i | = |t̂i|.
We can thus assume (up to a change of ti) that [s̃/t̃i] = ε. By Proposition 3.28,

ti and a cycle sk are homotopic in the cylinder or pair of pants defined by s con-
taining ti. By k−1 applications of Proposition 3.33, and then by Proposition 3.22,
we may assume that ti and sk bound a cylinder whose interior is disjoint from the
cycles of shrtk−1 ◦ . . . ◦ shrt1(s). This implies |sk| = |ti|, which finishes the proof
if k = i. If k 6= i, there is, by Proposition 3.27, a sequence of ± homotopic cycles
si2 , . . . , sip−1

between sk and si; all these cycles must have the same length, for
otherwise the length of some cycle would decrease after the application of shrt to
s. This concludes the proof.

3.4 Extension of an embedding to a cut system

In this section, we consider the problem of optimizing embeddings of graph or
of cycles, without assuming that these embeddings are cut systems. The idea
is to extend such a family of curves to a cut system and to optimize the cut
system by one of the theorems of Section 3.2. By these theorems, the resulting
cut system contains curves which are, individually, as short as possible in some
class (of homotopy or isotopy). In other words, the extension to a cut system
creates no obstruction for the shortenings; on the contrary, it even enables to give
a simple algorithm for this purpose!

In the following, we assume that the input embedding of graph or of cycles
contains no contractible path or cycle. If the input embedding has contractible
curves, these curves, being also simple, bound a topological disk by Theorem 1.8,
page 28. A preliminary operation thus consists in testing this property and in
removing the contractible curves, if any.
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3.4.1 Cut systems by graph

We emphasize that the embeddings of graphs considered are without isolated
vertices and may have loops and multiple edges. Such an embedding is thus a
family of simple, disjoint paths, except possibly at common endpoints.

Theorem 3.34 Let g be the genus of M, and b be the number of its boundaries.
Let s = (s1, . . . , sn) be a regular embedding of graph on M, containing no
contractible path. Then it is possible to extend s to a cut system by graph
(s1, . . . , sN ) (with N ≥ n) such that each vertex of this cut system is a vertex
of s or a point on the boundary of M (or, if M is boundaryless and s is empty,
with one single vertex), with N = O(n + g + b).

Let us start with a lemma.

Lemma 3.35 Let M be a compact, orientable surface; let k ≥ 1 be the number of
its connected components, g be its genus, and b be the number of its boundaries; let
us assume that b ≥ 1. Let c be a simple path on M which intersects the boundary
of M exactly at its endpoints; let M′ be the surface obtained by cutting M along
c; let k′ be the number of its connected components, g ′ be its genus and b′ be its
number of boundaries. Then one of the following assertions holds:

• k′ = k + 1, g′ = g, and b′ = b + 1 (case of a separating path);

• k′ = k, g′ = g − 1, and b′ = b + 1 (case of a non-separating path whose
endpoints are on the same boundary of M);

• k′ = k, g′ = g, and b′ = b−1 (case of a non-separating path whose endpoints
are on two different boundaries of M).

Proof. Let χ(M) and χ(M′) be the Euler characteristics of M and M′. We
have χ(M′) = χ(M)+1; indeed, χ does not depend on the chosen triangulation of
the surface (it is a topological invariant), and we can always triangulate M in such
a way that c is an edge of M; the cutting operation thus boils down to duplicate c

and the two incident vertices (Figure 3.11). The Euler characteristic being equal
to the number of vertices and faces minus the number of edges, it increases by
one during the cutting. But χ(M) = 2k − 2g − b and χ(M′) = 2k′ − 2g′ − b′.
Hence we have:

2(k′ − k) − 2(g′ − g) − (b′ − b) = 1. (3.1)

Clearly, k′ − k is between 0 and 1, and b′ − b is between −1 and 1; Formula (3.1)
thus proves that b′ − b is odd, hence equals either −1 or 1. On the other hand, if
k′ = k + 1, then we cannot have b′ = b− 1, because each “side” of c will belong to
a boundary in the surface after cutting.

Proof of Theorem 3.34. Let M′ be the surface obtained by cutting M along
paths s1, . . . , sn. Let us prove that M′ has at most n + 1 connected components,
has genus at most g+n, and has at most b+3n boundaries. For each vertex v of s,
we build a disk Dv chosen as in Section 3.3.2.2. Let M1 be the surface M where
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Figure 3.11: Cutting along a path intersecting the boundary of the surface exactly
at its endpoints, increases the Euler characteristic of the surface by one.

the disks Dv have been removed. Cutting M along the paths of s yields a surface
M′

1 which is topologically equivalent to the surface M′; in particular, these two
surfaces have the same number of connected components, the same genus, and
the same number of boundaries. M1 is connected, has genus g, and has a number
of boundaries equal to b plus the number of vertices of s in the interior of M
(which is at most 2n). The previous lemma shows that M′

1 has at most n + 1

connected components, genus at most g + n, and at most b + 3n boundaries; the
same holds for M′.

Consider a connected component of M′; let g′ be its genus and b′ be its number
of boundaries. Each of these b′ boundaries contains at least one point which is,
after gluing, either on the boundary of M or on a vertex of s. It is thus possible
to find a polygonal schema with 4g′ + 3b′ edges on this surface so that, after
regluing along the paths of s, each vertex of this schema is a vertex of s or on
the boundary of M. (If M′ is boundaryless, this means that n = 0, and it is
possible to find a polygonal schema with one single vertex on M′.) We thus have
a regular embedding of graph which cuts M into a disjoint union of closed disks
with O(n+ g + b) paths and whose vertices will be, after regluing along the paths
of s, either vertices of s or on the boundary of M. To transform this regular
embedding of graph into a cut system by graph, it is then sufficient to “double”
all paths of this embedding: for each path c of this embedding, we add a path
which “goes along” c (the graph thus has multiple edges). The resulting family is
a cut system by graph, with N = O(n + g + b) paths.

The following corollary can be immediately deduced, with Item 2 of Theo-
rem 3.2:

Corollary 3.36 Let c be a simple path whose intersection with ∂M is exactly
its endpoints. Let C be the set of all paths with minimal length among the paths
homotopic to c. Then, there exists an element of C which is simple.

The following corollary can be deduced from the previous theorem and from
Corollary 3.5:

Corollary 3.37 Let s be a fundamental system of loops which has minimal
length among the systems in its homotopy class. Then, for each i, si is a loop
with minimal length among all simple loops homotopic to si.

From a cut system by graph, it is always possible to obtain a triangulated cut
system by graph, i.e., a cut system by graph in which each face is incident to at
most three paths of the system. N increases but remains asymptotically the same
(a triangulation of a polygon with p edges is done with p− 3 paths). We will use
this fact in the complexity analysis of our algorithm.
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Figure 3.12: Cutting M along a simple cycle does not change the Euler charac-
teristic of the surface.

3.4.2 Cut systems by cycles

Theorem 3.38 Let g be the genus of M, and b be the number of its boundaries.
We assume that M is neither a sphere nor a disk. Let s = (s1, . . . , sn) be a
regular embedding of non-contractible cycles. It is possible to extend s to a cut
system by cycles (s1, . . . , sN ).

Again, let us begin with a lemma:

Lemma 3.39 Let M be a compact, orientable surface; let k ≥ 1 be the number
of its connected components, g be its genus, and b be the number of its boundaries.
Let γ be a simple cycle in the interior of M; let M′ be the surface obtained by
cutting M along γ, having k′ connected components, b′ boundaries, and genus g′.
Then one of the following assertions holds:

• k′ = k + 1, g′ = g, and b′ = b + 2 (case of a separating cycle);

• k′ = k, g′ = g − 1, and b′ = b + 2 (case of a non-separating cycle).

Proof. Let χ(M) and χ(M′) denote the Euler characteristics of M and M′.
A similar argument to the one of the proof of Lemma 3.35 proves that χ(M) =

χ(M′), because it is always possible to triangulate M in such a way that the
cycle γ is a cycle of length three in the vertex-edge graph; the cutting boils thus
down to duplicate three vertices and three edges (Figure 3.12). Hence:

2(k′ − k) − 2(g′ − g) − (b′ − b) = 0. (3.2)

Again, k′−k is either 0 or 1; b′− b necessarily equals 2. This is enough to deduce
the two indicated possibilities.

Proof of Theorem 3.38. Cutting M along the cycles of s yields a set of at
most n surfaces, whose sum of generi is at most g +n and whose sum of numbers
of boundaries is at most b + n.

Let M′ be such a surface; let g′ be its genus and b′ be the number of its
boundaries. M′ is neither a sphere nor a disk. If it is a cylinder or a torus, it
admits a decomposition into cylinders with 0 or 1 cycle. Otherwise, it admits a
pants decomposition with 3g′ + b′ − 3 cycles.

Finally, we obtain a decomposition of M into cylinders or pairs of pants with
O(g + b + n) cycles. To obtain a cut system by cycles, it is then sufficient to
“double” all cycles, by creating, for each cycle, a copy which goes along it.
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In particular, a single cycle or a pants decomposition can be extended to a
cut system by cycles. We deduce, with Theorem 3.7, the following corollaries:

Corollary 3.40 Let γ be a simple cycle, and let Γ be the set of the cycles with
minimal length among the cycles which are homotopic to γ. There exists an
element of Γ which is simple.

(The previous corollary has been shown in [75] in the case where the curves are
drawn on a Riemannian surface.)

Corollary 3.41 Let s be a pants decomposition which has minimal length
among the pants decomposition in its homotopy class. Then, for each i, si

is a simple cycle with minimal length among the (not necessarily simple) cycles
which are homotopic to si.

3.5 Algorithms

This section aims at explaining how it is possible to implement the optimization
and extension processes previously described. We will firstly describe how to store
efficiently a regular embedding of graph or of cycles on M. Then, we will explain
how to translate into effective algorithms the processes described in Section 3.2.
After that, we will give their complexity. Finally, we will explain how to extend
an embedding of graph or of cycles to a cut system.

Convention 3.42 Henceforth, we will assume that:

i. M is a polyhedral surface, with vertex-edge graph H;

ii. G is the dual graph of H, as defined in Section 3.1.2 (which in particular
implies that the faces of G are topological disks);

iii. each vertex of any embedding of graph considered is a vertex of H.

3.5.1 Combinatorial curves

We now describe in detail the combinatorial framework, sketched in Section 3.1.2.
The idea is to consider a regular embedding of graph or cycles, and to “forget” its
actual geometry, by keeping in memory only the way the curves cross the edges
of G. In other words, two embeddings which cross G in the same way will be
regarded as identical.

A path on the graph H is a sequence of oriented edges a1, . . . , ap of H such
that, for each k, k = 1, . . . , p− 1, the target of edge ak is the source of edge ak+1.
An occurrence of an oriented edge of H in this path will be called a jump of this
path. A jump thus corresponds to a unique oriented edge of H, but an oriented
edge of H corresponds to zero, one, or several jumps of a path.

A cycle on H is a cyclic sequence of oriented edges a1, . . . , ap, ap+1 = a1 of
H such that, for each k, k = 1, . . . , p, the target of edge ak equals the source of
edge ak+1. (This distinction between cycle and closed path in a graph is to be
compared with the distinction between cycle and closed path on a surface.) An
occurrence of an oriented edge of H will still be called a jump of this cycle.
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Figure 3.13: The data structure used to store a combinatorial family of cycles on
H, in the neighborhood of a vertex v of H of degree 5. Each (non-oriented) edge
of H incident to v contains the ordered list of the jumps which are on this edge.
Here, no crossing occurs at v. On the right, a “natural” way to see the cycles
spread apart on the surface.

3.5.1.1 Combinatorial cycles

Let us begin with the definition of a combinatorial family of cycles, which is the
simplest case. We will consider here the oriented edges of H; if e is an edge of H,
−e denotes edge e with the opposite orientation.

A combinatorial family of cycles S is a family of cycles in H with the data, for
each oriented edge e of H, of a total order �e over all the jumps of the set of cycles
corresponding to edge e or −e. These cycles must be consistent, in the following
way: a �e b if and only if b �−e a. These orders �e represent a way to draw
cycles on the surface: schematically, it is possible to represent a combinatorial
family of cycles S as in Figure 3.13, each non-oriented edge of H containing an
ordered list of jumps. In this representation, a �e b if and only if jump a is on
the left of jump b along the (oriented) edge e.

Let v be a vertex of H, and let e1, . . . , en be the (cyclic) list of edges of H

whose source is v, in clockwise order. Let us define a cyclic order �v on the jumps
of cycles of S incident to v, by enumerating its elements in the order: first, the
jumps of cycles of S on e1 or −e1, in �e1

-order; then the jumps of cycles of S on
e2 or −e2, in �e2

-order; and so on. In the previous representation, �v describes
the cyclic order of the jumps of S around v.

Let a1, a2 and b1, b2 be the jumps of two subpaths of size 2 of cycles in S. We
will say that these subpaths cross if the edges corresponding to a1 and b1 have
the same target v and if, in the cyclic order �v, a1 and a2 separate b1 and b2.

It is easy to create a data structure to store a combinatorial family of cycles,
in which accessing the predecessor and successor of a jump in a given cycle, and
accessing the predecessor and the successor of a jump with respect to some �v-
order, takes constant time. Figure 3.13 represents this structure: each rectangular
box is a doubly-connected list of pointers to the jumps; each jump knows the edge
on which it is, its adjacent jumps in the cycle, and its adjacent jumps in �v-order.
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Figure 3.14: Crossings between a vertex v of H which is endpoint of at least
one path. Here, there are two subpaths of size 2 at v, a1a2 and b1b2, and two
jumps c and d which are endpoints of paths at v (represented with disks at their
endpoints). The cyclic order �v is, in clockwise order: the “boundary marker” of
M, a1, c, b1, d, b2, a2. The cyclic order �′

v is: the “boundary marker” of M, c,
d. Hence crossings occur at v, because of a1a2 and also of b1b2 (since a1 and a2,
resp. b1 and b2, are not in the same class induced by �′

v).

3.5.1.2 Combinatorial curves

We will now extend the definition of combinatorial cycles to the case where there
are not only cycles, but also paths, drawn on H. A combinatorial family of curves
S is a family of curves (paths or cycles) on H, with the data, for each oriented edge
e of H, of a total order �e over all the jumps of the set of curves corresponding
to edge e or −e. These orders must be consistent, in the sense that a �e b if and
only if b �−e a. The orders �v are defined in a slightly different way as above: the
definition of �v is the same as in the previous section if v is not on the boundary
of M; if v is on the boundary of M, �v is defined as above, except that there
is an additional element, called “boundary marker”, corresponding to the position
of the boundary in this cyclic order.

The definition of a crossing must be extended because of the endpoints of the
paths. Recall, by Convention 3.42, that a face of G can contain at most one point
which is an endpoint of one or several paths. A crossing at some vertex v can be
a crossing as defined in the previous section. Another possible type of crossing is
the following. Denote by �′

v the restriction of the order �v to the jumps which
are endpoints of paths at v, and to the boundary marker, if it exists at v. This
order �′

v naturally partitions the other jumps incident to v, see Figure 3.14. A
crossing occurs in this situation if a subpath a1a2 of size 2, v being the target of
a1, has its two jumps a1 and a2 in different classes of this partition.

The data structure used to store a combinatorial family of curves is slightly
more complex than for cycles: it is also necessary to store the �′

v-order. Fig-
ure 3.15 represents this structure in the case of a family without crossing.
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Figure 3.15: The data structure used to store a combinatorial family of curves
on H, in the neighborhood of a vertex v of H with degree 5. Here, no crossing
occurs. On the right, a representation of the curves spread apart on the surface
explains the choice of the definition of the crossings.

3.5.1.3 Correspondence between the topological and combinatorial frame-

works

Let s be a regular embedding of cycles on M. By the regularity hypothesis, it is
possible to obtain, from s, a combinatorial family of cycles, denoted by ρ(s), in
the following way: the order �e for an edge e of H is given by the ordered list of
the crossings between edge e∗ of G and the cycles of s (see Figure 3.1, page 62).
This combinatorial family of cycles has no crossings (we shall also say that this
family is simple). Conversely, a combinatorial family of cycles S which is simple
can be spread apart to obtain an embedding of cycles in ρ−1(S). Note that if
s = (s1, . . . , sn) and s′ = (s′1, . . . , s

′
n) are in ρ−1(S), then, for each i, si and s′i are

homotopic by Condition (ii) of Convention 3.42.
The same property holds for embeddings of graphs. Let s be a regular em-

bedding of graph; it is also possible to obtain from s a combinatorial family of
curves, denoted by ρ(s), which is simple, that is, without crossing. The converse
is still true.

A combinatorial cut system (by graph or by cycles) S is a simple combinatorial
family of curves such that there exists a cut system (by graph or by cycles) in
ρ−1(S). It is then clear that each element of ρ−1(S) is a cut system. (Recall that
the map ρ is defined only for embeddings of graphs or cycles.)

The two optimization processes described in Section 3.2 use elementary short-
ening steps shrti(s). Actually, these shortening processes can be described, not
only on cut systems, but also on combinatorial cut systems: ρ(shrti(s)) depends
only on ρ(s), not on s. This observation justifies the notion of combinatorial
family of curves that we have just described: all the computations can be done
with this notion, the actual geometry of the curves does not provide any useful
information.
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Figure 3.16: The creation of the graph H(S). A: The graph H(S), built from
the curves of s. The graph G is depicted in light solid lines, the curves of s in
dashed lines, and the graph H(S) in bold lines. B: The same graph built from
the combinatorial curves S (retracted on the graph H, not shown here).

3.5.2 Algorithmic study of a shortening operation

The processes of Section 3.2 are based on shortening steps shrti. Recall from
Convention 3.42 that G is the dual graph of a polyhedral surface M, whose vertex-
edge graph is H. Starting with a combinatorial cut system S, we will explain how
to compute another combinatorial cut system S ′ such that, if S = ρ(s), then
S′ ∈ ρ(shrti(s)). We will prove that the operations shrti boil down to finding
shortest paths in a graph representing the vertex-edge graph of M after “cutting”
M along some curves of the current system. We start with the description of this
graph.

3.5.2.1 Description of the graph H(S)

Let S = ρ(s) be a simple combinatorial family of curves on H. Let us define
H(S) as the weighted graph whose vertices are the connected components of the
surface M \ (s ∪ G), and whose edges join two vertices separated by a piece of
an edge e∗ of G; such an edge being affected of the weight of e (Figure 3.16A).
Intuitively, H(S) is the vertex-edge graph of surface M cut along the curves of
S. It is clear, here again, that H(S) does not depend on s ∈ ρ−1(S); indeed, the
graph H(S) can be computed with the sole data of S, in the following way.

Let e be a (non-oriented) edge of H. Consider the k jumps of S corresponding
to e; this yields k + 1 intervals between these jumps. Each of these intervals
corresponds to an edge of H(S), having the same weight as e (Figures 3.16B
and 3.17). The endpoints of these edges are identified in the following way: two
endpoints of edges of H(S) are the same if they correspond to a same vertex v of
H, and if the intervals are not separated by S (that is, the insertion of a path of
size two in these two intervals does not introduce any crossing at v).



3.5 Algorithms 95

Figure 3.17: The creation of the graph H(S), in bold lines (continuation of Fig-
ure 3.15).

In practice, it will never be necessary to explicitely compute the graph H(S):
as all operations we will have to do will be local, it will be sufficient, being given
some vertex of H(S) (coded by the data of a vertex v of H, by an edge e of H

incident to v, and by an interval between two jumps on e), to be able to compute
the neighbors of this vertex. This can be done in a time proportional to their
number.

To each regular path (resp. cycle) in M \ s corresponds a path (resp. cycle)
in H(S), with the same length. Conversely, to each path (resp. cycle) in H(S)

corresponds a regular path (resp. cycle) in M\ s, and, if the path (resp. cycle) of
H(S) is simple, the corresponding path (resp. cycle) of M\ s can be chosen so as
to be simple.

3.5.2.2 Shortening operation for cut systems by graph

Let S be a combinatorial cut system by graph on M; let i ∈ [1, N ]. Let us
compute the graph H(S \ Si) (of course, S \ Si means S where the combinatorial
curve Si has been removed). The path Si thus corresponds to a path in this
graph; let a and b be its endpoints. Let C be a shortest path between a and b

in this graph. C is of course simple (it goes at most once through each vertex
of H(S \ Si)); hence, it defines without ambiguity a path S ′

i inserted in S \ Si,
yielding thus a new combinatorial family of curves S ′.

This family S ′ belongs to ρ(shrti(s)), for each s ∈ ρ−1(S). Indeed, if s′′ ∈
shrti(s), then s′′i defines a path in H(S \ Si) between a and b, which implies that
s′′i is at least as long as S ′

i.

3.5.2.3 Shortening operation for cut systems by cycles

The optimization of a cut system by cycles is slightly more complicated. Let s be
a cut system by cycles. By the proof of Proposition 3.22, computing an element
of shrti(s) can be done in the following way. Let Pi be the cylinder or the pair of
pants of s \ si containing si.

• If Pi is a cylinder, compute the shortest path q between the two boundaries
of this cylinder. This yields a topological disk Di, where points correspond-
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Figure 3.19: Local modifications of the data structure for the elementary step of
cut systems by cycles: the path p is “stuck” to the cycles of Pi, thus transforming
the cycles s2 and s3 to two closed paths.

ing to points of q before cutting come by pairs. It is sufficient to consider all
shortest paths between these pairs, and to take the shortest of these shortest
paths.

• If Pi is a pair of pants (see Figure 3.18), one of the boundaries of Pi is
homotopic to si. We first cut Pi along a shortest path p between the two
other boundaries of Pi, thus obtaining a cylinder C. We then compute, as
in the previous case, a shortest path q between the two boundaries of C,
and then all the shortest paths in the topological disk which has just been
built, between the pairs of points corresponding to a point of q.

Let S be a combinatorial cut system by cycles, and let s ∈ ρ−1(S). From the
previous considerations, the computation of S ′ = ρ(s′) with s′ ∈ shrti(s) reduces
to computations of shortest paths in surfaces obtained by cutting M along some
cycles. More precisely, if Pi is for example a pair of pants:

• The graph H(S \Si) has several connected components, one of them, Hi(S \
Si), corresponding to Pi. Some vertices of this graph correspond to bound-
aries of Pi. We compute a shortest path P between the two “boundaries”
of Pi in Hi(S \ Si) which are not homotopic to Si. This path is simple and
can be appended to S \ Si without ambiguity.

• The cycles of these boundaries of Pi, and P , are temporarily transformed
into paths (Figure 3.19). This enables to ensure that, when cutting M along
S \ Si and P , a topological disk is obtained (the endpoints of P must be
“stuck” on the boundaries of Pi). The resulting combinatorial family thus
bounds a cylinder C.

• The same operation is done with a path Q between the two boundaries of
C. Q is, again, stuck on the cycles which are on the boundary of C.
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• For each vertex of Q in H(P ∪ S \ Si), thus corresponding to a pair of
vertices (a, b) in H(P ∪Q ∪ S \ Si), a shortest path is computed between a

and b. The shortest of these shortest paths yields, by reidentification of its
endpoints, the desired cycle S ′

i.

3.5.3 Complexity of the optimization algorithms

Let K be the complexity of M (total number of vertices, edges, and faces), g

be its genus and b be its number of boundaries. Let α be the ratio between the
largest and the smallest weight of the edges of G. Let S = (S1, . . . , SN ) be a
combinatorial cut system on M. Let d be the maximal degree of a vertex in H.10

Let R be a family of combinatorial curves on M which is simple, and let e be
an edge of H. The multiplicity of R at e is the maximal number of jumps of R

on e or −e. The multiplicity of R is the maximum of the multiplicities of R, over
all edges e of H. In particular, R has a number of jumps bounded from above by
K times its multiplicity.

Let µ be the maximum over i of the multiplicity of Si. Then the number of
jumps of a curve at the beginning of the algorithm is O(Kµ) and, as the length
of the cut systems can only decrease, the maximal number of jumps of a curve in
the course of the algorithm is O(αKµ).

3.5.3.1 Cut systems by graph

We now consider the case of a cut system by graph S which is triangulated. The
triangulation is not necessary at all for the algorithm, but improves its complexity
(as we shall see soon, a cut system by graph can be triangulated without modi-
fying, asymptotically, the value of the parameters N and µ, and in a time which
is small compared to the time taken by the optimization algorithm).

Let s ∈ ρ−1(S). Let ti be a shortest simple path isotopic to si in M minus
all vertices of s which are not endpoints of si, and as short as possible among
all paths having this property. We can assume that each maximal subpath of ti

included in a given face of G crosses each path of s at most dµ times; furthermore,
the number of jumps of ρ(ti) is O(αKµ). Hence, the length of the crossing
word s/ti is O(αdKµ2N). It is also a bound on the number of required steps
shrt, by the proof of Theorem 3.13. Each topological disk considered in the
course of the algorithm can have complexity O(αKµ), because such a disk is
incident to at most three paths of the system, which gives the complexity of the
computation of an elementary step shrti (dominated by the computation time of
the shortest paths, using the algorithm by Henzinger et al. [93]): O(αKµ). (The
use of Dijkstra’s algorithm, simpler to implement, yields a logarithmic overcost
in these parameters.) There are O(αdKµ2N2) such steps, hence finally:

10Let us note that it is possible to describe the complexity of the algorithms under several
forms, because numerous parameters must be taken into account. In some cases, it is possible
to get rid of the parameter d in the complexity result, at the cost of a more complex definition
of the multiplicity, and of an additional multiplicative factor of N .
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Theorem 3.43 A triangulated combinatorial cut system by graph S =

(S1, . . . , SN ) being given,

• whose maximal multiplicity of a curve is µ,

• on a polyhedral surface M, with complexity K, whose vertex-edge graph
has maximal degree d, and whose longest-to-shortest edge ratio is α,

a combinatorial cut system isotopic, with fixed vertices, to S and optimal can
be computed in O(α2dK2µ3N2) time.

This theorem gives thus an upper bound on the complexity of the computation
of the result of Theorem 3.2.

3.5.3.2 Cut systems by cycles

The reasoning is similar, but the result is not the same. The number of required
steps shrti is still O(αdKµ2N2). In such a step, the complexity of the cylinder
or the pair of pants Pi considered is still O(αKµ). O(αKµ) shortest paths must
be computed on this surface, instead of one single shortest path in the previous
case. The complexity is thus O(αKµ) times the previous complexity:

Theorem 3.44 A combinatorial cut system by cycles S = (S1, . . . , SN ) being
given,

• whose maximal complexity of a cycle is µ,

• on a polyhedral surface M, with complexity K, whose vertex-edge graph
has maximal degree d, and whose longest-to-shortest edge ratio is α,

a combinatorial cut system homotopic to S and optimal can be computed in
O(α3dK3µ4N2) time.

It is also an upper bound on the complexity of the computation of the result of
Theorem 3.7. Note that d, g, and b are bounded from above by K, and that
µ is bounded from above by the complexity of the input family of paths. Both
algorithms are thus polynomial in their input and in the parameter α.

3.5.4 Extension to a cut system

Our goal is now to explain how to create a cut system, possibly containing a given
embedding of graph or of cycles. The previous theorems prove that the algorithms
described in Section 3.2 are polynomial in α, d, K, µ, and N . The aim is now
to extend the given embedding to a cut system whose values of µ and N are as
small as possible.

3.5.4.1 Extension to a cut system by graph

Transformation of a schema into a reduced schema. Let us first consider the
following problem: how, starting with a polygonal schema, to obtain a reduced
polygonal schema?
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Figure 3.20: Transformation of a polygonal schema into a reduced polygonal
schema (here, on a double-torus). On the left, the edges inside the circle denote
the edges of the spanning tree T , and the edges a, b, c, and d crossing this disk
denote the edges of H ′ \ T . On the right, each edge of H ′ \ T is extended into a
path going to the basepoint, which gives rise to a reduced polygonal schema in
which each loop has multiplicity at most 2.

Lemma 3.45 Let H ′ be a subgraph of H which is a polygonal schema for M.
Then, it is possible to compute a reduced polygonal schema for M, made of a
combinatorial family of paths whose jumps are on the edges of H ′ and on the
boundaries of M, so that:

• each path of the reduced schema has multiplicity at most 2;

• between any pair of vertices of the polygon corresponding to the reduced
schema, there exists a simple path inside the disk corresponding to this
schema which has multiplicity at most 4.

This computation can be done in time O((g + b)K).

Proof. This problem has been considered by Lazarus et al. in [105, section
5] in the case of boundaryless surfaces. Their method is as follows. A spanning
tree T of H ′ is computed, rooted at some basepoint v0. H ′ being a polygonal
schema for M, there are 2g edges in H ′ \ T . For each such edge e = a1a2, a loop
with basepoint v0 is created, which is the concatenation of γ−1

a1
, e, and γa2

, where
γa denotes the shortest path from a to v0 in T (Figure 3.20). This construction
provides a reduced polygonal schema in which each loop has multiplicity at most
2.

Let us consider two vertices of the reduced polygonal schema (Figure 3.21,
left part). One can prove (see [105, Section 5]) that there exists a simple path of
multiplicity at most 4 within the disk delimited by the boundary of the schema
and which joins these two points. The method is as follows: we choose to run along
one of the two simple paths on the boundary of the polygonal schema joinging
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Figure 3.21: Between any pair of vertices of the reduced schema, there exists a
path inside the disk which has multiplicity at most 4. This path is obtained by
running along the boundary of the reduced polygonal schema and by shortcutting
near the basepoint.

these two points (for example ad̄c̄ in Figure 3.21, right part). We run along the
boundary of the reduced polygonal schema from the chosen initial vertex to the
source endpoint of a (this yields a path whose multiplicity is 1). From the target
of a to the source of c̄, we again run along the reduced polygonal schema, but by
shortcutting the return trips to the basepoint v0 (see on the figure between d̄ and
c̄); this gives a path with multiplicity at most 2; finally, we join the chosen target
vertex by running along the reduced polygonal schema. All of this yieds a simple
path, with multiplicity at most 4.

In fact, all arguments here extend to the case of surfaces with boundary.
(Vertex v0 is here chosen on the boundary of M, because this will be the case
later.) Again, a spanning tree of H ′ is computed. There are also 2g edges in H ′\T ;
for these edges, a loop with basepoint v0 is created as above. These 2g loops yield
a reduced polygonal schema of the surface M where the holes have been closed
with topological disks. There remains, for each boundary of M different from
the boundary incident to v0, to introduce in the combinatorial family of curves
the shortest path in T between this boundary and v0. It is also true that each
loop has multiplicity at most 2. The same argument as above applies to prove
the second part of the lemma.

A first case. Let S = (S1, . . . , Sn) be a simple combinatorial family of paths. In
a first stage, we assume that through each vertex of H passes at most one subpath
of size 2 of a path of S. Cutting M along S is thus done in a natural way by
removing the adjacencies between faces of H along the edges of H containing a
jump of a path of S.

By Theorem 3.34, it is sufficient to extend S to a cut system by graph



3.5 Algorithms 101

(S1, . . . , SN ) such that each vertex is a vertex of S or a point on the boundary of
M, with N = O(n + g + b): this problem boils down to the one of computing a
polygonal schema for each connected component M′ of the surface obtained by
cutting M along the paths of S. For this purpose, one can consider the vertex-
edge graph of M′, to which the edges incident to the boundary of M′ are removed;
consider a maximal subgraph H ′ of this graph, such that its complementary part
in M′ is connected (it is thus a topological disk). H ′ is thus a polygonal schema
for M′, hence connected, made of 2g′ independant cycles and b′ edges having an
incident vertex on boundary of M′ (if M′ has for genus g′ and for number of
boundaries b′). Then, Lemma 3.45 can be applied.

Finally, it might happen that paths arrive at some vertex v on the boundary
of M′ which is not, after regluing, a vertex of S or a vertex on the boundary of
M; but, in this case, there exists a vertex v ′ on the same boundary of M′ which
satisfies this property, and it is possible to extend the paths arriving at v to v ′.
The properties of Lemma 3.45 are still satisfied. It is then possible to triangulate
the polygonal schema, by choosing a vertex v0 of the schema and by creating, if
the schema has p sides, a path from v0 to each of the p− 3 vertices of the schema
which are not incident to v0 and distinct from v0: the fact that each subpath of
the polygonal schema has a path having the same endpoints and of multiplicity
at most 4 proves that we can choose the multiplicity of each of these paths as
being at most 4. Furthermore, by appending to S all these triangulated polygonal
schemata, and by doubling each path, we obtain a triangulated cut system, with
O(n + g + b) paths by Theorem 3.34, each path having multiplicity at most 4.

The general case. Let µ be the multiplicity of S. The general method is anal-
ogous to the method we have just described. The only difficulty is to see that
all the previous operations can be done with combinatorial families of curves: in
the previous case, we have cut M along the paths of S, but this is in fact not
necessary. We will in fact mimic the cutting of M along S, without actually
proceeding to the cutting. Another possibility would be to subdivide the surface
along an element s ∈ ρ−1(S) explicitely computed.

The first step consisted in finding topological disks on M \ S such that the
complementary part of these disks contains no face of M. The idea is now similar,
except that interstices between jumps of S must be taken into account: they create
(infinitesimally small) faces. We will in fact, starting with S, add cycles to this
combinatorial family of curves, each of these cycles bounding a topological disk.
From an algorithmic point of view, we thus maintain, at each step, a simple family
of combinatorial curves made of S and also of cycles Ci.

Let us call faces of M \ S the union of the faces of H, as well as, for each
(non-oriented) edge e of H containing p ≥ 2 jumps of S, of the p − 1 interstices
between these jumps. These faces are linked by obvious adjacency relations:

• two interstices are adjacent if it is possible to insert a path of size 2 between
these interstices, such that this path does not cross S;

• a face of H is adjacent to an interstice if there is a vertex v of H such that it
is possible to insert a path of size 2 passing through v, without introducing
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any crossing, and such that a jump is in the interstice and the other one
goes along the face of H;

• two faces of H are adjacent if they are incident, in H, to a same edge e

which contains no path of s, or to a same vertex v such that it is possible,
without introducing any crossing, to insert in S a path of size 2 going along
these two faces.

Let us append to S a cycle C1 which bounds a face of M\S. As much as possible,
extend C1 by augmenting the interior of C1 with an incident face of M\S, while
maintaining the fact that C1 bounds a topological disk (the faces of M\S do not
change with this operation). Then, if some faces of M\ S have not been visited,
create a second cycle C2 around this face, and let it grow in the same way; and
so on. We finally obtain a simple combinatorial family of curves, which will be
denoted (improperly) S ∪ C.

Another way to view this process is to compute a spanning forest of the graph
of faces of M\S (defined by the adjacency relations above), and, for each tree of
the forest, to create a cycle Ci which contains this tree in the topological disk it
bounds. In fact, algorithmically, it is easier to proceed to both stages simultane-
ously: during the creation of the spanning forest, we maintain the “boundary” of
the spanning forest with these cycles.

Each connected component M′ of M \ S thus contains a cycle of C, which
bounds a topological disk. Hence, the part between this cycle and S cuts M′ into
a topological disk: if we consider the connected component of the graph H(S∪C)

comprised in M′ and outside the cycle of C it contains, and remove the edges
of this graph going along a boundary of M′, we obtain a polygonal schema for
M′. Then, we can proceed in the same way as in the particular case presented
above to obtain a reduced schema of M′ whose vertices are, each, either on the
boundary of M or a vertex of S, with 2g ′ + b′ − 1 paths (where g′ and b′ are the
genus and the number of boundaries of M′; if b′ = 0, there are 2g′ paths). The
multiplicity of each of these paths is bounded from above by 4µ+4: indeed, each
path goes at most twice through each edge of H(S ∪C), and each edge of H can
correspond to at most 2µ+2 edges of H(S∪C). We extend this to a triangulated
cut system by graph; the multiplicity of each path of the resulting system is at
most 8µ + 8.

All these operations have smaller complexity than the optimization of the cut
system. Hence, finally, with Theorem 3.43:
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Figure 3.22: A and B: The two paths si drawn on the surface correspond to the
same combinatorial curve, and are however non-isotopic in M minus v. C: This
ambiguity no longer holds if a path sj has one endpoint at v.

Theorem 3.46 A simple combinatorial family of paths S = (S1, . . . , Sn), con-
taining no contractible path, being fixed,

• whose multiplicity is µ,

• on a polyhedral surface M, of complexity K, whose vertex-edge graph has
maximal degree d, and whose longest-to-shortest edge ratio is α,

we can compute a simple combinatorial family of paths S ′ = (S′
1, . . . , S

′
n) such

that, for each i, S ′
i is isotopic to Si in M minus all vertices of S which are

not endpoints of Si, and as short as possible among the curves satisfying this
property. This computation can be done in O(α2dK2µ3(n + g + b)2) time.

This algorithm is thus also polynomial in its input and in the parameter α.
We now have to point out the following subtlety. A simple combinatorial

family of paths S being given, the expression “Si is isotopic in M minus some
vertices” is meaningful only if these vertices are either on the boundary of M,
or endpoints of some paths of S. Indeed, imagine that Si runs along an edge
incident to a vertex v of H and that v is interior to M and endpoint of no path
in S. Then the isotopy class of Si in M minus v is not determined: we cannot
know whether Si leaves v on its left or on its right when Si runs along edge e

(Figure 3.22A and B). This ambiguity does not remain if v is (for example) an
endpoint of a path Sj, because we know that the combinatorial family of paths S

is simple (Figure 3.22C). Hence, the expression “S ′
i is isotopic to Si in M minus

all vertices of S which are not endpoints of Si” is meaningful only because the
combinatorial family S ′ (and not only S ′

i) is known.

3.5.4.2 Extension to a cut system by cycles

Let M be a surface which is neither a sphere nor a disk. The vertex-edge graph of
M is still denoted by H. Let S = (S1, . . . , Sn) be a simple family of combinatorial
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cycles, whose cycles are non-contractible. If M is boundaryless and n = 0, we
first insert in S an essential cycle of M which is a simple cycle in H, following the
paper by Erickson and Har-Peled [68, section 5]. Let µ ≥ 1 be the multiplicity of
S. We will explain how to extend S into a cut system by cycles (S1, . . . , SN ), in
such a way that the multiplicity of a cycle is at most 4µ+2. In fact, it is sufficient
to be able to extend S into a decomposition of M in cylinders and pairs of pants
because, this being done, there only remains to double each cycle of S. We will
prove the following lemma:

Lemma 3.47 Let µ ≥ 1 and let S be a simple family of combinatorial cycles on
M, containing at least one cycle, such that, for each connected component M ′ of
the surface M cut along S and for each edge e of M:

1. if M′ is a pair of pants, edge e can be found at most 4µ + 2 times on the
boundary of M′;

2. if M′ is not a pair of pants, edge e can be found at most 2µ + 1 times on
the boundary of M′.

Then one can extend S into a family S ′, satisfying also the conditions of this
lemma, such that S ′ is a decomposition of M into cylinders and pairs of pants.

The family S obviously satisfies the hypotheses of this lemma; we obtain in
particular that S ′ is a decomposition into cylinders and pairs of pants whose cyclea
have each multiplicity bounded from above by 4µ + 2.

Proof. Let us assume that S is not a decomposition of M into cylinders and
pairs of pants. We will append to S one or two cycles, thus obtaining a family S ′

still satisfying the hypotheses of the lemma, which decomposes M into a disjoint
union of topologically simpler surfaces. The result of the lemma will follow by
induction.

First case. First assume that there exists a connected component M′ of the
surface M cut along S in such a way that its number of boundaries b′ and its
genus g′ satisfy b′ ≥ 4 and/or (g′ ≥ 1 and b′ ≥ 2). We will append to S a cycle
“merging” two boundaries of M′: the new cycle will thus decompose M′ into a
pair of pants and a surface with b′ − 1 boundaries and of genus g′ (Figure 3.23).
Let us remember however that M′ is not necessarily a polyhedral surface: several
cycles of S can run along together, hence there might be infinitely thin faces.

We compute a path p in H(S), possibly reduced to one single vertex, which
joins, in M′, two distinct boundaries of M′, in such a way that each edge of H

used by path p corresponds to no edge of a cycle which still existed in S, nor is on
the boundary of M (to this purpose, it is sufficient to compute a shortest path in
H(S) between any boundary of M′ and the union of the other boundaries). Then,
we “merge” the two boundaries of M′ which are the endpoints of p using the cycle
C created by this path p and going around the two boundaries. Appending C

to S, we obtain a family S ′ which satisfies the hypotheses of the lemma. Indeed,
each edge of M corresponding to an edge of p is travelled exactly twice by C;
such an edge then corresponds to no other boundary of the surface obtained by
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Figure 3.23: Top: cutting M′ with a path p joining two boundaries of M′. Bot-
tom: two boundaries run along together several times by sharing several edges:
path p is reduced to one single vertex.

cutting M along S, by the definition of p. C separates M′ into two connected
components:

• a pair of pants, whose boundary is made of the following edges of M: twice
each edge of M corresponding to an edge of path p; and, besides, each of
the two merged boundaries, with multiplicity at most twice the multiplicity
of the boundaries of the surface M′, that is, at most 4µ+2. Hence the first
property is satisfied in this pair of pants;

• the complementary part of this pair of pants, which has for boundaries (in
terms of edges of M) the set of boundaries of M′ and twice the path p.
The second property is thus true in this surface.

Second case. A connected component M′ of M cut along the cycles of S

has exactly one boundary and has non-zero genus (if such a component does not
exist, M′ would not have any boundary, which is impossible, or S would be a
decomposition into cylinders and pairs of pants). By adapting [68, Section 5] and
by using the method of evolution of a cycle bounding a topological disk (as in
Section 3.5.4.1), one can compute an essential cycle C in H(S) which is simple in
H(S) and which, moreover, runs along the boundary of M′ in the following sense:
C is the concatenation of two paths p and q in H(S); p goes along the boundary
of M′; the edges of q, viewed as edges of H, are edges containing no jump of S

and are not on the boundary of M. (Of course, one of the two paths p and q can
be reduced to one single vertex.)
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Figure 3.24: Cutting M′ along an essential cycle. A: a double-torus with one
boundary. B: Creation of an essential (here, non-separating) cycle adjacent to the
boundary. C: Cutting the surface along this cycle. D: Creation of a new cycle
enclosing the two adjacent boundaries.

We append C to S. After this operation, the hypotheses of the lemma are not
necessarily satisfied since the edges of M corresponding to p can be found with a
higher multiplicity in the resulting surface (Figure 3.24A, B, and C). But we can
easily remedy this problem by enclosing the two boundaries incident to p by a
new cycle C ′ (Figure 3.24D): this cycle separates the surface into a pair of pants,
whose multiplicity is at most 4µ+2 on M (as in the first case), and into a surface
whose boundary is made of q and of the portion of the initial boundary of M′

which does not run along p, hence of multiplicity at most 2µ + 1. The family S

to which C and C ′ are appended satisfies thus the hypotheses of the lemma.

We have thus created a decomposition of the surface M into cylinders and
pairs of pants, each of the cycles having multiplicity at most 4µ + 2. One can
check, in the same way as in Section 3.4, that the total number of cycles N is
O(n + g + b). Finally, using this result and Theorem 3.44:

Theorem 3.48 Let M be a surface which is neither a sphere nor a disk. A sim-
ple combinatorial family of cycles S = (S1, . . . , Sn), containing no contractible
cycle, being given,

• whose multiplicity is µ,

• on a polyhedral surface M, of complexity K, whose vertex-edge graph has
maximal degree d, and whose longest-to-shortest edge ratio is α,

we can compute a simple combinatorial family of cycles S ′ = (S′
1, . . . , S

′
n) such

that, for each i, S ′
i is homotopic to Si, and as short as possible among all (non-

necessarily simple) cycles homotopic to Si. This computation can be done in
O(α3dK3µ4(n + g + b)2) time.
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Again, the algorithm is polynomial in its input and in α.

Conclusion

Implementation

We have presented processes to optimize a graph embedding, and simple, pairwise
disjoint cycles, on a surface. A prototype has been implemented for the optimiza-
tion of a fundamental system of loops on the vertex-edge graph of a boundaryless
triangulated surface embedded in R

3, the weight of an edge being equal to its
Euclidean length. The implemented algorithm corresponds to the first variation
mentioned in Section 3.2.3. The implementation has been done with the poly-
hedron data structure of the C++ library of computational geometry Cgal11.
Once the optimal system of loops has been obtained, a smoothing of the curves
by local optimization is performed, which enables to obtain paths approximating
geodesics on the surface itself: in the star of each vertex of the surface, each piece
of loop is replaced by a shortest path in this star; this operation is iterated until
the shortening gain in one step is below a given threshold. Of course, this does
not modify the homotopy classes of the loops. Figure 3.25 presents an example
of result obtained on a double-torus with 1,536 faces. It would be nice to have a
full and robust implementation of these algorithms (using for example Cgal), in
order to check their adequacy in applications and to experiment possible exten-
sions. The algorithms being purely combinatorial, their implementation does not
cause major difficulties. In particular, degeneracy troubles, which are common
in geometric algorithms, do not appear here: numerical imprecisions can yield
imprecise results, but not inconsistent results (the curves computed are always
simple and keep their topological properties).

Complexity study

Our algorithms are polynomial in the complexity of the surface and of the input
system and in the parameter α, ratio between the extreme weights of the edges
of G. It would be desirable to get rid of this parameter: in the strict sense, the
algorithms are not polynomial in the size of the input because of this parameter.
Unfortunately, it might be unavoidable: it constitutes the bridge between the
“geometric” complexity (length of a curve) and the “combinatorial” complexity
(in terms of number of edges of the path in the vertex-edge graph). Anyway,
the bounds that we give on the complexity of our algorithms are probably not
optimal: one can try to improve them.

Other notions of length

The algorithms we have developed work on the vertex-edge graph of a polyhedral
surface; this framework may seem quite restrictive compared to possible more
geometric results on polyhedral or Riemannian surfaces. Nevertheless, such a

11http://www.cgal.org
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A B C D E

Figure 3.25: A: A canonical fundamental system of loops s, obtained with the
algorithm in [105]. The basepoint is behind the surface. B: An element of shrt(s)

(here, shrt means the optimization with the first variation of Section 3.2.3). C:
An element of shrt2(s). D: An element of shrt3(s), which has the same length
as an element of shrt4(s), is an optimal system. E: The system obtained from
an element of shrt4(s) by local optimization of the curves on the surface (4, 000
iterations have been necessary for this smoothing.)
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framework is meaningful in some contexts (at least for the purpose of creating
a parameterization to remesh a surface, as we emphasized in [2]): a polyhedral
surface being given, it may be desirable, in some cases, to compute only paths in
its vertex-edge graph. Another possible interest of our framework could be the
approximated optimization of curves on a polyhedral surface: some algorithms,
as [104], proceed by refinement of the vertex-edge graph of the surface by sampling
the edges with a very particular scheme. The framework we introduced may
enable, with minor modifications, to optimize in an approximated way curves,
guaranteeing the quality of the approximation, in a quite simple way.

It is desirable to extend these results to the case of curves drawn on a polyhe-
dral surface made of polygons which are isometric to Euclidean polygons, taking
into account the Euclidean length of the curves. The algorithms of Section 3.2
can be described in this realm, with a few modifications: the curves of a cut sys-
tem must be allowed to overlap on the surface, but not to cross. The shortening
step then amounts to computing shortest paths on a polyhedral surface, and the
algorithms in [116] or [31] satisfy this goal. We conjecture that the optimality
theorems extend to this situation; the techniques we used seem to generalize to
the case of curves drawn on the surface, but difficulties occur in the extension of
the notions of cut systems and crossing words (the curves of a cut system can go
along each other; in order to define the crossing word, it is necessary to define
an order on the pieces of overlapping curves). On the other hand, giving the
complexity of the algorithms in this framework seems difficult. The work we have
presented, with its algorithms as well as its proof techniques, could thus be used
as starting point for this extension.

It would be interesting to generalize this work to the case of curves drawn
on a Riemannian surface. But, apart from the difficulties mentioned above, our
process crucially uses the fact that the initial cut system and a shortest curve
within a given homotopy class cross at a finite number of points. It can happen
that it is not true in some pathological cases on a Riemannian surface (think
about a fundamental system of loops which winds infinitely many times around
the basepoint). However, for the optimality proof, a nice fact, compared to the
case of a polyhedral surface, is that, on a Riemannian surface, two maximal
geodesics which are tangent at some point are equal: in this sense, the polyhedral
case is more problematic, because two geodesics can go along each other for some
time and then diverge. We conjecture, for example, that each loop of an optimal
fundamental system of loops on a Riemannian surface is as short as possible
among the simple loops of its homotopy class.

It seems also natural to search extensions of our results to non-orientable
surfaces. However, several difficulties occur in this case. First, our definition of
the crossing word uses in a crucial manner the orientability of the surface. Maybe
it is sufficient to consider a weakened version of the crossing words where the
orientation of the crossings would not be specified, and defining an elementary
reduction as the removal of two identical consecutive letters. On the other hand,
Theorem 1.7, used for the optimality of a fundamental system of loops, is more
complicated for non-orientable surfaces. Finally, the notion of cut system by
cycles should be generalized to the case of non-orientable surfaces.
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Optimization without fixing the homotopy or isotopy class

Continuations of our works are possible while remaining in the chosen framework,
that is, when curves are drawn on the vertex-edge graph of the polyhedral surface.
First, we are not able to compute a shortest simple path homotopic to a given
simple path (except for loops or paths with endpoints on the boundary of the
surface). To this purpose, we could try to understand whether other obstructions
as those from the counterexample by Feustel (Figure 1.18, page 27) can happen.

Still in this realm, we have described a way to compute a fundamental sys-
tem of loops as short as possible within a given homotopy class. But this does
not provide any method for computing the shortest fundamental system of loops
(among all homotopy classes). An open question is to determine the complexity
of this problem. Erickson and Har-Peled proved that it is NP-hard to determine
a shortest polygonal schema (even in the case where the weights of the edges
equal one), and we have proved that the computation of a shortest fundamental
system of loops within a given homotopy class is a polynomial problem (with unit
weights). The problem we present now is inbetween these two problems.

Let us imagine, for the sake of simplification, that we only consider systems
with the same basepoint. Brahana transformations provide an elementary way
to switch from a class of fundamental systems to another one; the homotopy
classes of systems can thus be considered as the vertices of a graph whose edges
are the Brahana transformations. The study of this graph could give indications
regarding how to find the shortest fundamental system of loops: is it sufficient to
proceed by successive Brahana transformations which decrease the length of the
fundamental system of loops which is optimal in this homotopy class?

Similarly, what is the complexity of computing the shortest pants decomposi-
tion of a surface? A greedy algorithm to compute a pants decomposition of the
surface is to iteratively cut the surface along a shortest essential cycle; does this
method give the shortest pants decomposition? We believe that these questions
are important, because this would provide decompositions of the surface which are
as canonical as possible. Furthermore, it is interesting in computer graphics ap-
plications to decompose a surface with curves as short as possible, independantly
from the homotopy class.

In the same vein, one could look for the shortest embedding of a given graph
on a given surface. We have shown how to compute the shortest graph embedding
within a given isotopy class (with fixed vertices). A generalization is still to be
found.

Optimization of non-simple curves

We have not tried to optimize non-simple curves. How, a non-simple curve being
given, to find the shortest homotopic curve? In the case of (orientable) surfaces
with at least one boundary, we can give a sketch of solution for this purpose.
The idea is, with our algorithm, to compute an optimal cut system by paths s

(within an arbitrary homotopy class) on this surface. Now, let c be a path on
this surface, and let s/c be the crossing word of this path with system s. Let c ′

be the shortest path homotopic to c. It should be clear, from Section 3.3.1, that
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s/c reduces to s/c′: indeed, s/c and s/c′ reduce to the same irreducible word,
and s/c′ is irreducible (or, if not, c′ can be changed into some path c′′ of the
same length and same homotopy class, such that s/c′′ is obtained from s/c′ with
this reduction). Hence, the succession of the paths of s crossed by c′ is known,
and it is thus possible to build a portion of the universal covering space, of size
polynomial in the input of the algorithm and in the longest-to-shortest edge ratio,
which contains a lift of c′. This method can be extended to the case of cycles. On
the contrary, for a boundaryless surface, an algorithm still remains to be found.

Disjoint curves in the vertex-edge graph

In applications, it is desirable to compute a decomposition of the surface with
disjoint curves on the vertex-edge graph of the surface, that is, each edge of
the surface contains at most one edge of the decomposition. This is not always
possible in the case of fundamental systems of loops, as we pointed out in Sec-
tion 2.2.1.1, page 38. But how, requiring that the curves are disjoint (or fixing a
limit on the number of edges of the decomposition passing through a given edge
of the surface), to find an optimal decomposition? It is certainly possible to find
heuristics to favour the families of curves which pass along disjoint edges, using
our algorithms: for example, at each shortening step of a curve, the weight of
the edges of the surface along which some curves pass can be increased. One can
hope that this modification yields good results in practice, but, with such a mod-
ification, the convergence of the algorithm is not assured, and there are probably
some conditions to be found to ensure its stability. This would deserve a more
complete study.

Appendix: Exponential cost of the naïve optimization

method

Lemma 3.49 There exists a surface M, with some graph G (used to compute the
lengths of the paths — see Section 3.1), whose edges have unit weights (α = 1),
and a basepoint v0, such that the number of lifts of v0 at distance at most d of a
given lift is 2Ω(d).

Proof. We choose for M a double-torus, having a canonical fundamental sys-
tem of loops with basepoint v0, whose elements have a length smaller or equal
than some fixed K. Let us call a, b, c, and d the homotopy classes of these
loops. The fundamental group of M is the free group generated by a, b, c, and
d, quotiented by the relation a.b.a−1.b−1.c.d.c−1.d−1 = 1.

Any word w on the generators a, b, c, and there inverses corresponds to a
homotopy class which is representable by a loop of size O(K.|w|). Equivalently, if
we fix a lift vε

0 of v0, such a w corresponds to a lift of v0, called R(w), at distance
O(K.|w|) of vε

0.
Furthermore, the subgroup generated by a, b, and c is a free group. This

implies that, if w and w′ are two distinct reduced words, then R(w) 6= R(w′).
The number of reduced words of length n on the alphabet {a, b, c, a−1, b−1, c−1}
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is 6.5n−1 ≥ 5n, and each of these words correspond to some lift of v0 at distance
O(Kn) of vε

0. Hence, the number of lifts at distance at most d of vε
0 is Ω(5d/K).

An integer d being fixed, there always exists a loop ` on M which is as short
as possible in its homotopy class, and which has length at least d (it is sufficient
to take for ` an optimal representant of the homotopy class of a.bp, where p is
sufficiently large: such an ` can even be chosen so as to be simple). Hence, the
“naïve” search of a shortest loop homotopic to `, by computation of the shortest
path between the endpoints of one of its lifts in the universal covering space of
M, will require 2Ω(d) time.
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Chapter 4

Tutte’s barycenter method

applied to isotopies

This chapter contains the paper [42], written with M. Pocchiola and G. Vegter,
initiated in my D.E.A. report [39], with a few modifications (in particular, the
proof of Tutte’s barycentric theorem has been included here).

Abstract. The topic of this study is Tutte’s barycentric embedding
theorem [152]. We first give another proof of this theorem; we then
present a method to build isotopies of triangulations in the plane,
based on Tutte’s theorem and on the Maxwell–Cremona correspon-
dence, a result of rigidity theory. Finally, we give a counter-example
proving that the analogue of Tutte’s theorem in dimension 3 is false.

Introduction

Background on Tutte’s barycentric theorem

In this chapter, we will use basic graph theory terminology, see for example [20].
Let G = (V,E) be a planar graph. A (straight-line) mapping Γ of G into the
plane is a function Γ : V ∪ E → P(R2) which maps a vertex v ∈ V to a point in
R

2 and an edge e = uv ∈ E to the straight line segment joining Γ(u) and Γ(v).
A mapping is an embedding if distinct vertices are mapped to distinct points, and
the open segment of each edge does not intersect any other open segment of an
edge or a vertex. (In this chapter, all mappings and embeddings are straight-line
unless otherwise specified.)

In 1963, Tutte [152] gave a way to build embeddings of any planar, 3-connected
graph G = (V,E). Let C be a cycle whose vertices are the vertices of a face of G

in some (not necessarily straight-line) embedding Γ′ of G. Let Γ be a mapping of
G into the plane, satisfying the conditions:

i. the set Ve of the vertices of the cycle C is mapped to the vertices of a strictly
convex polygon Q, in such a way that the order of the points is respected;
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ii. each vertex in Vi = V \ Ve is a barycenter with positive coefficients of its
adjacent vertices (Tutte assumed all coefficients to be equal to 1, but the
proof extends without changes to this case). In other words, the images v of
the vertices v under Γ are obtained by solving a linear system (S): for each
u ∈ Vi,

∑
v|uv∈E λuv(u − v) = 0, where the λuv are positive reals. It can be

shown that the system (S) admits a unique solution, see Section 4.5.

Theorem 4.1 (Tutte’s Theorem) Γ is an embedding of G into the plane, with
strictly convex interior faces.

The history of graph embeddings began early. Fáry [69], Stein [144] and
Wagner [155] independantly showed that any planar graph admits a (straight-line)
embedding. Now, the literature on this subject is abundant; a survey on graph
drawing is [55]. See also the books by Ziegler [158] and Richter-Gebert [129] for
the important connection between graphs and polytopes by Steinitz’ theorem (any
3-connected, planar graph can be realized as the 1-skeleton of a 3D polytope).

Recent works focus on finding embeddings of graphs so that the coordinates
of the vertices are integers with absolute value as small as possible; there is a
linear algorithm [36] to embed graphs with n+2 vertices on the (n×n)-grid with
convex faces. Tutte’s method with unit coefficients is not a valuable method for
this purpose, since it can yield embeddings with exponential area if all coordinates
are integers [58]. Any 3-connected planar graph with n+1 faces can be embedded
on the (n×n)-grid [70]. Other criteria are also interesting, such as controlling the
shapes of the faces and/or minimizing the area of the embedding if a minimum
distance between two vertices, or between a vertex and a non-incident edge, is
imposed [35]. Another topic of interest is also to have an effective version of
Steinitz’ theorem. This can be done on the cubic grid of size 213n2

, where n is
the number of vertices of the graph [129, p. 143].

Embeddings are not the only way to represent graphs; among others, an alter-
native approach is to represent the graph with a set of non-overlapping disks in
the plane, one for each vertex, so that two vertices are adjacent if and only if the
corresponding disks are tangent. This approach is called circle packing [136, 22].

Tutte’s theorem is important in graph drawing; this is due to its simplic-
ity and its geometric nature. It is the cornerstone of Floater’s parameterization
technique [72] for surface parameterization in computer graphics, used in mul-
tiresolution problems [59], texture mapping [109], and morphing [100, 73, 81].

In his paper [152], in addition to showing Theorem 4.1, Tutte simultaneously
proves again Kuratowski’s planarity criterion [103] of 1930: a graph is planar
unless it contains a subdivision of one of the two Kuratowski graphs K5 and
K3,3. The proofs of both results are entangled together in Tutte’s paper; the
consequence is that proving Theorem 4.1 by his method is long and involves quite
a lot of graph theory terminology. Later, short proofs of Kuratowski’s criterion
were given by Thomassen [146], making Tutte’s graph-theoretic viewpoint less
attractive for the proof of Theorem 4.1.

Other proofs of this theorem exist in the literature, using a more geomet-
ric viewpoint. Becker and Hotz [10] use the notion of “quasi-planarity” as the
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limit case of a planar situation, which yields complicated notations and tedious
case analyses; the structure of their paper is non-obvious and the proof is really
long. Y. Colin de Verdière [43] shows the result, only for triangulated graphs,
on arbitrary surfaces of non-positive curvature using the Gauss-Bonnet formula.
More recently, in 1996, Richter-Gebert [129, Section 12.2] has given a simple and
transparent proof of this theorem.

Our work

Proof of Tutte’s theorem

We wrote in 2000 another proof of Tutte’s theorem, without being aware of the
existence of Richter-Gebert’s proof at that time. Our proof appeared in a prelimi-
nary version of [42], and is included in this chapter. It ressembles Richter-Gebert’s
proof in the fact that the key idea of counting all angles of the mapping in two
different ways has also been used in his proof, but some arguments are different.

Our proof is transparent and progressive; it consists of two clearly delimited
stages. First, we show Tutte’s result without effort under two additional restric-
tions:

iii. the graph G is triangulated: every face of Γ′, except possibly the face cor-
responding to the cycle C, is a triangle;

iv. the images of these triangles under the mapping Γ are non-degenerate, i.e.,
their interior is non-empty.

After that, we deal with the degeneracies, which are the core of the problem (in
our proof as well as in other proofs): we show that under hypotheses (i) and (ii),
three vertices belonging to a face are not on the same line. This step uses the non-
planarity of K3,3 together with simple geometric ideas. Then, the generalization
to arbitrary 3-connected graphs comes easily.

Isotopies

Tutte’s theorem yields a method, described by Floater and Gotsman [73] and
Gotsman and Surazhsky [81], to morph two triangulations, the boundary being
the same convex polygon in both embeddings. One can compute coefficients
λuv > 0, for each interior vertex u and each neighbor v of u, so that u is the
barycenter with coefficients (λuv)v of its neighbors in the initial embedding. Doing
the same for the final embedding and interpolating linearly the coefficients yields
an isotopy (a continuous family of embeddings) by Tutte’s theorem. This method
leaves some freedom for the computation of the barycentric coefficients of the
vertices in both embeddings. Hence, we study the following natural question: is
it possible to apply the same technique, with the additional restriction that the
coefficients are symmetric (λuv = λvu)? The interest is that this has a clear and
appealing physical interpretation: fix the exterior vertices and edges and replace
each interior edge joining two vertices u and v by a spring with rigidity λuv; then
the equilibrium state of this physical system is the solution of the system (S).
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The problem of computing such symmetric coefficients is solved with Maxwell–
Cremona’s theorem from rigidity theory. The drawback of our method is that
these coefficients are not always positive, hence Tutte’s theorem does not apply
in all cases. After small experiments (with 20 vertices or so), we thought that
our method always yielded an isotopy, even if some weights were negative. This
is not the case, and we have small examples refuting this conjecture. However,
our method gives positive coefficients if both embeddings are in the rather general
class of regular triangulations (recall that a regular subdivision is the projection
of the lower faces of a polytope generated by a family of points). This idea of
replacing edges of a graph by springs has been used in several other contexts:
in mechanics [156], for graph connectivity computation [110], in an algorithmic
study of operations on polyhedra [96]. Force-directed algorithms (see [55]) are an
important class of graph drawing methods that use springs (with, additionally,
electric and/or magnetic forces). In [77] is described a tool for the visualization
of evolving embeddings of graphs.

Generalization to 3D space

Finally, we study the extension of Tutte’s theorem to three dimensions. We
present an overview of the proof that there exist two triangulations of a tetra-
hedron which are combinatorially equivalent but for which there is yet no linear
isotopy from one to the other, a fact which is specific to spaces of dimension ≥ 3.
This result has been stated by Starbird in [141]; we give an outline of the proof
and explain parts of the proof not written in his paper and required to show this
theorem. Then we show that the natural generalization of Tutte’s barycentric
embedding theorem is false in 3D. The translation of Tutte’s hypotheses (in the
triangulated case) from 2D to 3D is as follows: consider an embedding of a simpli-
cial 3-complex K into R

3, the boundary being a convex polyhedron. If a mapping
of K into R

3, with the same boundary, is so that each interior vertex is barycen-
ter with positive coefficients of its neighbors, then we would expect that it is an
embedding. It turns out that this fact is false. To our knowledge, this attempt of
generalizing Tutte’s theorem for 3D complexes is new, and our refutation of this
extension raises interesting open questions, in the context of isotopies as well as
in view of embedding 3-complexes.

4.1 Proof of Tutte’s theorem

We prove here Tutte’s theorem ([152], relying on [151]).
We first rephrase condition (ii) in more compact terms. Define the strict

convex hull of a set of points to be the interior, in the space affinely generated
by these points, of the convex hull of these points. It is then easy to see that
condition (ii) is equivalent to the following:

ii’. each v ∈ Vi lies in the strict convex hull of its adjacent vertices.

A proof of this equivalence is provided for completeness in Section 4.4. We
thus need not use System (S) anymore; the proof of its invertibility is easy and
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Figure 4.1: The triangles with v as a vertex, involved in the computation of σ(v).

not necessary for the proof of Tutte’s theorem, we defer it to Section 4.5.
Recall that Γ′ is a (not necessarily straight-line) embedding of G with facial

cycle C. In the sequel, Γ′ is our reference embedding, and we shall call the faces
of G (or triangles if (iii) is satisfied) the faces of the embedding Γ′ except the face
bounded by C. We first state a preliminary lemma, assuming the hypotheses of
Theorem 4.1:

Lemma 4.2 Each v ∈ Vi is mapped by Γ into the interior of the polygon Q.

Proof. First, each vertex in Vi is mapped, by Γ, into the interior or the bound-
ary of the polygon Q. For if this is not the case, by convexity of Q, there is a
vertex v ∈ Vi so that Q and v are separated by a line D. Among the vertices
whose images under Γ lie on the same side of D as v, consider those which are
the farthest from D. Obviously, at least one of these vertices cannot be in the
strict convex hull of its adjacent vertices.

Suppose that a vertex v ∈ Vi is mapped into the boundary of Q, on a line D

which contains an edge of Q. Because the image of any vertex lies in the same
(closed) half-plane bounded by D, and by condition (ii’), the vertices in Vi which
are adjacent to v are also contained in D. Thus, all vertices of the connected
component of v in G − Ve lie on D. This contradicts the 3-connectivity of G,
because removing the two vertices of Ve which are on D destroys the connectivity
of G.

4.1.1 Proof of the theorem in a special case

Our intermediate goal is now to prove the theorem under the additional assump-
tions (iii) and (iv). We first show a local planarity property for Γ.

Lemma 4.3 Under assumptions (iii) and (iv), the interiors of the images of two
distinct triangles of G which share a common vertex do not overlap.

Proof. By (iv), the angles of a triangle are well-defined and positive. We first
introduce some terminology. For each vertex v, let α(v) be equal to 2π if v ∈ Vi,
and to the angle of the polygon Q at v if v ∈ Ve; let σ(v) be the sum, over all the
triangles incident to v, of the angle of the image of such a triangle at v under the



118 Tutte’s barycenter method applied to isotopies

mapping Γ (Figure 4.1). Our aim is to show that, for each vertex v, σ(v) = α(v),
that is, there is no “folding” at v in the mapping Γ. Because all faces of G are
triangles, the structure of G in the neighborhood of a vertex v is quite simple:
the vertices adjacent to v form a cycle (if v ∈ Vi) or a path (if v ∈ Ve). Let us
call v1, . . . , vp the neighbors of v in the order of this cycle (or path).

A key ingredient of the proof of Lemma 4.3 is the following fact: σ(v) ≥ α(v),
with equality if and only if the triangles incident to v do not overlap. To prove
this, let θ(uvw) be the geometric angle (between 0 and π) of the triangle uvw

at v in the mapping Γ, and assume v to be in Vi (the proof is easier for v in
Ve). By (ii’) and (iv), v lies in the interior of the convex hull of v1, . . . , vp. It
also lies in the interior of the convex hull of three of these vertices, as can easily
be shown by hand (this is Carathéodory’s Theorem in dimension two). Hence,
there exist i, j and k so that 1 ≤ i < j < k ≤ p so that the sum of the angles
θ(vivvj), θ(vjvvk) and θ(vkvvi) equals 2π. We have

∑j−1
q=i θ(vqvvq+1) ≥ θ(vivvj),

and similar relations between j and k and between k and i. Adding these three
inequalities, we obtain that σ(v) ≥ 2π. Moreover, equality holds if and only if
there is equality in all previous sums, that is, the ordering of the vertices v1, . . . , vp

around v is preserved in Γ, which is also equivalent to the fact that the triangles
incident to v do not overlap.

Now, let t be the total number of triangles. We have:

(2|Vi| + |Ve| − 2)π =
∑

v∈V

α(v) ≤
∑

v∈V

σ(v) = πt. (4.1)

The first equality is a consequence of the fact that the sum of the angles of the
polygon Q is (|Ve| − 2)π, the inequality has been shown above, and the second
equality is true because the sum of the angles of a triangle in the plane equals π.
We claim that, on the other hand, the leftmost and rightmost members of (4.1)
are equal. Indeed, Euler’s formula, applied to the planar graph G, yields (if e is
the number of interior edges):

(|Vi| + |Ve|) − (|Ve| + e) + (t + 1) = 2. (4.2)

The fact that every face of G has three edges is expressed by:

3t = 2e + |Ve|. (4.3)

Combining equations (4.2) and (4.3) to eliminate e leads to equality of the extreme
members of (4.1), as claimed. Since also σ(v) ≥ α(v), we get: for each v ∈
V, σ(v) = α(v). Using then the equality case in the fact given above, we obtain
that the triangles incident to v do not overlap, which concludes the proof.

We now show global planarity, that is, Γ is an embedding.

Lemma 4.4 Under restricting assumptions (iii) and (iv), Theorem 4.1 holds.

Proof. First note that the vertices, edges and triangles of G define an (abstract)
2-dimensional simplicial complex K. In fact, one can view K as a 2-manifold with
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boundary: each point of this manifold is defined by its barycentric coordinates in
a triangle of G, with the obvious identifications of points on edges or vertices. Γ

induces a map from this manifold K into Q: for each point p in K, determined
by its barycentric coordinates in a triangle uvw, its image Γ(p) is the point in
the triangle uvw with the same barycentric coordinates. In this setting, Γ is
continuous and even a local homeomorphism: each point p has a neighborhood
N(p) so that Γ|N(p) is a homeomorphism on its image set. This is clear for points
p in the interior of a triangle and Lemma 4.3 proves this fact if p belongs to
an edge or is a vertex of a triangle. If a is a point inside or on the boundary
of Q, n(a) = |Γ−1(a)| is finite; for otherwise, by compactness, there would be
an accumulation point of the set Γ−1(a), contradicting the local homeomorphism
property.

Let a be a point in or on the boundary of Q, and p = n(a) ≥ 0; we show that
n(b) = p for b sufficiently close to a (that is, the function n is locally constant).
Let N1, . . . , Np be disjoint open neighborhoods of each of the points in Γ−1(a),
chosen small enough so that Γ|Ni

is a homeomorphism for each i. Let N =

Γ(N1) ∩ · · · ∩ Γ(Np). N is a neighborhood of a; F = Γ(K \ (N1 ∪ · · · ∪ Np)) is
a compact set which does not contain a; hence N ′ = N \ F is a neighborhood
of a. Each b ∈ N ′ has exactly p preimages in N1 ∪ · · · ∪ Np because b ∈ N

and no preimage outside this set because b /∈ F . Thus, by connectivity of Q,
n is constant; its value is 1 on the boundary of Q by Lemma 4.2, hence Γ is a
homeomorphism. The proof is complete.

4.1.2 The general case

We have proved the theorem in a particular case; we will use this result in the
sequel. From this point, unless stated otherwise, we do not assume conditions (iii)
and (iv) anymore, but only the hypotheses of Theorem 4.1. The goal is to show
that some degenerate cases cannot occur, using the 3-connectivity of G. We first
state a quite general lemma, inspired by Tutte [152], which we call the Y–lemma
in view of the geometry of the problem. The situation is depicted in Figure 4.2.
Note that, in this section, any path in a graph is supposed to be simple and
non-degenerate.

Lemma 4.5 (Y–lemma) Let v1, v2, v3 and v be pairwise distinct vertices of a
graph H. Assume, for i = 1, 2, 3, that there is a path Pi from vi to v which avoids
the vj’s (for j 6= i). Then there exist three paths P ′

i , from vi to a common vertex
v′, which are pairwise disjoint (except at v ′).

Proof. First, using P1 and P2, we easily get a (simple) path R from v1 to v2,
so that R and P1 have the same first edge v1z. Then we consider the path P3. If
this path P3 intersects R, let v′ be the first vertex of intersection on P3. v′ splits
R in two parts, which we call P ′

1 (from v1 to v′) and P ′
2 (from v2 to v′); P ′

3 is
the part of P3 going from v3 to v′, with loops removed (if any). The P ′

i ’s satisfy
the property stated in the lemma. If P3 does not intersect R, we call v′ the last
vertex on P1 (when going from v1 to v) which is also on R. Such a vertex exists
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Figure 4.2: The situation in the Y–lemma.

and is different from v1 because v1z is the first edge of R and P1. Let P ′
3 be the

path defined by P3 followed by the part of the path P1 which goes from v to v′,
with loops removed (if any). v′ splits R in two parts, which we call P ′

1 and P ′
2.

The paths P ′
i ’s satisfy the desired property.

We now come back to the situation of Theorem 4.1, and we introduce some
geometric definitions, partially taken from [152]. We will represent a line in the
plane by the zero set of a non-constant affine form. Henceforth, ϕ is such an affine
form. A vertex v of G is called ϕ-active if there is a vertex v ′ adjacent to v so that
ϕ(v) 6= ϕ(v ′), ϕ-inactive otherwise. The ϕ+-poles are the vertices v ∈ V so that
ϕ(v) is maximal; the definition for the ϕ−-poles is analogous. The ϕ-poles are the
ϕ+-poles and the ϕ−-poles. By Lemma 4.2, a ϕ-pole must be in Ve. It is then clear
that there are exactly one or two ϕ+-poles and that, in the latter case, they are
connected by an edge of Q. If v1, . . . , vk lie on the line ϕ = 0, G(ϕ+, v1, . . . , vk)

is the graph induced by the vertices lying in the half-plane ϕ > 0, to which we
add the vertices v1, . . . , vk and all edges from one of these vertices to a vertex in
ϕ > 0. Let G(ϕ) be the subgraph of G induced by the vertices v lying on the line
ϕ = 0. The following lemma was also shown in [152].

Lemma 4.6 Let v be a ϕ-active vertex so that ϕ(v) = 0; assume that v is not a
ϕ+-pole. Then there exists a path in G(ϕ+, v) from v to a ϕ+-pole of G.

Proof. The problem boils down to this: given a ϕ-active vertex w, which is not
a ϕ+-pole, prove that it is possible to find a neighbor of w which has a greater
value of ϕ and is also ϕ-active. If w ∈ Ve, there exists in Ve a vertex adjacent to
w which has a greater value of ϕ; this vertex is also ϕ-active. If w ∈ Vi, then w

has neighbors in both increasing and decreasing directions of ϕ, because a vertex
is in the strict convex hull of its adjacent vertices (hypothesis (ii’)) and because
w is ϕ-active. It is therefore possible to find an adjacent vertex with a greater
value of ϕ. This vertex is also ϕ-active.

The two following lemmas show that some degenerate cases cannot occur. The
first one is along the lines of [152], contrary to the second one which uses another
argument.
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Lemma 4.7 For any ϕ, G has no ϕ-inactive vertex.

Proof. Suppose that there is a ϕ-inactive vertex v. Figure 4.3 summarizes the
proof: we show that the planar graph G contains a subdivision of the bipartite
graph K3,3, which is impossible (see for example [148]). Using the fact that G is
3-connected, we can see the existence, in G(ϕ), of three distinct ϕ-active vertices
vi, i = 1, 2, 3, and three paths Pi joining v to vi, so that, for any i, the path Pi

does not contain any vertex vj for j 6= i. Indeed, let w be a vertex of G so that
ϕ(w) 6= 0. By connectivity of G, take a path from v to w and, on this path, take
the first ϕ-active vertex and call it v1. Do the same in G − {v1} and choose v2

(use 2-connectivity). Finally, use 3-connectivity to select v3 in G − {v1, v2}.
Applying then the Y–lemma in G(ϕ), we get the existence of a vertex v ′ in

G(ϕ), together with three distinct paths (except at v ′) Pi from vi to v′ in G(ϕ).
We now use Lemma 4.6. We have the existence, in G(ϕ+, v1, v2, v3), of three
paths Qi joining vi to a vertex x so that ϕ(x) > 0. Then, the Y–lemma allows
us to assume, by changing x and the Qi’s if necessary, that these three paths are
disjoint (except at x). Similarly, in G(ϕ−, v1, v2, v3), we have three disjoint paths
Ri joining vi to a vertex y so that ϕ(y) < 0. Using the paths Pi, Qi and Ri, which
are all pairwise disjoint except at their endpoints, and the vertices x, v ′, y and
v1, v2, v3, we get a subdivision of the graph K3,3. This contradicts the planarity
of G.

Lemma 4.8 Let vi, i = 1, 2, 3, be three vertices of a face of G. Then, under Γ,
the vi’s are not collinear.

Proof. Suppose the vi’s are on the line ϕ = 0. Figure 4.4 gives the essential
ideas of the proof: we again find a subdivision of K3,3. By Lemma 4.7, the vi’s are
ϕ-active. Since the vi’s are collinear, at least one of them is in Vi, so none of them
is a ϕ-pole. Again, Lemma 4.6 and the Y–lemma show the existence of a vertex
x and three disjoint paths (except at x) Qi joining vi to x in G(ϕ+, v1, v2, v3).
Using a similar argument on the other side of the line ϕ = 0, we finally obtain the
existence of x, y and six disjoint (except at their endpoints) paths joining x or y

to the vi’s. Let G′ be the graph G to which we add a vertex w linked to the vi’s.
Because the vi’s belong to a common face, G′ is planar. But it also contains a
subdivision of K3,3 (with the six paths described above and the three new paths
joining w to the vi’s), which is impossible.
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Figure 4.4: A summary of the proof of Lemma 4.8.

The two previous lemmas have been shown merely under the hypotheses of
Theorem 4.1. Lemma 4.7 will be used to deal with the non-triangulated case.
But here, as a straightforward consequence, we get the proof of the theorem in
the triangulated case:

Corollary 4.9 Theorem 4.1 holds when (iii) is satisfied, that is, in the particular
case where each face of G is a triangle.

Proof. Indeed, assuming condition (iii), Lemma 4.8 states that condition (iv)
is also true. We can thus apply Lemma 4.3. Therefore, Γ is an embedding.

We can now prove Theorem 4.1 in full generality. We first triangulate G. More
precisely, this means that edges are added to split the faces of G in triangles,
without adding vertices (this is done in a purely combinatorial way: no geometry
is involved here). Let G1 be this planar augmented graph. Adding the same edges
in the mapping Γ gives us a mapping Γ1 of the graph G1. We now check that
we can apply Corollary 4.9 to G1 and Γ1. In fact, this boils down to checking
condition (ii’) to Γ1. By condition (ii’) and Lemma 4.7 applied to Γ, the neighbors
of an interior vertex are not all on a line (under Γ), and such a vertex is in the
interior of the convex hull of its neighbors. Because Γ1 is obtained from Γ by
adding extra edges, condition (ii’) also holds for Γ1. Thus, by Corollary 4.9, Γ1 is
an embedding. Deleting the edges we added earlier to Γ, we obtain that Γ is an
embedding as well. It is clear that the faces are strictly convex.

4.2 Isotopies in the plane

Now, we detail the construction of the isotopy outlined in the introduction. Let
G = (V,E) be a 3-connected planar graph, and let Γ0 and Γ1 be two embeddings of
G into the plane. We look for an isotopy between Γ0 and Γ1, restricting ourselves
to the following situation: the boundary cycle C of the exterior face of Γ0 is a
convex polygon, it bounds also the exterior face of Γ1, and the corresponding
vertices of C are at the same location in Γ0 and Γ1. During the isotopy, the
vertices of C have to remain at the same position. In addition, we will require
the graph G to be triangulated. See Figure 4.5.

A natural idea arising to solve this problem is the following: try to deform
Γ0 into Γ1 by keeping the exterior vertices at the same place and moving the
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Figure 4.5: An isotopy Γt (t ∈ [0, 1]) in our framework: here Γ0, Γ1/2 and Γ1 are
depicted.
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Figure 4.6: An example showing that the naive approach does not work. The
figure shows Γ0 (left) and Γ1 (right). The two inner squares are “twisted” to the
left (resp. right) under Γ0 (resp. Γ1), and the innermost square must rotate by
an angle of π in the whole motion. With the linear motion, the vertices of the
inner square would collapse at t = 1/2, as shown in the picture in the middle.
Therefore, this motion does not yield an isotopy.

interior vertices linearly. That is, Γt(v) = (1 − t)Γ0(v) + tΓ1(v) for an interior
vertex v and t in [0, 1]. It turns out that this approach does not always yield an
isotopy, as Figure 4.6 demonstrates. Bing and Starbird [15], generalizing a result
by Cairns [26], showed the existence of an isotopy in the context described above;
if the cells are strictly convex, one can ensure that they remain strictly convex
during the deformation [147]. A series of more mathematical papers study the
topological space of embeddings of a given triangulation (with boundary fixed),
also called the set of homeomorphisms of a (2D) simplicial complex K that are
affine linear on each simplex of K and are the identity on the boundary of K:
in [18], it is proved that (if the outer boundary is convex) it is homeomorphic to
R

2k where k is the number of interior vertices. See also the references in that
paper for further reading on this topic.

However, these papers do not provide an algorithmic solution to this problem.
As explained in the introduction, Gotsman et al. [73, 81] gave a method, based on
Tutte’s theorem, to solve this isotopy problem, representing a vertex as barycenter
of its neighbors. We will use the following definitions in order to study the case
where the barycentric coefficients are symmetric. Let Ei be the set of (undirected)
interior edges (the edges for which at least one incident vertex is in Vi). A weight
function on Γ, or stress, is a map ω : Ei → R; hence ωuv = ωvu. ω is positive if
ωuv > 0 for each interior edge uv. If ω and the positions of each v ∈ Ve are fixed,
the equilibrium state is defined by the system: for each u ∈ Vi,

∑
v|uv∈E ωuv(u −

v) = 0. In these conditions, ω is an equilibrium stress for Γ.
Here is a summary of our approach: compute equilibrium stresses ω0 (resp.

ω1) of embeddings Γ0 (resp. Γ1); then, for t ∈ [0, 1], compute the equilibrium state
of ωt = (1−t)ω0+tω1. The difficulty resides in computing an equilibrium stress for
a given embedding Γ: our method relies on Maxwell–Cremona’s correspondence,
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Figure 4.7: A lift of an embedding.PSfrag replacements
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Figure 4.8: The notations for the computation of ωij.

a theorem well-known in rigidity theory (see Hopcroft and Kahn [96] for details
on this theorem, and [85] for a general introduction to rigidity theory). Think
of Γ as being in the plane z = 0 of R

3. Take any lift of Γ, by adding to each
vertex v̄ = pv = (xv, yv, 0) of Γ a third coordinate, leading to qv = (xv, yv, zv).
Consider the polyhedral terrain whose vertices are the qi’s and which has the same
incidence structure as Γ (Figure 4.7). Now, let ij be an interior edge of Γ; let l

and r be the left and right neighbor of the (oriented) edge ij (Figure 4.8) and
ϕL

ij (resp. ϕR
ij) the affine form which takes the value zi, zj , zl (resp. zr) at points

pi, pj , pl (resp. pr). We will define an equilibrium stress for Γ determined by this
lift.

If a0, . . . , ak are k + 1 points of R
k, written as column vectors, we introduce

the multi-affine bracket operator [a0, . . . , ak], defined by

[a0, . . . , ak] =
a0 a1 . . . ak

1 1 . . . 1

(this quantity being proportional to the signed volume of the convex hull of
the ai’s).

Lemma 4.10 For each interior edge ij and any p ∈ R
2,

ϕL
ij(p) − ϕR

ij(p) =
[pi, pj, p]

[pi, pj, pl]
(ϕL

ij(pl) − ϕR
ij(pl)).

Proof. It is a consequence of Cramer’s formula. Let ϕ be an affine form on R
k

and a0, . . . , ak be k + 1 affinely independent points, a ∈ R
k. Let α0, . . . , αk be

the barycentric coordinates of a with respect to the ai’s, that is, by definition:

α0a0 + . . . + αkak = a

α0 + . . . + αk = 1.

Cramer’s formula now implies:

αi =
[a0, . . . , ai−1, a, ai+1, . . . , ak]

[a0, . . . , ak]
.
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So (if k = 2, and because ϕ is an affine form):

ϕ(a) =
[a, a1, a2]

[a0, a1, a2]
ϕ(a0) +

[a0, a, a2]

[a0, a1, a2]
ϕ(a1) +

[a0, a1, a]

[a0, a1, a2]
ϕ(a2).

It is now easy to conclude.

Define, for any interior edge ij and for a point p not on the line (pipj):

ωij =
ϕL

ij(p) − ϕR
ij(p)

[pi, pj , p]
.

This definition does not depend on the point p, by Lemma 4.10. Furthermore,
ωij = ωji. In practice, there is an intrinsic formula (recall that the qi’s are the
lifts of the points pi’s, which are the images of the vertices under Γ):

Lemma 4.11 ωij =
[qi, qj, ql, qr]

[pi, pj , pl][pi, pj, pr]
.

Proof. By definition of ωij:

ωij[pi, pj, pl][pi, pj, pr] = (zl − ϕR
ij(pl))[pi, pj, pr]. (4.4)

By Cramer’s formula, as in the proof of Lemma 4.10:

ϕR
ij(pl)[pi, pj , pr] = zi[pl, pj , pr] + zj [pi, pl, pr] + zr[pi, pj , pl].

Thus the left member of Equation (4.4) equals

zl[pi, pj , pr] − zi[pl, pj , pr] − zj [pi, pl, pr] − zr[pi, pj , pl],

which equals [qi, qj , ql, qr] (by developping this determinant with respect to the
third line).

Theorem 4.12 ω is an equilibrium stress for Γ.

Proof. For any point p in the plane, i ∈ Vi, we have:
∑

j|ij∈E

ωij[pi, pj , p] =
∑

j|ij∈E

(ϕL
ij(p) − ϕR

ij(p)) = 0,

because the affine form ϕ corresponding to a face incident to pi appears twice in
this sum, once counted positively, once negatively. As [pi, pj, p] = det(pj − pi, p−
pi), this implies

det(
∑

j|ij∈E

ωij(pi − pj), p − pi) = 0,

for each point p in R
2. Therefore

∑

j|ij∈E

ωij(pi − pj) = 0.
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Figure 4.9: An embedding which is not a regular subdivision. Indeed, assuming
it is possible to lift it to a lower convex hull, we can suppose, by adding a suitable
affine form to all the zi’s, that z4 = z5 = z6 = 0. If this graph were a regular
subdivision, we would have z1 > z2 > z3 > z1, which is impossible.

Thus, each lift of the embedding Γ determines an equilibrium stress on Γ.
Conversely, it is possible to show that an equilibrium stress determines a unique
lift of Γ, up to the choice of an affine form of R

2 (Maxwell’s theorem, shown for
example in [96] in a slightly different context).

If we have positive equilibrium stresses ω0 and ω1 of Γ0 and Γ1 respectively,
we have a method to compute an isotopy between Γ0 and Γ1: by Tutte’s theorem,
because ωt = (1 − t)ω0 + tω1 is a positive stress for each t ∈ [0, 1], the corre-
sponding mapping Γt is an embedding, and (Γt)t∈[0,1] is clearly continuous (the
map which associates to each invertible matrix its inverse, is continuous), hence
an isotopy. Furthermore, it is easy to characterize the set of embeddings which
admit a positive equilibrium stress: an edge ij has a positive weight if and only
if the line qiqj (with the notations above) is under the line qlqr. Recall that a
regular triangulation is a triangulation which is the projection of the lower faces
of a polytope generated by a family of points, see [158]. Hence an embedding has
a positive stress if and only if it is a regular triangulation. Therefore, we have:

Theorem 4.13 If Γ0 and Γ1 are regular triangulations, then we can compute
an isotopy between Γ0 and Γ1.

Testing whether Γ is a regular subdivision, and, if so, computing a positive
lift, can be done easily using linear programming; indeed, we have a convex
lift for Γ if and only if, for each interior edge ij and with the notations above,
[qi, qj , ql, qr] < 0, which is a linear inequality in the zk’s. Not all triangulations
are regular subdivisions, as shown in Figure 4.9 (see [158, p. 132]), but a large
class of embeddings are regular subdivisions, including Delaunay triangulations
for example (because the Delaunay triangulation of a set of points is the projec-
tion of the edges of the convex hull of the points lifted on the standard paraboloid,
see [19, p. 437] or [60, p. 303]); this remark might be useful because of the wide
use of these triangulations in computational geometry.

In practice, we tried to build an isotopy between a random triangulated em-
bedding and the “canonical” embedding of the same graph (that is, the embedding
obtained by Tutte’s method when all weights equal 1). We lift Γ0 to the stan-
dard paraboloid z = x2 + y2, compute the equilibrium stress ω0, and use linear
interpolation between ω0 and the unit weights ω1. Although the initial stress
is not necessarily positive, it turns out that, in many (not too big) cases, this
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Figure 4.10: An example of non-planarity with the linear interpolation between
the weights of a lift on the standard paraboloid, and unit weights.

method yields an isotopy; long experiments have been necessary to find a small
counterexample like Figure 4.10. See Section 4.6 for numerical coordinates. Our
smallest counterexample uses 4 outer vertices and 2 inner vertices, but the failure
is very hard to see on the screen and can only be proved by computation. Lift-
ing on the paraboloid may give an isotopy even if the considered triangulation is
non-regular, like in Figure 4.6, but can also fail with regular triangulations (the
initial and final triangulations in Figure 4.10 are regular). This method has been
programmed in C++ using Numerical Recipes and the Leda library, and also in
Mathematica for exact computations.

Several other approaches could be done in the same spirit to try to find a
method which would work for a larger class of embeddings than the regular sub-
divisions. One could attempt to study the space of stresses which yield an em-
bedding (thus an isotopy corresponds to a path in this space). If we restrict
ourselves to the linear interpolation between the weights, an important question
is: are there two embeddings Γ0 and Γ1 so that, for any lifts of Γ0 and Γ1, the
interpolation ωt = (1− t)ω0 + tω1 of the corresponding weights does not yield an
isotopy? If it is not the case, how to compute the lifts?

We have seen that using linear interpolation from the weights of a lift on the
standard paraboloid to unit weights does not always yield an isotopy. Never-
theless, we have the following conjecture (checked during all our experiments):
during this interpolation, the matrix involved in the computation of the positions
of the points is symmetric positive definite.

If it is the case, it has the following interesting consequence. If ω is a stress on
G, let us denote by Mω the matrix involved in the inversion of System (S). It can
be shown (see the proofs of Lemma 4.18) that Mω is symmetric positive definite
if ω is positive; moreover, ω 7→ Mω is linear. If Mω0 and Mω1 are symmetric
positive definite, so is M(1−t)ω0+tω1 = (1 − t)Mω0 + tMω1 , and uniqueness of
the positions of the vertices is guaranteed during the motion (which may fail
to be an isotopy). Similarly, if Mω0 is symmetric positive definite and ω1 is a
positive stress, since multiplying ω1 by a positive number does not affect the
equilibrium state, we can assume ω1 ≥ ω0 (this notation simply means that for
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each interior edge ij, ω1
ij ≥ ω0

ij). Each nondecreasing family ωt of stresses from
ω0 to ω1 yields a family Mωt of symmetric positive definite matrices; indeed,
Mωt = Mω0 + Mωt−ω0 ; the first matrix of the right term is symmetric positive
definite, the second one is positive because the corresponding stress is non-negative
on each interior edge. Thus, if this conjecture is true, the positions of the vertices
are uniquely determined for many choices of the interpolation between the weights.

4.3 Generalization to 3D space

We explain here why the analogue of Tutte’s theorem is false in 3D space, thus
making it difficult to build isotopies in 3D. Here, it is convenient to use combina-
torial simplicial complexes (all simplicial complexes considered here are combina-
torial, not geometric; see for example [153]).

We introduce some other definitions, generalizing those in 2D. A mapping f

from a simplicial complex C into R
d is a map from all the simplexes of C into

P(Rd) satisfying: if {v1, . . . , vp} is a simplex of C,

f({v1, . . . , vp}) = Conv {f(v1), . . . , f(vp)}.

An embedding of C into R
d is a mapping so that, for any two simplexes σ, τ ∈ C,

f(σ ∩ τ) = f(σ) ∩ f(τ). As usual, an isotopy (h(t)) (t ∈ [0, 1]) of C into R
d is a

continuous family of embeddings of C into R
d. Finally, the image of a simplicial

complex C by a mapping f is the union of the sets f(τ), over all simplexes τ of C.
In this section, we will often manipulate complexes whose embeddings have

to be fixed on the “boundary” of these complexes. A 3-complex with tetrahedral
boundary (C,B, b) is a simplicial 3-complex C with a subcomplex B ⊂ C so that
B is simplicially equivalent to the boundary of a 3-simplex, together with an
embedding b of B into R

3. An embedding f of (C,B, b) into R
3 is an embedding

of C so that f |B = b and the image of f is exactly the tetrahedron bounded by the
image of b. An isotopy of a 3-complex with tetrahedral boundary is a continuous
family of embeddings.

The goal of this section is to show:

Theorem 4.14 There exist a complex with tetrahedral boundary (C,B, b), and
two mappings f and j of (C,B, b) into R

3, such that:

1. f is an embedding,

2. j|B = f |B,

3. each vertex in C \ B is, under j, barycenter with positive coefficients of
its neighbors,

4. but j is not an embedding.

This theorem is a counterexample to the analogue of Tutte’s theorem in three
dimensions: the first condition is the analogue of planarity, the second condition
fixes the images of the exterior vertices by j and the third one is the condition
for the interior vertices.
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Figure 4.11: Starbird’s embeddings f1 and g1 of C1.

The cornerstone for the proof of Theorem 4.14 is the description by Star-
bird [141] of a graph C1, embedded into R

3 in two different ways f1 and g1, so
that it is impossible to deform one embedding to the other without bending the
edges. Yet, if bending the edges is allowed, such a deformation becomes possible.
These embeddings are depicted in Figure 4.11, copied from his paper. We found
coordinates for the vertices of these embeddings, available in Section 4.7. In the
lemma below, we rephrase the properties stated by Starbird.

Lemma 4.15 The following holds:

1. There are a 3-complex with tetrahedral boundary (C,B, b), so that C con-
tains C1, and two embeddings f and g of (C,B, b) extending respectively f1

and g1.

2. If C, f and g satisfy the preceding condition, there is no isotopy of (C,B, b)

taking f to g.

The first part of Lemma 4.15 expresses the fact that f and g are combinato-
rially equivalent triangulations (tetrahedralizations for purists) of a tetrahedron,
with the same boundary. Despite this, as stated in the second part, there is no
isotopy from f to g. It is to be noted that the analogue of this lemma is false in
2D by Tutte’s theorem.

The proof of the second part of this lemma is given in detail in Starbird’s paper,
we shall not explain the argument here. Shortly said, the author uses properties
of piecewise linear curves embedded in 3D space to show that the embeddings f1

and g1 cannot be deformed from one to the other while keeping the edges of C1

straight, for otherwise at some stage of the isotopy there would be a degeneracy
which would prevent to have an embedding. Then, because f (resp. g) extends
f1 (resp. g1), there cannot be any isotopy between those embeddings as well.

We will give a detailed summary of the proof of the first part of Lemma 4.15,
because it is stated in Starbird’s paper but not all details of the proof are sup-
plied. The main idea for the proof is the following “fundamental extension lemma”
enabling to extend an isotopy of a complex to an isotopy of a complex with tetra-
hedral boundary containing this complex. It is proved in [15, Theorem 3.3]; we
rephrase it here for convenience in our framework (it holds in fact in arbitrary
dimension):
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Figure 4.12: How an edge vw of C1 (in bold) is protected by a skinny flexible
tube. The vertices v0, . . . , vn are spread uniformly on the edge of C1 which is
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aibici is drawn around vi, and the vertices of these triangles are linked as shown
in the figure. Note the special treatment at the end of the edge (vertex v). The
space between the triangles aibici is also triangulated (not all edges are shown in
the figure). Thus, a 3-dimensional simplicial complex protects each edge of C1.

Lemma 4.16 Let C be a simplicial 3-complex and (h(t)) be an isotopy of C into
R

3. Then there are a 3-complex with tetrahedral boundary (C̃, B̃, b̃) so that C̃

contains C and an isotopy (h̃(t)) of (C̃, B̃, b̃) into R
3 extending (h(t)).

We shall not give the proof here. The two key ingredients are that slightly
perturbing an embedding still yields an embedding, and the use of refinements of
triangulations in R

3.

Proof of Lemma 4.15, first part. We first express the fact that it is possible
to deform f(C1) to g(C1) if bending the edges is allowed: there is a refinement
C2 of C1 (by adding vertices on the edges of C1) and an isotopy (h(t)) of C2 into
R

3 taking f2 to g2. Here, f2 is to be understood in the following manner (and
similarly for g2): if v is a vertex in C1, then f2(v) = f1(v); and if an edge e = vw

of C1 is subdivided with vertices v0, . . . , vn inserted on e, then f2(v0), . . . , f2(vn)

are spread uniformly on f1(v)f1(w). It is easy to see that this fact is true, as
written in the paper, if you build a model of f2(C2) with strings (or small bars)
and deform it to g2(C2).

No argument apart from the fact that such a deformation is possible is given
in Starbird’s paper to complete the proof. We thus suggest the following: In
fact, we extend a bit more C2 by protecting each edge of C1 (split in C2) by a
3-complex looking like a skinny tube (Figure 4.12). Define f2 and g2 naturally
on these tubular protections; the images of f2 and g2 are just thickened versions
of the images of f1 and g1. By Lemma 4.16, extend C2 to a 3-complex with
tetrahedral boundary (C3, B3, b3), extending the isotopy (h(t)) to an isotopy (h̃(t))

of (C3, B3, b3). Now, considering h̃(0) and h̃(1), the complex (C3, B3, b3) nearly
satisfies the conditions required in the first part of Lemma 4.15, except that C3

does not contain exactly C1 because the edges of C1 have been subdivided.



4.3 Generalization to 3D space 131

Thus, in f3 and g3, the only thing we have to do is to retriangulate compat-
ibly the tubular protections of each (split) edge vw of C1, removing the vertices
v0, . . . , vn splitting this edge and restoring the initial edge vw. Since the tubular
protections of vw look alike under f3 and g3 (the vi’s are on a line, and similarly
for the ai’s, bi’s and ci’s), this retriangulation is easy: the compatibility will be
automatically satisfied. See [14, pp. 4–6] for similar retriangulation problems:
first retriangulate the 2D region which is the convex hull of v, w, and the ai’s by
removing the vi’s and linking each of the ai’s to v. Do the same with the bi’s and
the ci’s. Now, we have to retriangulate three thirds of the tubular protection of
edge vw. To retriangulate the region which is the convex hull of v, w, the ai’s
and the bi’s, simply insert a new vertex p in the interior of this region; since its
boundary is still triangulated, it is sufficient to insert in the complex the simplexes
which are on the boundary of this region with p adjoined (“coning” the boundary
of this region from p). Do the same for the other thirds. The resulting complex
(C,B, b) and embeddings f and g satisfy the hypotheses.

Proof of Theorem 4.14. First notice that, under f and g, all interior vertices
are barycenter with positive coefficients of their adjacent vertices. For otherwise a
vertex i would be on a face of the polytope generated by the neighbors of i, hence
i would have no neighbor on a half-space whose boundary passes through the
image of i; this contradicts the fact that i is a vertex interior to the triangulation.
Let i be an interior vertex, and let λf

ij (resp. λg
ij) be the barycentric coefficients

of i with respect to its neighbors j in the embedding f (resp. g). Note that the
coefficients may be non-symmetric: we follow the approach of [73] to ensure we
have positive coefficients. Then, for t ∈ [0, 1], consider λt

ij = (1− t)λf
ij + tλg

ij > 0.
Fix the positions pi of the vertices i ∈ B, and look for the positions of the other
vertices i satisfying the equations:

∑
j|ij∈E λt

ij(pj − pi) = 0, where E is the set of
edges of C. This system admits a unique solution for each t ∈ [0, 1] (exactly the
same proof holds as in Section 4.5). Let us call the resulting family of mappings
(h̄(t)). By Lemma 4.15, second part, (h̄(t)) cannot be an isotopy: there is a
t0 ∈ [0, 1] such that h̄(t0) = j is not an embedding. (C,B, b), f , and j satisfy the
conditions of Theorem 4.14.

This theorem is a counterexample to the generalization of Tutte’s theorem in
3D, described in introduction. In fact, the result is slightly stronger: j is not an
embedding, but even the restriction of j to the 1-skeleton of C is not an embedding
(two edges must cross). This also implies that constructing isotopies of complexes
in 3D is much more difficult than in 2D. Starbird [142, 143] showed the following
theorem which might be a clue to find a solution: if there are two embeddings f

and g of a complex K with tetrahedral boundary into R
3 (or more generally if

the boundary is a convex polyhedron), then there might be no isotopy from f to
g, but there is always a suitable refinement K ′ of the complex K for which there
is an isotopy between f and g. The problem is now to realize algorithmically the
refinement and the isotopy; unfortunately, it is unclear how to proceed. Another
track would be to try to find more restrictive conditions under which a barycentric
method would work; for example, if some subcomplexes are forbidden, or if the
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complex is sufficiently refined, does Tutte’s barycentric method always yield an
embedding?

Recently, another counter-example for the analogue of Tutte’s theorem in 3D
has been described by Ó Dúnlaing [122].

4.4 Appendix: The strict convex hull

Recall that the strict convex hull of a set of points is the interior, in the space
affinely generated by this set of points, of the convex hull of these points. The
following lemma shows that conditions (ii) and (ii’) are equivalent.

Lemma 4.17 Let A = {a1, . . . , an} ⊂ R
d. Then the strict convex hull of A is

the set of barycenters with positive coefficients of the points in A.

Proof. Suppose p ∈ Str Conv A. Take k ∈ {1, . . . , n}. There is an εk > 0 so
that p + εk(p − ak) ∈ Conv A. Therefore it is possible to write p =

∑n
i=1 µk

i ai,
where

∑n
i=1 µk

i = 1, µk
i ≥ 0 and µk

k > 0. Taking λi = 1
n

∑n
k=1 µk

i yields that p is
a barycenter with positive coefficients of the points in A.

For the opposite inclusion, suppose p =
∑n

i=1 λiai, with λi > 0 and
∑n

i=1 λi =

1. If |µ1|, . . . , |µn| are sufficiently small, p +
∑n

i=1 µi(ai − p) is in Conv A. This
shows that p ∈ Str Conv A.

4.5 Appendix: Invertibility of System (S)

Lemma 4.18 If the coefficients λij are positive, System (S) admits a unique
solution.

Before showing this lemma, we must explicitely compute the entries of the
matrix involved in System (S). For convenience, note v1, . . . , vm the interior ver-
tices and vm+1, . . . , vn the exterior ones. The matrix involved in System (S) is
square, of size m, and defined, if 1 ≤ i, j ≤ m and with the convention λij = 0 if
ij is not an edge, by:

mij = −λij, if i 6= j;

mii =
n∑

k=1

λik.

Several proofs of this lemma exist in the literature. We first give the most
straightforward proof in the general case. It uses the well-known “diagonal domi-
nant property” of matrices and can be found in [72, p. 237].

Proof. We show that the kernel of M is {0}. If M · y = 0 for a column vector
y with m entries, then: for each i ∈ {1, . . . ,m}, ∑n

j=1 λij(yi − yj) = 0, where
yj = 0 if j > m by definition. Consider an index i such that |yi| is maximal.
As λ is positive, the preceding equation yields yj = yi for every j neighbor of i.
Because G is connected, and because yj = 0 if j > m, we get yi = 0. Therefore,
M is invertible. (In fact, the same argument shows that M is symmetric definite
positive, for it cannot have a nonpositive eigenvalue.)
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We now prove Lemma 4.18 in the special case where the coefficients are sym-
metric, using the physical interpretation with the springs. Ei denotes the set of
interior edges.

Proof. The energy of the system made of the springs is defined by

E =
1

2

∑

ij∈Ei

λij |pj − pi|2.

Consider that the positions of the exterior vertices are fixed; E(p1, . . . , pm) is
a polynomial function of degree two. If at least one interior vertex pi goes to
infinity, E tends to +∞ by connectivity of G and positivity of the coefficients.
Thus, the homogeneous polynomial of degree two in the coordinates p1, . . . , pm

of E is a quadratic form which is symmetric definite positive. But the matrix of
this quadratic form is exactly the matrix M , as it can be checked easily using the
fact that the coefficients are symmetric. Thus M is symmetric definite positive
and (S) admits a unique solution.

Finally, we indicate that Lemma 4.18 is a consequence of the matrix tree
theorem (see Brualdi and Ryser [23, p. 324], Chaiken [29], Orlin [123] or Zeil-
berger [157]), a theorem interpreting combinatorially the determinant of certain
matrices in terms of arborescences of graphs.

Proof. Let (nij)1≤i6=j≤m+1 be real numbers. Consider the complete directed
graph (without loops) Ḡ with m+1 vertices, each edge (ij) having, by definition,
weight nij. Let P be the square matrix of size m + 1 defined by:

pij = −nij, if i 6= j;

pii =

m+1∑

k=1

nik.

The matrix P is called the Laplacian matrix of Ḡ. A spanning arborescence
of Ḡ rooted at i is a subgraph of Ḡ covering all vertices of Ḡ so that it has no
directed cycle and all vertices j 6= i have, in Ḡ, outdegree equal to one. The matrix
tree theorem asserts that the cofactor of the ith diagonal element of matrix P is
exactly the sum, over all spanning arborescences of Ḡ rooted at i, of the product
of the weights of the edges of this arborescence.

Apply this theorem to our particular case: let nij = λij if 1 ≤ i 6= j ≤ m;
if i ≤ m, let ni,m+1 =

∑n
k=m+1 λik and nm+1,i = 0. The (m + 1)th cofactor of

P is exactly the determinant of the matrix M and also equals the sum, over all
spanning arborescences of Ḡ rooted at vertex m+1, of the product of the weights
of the edges of this arborescence. There is at least one spanning arborescence
yielding a nonzero contribution to this sum: to see this, take a spanning tree of
the graph induced by the inner vertices of G, and add one directed edge from
a vertex in G which, in G, is linked to an exterior vertex, to vertex m + 1.
Since the weights of the edges are nonnegative, the contribution of any spanning
arborescence is nonnegative, hence the cofactor is positive and M is invertible.
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4.6 Appendix: Counter-examples

We present here the data sets of embeddings which present a failure of the method
presented in Section 4.2 (by lifting the embedding on the standard paraboloid to
compute the initial weights, and then using linear interpolation between these
weights and the unit weights).

The data format is as follows: each line corresponds to a vertex of the em-
bedding, and contains, in this order, the vertex number, its x- and y-coordinates,
and the list of its neighbors.

4.6.1 The smallest counter-example found

In this counter-example, the situation is close to a degeneracy, but one can check
by numerical computation that this mapping is indeed an embedding, and that
this does not yield an isotopy. It is made of four exterior vertices and two interior
vertices.

1 -500 900 2 5 6 4

2 -850 900 1 3 5

3 -950 -900 4 6 5 2

4 0 -400 1 6 3

5 -900 -699 6 1 2 3

6 -800 -300 1 5 3 4

4.6.2 Counter-example presented in Figure 4.10

1 -681.67 314.31 5 2 8 6

2 -938.19 -391.67 7 8 1 3

3 419.75 -833.89 4 8 7 2

4 841.39 52.42 5 6 8 3

5 712.91 332.73 1 6 4

6 733.43 99.34 5 1 8 4

7 128.62 38.94 8 2 3

8 277.47 156.82 1 2 7 3 4 6

4.7 Appendix: Coordinates for Starbird’s embeddings

We present here two data sets in OOGL format (to be viewed for example with
Geomview1), which are Starbird’s embeddings presented in Figure 4.11. The
format of the main part of each data set is as follows: each line denotes a vertex,
with its x-, y- and z-coordinates. Each pair of lines denotes an edge.

1http://www.geomview.org
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First embedding:

VECT

17 34 17

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

####################

# Center part

0 -20 0 # 7

-4 20 0 # 5

-4 20 0 # 5

4 20 0 # 6

4 20 0 # 6

0 -20 0 # 7

# Upper part

4 20 0 # 6

-6 0 16 # ’4

-6 0 16 # ’4

-16 -6 14 # ’3

-16 -6 14 # ’3

2 6 8 # ’2

2 6 8 # ’2

-10 6 20 # ’1

-10 6 20 # ’1

0 -20 0 # 7

-10 6 20 # ’1

0 -12 0 # 8

-4 20 0 # 5

-6 0 16 # ’4

# Lower part (symm.

# in Z of upper part)

4 20 0 # 6

-6 0 -16 # 4

-6 0 -16 # 4

-16 -6 -14 # 3

-16 -6 -14 # 3

2 6 -8 # 2

2 6 -8 # 2

-10 6 -20 # 1

-10 6 -20 # 1

0 -20 0 # 7

-10 6 -20# 1

0 -12 0 # 8

-4 20 0 # 5

-6 0 -16 # 4

####################

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1
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Second embedding:

VECT

17 34 17

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

####################

# Center part

0 -20 0 # 7

-4 20 0 # 5

-4 20 0 # 5

4 20 0 # 6

4 20 0 # 6

0 -20 0 # 7

# Upper part

4 20 0 # 6

-6 0 24 # ’4

-6 0 24 # ’4

-16 -6 21 # ’3

-16 -6 21 # ’3

2 6 12 # ’2

2 6 12 # ’2

-10 6 30 # ’1

-10 6 30 # ’1

0 -20 0 # 7

-10 6 30 # ’1

0 -12 0 # 8

-4 20 0 # 5

-6 0 24 # ’4

# Lower part (symm.

# in X, shrink in Z

# of upper part)

-4 20 0 # 6

6 0 8 # 4

6 0 8 # 4

16 -6 7 # 3

16 -6 7 # 3

-2 6 4 # 2

-2 6 4 # 2

10 6 10 # 1

10 6 10 # 1

0 -20 0 # 7

10 6 10 # 1

0 -12 0 # 8

4 20 0 # 5

6 0 8 # 4

####################

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1
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Chapter 5

Conforming Delaunay

triangulations in 3D

This chapter contains the paper [38], written with D. Cohen-Steiner and M. Yvinec,
with only very slight modifications.

Abstract. We describe an algorithm which, for any piecewise linear
complex (PLC) in 3D, builds a Delaunay triangulation conforming to
this PLC.

The algorithm has been implemented, and yields in practice a rela-
tively small number of Steiner points due to the fact that it adapts
to the local geometry of the PLC. It is, to our knowledge, the first
practical algorithm devoted to this problem.

Introduction

In the following, the term faces denotes objects in 3D space which are either 0-
dimensional faces called vertices, 1-dimensional faces called edges or 2-dimensional
faces called 2-faces. The vertices are just points, the edges are straight line seg-
ments, and the 2-faces are polygonal regions possibly with holes and isolated edges
or vertices included in their interior. A piecewise linear complex, called for short
PLC, is a finite set C of faces such that:

• the boundary of any face of C is a union of faces of C;

• the intersection of any two faces of C is either empty or a union of faces of
C.

A triangulation T is said to conform to a PLC C if any face of C is a union
of faces of T . In this chapter, we propose an algorithm which, given a PLC C,
finds a set of points P whose Delaunay triangulation conforms to C. The set P
includes the vertices of C and a certain number of additional points which are
usually called Steiner points.
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This question is motivated by problems in mesh generation and geometric
modeling: in these fields, it is crucial to decompose the space into a set of simplices
which conforms to a given PLC, with the additional restriction that the shape of
the cells must satisfy certain properties. Delaunay triangulations present several
features (see, e.g., [19]) which can be exploited to solve this problem, and many
mesh generation algorithms make use of this concept.

The problem of computing a conforming 2D Delaunay triangulation was solved
by Saalfeld [133] and Edelsbrunner and Tan [64]. The algorithm by Edelsbrun-
ner and Tan [64] guarantees an O(n3) bound on the number of generated Steiner
vertices, if n is the size of the input. Most of the further works on the subject
are based on the Delaunay refinement approach pioneered by Ruppert [132] and
Chew [32]. Shewchuk [140] gave an algorithm in 3D which builds a conforming
Delaunay triangulation under restrictive conditions on the angles of the PLC.
Murphy, Mount, and Gable [119] found a solution which works under no restric-
tion, but, as written in the conclusion of their paper, produces far too many
points in practice. The main interest of their paper is to show the existence of a
conforming Delaunay triangulation with a finite set of vertices for any 3D PLC.

Our algorithm uses the Delaunay refinement approach. Initially, the set P is
the set of vertices of the complex C. Points are then added to P until each edge
and each face of the complex C is a union of simplices which are in the Delaunay
triangulation of P.

The main difficulty with such a strategy is to ensure termination. Indeed, it
is known that sharp edges and corners may induce cascading additions of Steiner
points. To avoid this effect, we first define a protected area around edges and
vertices of the PLC with a special refinement process. Outside the protected
area, the PLC can be refined using Ruppert’s process and the interaction between
refinements in both areas can be controlled. Murphy, Mount, and Gable use a
similar approach, but do not take into account the local geometry of the complex:
the existence of a pair of vertices or a vertex and a non-incident edge very close
together implies a high number of output vertices in the neighborhood of all edges
of the input complex. The main difference between our approach and their work
lies in the definition of the protected area: in our case, this area adapts to the
local geometry of the input PLC, implying the creation of fewer points in practice.

The algorithm is presented in Section 5.1 and proved to be correct in Sec-
tion 5.2. In Section 5.3, we present the details of the construction of the initial
protected area, skipped in Section 5.1. Section 5.4 presents some refinements to
improve the running time of the algorithm and to lower the number of vertices in
the output conforming triangulation. At last, we end with experimental results
in Section 5.5.

5.1 The algorithm

After a few definitions, we describe the protected area (Subsections 5.1.2 and 5.1.3).
We then define the refinement process used for this area (Subsections 5.1.4 and
5.1.5). Finally, we describe the main procedure and summarize the whole algo-
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rithm.

5.1.1 Definitions and notations

The circumball of a segment ab is the ball admitting the segment ab as diameter.
The circumball of a triangle abc is the ball admitting the circumscribing circle of
abc as great circle.

An edge (resp. a triangle) is said to have the Gabriel property if its circumball
contains no point of P in its interior. A point in the interior of the circumball of
an edge (resp. a triangle) is said to encroach upon this edge (resp. this triangle).

In the following, we note bd(B) the boundary of a ball B, int(B) the interior
of B and circum(ab) (resp circum(abc)) the circumball of the segment ab (resp.
of the triangle abc).

5.1.2 Protecting balls

The 1-skeleton Sk of the complex C is the union of the 0- and 1-dimensional faces
of C. The protected area is defined by means of a set B of closed balls, called
protecting balls, satisfying the following requirements:

i. the union of the balls in B covers the 1-skeleton Sk of the complex C;

ii. the balls are centered on points which are in Sk ;

iii. if two balls intersect, their centers belong to the same edge of the complex
C;

iv. if a face of C intersects a ball, then it contains the center of this ball;

v. the intersection of any three balls in B is empty;

vi. any two balls are not tangent;

vii. the center of any ball is inside no other ball.

(i) and (iv) imply that any vertex in C is the center of a ball in B. We show in
Section 5.3 how to build a set of balls satisfying these requirements. Furthermore,
in Section 5.4, we show that there is in fact no need to cover all the edges.

5.1.3 Center-points, h-points, p-points, and SOS-points

We describe here a few subsets of points, included in the balls of B, that we need
to add first in the set P. See Figure 5.1.

Let B be a ball in B with center o. Let BB be the set of balls in B that
intersect B. By condition (v), the intersections of B with the elements of BB are
disjoint.

We first add the center o of B. Such a point will be called a center-point.
Then, for each element Bi of BB, consider the radical plane of B and Bi. It
intersects the line joining the centers of B and Bi at a point hi, which is on an
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Figure 5.1: The situation in the neighborhood of a ball B, incident to three other
balls B1, B2 and B3. There are two faces in the complex, limited by three edges,
in the plane of the figure. Point hi is added on the radical plane of B and Bi.
p-points a, b, c, and d belong to the boundary of two balls and to a face, they are
therefore also inserted in P. Incident to o are four right-angled triangles (e.g.,
oh2a) and two isosceles triangles (e.g., oab). The shield edges are ab and cd.
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edge of C by condition (iii). The point hi is added to the set P. Such points will
be called h-points.

By condition (iv), any face of C which intersects B ∩ Bi contains the centers
of B and Bi, and thus can be either the edge including the segment ooi (oi is the
center of Bi) or a 2-face incident this edge. For each 2-face F of C intersecting
B ∩Bi, we add to P the intersection points of F with the circle bd(B) ∩ bd(Bi).
We called those points p-points.

Consider the plane Q of a 2-face of C intersecting B (and thus containing o).
The edges of C split the disk Q∩B into one or several sectors. We focus on sectors
which are included in C. The p-points further split these sectors in subsectors. We
call right-angled subsectors the subsectors limited by an edge of C and a p-point
and isosceles subsectors the subsectors limited by two p-points.

If some isosceles subsectors form an angle ≥ π/2, we add some points on
their bounding circular arcs to subdivide them in new subsectors forming an
angle < π/2. For reasons that will be clear in Subsection 5.1.4, these points are
called SOS-points. The new subsectors with angle < π/2 are still called isosceles
subsectors.

Center-points and h-points are the only categories of points added in the
interior of protecting balls. p-points and SOS -points lie on the boundaries of
protecting balls. SOS -points belong to a single protecting ball while p-points
belong to the intersection of two balls.

Isosceles subsectors are defined by the center o of a ball B and by two points
a and b (either p-points or SOS -points) on bd(B). Line segments such as ab,
joining two points that define an isosceles subsector, are called shield edges. In
the following, triangles defined by center-points and shield edges such as oab are
referred to as isosceles triangles. Triangles spanned by a center-point, a h-point
and a p-point on the boundary of some right-angled subsector are referred to as
right-angled triangles.

Definition 5.1 The protected area is the union of the isosceles and right-angled
triangles. See the dark gray area in Figure 5.1. In particular, the protected area
is included in the union of the protecting balls.

Definition 5.2 The unprotected area is the complex C, minus the protected area.

5.1.4 The “split-on-a-sphere” strategy

During the process, it will be necessary to split shield edges. Since we do not
want to add more points inside the balls in B, we use a special treatment to split
such a shield edge, called the “split-on-a-sphere” strategy (SOS for short). See
Figure 5.2.

Let ab be a shield edge to be split, in a ball B. We distinguish two cases: a

and b are both SOS -points and belong to a single ball B, or at least one of these
two points (for example a) is a p-point and belongs also to another ball B ′.

If a and b belong only to B, let c be the midpoint of the shortest geodesic arc
ab on bd(B). To refine edge ab, we add c to P and replace the shield edge ab by
two shield edges ac and cb.
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Figure 5.2: The SOS strategy: We split the shield edge ab by inserting the point
c on the boundary of the ball.

If a is a p-point belonging to bd(B)∩bd(B ′), the idea is quite similar; however,
if we do not take care, the SOS strategy could lead to cascading insertions of
points, because refining an edge on B would lead to refinement of an edge on
B′, and so on. We thus use a strategy “à la Ruppert” [132], using circular shells.
We consider the length of the segment ab, divided by two, and round it to the
nearest distance d which is of the form 2k, k ∈ Z (the unit distance has been
chosen arbitrarily at the beginning of the algorithm). Let c be the point of the
shortest geodesic arc ab on bd(B) at distance d from a. We split the shield edge
ab using the point c.

In both cases, the added point c belongs to the category of SOS -points. Note
that, due to the SOS refinement strategy, the protected and unprotected areas,
still defined as in Subsection 5.1.3, will slightly evolve during the algorithm. Each
SOS refinement increases the protected area and decreases the unprotected area.

5.1.5 The protection procedure

This procedure adds some points to set P to ensure that shield edges and isosceles
triangles have the Gabriel property. It uses recursively the SOS strategy and works
as follows: While there is an encroached shield edge ab or an encroached isosceles
triangle oab, refine the edge ab using the SOS strategy.

5.1.6 The whole algorithm

Let us recall that the algorithm works by adding points to set P. We note Dt3(P)

the 3D Delaunay triangulation of points in P. For each plane Q of a 2-face in C,
we note Dt2(P ∩ Q) the 2D Delaunay triangulation of points in P ∩ Q. These
triangulations are updated upon each insertion of a point in P.

The algorithm performs the initialization step and the main procedure de-
scribed below.

The Initialization Step:

• Construct and initialize the protected area (as described in 5.1.2 and 5.1.3);

• execute the protection procedure.
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We will see later that the Delaunay triangulation of P conforms to the part
of C which is inside the protected area. Because the algorithm maintains the
Gabriel property of shield edges, in each plane Q of a 2-face F of C, the 2D
triangulation Dt2(P ∩ Q) conforms to the shield edges in this plane and thus to
the unprotected part Fu of F . The main procedure ensures that the triangles of
Dt2(P ∩ Q) included in Fu appear in the 3D triangulation Dt3(P).

The Main Procedure:

The Main Procedure consists in executing the following loop: While there is a
triangle T in the 2D Delaunay triangulation Dt2(P∩Q) of the plane Q of a 2-face
F of C such that:

a. T is included in the unprotected part Fu of F ,

b. T does not appear in Dt3(P),

refine T trying to insert its circumcenter c, that is:

• if c encroaches upon no shield edge, insert it;

• otherwise, split all the shield edges encroached upon by c using the SOS
strategy, and then execute the protection procedure.

5.2 Proof of the algorithm

Two steps are involved for the proof of this algorithm. First, we prove invariants
of the algorithm concerning the positions of the points added and the Gabriel
property of some triangles and edges. After that, we are able to prove termination.

5.2.1 Properties maintained in the algorithm

Lemma 5.3 At the beginning (and the end) of each execution of the main loop,
the shield edges have the Gabriel property.

Proof. Indeed, this is true before the first execution of the main loop, because
the protection procedure, which has just been executed, ensures this property; for
the same reason, this also holds after an execution of the loop leading to the split
of shield edges. At last, a circumcenter is inserted in P only if it does not violate
this property.

In the following, we define an added circumcenter to be a circumcenter inserted
in the set P, and a rejected circumcenter to be a circumcenter considered in the
algorithm but not inserted because it encroaches upon some shield edge.

Lemma 5.4 Any circumcenter (added or rejected) considered by the algorithm
lies in the unprotected area, outside the protecting spheres. In particular, no point
is added inside the protecting spheres after the initialization step, and P is included
in C.
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Figure 5.3: The circumcenter p of a triangle T lies in the unprotected area.
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Figure 5.4: The intersection of the unprotected area with the union of protecting
balls is included in the circumballs of shield edges.

Proof. Let T be a triangle whose circumcenter is considered at some step of
the algorithm. T lies in the unprotected area, and belongs to the 2D Delaunay
triangulation Dt2(P ∩ Q) of the plane Q of some 2-face in C. Let p be the
circumcenter of T . Assume for contradiction that p lies outside the unprotected
area. Let m be a point in T . Since shield edges enclose the connected component
of the unprotected area which contains T , the segment pm must intersect a shield
edge ab. The vertices a and b cannot be inside circum(T ) because T belongs to
Dt2(P ∩Q). Hence (Figure 5.3), triangle T belongs to the circumball of ab, which
is impossible by Lemma 5.3.

Moreover, since the circumballs of shield edges cover the intersection of the un-
protected area with the protecting balls (see Figure 5.4), any added circumcenter
is actually outside the protecting spheres.

Proposition 5.5 At the beginning (and the end) of each execution of the main
loop, the isosceles triangles have the Gabriel property.

Proof. The proposition is obvious after the initialization step because the pro-
tection procedure is called and enforces the Gabriel property of isosceles triangles.
For the same reason, it is also the case when a circumcenter has just been rejected
because it encroaches upon some shield edge.

It remains to see that this proposition is still true when a circumcenter has
just been inserted: such a circumcenter lies outside the protecting spheres (by
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Lemma 5.4) and outside the circumball of any shield edge (otherwise it is not
inserted in P). Let ab be such a shield edge, belonging to ball B. We note that
the boundaries of B, circum(ab), and circum(oab) belong to a pencil of spheres.
Because the angle âob is smaller than π/2, we have circum(oab) ⊂ circum(ab)∪B

(Figure 5.5). The result follows.

Lemma 5.6 Let B be a ball with center o, and p be a point on the boundary of
B. If, at some stage of the algorithm, the segment op is encroached upon, the
encroaching point is a h-point hi on the radical plane of B and Bi, and p belongs
to bd(B) ∩ int(Bi).

Proof. The circumball of op is inside B. Therefore, op can only be encroached
upon by a vertex in this ball, and not by the center of B, hence only by a h-vertex
in B. Suppose that op is encroached upon by a vertex hi, belonging to B and Bi.
The encroachment condition can be rewritten ôhip > π/2. Because points q in
bd(B) that satisfy ôhiq > π/2 lie in bd(B) ∩ int(Bi), p belongs to int(Bi).

Proposition 5.7 At each stage of the algorithm, the right-angled triangles have
the Gabriel property.

Proof. Suppose that a right-angled triangle ohjp does not have the Gabriel
property at some stage of the algorithm: hj is on the radical plane between B

and Bj, and p is on the boundary of B and Bj . Because the circumball of ohjp is
the circumball of op, by Lemma 5.6, the encroching point is a h-point, and p has
to belong to the interior of a third ball Bi, which is impossible by condition (v).

Center points and h-points cut the edges of C in subedges. Note that Propo-
sition 5.7 implies that these subedges are edges of Dt3(P).

5.2.2 Termination proof

Proposition 5.8 The protection procedure always terminates.

The proof is a straightforward consequence of the following lemma.



146 Conforming Delaunay triangulations in 3D

Lemma 5.9 For each call to the protection procedure, there exists θ > 0 such
that no isosceles triangle with angle at the center of the ball less than θ will be
split.

Proof. Let oab be an isosceles triangle with shield edge ab in a protecting ball
B. We consider in turn three kinds of possible encroaching points: points on the
boundary of B (case 1), points in the interior of B (case 2), and points outside B

(case 3). In each case k, we prove the existence of a value θk, such that neither
oab nor ab can be encroached upon by a point of type k if âob < θk.

Recall that the three balls B, circum(ab) and circum(oab) belong to a pencil
of spheres. Because the angle âob is smaller than π/2, we have circum(oab) ⊂
B ∪ circum(ab) and circum(ab) ∩B ⊂ circum(oab) (see Figure 5.5). Therefore, it
is enough to check that points on the boundary of B or outside B (cases 1 and 3)
do not encroach upon ab and that points in B (case 2) do not encroach upon oab.

1. For a plane Q of a 2-face of C intersecting B, we consider the circle bounding
B ∩ Q and we denote by S(Q,B) the union of arcs on this circle spanned
by the isosceles triangles in Q. Notice that all the SOS -points inserted on
B are located on such a set S(Q,B).

If Q is the plane containing oab, no point of S(Q,B) encroaches upon ab. If
Q′ is another plane, the distance between S(Q,B) and S(Q′, B) is strictly
positive, so there is a value θ1(B,Q,Q′) such that ab is not encroached upon
by a point on S(Q′, B) if âob < θ1. Setting θ1 = min{θ1(B,Q,Q′)} achieves
the proof of case 1.

2. The only points in a ball B which can encroach upon an isosceles triangle
oab in B are the h-points in B. Suppose that a point hi (on the radical
plane of B and Bi) encroaches upon oab.

If hi is in the plane Q of oab, we prove that encroachment is not possible.
Indeed, if hi encroaches upon oab, hi encroaches either upon oa or upon
ob. Thus a or b would belong to bd(B) ∩ int(Bi), by Lemma 5.6, which is
impossible because a and b are either p-points or SOS -points.

Let us now deal with the case where hi does not belong to the plane Q.
Let c ∈ S(Q,B); c does not belong to Bi, for otherwise hi would belong to
Q. Let us prove that hi is not in the closed ball circum(oc). If hi is in the
interior of circum(oc), this means that oc is encroached upon by hi, hence,
by Lemma 5.6, c belongs to int(Bi), which is not the case. Similarly, if hi

is on the boundary of circum(oc), c belongs to Bi.

Hence, the distance between hi and the ball circum(oc) is strictly positive.
Let δ(B,Q, hi) be the minimum (strictly positive) of this distance for c ∈
S(Q,B). Let δ′(B, θ) be the Hausdorff distance between circum(oc) and
circum(oa′b′) where oa′b′ is an isosceles triangle with a′ and b′ on bd(B),
axis oc and â′ob′ = θ. As δ′(B, θ) goes to 0 when θ goes to 0, there exists
θ2(B,Q, hi) such that δ′(B, θ) < δ(B,Q, hi) for any θ < θ2(B,Q, hi). It
follows that oab cannot be encroached upon by hi if âob < θ2(B,Q, hi).
Setting θ2 = min{θ2(B,Q, hi)} achieves the proof of case 2.
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3. Consider now the case where edge ab is encroached upon by a point p outside
the ball B. At each call of the protection procedure, the set of points
outside the protecting spheres is fixed. Also, the distance between two sets
S(Q1, B1) and S(Q2, B2) which do not share a p-point is bounded from
below. Thus, there is a value θ′3 such that, if âob < θ′3, edge ab cannot
be encroached upon by p except if p belongs to S(Q,B ′) where Q is the
plane of oab and B ′ intersects B. Therefore, the only case remaining to be
considered is the case where a is a p-point in Q∩ bd(B)∩ bd(B ′) and ab is
encroached upon by a point p of S(Q,B ′). However, in this case, we split
edges incident to a using circular shells. Hence, after a few splits, the edges
incident to a will have the same lengths and will be unable to encroach
upon each other. Therefore, we get a value θ3 ≤ θ′3 satisfying the desired
requirement.

Theorem 5.10 The algorithm terminates, and, once it is the case, the Delau-
nay triangulation of P conforms to the complex C.

Proof. It is sufficient to prove that the main procedure terminates: indeed, once
it is the case, Propositions 5.5 and 5.7 show that the Delaunay triangulation of P
conforms to the protected area of C, and the fact that the algorithm ends precisely
means that the Delaunay triangulation of P also conforms to the unprotected area
of C. We prove the termination of the main procedure by proving first that the
number of added circumcenters is finite and second that the number of shield
edges encroached upon by rejected circumcenters is finite. Because the protection
procedure is already known to terminate, these two facts imply the termination
of the main procedure.

By construction of the protecting spheres, the unprotected area is a disjoint
union of plane regions. Let Fu be such a region. As previously noticed, owing to
the SOS strategy, these unprotected regions slightly evolve during the algorithm;
however, they are always shrinking. Consequently, the distance between Fu and
the other regions as well as the distance between Fu and the set of center-points
and h-points added in the interior of the protecting balls can be bounded from
below by a constant δF . Let T be a triangle in Fu whose circumcenter has to
be inserted in P and let CT be the circumcircle of T . As T does not belong to
Dt3(P), its circumball circum(T ) contains a point in P which is not in the plane
of Fu. Such a point can be inside a protecting ball (a center-point or a h-point), on
the boundary of a protecting ball (and thus on the boundary of another region),
or an added circumcenter (in another region by Lemma 5.4). Therefore circum(T )

either contains a point added in the interior of a protecting sphere or intersects
another unprotected region, and the radius of CT is thus larger than δF . Because
T belongs to the 2D Delaunay triangulation in the plane of Fu, CT encloses no
point of P. The area of Fu being finite, this shows that the number of added
circumcenters is bounded.
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Figure 5.6: The shortest shield edge ab which may be encroached upon by a
rejected circumcenter p.

Let us now show that the total number of edges encroached upon by rejected
circumcenters is finite. For this purpose, consider a shield edge encroached upon
by the center p of a circumcircle C in a region Fu. C being empty and of radius
larger than δF , it is easy to show that the shield edge has length at least δF

√
2

(see Figure 5.6). Thus the number of those edges is finite.

5.3 Construction of the protecting balls

We have to build the set B of protecting balls satisfying the conditions described
in Subsection 5.1.2. The efficiency of the algorithm really depends on this con-
struction: the less balls there are, the less points will be produced in P.

Definition 5.11 Let C be a PLC. The local feature size of a point p with respect
to C is the distance between p and the union of faces of C that do not contain p.

Let lfs(p) denote the local feature size of point p with respect to the PLC
which is given as input of the algorithm. We address the following construction
of the enclosing balls. Let α be a real, 0 < α < 1

2 (typically α = 0.4).
First, for each vertex v of the PLC, construct a ball of radius α · lfs(v).
Then, on each edge e, do the following. While e is not completely covered by

balls, consider a maximal open line segment a1a2 in e and outside the union of
the balls in the current set B. Point ai (i = 1, 2) is an intersection of ball Bi (with
center oi and radius ri) with edge e. We will insert a ball between B1 and B2.
Let o be the midpoint of a1a2. Insert a new ball B in B, of center o and radius r,
with:

r = min
{
α · lfs(o), oa1 +

r1

2
, oa2 +

r2

2

}
.

To ensure condition (vi), if r = oa1, we replace r by (1 − ε)r where ε is a small
positive constant.

Lemma 5.12 This construction terminates.
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Proof. Consider an edge e, whose vertices have just been protected by two
spheres. Let A be the union of the (open) line segments which are in e minus the
union of the current set of balls. Call A0 the set A just after the protection of the
endpoints of e. The distance d = min{lfs(p)| p ∈ A0} is strictly positive (the lfs
function is continuous on A0, and lfs does not vanish on A0). The insertion of a
new ball:

• either increases by one the number of connected components of A and de-
creases the measure of A by at least 2(1 − ε) · α · d (hence this case can
happen only a finite number of times),

• or decreases by one the number of connected components of A (without
increasing the measure of A).

The result follows.

Conditions (i), (ii), (iv), (vi) and (vii) are obviously satisfied. (iii) follows from
the fact that if two points o and o′ do not belong to the same edge, oo′ is larger
than or equal to lfs(o) and lfs(o′). If two balls B and B ′, centered at o and o′ with
radii r and r′, are in B, then r < 1

2 lfs(o) and similarly for r′. Thus r + r′ < oo′,
hence the balls cannot intersect.

(v) is also true. Indeed, if three balls intersect, their centers must be vertices
of a triangle in C. But it follows from our construction that two balls centered on
vertices of the PLC cannot intersect because α < 1

2 .
Hence we have:

Proposition 5.13 This construction of B is correct.

5.4 Improvements

5.4.1 Speeding up the protection procedure

The following proposition shows that when the protection procedure is called from
the main procedure, there is no need to check whether isosceles triangles have the
Gabriel property.

Proposition 5.14 After the initialization process, enforcing Gabriel property for
shield edges in the protection procedure is enough to ensure Gabriel property for
isosceles triangles.

Proof. Upon termination of the initialization step, all isosceles triangles have
the Gabriel property. Suppose that, at some stage of the algorithm, a point
encroaches upon some isosceles triangle oab without encroaching ab. Let B be
the ball containing oab. Since circum(oab) is included in the union of B and
circum(ab) (Figure 5.5), the encroaching point must be inside B.

Hence it is sufficient to show that no isosceles triangle is encroached upon
by a vertex inside its protecting ball during the algorithm. By contradiction, let
T = oab be the first isosceles triangle encroached upon by a vertex in B. Since no
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Figure 5.7: circum(oab) ⊂ circum(oac) ∪ circum(oa).

point is inserted inside the balls during the main procedure, T must be a triangle
which results from the splitting of some triangle T ′ = oac. The encroaching
point can thus only be a h-point hi lying inside B. Arguing that circum(oab),
circum(oac), and circum(oa) belong to a sphere pencil and comparing their radii,
we deduce (Figure 5.7) that circum(oab) ⊂ circum(oac)∪circum(oa). However, hi

does not belong to circum(oac) because T ′ = oac was not encroached upon by hi,
nor to circum(oa) (by Lemma 5.6). Therefore hi does not belong to circum(oab),
which yields the contradiction.

5.4.2 Restricting the area where balls are required

In 5.1.2, the set B is constructed so that the balls cover the whole 1-skeleton
Sk of C. We explain here that this is not always necessary. Indeed, the balls
are introduced to avoid troubles with small angles; they are thus not required at
places where faces intersect with an angle large enough. This remark enables to
put less balls in B, hence to reduce the size of the output P. We first describe
the modification in the construction of the balls, and then prove that, despite this
slight modification, the algorithm is still correct.

Let e = o1o2 be an edge of the PLC so that all angles between faces incident
to e are ≥ π/2. We modify the algorithm in the following way. Still construct
balls B1 and B2 centered at the vertices o1 and o2. In P, insert o1, o2, and the
two intersections p1 and p2 of e with the boundaries of B1 and B2.

Consider p1p2 as a shield edge in the main procedure. In other words, whenever
this edge would be encroached upon by the insertion of a point in P, split this
edge in the middle, to keep it protected at each stage of the algorithm. The
original edge of C is thus not in the protected area, but the process is exactly like
in the standard algorithm.

There are only minor modifications for the proof of the algorithm. The un-
protected area is still bounded with shield edges. The proof of termination of the
protection procedure is analogous: Lemma 5.9 can be adapted without difficulty
to show that there also exists a length δ > 0 such that the protection procedure
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Figure 5.8: In the half-space H+ (above the edge e in the figure), the part of
circum(T ) is included in the part of circum(ab) which is, in turn, contained in the
part of circum(a′b′).

never splits a shield edge which is a part of an edge and with length less than δ.
The only difficulty is to show the following proposition.

Proposition 5.15 The modified version of the main procedure always terminates.

Proof. Let Fu be a region, in a plane Q, incident to edge e. The distance
between Fu and the regions non-incident to e as well as the distance between Fu

and the set of center-points and h-points outside Q can be bounded from below
by a constant δF > 0. Let p be the circumcenter of a triangle T in Fu, added to
P. We will show that the circumball of T cannot contain a vertex of another face
incident to e, which implies that the radius of this circumball is larger than δF ,
like in the proof of Theorem 5.10.

Suppose for contradiction that T is encroached upon by a point p′ of P on a
face incident to e. Necessarily, because the angles of the faces of C are obtuse at
e, the circumball of T must intersect e. Let a and b be the intersection points of
the boundary of circum(T ) with e. Let a′b′ be the unique shield edge included
in e which is intersected by circum(T ). (The uniqueness follows from the fact
that points in P, like a′ and b′, cannot lie in circum(T ).) Let H be the plane
orthogonal to Fu and containing e, and H+ be the half-space bounded by H and
not containing T . Clearly, circum(T )∩H+ ⊆ circum(ab)∩H+ ⊆ circum(a′b′)∩H+

(see Figure 5.8). The point p′ is in circum(T )∩H+, hence in circum(a′b′), which
means that p′ encroaches upon the shield edge a′b′ and yields the contradiction.

The remaining part of the proof of termination of the main procedure is exactly
the same as in the proof of Theorem 5.10.

5.5 Experimental results

The algorithm has been implemented and tested using the Computational Ge-
ometry Algorithms Library Cgal1. Results for several models are displayed in
Figures 5.9, 5.10, 5.11, 5.12, and 5.13.

1http://www.cgal.org/
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geological data triceratops umbrella
nb input vertices 7,566 2,832 16

nb non Delaunay faces 1,045 2,194 5
nb output vertices 25,793 27,947 122
running time (s) 83 570 0.7

Figure 5.9: Experimental data.

Figure 5.9 gives for each model, the number of vertices of the input PLC
(nb input vertices), the number of 2-faces to which the Delaunay triangulation of
input vertices does not conform (non Delaunay faces), and the number of vertices
of the conforming output triangulation (nb output vertices). In those examples
and in most cases, the number of vertices in the output conforming triangulation
and the number of input vertices are in a ratio comprised between 3 to 1 and 10
to 1.

The running times, measured on a PC with 500Mhz processor, do not include
the computations of local feature size values, because the current implementation
uses a very slow brute force algorithm for it. We are currently designing a data
structure devoted to speed up these computations.

Conclusion

We have presented an algorithm for computing a conforming Delaunay triangu-
lation of any three-dimensional piecewise linear complex. The most important
innovation, compared to the paper by Murphy et al. [119], is to enclose critical
places by balls whose radii fit the local complexity of the complex, with the use of
the local feature size. Our experimental results show that it is valuable in prac-
tice. The algorithm could be easily modified to guarantee in the resulting mesh
the Gabriel property for any triangle included in a constraint. The next step
currently under work is to investigate how conforming meshes with guarantees
on the shape and size of the elements can be obtained. Several questions remain
open: we did not try to find the time complexity of our algorithm. It would also
be interesting, as in [64] in the plane, to find a bound on the output depending on
the size of the initial complex and/or (like in [132]) the lfs function. Even from
a theoretical point of view (see [61, p. 171]), no nice upper bound is known for
the size of a conforming Delaunay triangulation in terms of the size of the input
complex and the lfs function.
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Figure 5.10: Detail of a geological formation (Courtesy of T-surf and Mr. Reins-
dorff). Solid line segments stand for shield edges.

Figure 5.11: Umbrella. Solid line segments stand for shield edges.
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Figure 5.12: Triceratops.

Figure 5.13: Detail of the triceratops. Solid line segments stand for shield edges.
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Conclusion

The main theme of this dissertation is the study of operations which preserve
and/or give prominence to the topology of geometric objects, by decomposition,
deformation, or shortening. These theoretical works are motivated by questions
arising in some applications. We aimed at optimizing curves on surfaces: families
of simple, pairwise disjoint cycles, or graphs embeddings (keeping their vertices
fixed). We have also worked on the shortening and the deformation of rectilinear
embeddings of graphs in the plane, this time by moving the vertices. Then, we
have given an algorithm to decompose the space R

3 into Delaunay simplexes
conforming to polyhedral constraints. We now sum up each of our contributions,
trying to deduce lessons from this, then we sketch future research directions.

Summary of the contributions

Optimization of curves on surfaces

We have first considered the problem of shortening an embedding of graph or
of cycles on a surface, while maintaining the topological properties of these em-
beddings. We have introduced the notion of cut system, which is a set of curves
splitting the surface into topologically elementary surfaces. We have described
quite natural iterative processes to shorten such cut systems. The analysis of
these algorithms, sometimes tricky, turned out to be very fruitful. The conse-
quences of this analysis are of several natures:

• on the complexity of the algorithms: they converge in a finite number of
steps; their complexity is polynomial in the complexity of the surface and
of the input system, and in a geometric characteristic of the surface (ratio
between the largest and the smallest weight of the edges);

• on the resulting system: after stabilization, the cut system is optimal, i.e.,
as short as possible among all cut systems having the same topological
properties;

• from these properties arise new methods to optimize a set of simple, disjoint
curves on a surface: it is sufficient to extend this family into a cut system,
to optimize this system, and to remove the curves corresponding to the
introduced curves.

This work was initiated further to the paper [105], which provides algorithms
for computing canonical polygonal schemata. The fundamental systems of loops
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obtained in this paper, of size asymptotically optimal, are visually not satisfy-
ing because they are longer than necessary, which is harmful for applications;
our initial goal was simply to remedy this problem. We have thus developed
an optimization algorithm of a fundamental system of loops (very close to the
optimization algorithm of a cut system by graph, in the case where the graph
has one single vertex). Even without a theoretical analysis of the result of this
algorithm, it was clear that it would give good results in practice, sufficient for
most applications, and we could have given up at that point. But the analysis
has shown the consequences mentioned above, and has led to simplifications of
this algorithm (the complexity of the algorithms we presented here is better than
the one given in [40]), and to extensions (shortening of embeddings of graphs and
of cycles).

Tutte’s barycenter method applied to isotopies

In Chapter 4, we have studied a classical theorem to embed graphs, Tutte’s
barycentric theorem, dating back to 1963 [152], and we have exploited it to study
isotopies of graphs embeddings, in view of applications like metamorphosis. It
seemed interesting to give a more modern proof of this theorem, admitting the
results that Tutte simultaneously proved and which are now well-known (Kura-
towski’s theorem). It turned out later that a proof using some arguments similar
to ours had been given in 1996 by Richter-Gebert [129, section 12.2]. Some differ-
ences remain between both proofs, and it would be interesting to compare them
in detail.

We have then described a method, based on Tutte’s theorem, to create an
isotopy between two embeddings of a given triangulated planar graph. The inter-
est of the use of Tutte’s theorem is that it has a simple physical interpretation:
we have tried to go as far as possible with this interpretation in the creation of
isotopies. The results tend to show that we can create an isotopy only under quite
restrictive conditions on the initial and final embeddings.

Finally, the statement of Tutte’s theorem admits a natural generalization in
higher dimensions, and we have proved that this statement becomes false in di-
mension 3. The method we used is quite complex, since far simpler counter-
examples have been found later, but is interesting on the theoretical viewpoint.
Indeed, the fact that this theorem does not generalize to dimension three is di-
rectly connected to a known topological obstacle arising when trying to go from
dimension two to dimension three, described by Starbird [141], specifically, the
existence of some simplicial complexes embedded in R

3 which are combinatori-
ally equivalent but non-isotopic, even if their boundaries are the same. This also
illustrates the link between this theorem by Tutte and the isotopies of simplicial
complexes.

Conforming Delaunay triangulations in 3D

In Chapter 5, we have given an algorithm to compute a set of points in R
3,

whose Delaunay triangulation conforms to a given set of polyhedral constraints;
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the problem comes from mesh generation and geometric modeling. The main
interest of our algorithm, compared to previous approaches, is that the number
of resulting points is reasonable in practice. The method consists in “protecting”
the constrained vertices and edges by spheres whose size fits the local geometry
of the constraints. An important question is to know whether this algorithm, as
it is or slightly modified, is usable in practice to create volumic meshes.

Future works

Our works can be extended and improved in several directions.

Tetrahedral meshes

Our work on conforming Delaunay triangulations lies in the more general theme
of the creation of tetrahedral meshes. In domains such as scientific computing, nu-
merical simulation, geometric modeling, and visualization, a preliminary require-
ment is to decompose the space or the studied object into elementary objects,
tetrahedra, triangles, edges, and vertices. The properties of the mesh: number,
shape, and size of its simplexes, have great impact on the speed and efficiency
of a numerical computation or an algorithmic treatment. Delaunay triangula-
tions constitute a privilegiated way to create meshes, due to their well-studied
properties and to the shape of its elements. In two dimensions, conforming and
constrained Delaunay triangulations can both be used for this purpose. In three
dimensions, the constrained Delaunay triangulation of a polyhedral object exists
only under some conditions (see [139]). It is necessary to conduct research in
this field, in order to possibly mix constrained and conforming Delaunay trian-
gulations together. Obtaining theoretical guarantees on the quality of the output
mesh of an algorithm constitutes a difficult but interesting problem. The creation
of anisotropic meshes, and meshes on curved objects, are long-term goals.

Embeddings and isotopies of 3D complexes

There are several possible extensions of our results regarding Tutte’s barycentric
theorem. First of all, to apply the theorem, the fixed vertices must be on the
boundary of a convex polygon. Is it possible to generalize this theorem to the
case where other vertices, located inside the polygon, have also their positions
fixed? This problem seems interesting from the point of view of constrained
parameterization. On the other hand, one can wish to create an isotopy between
two embeddings of graphs while requiring that some vertex is fixed throughout
the deformation, or follows a prescribed move.

But the potential extensions of this work mainly lie in the 3D case. We have
proved a negative result: Tutte’s barycentric method does not work in dimension
three. Thus, there remains to find algorithmic methods to embed a volumic
simplicial complex into R

3, if possible as natural and leaving as much flexibility
as Tutte’s method. This problem is certainly difficult (the existence of knots
in dimension three and higher is an example of obstructions that exist when
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dimension increases), but quite fundamental (it is only a generalization of the
problem of graph drawing to higher dimension).

We could then work on the problem of computing isotopies between two such
embeddings, allowing if necessary the refinement of the simplicial complex: the
existence of such an isotopy has been discussed ([15, 143]), but never studied
under an algorithmic viewpoint. The theory of realization spaces of polytopes
in dimension 4 and Mnëv’s universality theorem [130] are related to these ques-
tions and may provide some useful consequences. All these problems are very
important in the domain of three-dimensional modeling: 3D parameterization
and volumic metamorphoses are two examples of possible applications of these
theoretical questions.

Topological decompositions and shortenings

Our work related to the shortening of curves on surfaces can be extended to
several directions, presented in the conclusion of Chapter 3; we refer the reader
to this section. We now give research tracks which are less directly connected to
this work.

Chapters 3 and 4 are both concerned with the shortening of graphs embed-
dings:

• in Chapter 4, we want to move the vertices of a rectilinear graph embedding
in the plane, in order to minimize the sum of the squares of the lengths of
the edges (in the case of unit weights);

• in Chapter 3, we shorten the edges of an embedding of a graph on a surface,
keeping the vertices fixed. We also achieve, in particular, the minimization
of the sum of the squares of the lengths of the edges among some class of
embeddings.

An attractive idea is to mix both aspects, working on graphs embeddings on a
surface whose vertices are allowed to move. It can be desirable to compute the
graph embedding (possibly within a given homotopy class) which minimizes the
sum of the squares of the lengths of the edges. On the other hand, how to create
an isotopy between two isotopic graphs embeddings on a surface (without using
an embedding as short as possible)? All these questions raised in Chapter 4 in a
planar realm can be also asked on a surface.

A triangulation of a surface can be simplified by iterative edge contractions,
when this contraction does not modify the topology of the surface. The trian-
gulations of a given surface which do not admit any valid contraction are called
the minimal triangulations of a surface (see [61, Chapter 4], and [8, 9, 120, 52]).
A goal of these papers is to count the minimal triangulations of a given surface
and to compute them. The existence of a pants decomposition of a surface yields
an indication of its structure, and may allow to deduce a way to bound and/or
generate its minimal triangulations: is it possible to define the notion of mini-
mal triangulation of a surface with boundary, like a pair of pants, and how can
the minimal triangulations of a surface be obtained from a gluing of minimal
triangulations of pairs of pants?



159

Some works [94, 65, 13] have considered the problem of shortening curves in
the plane within a given homotopy class. In this sense, our work constitutes a
generalization of these works to not necessarily planar surfaces. Is it possible
to generalize other known results in the plane? A recent work [66] considers the
problem of computing separators in a graph embedded on a not necessarily planar
surface, using a polygonal schema of the surface. The literature on planar graphs
is abundant; how can such results be generalized to graphs embedded on surfaces?

Most surfaces used in practice are embedded in R
3. But our works do not

consider this embedding at all. A track for future research is to determine the
types of decompositions which are more natural than other ones with respect to
the embedding in the ambiant space. For instance, it seems desirable to split
the surface along closed curves which enclose the (volumic) object or its comple-
mentary part (that is, the curve shall be the boundary of a disk included in the
object or in its complementary part). How to create a pants decomposition or
a fundamental system of loops satisfying this condition? How can tools such as
homology in three dimensions, or the contour graph, be used? Are other types of
decompositions (by Morse complexes, for example) more adequate? What are the
applications concerned by this question (metamorphosis between volumic objects,
three-dimensional mesh recognition, . . . )?

A probably more difficult problem is to work on the decomposition, shortening,
and deformation of geometric objects in higher dimensions. How to shorten a
surface in the space R

3 minus some obstacles, keeping the homotopy class of the
surface? A series of questions in algorithmic knot theory can also be raised: how to
represent a knot in a form as canonical as possible [134], to realize algorithmically
the unknotting of a knot, or to deform a knot into another one?
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ϕ-active, 120
added circumcenter, 143
adjacent, 15

algorithms, optimization, 90
alphabet, 68
applications, 50–55
automorphism of the universal cover-

ing space, 30

basepoint
of a fundamental system of loops,

23

of a loop, 14

boundary of a surface, 14

cartography, 54
center-point, 139
Cgal, 107, 151
characteristic, Euler, 19

circumball, 139
circumcenter, added or rejected, 143
classification of surfaces, theorem of,

20

closed path, 14

combinatorial family
of curves, 92
of cycles, 91

combinatorial surface, 17

compact set, 14

3-complex, 128
with tetrahedral boundary, 128

complexity of the optimization algo-
rithms, 97

component, connected, 14

compression of a mesh, 53
computational

geometry, 10
topology, 10, 37–50

concatenation
of paths, 25

of words, 68
confluence, 68, 79
conforming Delaunay triangulation, 137
connected, 14

component, 14

simply, 30

connectivity in graph, 15

contractibility problem, 40
contractible, 26

crossing, 18

between two combinatorial curves,
91

crossing word, 69
crossing words set, 78
curvature, 47
curve, 14, 58

combinatorial, 90
cut system

by cycles, 66
by graph, 63

triangulated, 88
by paths, 71
combinatorial, 93

cut-and-paste, 23
cutting of a surface, 17

cycle, 14

essential, 25

on a graph, 90

decomposition
in polygonal schema, 21

of surface, 21, 38–40
pants, 25

defined
closed disks, 63
surfaces, 66
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deformation, see homotopy
deformation of triangulation, 122
degree, 15

Delaunay triangulation, conforming,
137

Dijkstra’s method, 34
disk, topological, 21

dual graph, 21, 61

edge
multiple, 15

of a polyhedral surface, 16

of graph, 15

elementary reduction
on crossing words set, 79
on words, 68

embedding
of 3-complex, 128
of 3-complex with tetrahedral bound-

ary, 128
of cycles, 62
of graph, 15, 62, 113
Starbird, 129

encroach upon, 139
endpoint

of a path, 14

of edge, 15

equilibrium
state, 123
stress, 123

essential cycle, 25

Euler characteristic, 19

evolution of interface, 48
extension of an embedding to a cut

system, 86
extension step, 58
extraction step, 58

face
of a graph embedding, 16

of a piecewise linear complex, 137
of a polyhedral surface, 16

factor of a word, 68
finite elements, 52
finite, graph, 15

fundamental group, 26

fundamental system of loops, 23

funnel algorithm, 35

Gabriel property, 139
γ̃-words set, 79
generic intersection, 69
genus

of a surface, 20

of a non-connected surface, 23

geodesic, 36
geometric lift, 78
geometric modeling, 138
geometry, computational, 10
gluing, 16

graph, 15

dual, of the vertex-edge graph,
21, 61

finite, 15

oriented, 15

planar, 16

vertex-edge, 17

greedy algorithm, 64

handle, 20

Hausdorff, topological space, 13

homeomorphism, 14

local, 30

± homotopic, 82
homotopy, 26

class, 26

other definitions, 43
homotopy problem (for cycles), 40
Hopcroft’s problem, 44
h-point, 141
hyperbolic surface, 47

identification of the edges of polygons,
16

image
of 3-complex, 128
of a curve, 14

implementation, 127, 151
of the optimization algorithms,

107
ϕ-inactive, 120
incident, 15

infinite path, 14
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interface evolution, 48
interior

of a surface, 14

relative, of a curve, 14

invariant, topological, 18, 19

inverse of a path, 26

irreducible
word, 68
words set, 79

isosceles
subsector, 141
triangle, 141

isotopy, 27

ambiant, 54
of 3-complex, 128
of 3-complex with tetrahedral bound-

ary, 128
of triangulation, 122
with fixed vertices, 65

Jordan curve theorem, 14

Jordan–Schönflies theorem, 14

jump, 90

Laplacian matrix, 133
Leda, 127
length

of a curve, 61
of a word, 68
of crossing words set, 79

letter, 68
lift, 28

lift of a triangulation, 124
lifted period, 78
local feature size, 148
local homeomorphism, 30

loop, 14, 15

associated to a cycle, 14

mapping
of 3-complex, 128
of graph, 113

Mathematica, 127
matrix tree theorem, 133
Maxwell–Cremona theorem of rigid-

ity theory, 123
mesh, 52

mesh generation, 138
metamorphosis, 54
morphing, 54
multiplicity, 97
multiresolution analysis, 53

neighborhood, 13

number of boundaries of a non-connected
surface, 23

numerical computations, 52
Numerical Recipes, 127

1-skeleton, 139
open set, 13

optimal, 47
cut system by cycles, 67
cut system by graph, 64

optimization, 49
algorithms, 90
step, 58
theorems, 62

orientable, 18

orientation, 18

of a crossing, 19

oriented
graph, 15

surface, 18

pair of pants, 25

pants
decomposition, 25

pair of, 25

parameterization of surface, 51, 114
parenthesized, 69
path, 14

closed, 14

going along the vertex-edge graph,
38

in graph, 15, 90
closed, 15

infinite, 14

shortest, see shortest path
ϕ-active or inactive, 120
ϕ-pole, 120
planar graph, 16

± homotopic, 82
Poincaré’s conjecture, 44
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ϕ-pole, 120
polygonal schema, 21

canonical, 23

reduced, 23

polyhedral, surface, 16

p-point, 141
projection, 30

protected area, 141
protecting ball, 139

reduced polygonal schema, 23

reduction
for crossing words set, 79
on words, 68

regular family of curves, 60
regular triangulation, 126
Reidemeister move, 46
rejected circumcenter, 143
relative interior of a curve, 14

relaxation, 34
remeshing, 52
reparameterization of a path, 26

right-angled
subsector, 141
triangle, 141

rigidity theory, 123
Ruppert, strategy, 142

sector, right-angled or isosceles, 141
Seifert–Van Kampen theorem, 42
separate, 14

shield edge, 141
shortening, see optimization

for cycles, 67
for graphs, 63

shortest path, 33–37
homotopic, 46–50
in a graph, 34
in a planar region, 35
on a polyhedral surface, 36

simple, 14

combinatorial family of curves, 93
simply connected, 30

1-skeleton, 139
SOS -point, 141
SOS -strategy, see split-on-a-sphere strat-

egy

space, topological, 13

spanning tree of a graph, 21

sphere, topological, 21

split-on-a-sphere strategy, 141
Starbird’s embeddings

coordinates, 134
drawings, 129

stress, 123
strict convex hull, 116, 132
subdivision of surface, 19
surface, 14

classification theorem, 20

combinatorial, 17

decomposition, 38–40
hyperbolic, 47
parameterization, 51
polyhedral, 16

Riemannian, 47
triangulated, 17

texture mapping, 52
3-complex, 128

with tetrahedral boundary, 128
topological

decomposition of surface, 21

disk, 21

invariant, 18, 19

space, 13

sphere, 21

topology, 9
computational, 10, 37–50

triangulated
cut system by graph, 88
surface, 17

triangulation, 17

conforming Delaunay, 137
regular, 126

Tutte’s barycentric theorem, 114
generalization to 3D, 128
proof of, 116–122

uncrossing curves, 44, 80
universal covering space, 28–31

construction of, 28, 30

examples, 28

unprotected area, 141



INDEX 183

variations on shortening processes, 67
vertex

of cut system by graph, 63
of graph, 15

vertex-edge graph, 17

visualization, 52
VLSI, 54
Voronoi diagram, 50

weight function, see stress
weight of the edges of a weighted graph,

60
weighted graph, 60
winding number, 45
word, 68

crossing, 69
words set, 79
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Abstract

This dissertation is concerned with the algorithmic study of three operations on
geometric objects: their decomposition, their deformation, and their shortening.

The main theme is the shortening of curves on a surface and the decomposition
of a surface into topologically elementary surfaces. Let us consider a set of curves
drawn on a surface, without intersections or self-intersections. We wish to shorten
them as much as possible while preserving their topology, that is, by deforming
them continuously without introducing intersections beween them. This is in
particular useful in geometric modeling and computer graphics, where finding
short topological decompositions is necessary.

We present classical results of topology of surfaces and an overview of the
previous works in computational topology of surfaces which are related to this
problem. We then provide algorithms to solve it, for embeddings of graphs with
fixed vertices and sets of cycles without intersections, in a setting where the curves
are drawn on the vertex-edge graph of a polyhedral surface. These algorithms
are polynomial in their input and in the ratio between the extreme weights of
the edges of the vertex-edge graph. We prove optimality results of each of the
resulting curves.

Another work, motivated by the creation of metamorphoses (morphings) be-
tween objects, deals with the deformation of triangulations in the plane. We
reprove and use Tutte’s barycentric embedding theorem to build such deforma-
tions, and we prove that its analogue in dimension three does not hold.

A conforming Delaunay triangulation is a Delaunay triangulation of the space
which fits the shape of a given polyhedral object. This concept is used in mesh
generation. We give an algorithm which computes such a triangulation in di-
mension three, with a relatively small number of vertices, due to the fact that it
adapts to the local geometry of the object.

Keywords: computational topology, homotopy, shortest path, topological de-
composition, embedding, graph, parameterization, Delaunay triangulation.


