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Many optimization
problems can be written ’ \
as integers programs ‘ — |
-

* Traveling salesman
tour, vehicle routing

= Steiner tree, connecting
= Clustering, cuts

= Coloring

= Short paths

= Max satisfiability




Integer programming: NP-hard
Linear programming: in P

Maximize (6x+5y)

such that: (= O
2x-5y<6 6*x+4*y=30
6x+4y=<30
Xx+4y<16

X,y=0

X,y integers (IP)
X,y real (LP)

0, 0)
T e o
y=0 (3,0)

Function to maximize: f(x,y)=6*x+ 5"y
Optimum LP solution (x, y) = (2.4, 3.4)




LLP ALGO]

= SIMPLEX
STEEPEST DESCENT
WORST CASE EXP
FAST IF SMOOTH

= ELLIPSOID METHOD
POLYNOMIAL TIME

ORACLE-BASED:
Q). “X FEASIBLE?”

A: “YES” OR “NO SINCE -
3X,+2Y,+Y;<10”

= APPROXIN N POLYLOG
PACKING/ COVERING




L P PLAN

L INEAR PROGRAMMING

USING LP PRIMAL. FOR ALGORITHM:;
MULTIWAY CUT

P DUALITY

USING LLP DUAL. FOR ANALYSIS:. VEHICLE
ROUTING

USING LLP DUAL FOR ANALYSIS;
CORRELATION CLUSTERING

USING LP PRIMAL-DUAL FOR ONLINE
ALGORITHM: SKI RENTAL



WHAT'S L P GOOD FOR?

Approximation algorithm

1. Solve LP relaxation instead of IP
With luck, it's integral

(ex: bipartite matching, totally unimodular matrices)
If not,

2. "Round” solution to a feasible integer solution

Analysis

3. Relaxation implies that LP profit = OPT integer profit
4. Show that profit is not much less than LP profit



THREE-WAY CUT

* INPUT. GRAPH, AND THREE
“TERMINAL” VERTICES

= OUTPUT:. MINIMUM SET OF EDGES
DISCONNECTING TERMINALS FROM
ONE ANOTHER

REMARK: IF 3 REPLACED BY 2, THEN?



3-way cut




|P FOR THREE WAY CUT

Three colors x,y,

For each 3-coloring of the vertices,
count the number of bichromatic edges
and minimize that

Minimize X yese de

subject to:
For vertex u: x +y, +7,=1 (3-coloring)
Xp=1, V=1, 7;53=1 (one color per terminal)

For edge e=uv: duv2(1/2)(|Xu'xv|+|yu'yv|+| u Vl)
Xuayu’zu’duvzo

XYy Z,,dy, Integers



LP RELAXATION

Associate to u point (x,,y,,z,) in triangle
{x+y+z=1,x,y,z=0}

Terminals at corners

Embedding of G

LP goal: min /, length of edges in embedding



THE ROUNDING PROBLEM

1. Solve LP relaxation gives optimal /, embedding
2. "Round” solution to 3-way cut:

how?
... So that it can be analyzed...

3. Relaxation implies that

/, length of embedding < OPT

4. Let’s round so that
cost of 3-way cut < (small)*/, length of embedding






HOW TO ROUND

* GREEDY: ROUND MAX(X,,Y,Z,) TO 1, AND
THE OTHER TWO COORDINATES TO O

* INDEPENDENT: ROUND TO
100 W.PROB. X,

O 10 W.PROB. Y,

OO1 W.PROB. Z,

* GEOMETRIC: BETTER



GEOMETRIC ROUNDING

* Pick random line parallel to triangle
side: separates one terminal

* Pick random line parallel to triangle
side: use it to separate the remaining
two terminals

choose /
one

direction 4
choose one point along edge




ANALYSIS (1/2)

Prob(e crosses cut)<

Prob(e crosses red or line)<
2 prob(e crosses red)=

(4/3)d

d
\ \
- -

\




ANALYSIS (2/2)

E(cost(output)) =
E(number of edges cut) =
> prob(e cut) <
(4/3)2.d, =<
(4/3)OPT

[Geometric reasoning gives better cut: (12/11)]

OPEN: finding “right” geometric cut for k-way cut



[ P ALGORITHMS

* VERTEX COVER AND SET COVER
" SCHEDULING

* ROUTING

" 3-SAT

o,

ALGS REQUIRE:

GOOD LLP RELAXATION

GOOD ROUNDING



LLP DUALITY

Upper bound:
exhibit feasible solution...



Upper bound
(x,y,2)=(2,1,3) feasible
...s0: OPT=30

Lower bound
For example,
can we have OPT < 167




Upper bound Minimize 7x+y+5z

(X,y,Z)=(2,1 ’3) feasible SUbjeCt to:

e i Xx-y+3z=10 <« —|—timesa
5xt2y-z=6 € T timesb

Lower bound X,y,Z2=0

(X-y+3z)+(5x+2y-2)=10+6
6x+y+2z = 16

/x+y+5x has larger coefficients
... S0: OPT = 16

LP duality theorem:

Best lower bound Both LPs have same value

Maximize 10a+6b
/ = at5b
1=-a+2b

5 = 3a-b

a,b=0



What's LP duality good for?
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Vehicle of capacity 2n

N=n? customers Minimize /, length of tours



Is this optimal?

!
!
!
!

—0—0—0—0—0— 0

N+n(n-1)/2

About (3/2)N

Length

E




|IP FOR VEHICLE ROUTING

Variable x, for each possible tour t visiting < 2n customers
Length w, of tour t




[ P PRIMAL-DUAL.

Min Z; wx;
subject to

For customer c:

2 t visiting c X = 1
X; =0

Max 2.y,
subject to
For tour t:

2 ¢ visited by t Yo = Wi
y. =0

Know solution
of value (3/2)N

Exhibit dual feasible
solution
of value (3/2)N




Max =y,
| subject to
FEASIBLE DUAL For tour t:
2 ¢ visited by t Yo = Wi
y. =0
O ® o o ¢
e ® o 0 o 0 ¢
@ O ® o o 0 o
® o o o Q‘h\ y,=2
® © o o e o o =
® o 0 o0 o o o Ilz_eatsolblet.
ix tour
® 6 0 0 0 o a |
b e o ne o Let L=length of t in NorthEast

L customers have y =2

2n-L have y_=1 4
Y=

OPEN: replace grid by N random uniform points



OTHER USES OF 1P DAL ITY

* | P PRIMAL USED FOR ALGORITHM
= | P DUAL USED FOR ANALYSIS

CORRELATION CLUSTERING



CLUSTERING

ORGANIZE DATA IN CLUSTERS
UBIQUITOUS

MANY DEFINITIONS

MODEL IS APPLICATION-DEPENDENT







ALGORITHMIC PROBLEM

= |[nput: complete graph, each edge is
labeled “similar” or “dissimilar”

= Qutput: partition into clusters. Objects
Inside clusters are similar to one
another

= Objective: minimize input/output
discrepancies

A

Two types of inconsistencies



GREEDY ALGORITHM

" PICK A VERTEX U ARBITRARILY

* CREATE A CLUSTER C CONTAINING
ALL THE VERTICES SIMILAR TO U,
ALONG WITH U

* REMOVE C, AND REPEAT




GREEDY CAN BE BAD




RANDOM GREEDY

PICK VERTEX U UNIFORMLY AT RANDOM

THEOREM.

RANDOM GREEDY IS A 3-
APPROXIMATION




ANALYSIS: BOUNDING OPT

OPT=

NUMBER OF
DISJOINT BAD
TRIANGLES




BOUNDING OPT:
BAD TRIANGLES PACKING

= Give each bad triangle t
a weight a;

= Such that each edge
carries total weight at
most 1

2 t containing e at <1
* Then Z,a,<OPT

A+ 1+2+.2+.3<1




ANALYSIS: BOUNDING
GREEDY
)

2\ (o A )

u
Rest or Rest

_ _ E &

these edges cost 1

= Let Z=whether Greedy destroys bad triangle t by
picking one of its three vertices

= Then Cost(Greedy)=ZX Z,



K bad triangles containing e
e Sum Z, for those triangles
Greedy picks a random vertex

P 3% D Defk %

>Z =1
Weight carried by e: E(2,Z,)<(1+...+1+k+k)/(k+2)<3

So a,=EZ, /3 is a packing of bad triangles
E(Cost(Greedy))= 2.EZ, < 3 OPT
Hidden: linear programming duality




Analysis: IP

X,,~ 1if u and v are in same cluster

Min 2uv dissimilar Xuv+2uv similar (1 'Xuv)
Subject to
forallu,v,w: X, X, (1-X )2 (uvw consistent)
X, I1s0or1
v u,v in same cluster

V,W in same cluster
u,w in different clusters
IS Inconsistent




Using both Primal and Dual

»= Dual is implicit in rounding analysis
* Primal is implicit in Alg design
mm) Why not do both together?
Primal-dual algorithms
Steiner tree and Steiner forest
Facility location and k-median



/P * BUYING SKIS: B € ONCE.
» RENTING SKIS: 1€ PER DAY.

ONLINE:

NUMBER OF SKI DAYS NOT KNOWN IN ADVANCE.
ONE ALGORITHM:

RENT, RENT, RENT, BUY. BUY

GOAL. RE N1

MINIMIZE TOTAL COST.



ONLINE [P

1 - Buy (1 - Rent on day; i
X = g =
: 0 - Don't Buy S 0 - Don't rent on day i
k
min Bx + ) z.
SUBJECT TO:.

FOR EACH DAY I, x + z, = 1

x,z, €40,1}

Online IP: Constraints and variables arrive one bv one



LP Relaxation & Dual

P: Primal D: Dual
& k
min Bx + ) z, max » y.
Foreach dayi: x+z =1 | Foreachdayi ;< I
k
X,Z, = 0 y, < B
ZZI 0
Online LP: Yigs

« Constraints & variables arrive one by one.
* Requirement: Satisfy constraints upon arrival.

* Fractional interpretation: x=.5 means buy one ski, rent
the other one



ALGORITHM FOR ONLINE LP

P: Primal Covering D: Dual Packing
k k
min Bx + ) z, max » y.

Foreach dayi: x+z =1 | Foreachdayi: ;< I

x,z, =0 2%53

Initially x& 0
Each day (new variable z, new constraint y.):
~if x<1: (skis not yet fully bought)

= z. €& 1-x (rent necessary fraction)

= X <& x+ Ax (buy a little more)

= y. € 1 (update dual, too!)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,



A 3-POINT PLAN

P: Primal : D: Dual
min Bx + Zzi maxlz y,
On day i: x+z =1 On d?yi: y, =<1
x,z, =0 Zyi <B
: y;=0

1. PRIMAL IS FEASIBLE.
2. IN EACH ITERATION, AP < (1 + ©)AD.
3. DUAL IS FEASIBLE.

THEN. OUTPUT COST =2 AP
< (1+c) DUAL BY 2.
< (1+c) OPT LP VALUE BY LP DUALITY THEOREM
<(1+C) -IP BY LP RELAXATION

/ = = N . . e




 Online LP Algorithm:
. On day i:
- if x<1:

Zz.<1-X

X< X +AX

__________________________________________________

1. WHY IS PRIMAL FEASIBLE?

Ondayi: x+z =1

x,z, =0



 Online LP Algorithm:
. On day i:
- if x<1:

Zz.<1-X

X< X+AX

__________________________________________________

2. Why is AP < (1+ c)AD?
P: Primal D: Dual

k k
min Bx + 2 z, max 2 y;
i= =

. It depends on AX.
AX=x/B+c/B works.



_Online LP Algorithm:
. On day i; |
ifx<1:
z.<1-X i
x€ x(1+ 1/B) + ¢/B |

__________________________________________________

3. Why is Dual feasible?

D: Dual
Onday iy =1
k

Zyl.sB
0

Yi=

... It depends on c.
c=1/(e-1) works - Algorithm e/(e-1) competitive



ONLINE |P ALGORITHM o

i ! @ﬂ?

X:|—|—|—|_|
Ve, Dl T

day1l day2 day3 day4

= Choose (offline) d uniformly in [0,1]

= Solve online LP

= Set (online) x=1 on day of “bin” d falls in
= Set (online) z=1 until then, z=0 after
Analysis:

= Prob. That x=1: LP value of x

= Prob. of rental on day i: LP value of z

- Competitive ratio = that of online LP Alg
e

el/le-1) comnetitive alaorithm for ski rental



ONLIN]

111

PRIMAL-DUAL

* ONLINE SET COVER

* VIRTUAL CIRCUIT ROUTING
= AD AUCTIONS

" WEIGHTED CACHING



MAXCUT BASICS

| Input: graph
,l % Goal: cut maximum number of edges
]
]
@ = ,/‘ @
,z" o @
) ot Fact: NP-hard
-
i Fact:

Greedy cuts half of the edges:
(1/2) approximation.

Question: how to do better?



IP MODEL.?

Xx;=0 on one side, 1 on the other side of cut

Max X, d,
x;=0 or1




Max X, d,
d;=0 or 1
d"<d'k+dki

=]

\4

Max X, d,
O<d.<1

=
dij+djk+dkiS2

LP Attempts

>d.<b

=

Integrality gap =2  Add pentagonal constraints:

does not help

Add odd cycle constraints:
does not help

Add bounded support constraints:
does not help



Max 2, d,

Xi=0 or 1 I\/Iax le in E (Xi'xj)2

l

Max (1/2) ZIj In E Xj <+ Max (1/4) Z'J in E ( i_Xj)2

=-1or1 =-1or1
Max (1/2) Zy ine 1-viv; [« "y, =1
vi[2= 1 Y positive semidefinite




M POSITIVE SEMI-DEFINITE

M real symmetric.

Three equivalent conditions:

= M=VTV

= All eigenvalues of M are =0

= For every vector a:
a'Ma =0



MAXCUT ALGORITHM

1. SOLVE SDP RELAXATION

yi=1
Y positive semidefinite

2. ROUND RESULT TO GET CUT



Max (1/2) Z; in e 1-V; __—Linear in (y;)

yi=1 //
Y symmetric —

For every vector a: a'Ya = 0

-

Ellipsoid method . °
Polynomial time
Oracle-Based:

Q: “Y feasible?”

A: “yes” or “No since [linear inequality] "



yi=1
Y symmetric
For every vector a: a'Ya=0

Oracle-Based:

Q: Y feasible?”
A: “yes” or “No since [linear inequality] ”

Max (1/2) 2 ing 1-Yj
yi=1

Y symmetric
eigenvalues=0

Oracle: Compute eigenvalues
if a<0, compute eigenvector u: u'Yu=a|u|?<0

Linear in (y;)




MAXCUT ALGORITHM

1. SOLVE SDP RELAXATION

yi=1

Y positive semidefinite

v

[vif*= 1

. ROUND RESULTITO GET CUT

Vertices—> Unit vectors

l

Cut



ROUNDING THE SDP

Vertices—> Unit vectors

= !
|Vi|2 1 /\ Cut

< M

If viand v; are close
then i and j should
end up on same
side of graph cut



If viand v; are close
then i and j should L
end up on same v, = v,

side of graph cut

Take a random hyperplane H
Through the center of the sphere.

Graph cut:
L={i: v, is above H}
R={i: v, is below H}



MAXCUT ALGORITHM

1. SOLVE SDP RELAXATION
Max (1/2) Zj i g 1-Y;

yi=1
Y positive semidefinite

2. ROUND RESULT I‘ro GET CUT

Max (1/2) =
[vi[*= 1

Ij in E Vj

Take random hyperplane H through center of sphere.
Output: L={i: v; is above H}, R={i: v, is below H}



ANALYSIS

SDP relaxation Rounding
E(cut size)= %, , g Pr(ij in cut)
I\/Iazx_(1/2) Zjine 1-VIY, Pr(ij in cut)= Pr(H between v; and v;)
|Vi| V.
We have: 0 < R

For random H this equals ...



Rounding
SDP relaxation E(cut size)=

% ine Pr(H between v; and v,)=
Max (1/2) Zy i g 1-W; 0, /ﬂ:

|Vi|2= 1 <Vi
— H
We have: -5

V.
OPT= (1/2) = . E 1-Cos(6ij)

J
ij in

O/m
maxg =(0.878...

1-cos(0)




SDP Algorithms

MaxCut

Max-k-Sat

Coloring

Scheduling (completion times)
CSP

Sparsest Cut



Hardness of MaxCut

Assuming P=NP and UGC, 0.878 is the best
possible approximation ratio for MaxCut



Unique Games Conjecture (UGC)

Input: 2 variables per equation

@ )
7x+2y = 11 (mod 23)
5x+3z = 8 (mod 23)

7z+w = 14(mod 23)

C )

Goal: maximize number of satisfied equations

UGC Conjecture: NP-hard to distinguish between

answer >99% and answer <1%.

Civ « EArn larna NID hard +tA AictinAiniich 1 ~ fram -~




wi=

ES OF UGC

Vertex Cover 2 1.36 2

Max CUT 0.878 0.941 0.878

Max 2- SAT 0.9401 0.9546 0.9401

SPARSEST CUT ylogn 1+¢ Every Constant
Qk/2¢) 0" /2* | 0c/2")

Max k-CSP /

UGC hardness results are intimately connected to
the limitations of Semidefinite Programming



= Multiway cut: Calinescu, Karloff, Rabani 1998,
Karger, Klein, Stein, Thorup, Young 1999

= Vehicle routing: work in progress
= Correlation clustering: Ailon Charikar Newman 2005

* Online ski rental: by primal-dual, Buchbinder Naor
2009

= Maxcut: Goemans Williamson 1994
= UGC: Khot 2002

= Hardness of MaxCut: Khot Kindler Mossel O’'Donnel
2005

Foundational: LP+randomized rounding (Raghavan
Thompson 1988), primal-dual (Aggarwal Klein Ravi,
Goemans Williamson), SDP (Goemans Williamson)



Updated some slides from Neal Young,
LP example from Vazirani’'s textbook,
slides from Seffi Naor, and a couple of
slides from Raghavendra.



