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Many optimization
problems can be written
as integers programs

 Traveling salesman
tour, vehicle routing

 Steiner tree, connecting
 Clustering, cuts
 Coloring
 Short paths
 Max satisfiability
 …



Integer programming: NP-hard
Linear programming: in P

Maximize (6x+5y)

such that:
2x-5y≤6
6x+4y≤30
x+4y≤16
x,y≥0
x,y integers (IP)
x,y real (LP)



LP Algorithms
 Simplex
Steepest descent
Worst case exp
Fast if smooth
 Ellipsoid method
Polynomial time
Oracle-Based:
Q: “x feasible?”
A: “yes” or “No since

3x1+2y2+y3<10”
 Approx in n polylog

packing/covering



LP Plan

 Linear programming
 Using LP primal for algorithm:

multiway cut
 LP duality
 Using LP dual for analysis: vehicle

routing
 Using LP dual for analysis:

Correlation clustering
 Using LP Primal-dual for online

algorithm: ski rental



1. Solve LP relaxation instead of IP
With luck, it’s integral
(ex: bipartite matching, totally unimodular matrices)
If not,
2. “Round” solution to a feasible integer solution

Approximation algorithm

Analysis

3. Relaxation implies that LP profit ≥ OPT integer profit
4. Show that profit is not much less than LP profit

What’s LP good for?



Three-Way Cut

 Input: Graph, and three
“terminal” vertices

 Output: minimum set of edges
disconnecting terminals from
one another

Remark: if 3 replaced by 2, then?





IP for three way cut

Minimize    Σ edges e  de
subject to:

For vertex u: xu+yu+zu=1                (3-coloring)
xt1=1, yt2=1, zt3=1         (one color per terminal)
For edge e=uv: duv≥(1/2)(|xu-xv|+|yu-yv|+|zu-zv|)
xu,yu,zu,duv≥0
xu,yu,zu,duv integers

Three colors x,y,z
For each 3-coloring of the vertices, 
count the number of bichromatic edges
and minimize that



LP relaxation
Minimize    Σ edges e  de

subject to:
For vertex u: xu+yu+zu=1                (3-coloring)
xt1=1, yt2=1, zt3=1         (one color per terminal)
For edge e=uv: duv≥(1/2)(|xu-xv|+|yu-yv|+|zu-zv|)
xu,yu,zu,duv≥0

Associate to u  point (xu,yu,zu) in triangle
 {x+y+z=1,x,y,z≥0}

Terminals at corners
              Embedding of G

LP goal: min l1 length of edges in embedding



The rounding problem

1. Solve LP relaxation gives optimal  l1 embedding 
2. “Round” solution to 3-way cut: 
                                      how?
… so that it can be analyzed…

3. Relaxation implies that

         l1 length of embedding ≤ OPT

4. Let’s round so that
      cost of 3-way cut ≤ (small)*l1 length of embedding





How to round
 Greedy: round max(xu,yu,zu) to 1, and

the other two coordinates to 0

 Independent: round to

100 w.prob. xu,

010 w.prob. yu,

001 w.prob. zu

 Geometric: better



Geometric rounding

 Pick random line parallel to triangle
side: separates one terminal

 Pick random line parallel to triangle
side: use it to separate the remaining
two terminals

choose 
one 
direction

choose one point along edge



Analysis (1/2)
Prob(e crosses cut)≤
Prob(e crosses red or green line)≤
2 prob(e crosses red)≤
(4/3)d



Analysis (2/2)

E(cost(output)) =
E(number of edges cut) =

Σeprob(e cut) ≤
(4/3)Σede ≤

(4/3)OPT

[Geometric reasoning gives better cut: (12/11)]

OPEN: finding “right” geometric cut for k-way cut



LP Algorithms

 Vertex cover and set cover

 Scheduling

 Routing

 3-sat

 …

Algs require:

Good LP relaxation

Good rounding



Minimize 7x+y+5z
subject to:

x-y+3z ≥ 10
5x+2y-z ≥ 6
x,y,z ≥ 0

Upper bound: 
exhibit feasible solution…

LP Duality



Minimize 7x+y+5z
subject to:

x-y+3z ≥ 10
5x+2y-z ≥ 6
x,y,z ≥ 0

Upper bound
(x,y,z)=(2,1,3) feasible
…so: OPT≤30

Lower bound
For example,
can we have OPT ≤ 16?



Minimize 7x+y+5z
subject to:

x-y+3z ≥ 10
5x+2y-z ≥ 6
x,y,z ≥ 0

Upper bound
(x,y,z)=(2,1,3) feasible
…so: OPT≤30

Lower bound
(x-y+3z)+(5x+2y-z)≥10+6
6x+y+2z ≥ 16
7x+y+5x has larger coefficients
… so: OPT ≥ 16

Best lower bound
Maximize 10a+6b
7 ≥ a+5b
1 ≥ -a+2b
5 ≥ 3a-b
a,b ≥ 0

LP duality theorem:
Both LPs have same value

times a
times b



What’s LP duality good for?

n
depot

n

N=n2 customers
Vehicle of capacity 2n
Minimize l1 length of tours



Is this optimal?

Length=N+n(n-1)/2
About (3/2)N



IP for vehicle routing
Variable xt for each possible tour t visiting ≤ 2n customers
Length wt of tour t

Min Σt wtxt
subject to
For customer c:   Σ t visiting c xt ≥ 1
xt ≥0
xt integer



LP primal-dual

Min Σt wtxt
subject to

For customer c:
  Σ t visiting c xt ≥ 1

xt ≥0

Max Σc yc
subject to

For tour t:
  Σ c visited by t yc ≤ wt

yc ≥0

Know solution
of value (3/2)N

Exhibit dual feasible
solution
of value (3/2)N



Feasible dual
Max Σc yc

subject to
For tour t:

  Σ c visited by t yc ≤ wt
yc ≥0

yc=1

yc=2

Feasible?
Fix tour t
Let L=length of t in NorthEast
L customers have yc=2
2n-L have yc=1 ✔

OPEN: replace grid by N random uniform points



Other uses of LP duality

 LP primal used for algorithm

 LP dual used for analysis

Correlation clustering



Clustering

 Organize data in clusters

 Ubiquitous

 Many definitions

 Model is application-dependent





Algorithmic Problem
 Input: complete graph, each edge is

labeled “similar” or “dissimilar”
 Output: partition into clusters. Objects

inside clusters are similar to one
another

 Objective: minimize input/output
discrepancies

=

≠

Two types of inconsistencies



Greedy Algorithm

 Pick a vertex u arbitrarily

 Create a cluster C containing
all the vertices similar to u,
along with u

 Remove C, and repeat



Greedy can be bad

≠

=



Random Greedy

Pick vertex u uniformly at random

Theorem:

Random Greedy is a 3-
approximation



Analysis: Bounding OPT

OPT≥

number of
disjoint bad
triangles

≠

==



Bounding OPT:
bad triangles packing

 Give each bad triangle t
a weight at

 Such that each edge
carries total weight at
most 1

Σ t containing e at ≤ 1
 Then Σtat≤OPT

.1+.1+.2+.2+.3≤1

.1
.1

.2

.2
.3



Analysis: Bounding
Greedy

 Let Zt=whether Greedy destroys bad triangle t by
picking one of its three vertices

 Then Cost(Greedy)=Σ tZt

Rest Rest

u u
or

these edges cost 1



e

e ee e e e

k bad triangles containing e
Sum Zt for those triangles

Greedy picks a random vertex

ΣtZt =1 1 1 1 k k

Weight carried by e: E(ΣtZt)≤(1+…+1+k+k)/(k+2)≤3
So at=EZt /3 is a packing of bad triangles 
E(Cost(Greedy))= ΣtEZt ≤ 3 OPT 
Hidden: linear programming duality



Analysis: IP
xuv= 1 if u and v are in same cluster

Min      Σuv dissimilar xuv+Σuv similar (1-xuv)
Subject to

for all u,v,w :     xuv+xvw+(1-xuw)≤2       (uvw consistent)
                         xuv  is 0 or 1

u

v

w

u,v in same cluster
v,w in same cluster
u,w in different clusters
is inconsistent



Using both Primal and Dual

 Dual is implicit in rounding analysis
 Primal is implicit in Alg design
             Why not do both together?

Primal-dual algorithms
Steiner tree and Steiner forest
Facility location and k-median
…



Online Ski Rental

 Buying skis: B € once.
 Renting skis: 1€ per day.

Online:
Number of ski days not known in advance.
One Algorithm:
Rent, rent, rent, buy.
Goal:
Minimize total cost.



Online  IP

Subject to:

For each day i:

1 - Rent on day i          

0 - Don't rent on day i 
i
z

!
= "
#

1 - Buy          

0 - Don't Buy
x

!
= "
#

1

min

k

i

i

Bx z

=

+!

1
i

x z+ !

, {0,1}
i

x z !
Online IP: Constraints and variables arrive one by one 



LP Relaxation & Dual

Online LP:
• Constraints & variables arrive one by one.
• Requirement: Satisfy constraints upon arrival.
• Fractional interpretation: x=.5 means buy one ski, rent

the other one

D: Dual 

For each day i:
1

min

k

i

i

Bx z

=

+!

1
i
y !

, 0
i

x z !

1

max

k

i

i

y
=

!

1
i

x z+ !

1

k

i

i

y B
=

!"

P: Primal 

For each day i:

yi≥0



Algorithm for online LP

Initially x 0
Each day (new variable zi, new constraint yi):
   if x<1: (skis not yet fully bought)

 zi  1-x  (rent necessary fraction)
 x    x + Δx    (buy a little more)
 yi  1 (update dual, too!)

D: Dual Packing

For each day i:
1

min

k

i

i

Bx z
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+!

1
i
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, 0
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1
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P: Primal Covering

For each day i:

yi≥0



A 3-point plan

1. Primal is feasible.
2. In each iteration, ΔP ≤ (1+ c)ΔD.
3. Dual is feasible.
          Then:    Output cost =Σ ΔP
≤ (1+c) Dual                  by 2.
≤ (1+c) Opt LP value by LP duality theorem
≤ (1+c) IP                         by LP relaxation
              Algorithm is (1+ c)-competitive ✔

D: Dual 

On day i:
1

min

k

i
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P: Primal 

On day i:

yi≥0



1. Why is Primal feasible?

Online LP Algorithm:
On day i:
   if x<1:
       zi1-x
       x x +Δx
       yi1

, 0
i

x z !

1
i

x z+ !

, 0
i

x z !

1
i

x z+ !On day i:



2. Why is ΔP ≤ (1+ c)ΔD?

… it depends on Δx.
Δx=x/B+c/B works.

Online LP Algorithm:
On day i:
   if x<1:
       zi1-x
       x x+Δx
       yi1

D: Dual 

1

min

k

i

i

Bx z

=

+!
1

max

k

i

i

y
=

!

P: Primal 



3. Why is Dual feasible?

… it depends on c.
c=1/(e-1) works               Algorithm e/(e-1) competitive

Online LP Algorithm:
On day i:
   if x<1:
       zi1-x
       x x(1+ 1/B) + c/B
       yi1

D: Dual 
On day i: 1

i
y !

1

k

i

i

y B
=

!"

yi≥0



online IP Algorithm

 Choose (offline) d uniformly in [0,1]
 Solve online LP
 Set (online) x=1 on day of “bin” d falls in
 Set (online) zi=1 until then, zi=0 after
Analysis:
 Prob. That x=1: LP value of x
 Prob. of rental on day i: LP value of zi

                 Competitive ratio = that of online LP Alg
                  e/(e-1) competitive algorithm for ski rental

0 1
X:

day1 day2 day3 day4



Online primal-dual

 Online set cover

 Virtual circuit routing

 Ad auctions

 Weighted caching

 …



MaxCut basics

Input: graph
Goal: cut maximum number of edges

Fact: NP-hard

Fact:
Greedy cuts half of the edges:
(1/2) approximation.

Question: how to do better?



IP model?

xi=0 on one side, 1 on the other side of cut

Max Σe de
xi=0 or1
dij≤|xi-xj|



Max Σe de
0≤dij≤1
dij+djk+dki≤2
dij≤djk+dki

Max Σe de
dij=0 or 1
dij+djk+dki≤2
dij≤djk+dki

Integrality gap = 2

Σdij≤6
Add pentagonal constraints:
does not help

Add odd cycle constraints:
does not help

Add bounded support constraints:
does not help

Bounded degree expander
with large girth

LP Attempts



Max Σij in E (xi-xj)2 
xi=0 or 1

Max Σe de
xi=0 or 1
dij≤|xi-xj|

Max (1/4) Σij in E (xi-xj)2 
xi= -1 or 1

Max (1/2) Σij in E 1-xixj 
xi= -1 or 1

Max (1/2) Σij in E 1-yij 
yii=1
Y positive semidefinite

Max (1/2) Σij in E 1-vivj 
|vi|2= 1



M positive semi-definite

M real symmetric.
Three equivalent conditions:
 M = VT V
 All eigenvalues of M are ≥ 0
 For every vector a:
                 aTMa ≥ 0



Max (1/2) Σij in E 1-yij 
yii=1
Y positive semidefinite

MaxCut Algorithm

1. Solve SDP relaxation

2. Round result to get cut

How?



Max (1/2) Σij in E 1-yij 
yii=1
Y symmetric
For every vector a: aTYa ≥ 0

Linear in (yij)

Ellipsoid method 
Polynomial time
Oracle-Based:
Q: “Y feasible?”
A: “yes” or “No since [linear inequality] ”



Max (1/2) Σij in E 1-yij 
yii=1
Y symmetric
For every vector a: aTYa ≥ 0

Oracle-Based:
Q: “Y feasible?”
A: “yes” or “No since [linear inequality] ”

Max (1/2) Σij in E 1-yij 
yii=1
Y symmetric
eigenvalues≥0

Oracle: Compute eigenvalues 
if α<0, compute eigenvector u: uTYu=α|u|2<0

Linear in (yij)



Max (1/2) Σij in E 1-yij 
yii=1
Y positive semidefinite

MaxCut Algorithm

1. Solve SDP relaxation

2. Round result  to get cut

✔

How?

Max (1/2) Σij in E 1-vivj 
|vi|2= 1

Vertices       Unit vectors

Cut



Rounding the SDP

Max (1/2) Σij in E 1-vivj 
|vi|2= 1

Vertices       Unit vectors

Cut

0 if vi=vj 1 if vj=-vi

vi

vj
vi

vj
If vi and vj are close
then i and j should
end up on same
side of graph cut



If vi and vj are close
then i and j should
end up on same
side of graph cut

v1

v2

v3

v4

v5

Take a random hyperplane H
Through the center of the sphere.

Graph cut:
L={i: vi is above H}
R={i: vi is below H}

H



MaxCut Algorithm

1. Solve SDP relaxation

2. Round result  to get cut

Max (1/2) Σij in E 1-yij 
yii=1
Y positive semidefinite

Max (1/2) Σij in E 1-vivj 
|vi|2= 1

Take random hyperplane H through center of sphere.
Output: L={i: vi is above H}, R={i: vi is below H}



Max (1/2) Σij in E 1-vivj 
|vi|2= 1

Analysis

SDP relaxation

We have: 
OPT≥ (1/2) Σij in E 1-vivj 

Rounding
E(cut size)= Σij in E Pr(ij in cut)

Pr(ij in cut)= Pr(H between vi and vj)

H
vi

vj

For random H this equals …



Max (1/2) Σij in E 1-vivj 
|vi|2= 1

SDP relaxation

We have: 
OPT≥ (1/2) Σij in E 1-cos(θij) 

Rounding
E(cut size)=
 Σij in E Pr(H between vi and vj)=
                                     θij/π

H
vi

vj

1-cos(θ) 

θ/π
maxθ =0.878…



SDP Algorithms

 MaxCut
 Max-k-Sat
 Coloring
 Scheduling (completion times)
 CSP
 Sparsest Cut
 …



Hardness of MaxCut

Assuming P≠NP and UGC, 0.878 is the best 
possible approximation ratio for MaxCut



Unique Games Conjecture (UGC)
Input: 2 variables per equation

Goal: maximize number of satisfied equations

UGC Conjecture: NP-hard to distinguish between

answer >99%  and answer <1%.

Fix ε. For p large, NP-hard to distinguish 1-ε from ε

7x+2y =  11 (mod 23)
5x+3z = 8 (mod 23)

…
….

7z+w  = 14(mod 23)



Uses of UGC
Problem Best

Approximation
 Algorithm

NP Hardness Unique Games
Hardness

Vertex Cover
Max CUT
Max 2- SAT

SPARSEST CUT

Max k-CSP

2
0.878
0.9401

1.36
0.941
0.9546

1+ε

2
0.878
0.9401

Every Constantnlog

( )kk 2/! ( )kk
O 2/2 ( )kkO 2/

UGC hardness results are intimately connected to 
the limitations of Semidefinite Programming



 Multiway cut: Calinescu, Karloff, Rabani 1998,
Karger, Klein, Stein, Thorup, Young 1999

 Vehicle routing: work in progress
 Correlation clustering: Ailon Charikar Newman 2005
 Online ski rental: by primal-dual, Buchbinder Naor

2009
 Maxcut: Goemans Williamson 1994
 UGC: Khot 2002
 Hardness of MaxCut: Khot Kindler Mossel O’Donnel

2005

Foundational: LP+randomized rounding (Raghavan
Thompson 1988), primal-dual (Aggarwal Klein Ravi,
Goemans Williamson), SDP (Goemans Williamson)



Updated some slides from Neal Young, 
LP example from Vazirani’s textbook,
slides from Seffi Naor, and a couple of 
slides from Raghavendra.


