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École de Printemps d’Informatique Theéorique, CIRM, 12 May, 2016



Starting Point: Graphs & Planarity

I A graph (=1-dimensional complex) G is planar if it can be
embedded into the plane R2 (equivalently, into the sphere S2)

I Classical notion in topology, graph theory, discrete and
computational geometry, theoretical computer science

I Combinatorics & Structure

I Characterization of planar
graphs by forbidden minors
K5, K3,3 (Kuratowski 1930,
K. Wagner 1937)

4

I Algorithms & Complexity

I Planarity of a given graph G algorithmically testable in linear
time O(|V |) (Hopcroft-Tarjan 1974).
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Higher Dimensions: Simplicial Complexes

I Building blocks: k-dimensional simplices
(vertices, edges, triangles, tetrahedra,...)
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I Simplicial complex: finite collection X of simplices, plus
combinatorial specification how to fit them together along
common faces.
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I Combinatorial description of an underlying topological space
by a decomposition into simple pieces (triangulation)

I Abstract specification: list the vertices in each simplex

I Graphs: 1-dimensional special case
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Simplicial Complexes: Why?

I Natural model in computational topology

I Encode interactions between three or more objects
I (Combinatorial) applications, e.g.

I combinatorial theory of polytopes and linear programming;
I intersection patterns (nerves) of convex sets, e.g., balls

(e.g., atoms in a molecule with van der Waals radii):
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I topological methods in graph theory, complexity, etc., e.g.
I independent sets in graphs (hard particle models)
I chromatic numbers of graphs (Kneser’s conjecture)
I monotone graph properties and evasiveness
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Embeddings of simplicial complexes

Embeddings K ↪→ R
d︸ ︷︷ ︸

=injective continuous maps

of a simplicial complex︸ ︷︷ ︸
finite, dimK=k

into Euclidean

spaces

I Several natural classes of embeddings:

linear piecewise
linear (PL)

topological

I For graphs in the plane, TOP/PL/LINEAR embeddability are
equivalent (only one notion of planarity).

I TOP ⇒ PL: easy compactness argument,
I PL ⇒ LINEAR: nontrivial [Steinitz,Fáry].
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Different Types of Embeddings

Embeddings X ↪→ R
d of a simplicial complex, dimX = k

I Subtle differences in higher dimensions (d ≥ 3)

linear PL topological

I PL 6⇒ LINEAR for d ≥ 3 [Brehm, Brehm & Sarkaria]

I Also TOP 6⇒ PL in some cases (e.g., k = 4, d = 5).
However, TOP ⇔ PL if d ≤ 3 [Papakyriakopoulos, Bing] or
d − k ≥ 3 [Bryant].

I Linear embeddability always in PSPACE (solvability of
polynomial inequalities in real variables).

I For algorithmic questions we consider PL embeddability
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Algorithmic Embeddability Testing

k ≤ d fixed positive integers
EMBEDk→d is the following algorithmic problem:

Input: A simplicial complex K of dimension (at most) k .
Question: Is K (PL) embeddable into Rd?

I EMBED1→2 is GRAPH PLANARITY

I d ≥ 2k + 1 trivial: embeds always (general position).
I For d = 2k, there exist k-dimensional complexes not

embeddable into R2k :
I complete k-complex K k

2k+3 = skelk(∆2k+2)
(all simplices of dimension ≤ k on 2k + 3 vertices)

I complete multipartite k-complex K k
3,...,3

I for k ≥ 2, infinitely other minimally non-embeddable
complexes (no straightforward analogue of Kuratowski)
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Algorithmic Embeddability: Classical Results

I Embeddability classical topic in geometric topology

I but no prior systematic study from a computational viewpoint
(unlike its cousin, knot theory, isotopy of embeddings of the
circle S1 into R3).

I EMBED1→2: O(n)-algorithm for graph planarity testing
(Hopcroft, Tarjan 1974).

I EMBED2→2: characterization by forbidden subcomplexes
(Halin, Jung 1964) yields O(n) algorithm.

KI
∼= K5 KII

∼= K3,3 KIII
∼= S2 KIV KV KVI KVII

I van Kampen obstruction (van Kampen 1932; Shapiro, Wu),
yields polynomial-time algorithm for EMBEDk→2k , k ≥ 3.
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Current State of Knowledge: Complexity of EMBEDk→d

d
k 2 3 4 5 6 7 8 9 10 11 12 13 14
1 P
2 P D NPh
3 D NPh NPh P
4 NPh und NPh NPh P
5 und und NPh NPh P P
6 und und NPh NPh NPh P P
7 und und NPh NPh NPh P P P

und = algorithmically undecidable [Matoušek, Tancer, W.]
NPh = NP-hard [Matoušek, Tancer, W.]
D = algorithmically decidable [Matoušek, Sedgwick, Tancer, W.]
P = polynomial-time solvable; new results based on algorithmic
homotopy classification of (equivariant) maps [Čadek, Krčál,
Matoušek, Sergeraert, Voǩŕınek, W.]

Dividing line: metastable range d ≥ 3(k + 1)/2 [Haefliger–Weber]
(small dimensions d = 2, 3 somewhat exceptional)
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The deleted product obstruction and Haefliger–Weber

I K a space, f : K → R
d an embedding; x 6= y ⇒ f (x) 6= f (y).

I K 2
∆ := {(x , y) ∈ K × K : x 6= y}, the deleted product of K

(= Cartesian product with omitted diagonal = F (K , 2))

I Gauss map g : K 2
∆ → Sd−1, g(x , y) := f (x)−f (y)

‖f (x)−f (y)‖ is

Z2-equivariant, i.e., g(y , x) = −g(x , y).

I Thus, a necessary condition for embeddability of K in Rd is
the existence of an equivariant map K 2

∆ →Z2 Sd−1

Theorem (Haefliger–Weber)

If K is a k-dimensional simplicial complex and d ≥ 3(k+1)
2

(metastable range) then K embeds in Rd iff there is an equivariant
map K 2

∆ →Z2 Sd−1.

Remark
For all (d , k) outside the metastable range, d ≥ 3, the deleted
product obstruction is known to be incomplete (Segal, Spież,
Freedman, Krushkal, Teichner, A. Skopenkov).
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Freedman, Krushkal, Teichner, A. Skopenkov).



The deleted product obstruction and Haefliger–Weber

I K a space, f : K → R
d an embedding; x 6= y ⇒ f (x) 6= f (y).

I K 2
∆ := {(x , y) ∈ K × K : x 6= y}, the deleted product of K

(= Cartesian product with omitted diagonal = F (K , 2))

I Gauss map g : K 2
∆ → Sd−1, g(x , y) := f (x)−f (y)

‖f (x)−f (y)‖ is

Z2-equivariant, i.e., g(y , x) = −g(x , y).

I Thus, a necessary condition for embeddability of K in Rd is
the existence of an equivariant map K 2

∆ →Z2 Sd−1

Theorem (Haefliger–Weber)

If K is a k-dimensional simplicial complex and d ≥ 3(k+1)
2

(metastable range) then K embeds in Rd iff there is an equivariant
map K 2

∆ →Z2 Sd−1.

Remark
For all (d , k) outside the metastable range, d ≥ 3, the deleted
product obstruction is known to be incomplete (Segal, Spież,
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Hardness of EMBED2→4: A Sketch

Theorem
It is NP-hard to decide whether a given 2-complex embeds into R4.

I Reduction from 3-SAT: for every 3-CNF formula ϕ, e.g.,

ϕ = (x1 ∨ x̄2 ∨ x4) ∧ (x1 ∨ x̄4 ∨ x5) ∧ . . . ,

construct a 2-dimensional simplicial complex Kϕ such that

ϕ is satisfiable⇔ Kϕ ↪→ R
4

I Kϕ is built from clause gadgets and conflict gadgets

I Gadgets based on examples of Freedman, Krushkal and
Teichner showing that the van Kampen obstruction is
incomplete for embeddings into R4.



Clause Gadget

I start with K 2
7 (all triangles on 7 vertices)

I make small holes (openings) in the interiors of three triangles
sharing a vertex

I for each opening, there is a complementary 2-sphere

v4
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v2v1

v0

v3

Sω3

ω2

ω3

ω1



Linking Lemma

Lemma

1. For every PL embedding f : G ↪→ R
4, there is an opening ωi

such that the images f (∂ωi ) and f (Sωi ) have odd linking
number.

2. For every i , there exists and embedding such that only f (∂ωi )
and f (Sωi ) are linked.
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Conflict Gadget

I Squeezed torus, obtained by glueing an octagon to “two
circles with a stick”.

Σa
Σb

c

I Can be embedded into R3 if one of the circles is “free” (not
linked with any obstacles); asymmetry in the embedding.

I Cannot be embedded into R4 if both circles are blocked
(linked with 2-spheres).



Reduction Sketch

x̄1 x̄3 x̄5

Sx̄5Sx̄3Sx̄1

C3 = x̄1 ∨ x3 ∨ x̄5

x̄1 x̄4 x5

Sx5Sx̄4Sx̄1

C2 = x̄1 ∨ x̄4 ∨ x5

x1 x̄2 x4

Sx4Sx̄2Sx1

C1 = x1 ∨ x̄2 ∨ x4



Algorithmic Embeddability in R3

I EMBED2→3 and EMBED3→3 can be reduced, possibly with
exponential-time overhead, to the following question: Given a
compact 3-manifold X with boundary, does it embed in S3?

I First test if K can be thickened to a 3-manifold X , check all
possible thickenings.

I The boundary of an embeddable X must be a disjoint union
of orientable surfaces (spheres with handles).

I Theorem (Fox): If X can be embedded in S3, then there is an
embedding such that the complement is a union of balls and
handle bodies (solid tori).

I Strategy: “Guess” a meridian γ, glue a thickened disk to X
along γ. Preserves embeddability, simplifies ∂X . Recurse.

γ

X outside X ′ outside

I Base of the recursion: S3-recognition [Rubinstein–Thompson]
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Algorithmic Embeddability in R3, cont’d

Key technical result, proved using normal surface theory:

Theorem (Short Meridians; Matoušek, Sedgwick, Tancer, W.)

Suppose that X is a 3-manifold with boundary1 that embeds in S3.
Then there exists (a possibly different) embedding of X for which
there is a short meridian γ, i.e., an essential2 normal curve γ ⊂ ∂X
bounding a disk in S3 \ X such that the length of γ, measured as
the number of intersections of γ with the edges of the
triangulation, is bounded by a computable function of the number
of tetrahedra.

1Caveat: We first need to do some preprocessing to ensure that X has
certain helpful technical properties:

I X is irreducible, neither a ball nor an S3,

I X has incompressible boundary,

I X is equipped with a 0-efficient triangulation.

2Meaning that γ does not bound a disk in ∂X .



New Results on Homotopy Classification and Extensions

Theorem (ČKMSVW)

Assume we are given the following input: simplicial complexes
A ⊆ X and f : A→ S r .

I If dimX ≤ 2r − 1 then it can be decided algorithmically
whether f can be extended to f̃ : X → S r .

I If dimX ≤ 2r − 2 then [X ,S r ] is a finitely generated abelian
group, and can be computed algorithmically (in terms of
generators and relations).

I For fixed r , the algorithms are polynomial-time.

Remarks

I Generalizes a classical algorithm (Brown, 1957) to compute
[X ,Y ] for Y with all homotopy groups πi (Y ) finite, i ≤ dimX

I Generalization to equivariant maps [Čadek, Krčál, Voǩŕınek]

I Extension problem undecidable for input f : A→ S r ,
dimX = 2r , r even.
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Conclusions and Questions
I Embeddability outside the metastable range?

I codimension d − k ≥ 3?
I codimension d − k = 2?

I Explicit construction of embeddings?
If the embeddability test tells us K ↪→ R

d , can we compute
an explicit PL embedding?

I Explicit construction of relevant equivariant maps?
(Currently, we compute very implicit representations of
homotopy classes)

I Algorithmic Haefliger–Weber?
I Recent result [Freedman–Krushkal]: In the case d = 2k, k ≥ 3,

an exponential number of subdivisions is sufficient and
sometimes necessary.

I Embeddability in other ambient manifolds?
I Given a 3-manifold M and a 2-complex K , it is NP-hard to

decide whether K ↪→ M. True even under the additional
assumption that K is a (non-orientable) surface! [Burton, de
Mesmay, W.]

I Is the problem in NP? Yes for odd Euler genus nonorientable
surfaces. Even Euler genus?
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Thank you for your attention!


