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f'(a) = the slope of the tangent line to the graph of f
through the point (o, f{a)
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Fermat's rule : at a minimum «, we have {'(a) = 0
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C. Studying a system

x'(t)=f(x(t),y(t))
y'()=g(x(t),y(t)

around an equilibrium (0,0)
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Thus, in the space of almost precisely
one century, infinitesimal calculus, or
as we now call it in English, The
Calculus, the calculating tool par
excellence, had been forged; and
nearly three centuries of constant use
have not dulled this incomparable
instrument. Bourbaki
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But what if f is not differentiable?
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locally Lipschitz
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Nonsmooth Analysis began with
"Dini Derivates” :

Fondamenti per la teorica delle funsioni
di variabili reali Ulysse Dini 1878

The swing in your backyard

The swing in your backyard

The nonlinear pendulum

The swing in your backyard

The nonlinear pendulum

£

—= 0(t)



The swing in your backyard

The nonlinear pendulum o

—= 0(t)

Newton(-Euler)
mé£0” = —mgsind —> 6" + (g/€)sin6 =0

The swing in your backyard

The nonlinear pendulum o

—= 0(t)
m
Newton(-Euler)
mé£@” = —mgsind —> 6" + (g/€)sinf =0

equilibrium @ = 0

The swing in your backyard

The nonlinear pendulum

m

Newton(-Euler)

mé£@” = —mgsind —> 6" + (g/€)sinf =0
/

equilibrium @ =0 =
8" + (g/£)8 =0

The swing in your backyard

The nonlinear pendulum

m

Newton(-Euler)
mé£@” = —mgsind —> 6" + (g/€)sinf =0
"
equilibrium @ = 0 . /
8" + (g/£)0 =0

What if there% a wind?




The swing in your backyard

The nonlinear pendulum

m

Newton(-Euler)

m£6" = —mgsind = 6" + (g/£)siné
/

equilibrium @ = 0 =
8" + (g/£)8 =0

What if there% a wind? force f

The swing in your backyard
The nonlinear pendulum
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W

equilibrium @ = 0 " '/
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What if there% a wind? force f

mf6” = —mgsinf — fcos@

equilibrium 0 = &, tany = —f/(mg)
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no linearization
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capacitor
u(t) C T (1)
impressed
voltage

alu(t) —x(t)) if =(t) < u(t)
—B(z(t) — u(t)) if x(t) > u(t)

capacitor
u(t) C T (t)
impressed
voltage

afu(t) — z(t)) if z(t) < u(t)
—B(2(t) — u(t)) if =(t) > u(t)

f(x.,u) has a corner at ¢ = u
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Optimization
Example: eigenvalue design

Let A(z) = {aij (:D).‘ be an n-n symmetric matrix whose
coefficients depend smoothly upon a parameter .

A function of interest:
f ()= the greatest eigenvalue of A(x).

FACT: [ is nonsmooth in general 1 =z
A(z) =

A=1t|z| = f(z)=1+|=]

T

Note that f attains its min at a “corner”
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dg(z) := min |z — s (closed, nonempty)

de(x)

NN

One use: exact pcnalizaﬂon.
ming(z) <> ming(z)+ kds(z)
? o

xS
Then: (¢ a{g + kds}(:l:) /M.m: interpretation
via normals or (fuler-)
= 0 € 8g(z) + liads(z:) Lagrange m:ipli-rof
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At equilibrium, the point
minimizes the potential

energy of the system
(d’Alembert)
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Calculus of variations

The Basic Problem:

min [ Lt,2(0), /@) dt, 2(a) = 4,2() = B

Euler (1744) defined the problem, found
the basic necessary condition, introduced
multipliers for constrained problems,
postulated the principle of least action,
and gave 100 examples.

Leonhard
Euler

1707-1783
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surface area Euler(-Lagrange) equation
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- dt | /14 z'(2)?
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The Goldschmidt solution (1831)

A design problem



A design problem

Ainsi c'est un probléme de maximis et
minimis de déterminer la courbe qui,
par sa rotation autour de son axe
formera une colonne capable de
supporter la plus grande charge
possible, la hauteur et la masse de la
colonne étant données.

A design problem

Ainsi c'est un probléme de maximis et
minimis de déterminer la courbe qui,
par sa rotation autour de son axe
formera une colonne capable de
supporter la plus grande charge
possible, la hauteur et la masse de la
colonne étant données.

Lagrange (1770) Sur la figure des colonnes

A design problem

Ainsi c'est un probléme de maximis et
minimis de déterminer la courbe qui,
par sa rotation autour de son axe
formera une colonne capable de
supporter la plus grande charge
possible, la hauteur et la masse de la
colonne étant données.
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To find the curve which by its
revolution determines the column of
greatest efficiency Truesdell

Joseph Louis
Lagrange
Born Turin 1736

* Writes to Euler
in 1755,
describes the
method of
variations

* Euler names the
subject in his
honor : calculus
of variations

* Euler is his
mentor until his
death
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* After 20 years in Berlin, he
joins the Paris Academy in
1786

* During the revolution :

metric system, Ecole
Normale and Polytechnique

* Under Napoléon :

senator, count of the
Empire, grand officer of the
Légion d’honneur

* His ‘greatest treasure’:
his (very) young wife,
whom he marries at the
age of 56

* Dies in Paris in 1813 at the
age of 77
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Designing an optimal column

1. Choose a profile x

2. Rotate to generate a column
C(x)

3. Respect the constraints on the
volume, the height

4. Calculate (via Euler) the
buckling strength f(x) of the
column C(x)

5. Maximize f(x) over x
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e the function min(f,g) has
% a corner here

The function “maximal load supported by a
column of profile x" is a nonsmooth function of
X ... which is where the error was made
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dc(—f)(x) = —dcf(z)

dc(f +g)(x) C dcf(x) + dcg(z)

B¢ f(x)is compact convex nonempty
dc(—f)(x) = —dcf(z)

c(f + g)(z) C 8cf(z) + Bcg(x)

dc Jax fi(z) C...




Then

Then

8¢ ()is compact convex nonempty
dc(—f)(x) = —dcf(z)

dc(f +g)(x) C Bcf(zx) + Bcg(x)
8c max fi(x) C...

Mean value theorem

B¢ f (x)is compact convex nonempty
dc(—f)(x) = —dcf(z)

dc(f +g)(x) C dcf(z)+ dcg(z)
8 max fi(x) C...

Mean value theorem

Tangent vectors and normals to closed sets

Then
*  O¢ f(x)is compact convex nonempty

« c(-f)(=x) = —dcf(z)

o c(f +g)(z) C dcf(x)+ dcg(x)
* 8¢ max fi(x) C...

*  Mean value theorem

* Tangent vectors and normals to closed sets

These generalized gradients (1972)
apply on any Banach space.

The classical derivative corresponds to a two-
sided local approximation by an affine function.



The classical derivative corresponds to a two-

sided local approximation by an affine function.
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The classical derivative corresponds to a two-

sided local approximation by an affine function.
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The classical derivative corresponds to a two-
sided local approximation by an affine function.

f()

The classical derivative corresponds to a two-
sided local approximation by an affine function.

f'(a) = slope
N

f()



The classical derivative corresponds to a two-
sided local approximation by an affine function.

f'(a) = slope
W

()

8]

We may also approximate just from below, using
nonlinear functions: proximal analysis

/—\




Clarke 1972

Clarke 1972

We can apply the
“local lower-
approximation by
parabolas’ idea to
nonsmooth (lsc)
functions

The set of all “contact slopes’ of lower locally
supporting parabolas is the proximal
(P = proximal) subdifferential d,f ()
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supporting parabolas is the proximal supporting parabolas is the proximal
(P = presdmal) subdifferential §,f () (P = proximal) subdifferential 8,f(a)

N

The set of all “contact slopes’ of lower locally The set of all “contact slopes’ of lower locally
supporting parabolas is the proximal supporting parabolas is the proximal
(P = presimal) subdifferential §,f () (P = proximal) subdifferential 8,f(a)

8.f(a) = [~2,1]




The set of all “contact slopes’ of lower locally
supporting parabolas is the proximal
(P = proximal) subdifferential 8,1 ()

A

8.f(a) = [-2,1]

The set of all “contact slopes’ of lower locally
supporting parabolas is the proximal

(P = proximal) subdifferential 8,1 ()
8.f(a) = [~2,1] 8,f(a) =0

The set of all “contact slopes’ of lower locally
supporting parabolas is the proximal

(P = proximal) subdifferential 8,1 ()
8.f(a) = [~2,1] 8.f(a) =0
€ € Of(a) &
f(z) = (., z — a) + f(a) - olz ~ a|” locally

The set of all “contact slopes’ of lower locally
supporting parabolas is the proximal

(P = proximal) subdifferential d,f ()
8.f(a) = [~2,1] 3.f(a) =0
¢ € Of(a) =
f(z) = {{,z — a) + f(a) - ol — a|® locally

Q,f has a very complete (but fuzzy!) theery and calculus...
Borwein, Ioffe, Ledyaev, Loewen, Rockafellar, Vinter, Zeidan...



The Hamilton-Jacobi equation: Various solution concepts
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The Hamilton-Jacobi equation: Various solution concepts
¢¢(tv Z) % 3 H(tw Ty O.—-(t, I)) =0 (and bdry CdnS)

* Classical
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The Hamilton-Jacobi equation: Various solution concepts
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* Classical
(¢ smooth, pointwise equality)

* Almost everywhere solutions opmptics
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(¢ Lipschitz)

* Using generalized gradients
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Almost everywhere solutions emstics
(¢ Lipschitz)
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The Hamilton-Jacobi equation: Various solution concepts

@ (t,z) ~ H(t,z,0.(t,z)) =0  (and bdry cdns)
Classical
(¢ smooth, pointwise equality)
Almost everywhere solutions

caustics
(¢ Lipschitz)
Using peneralized gradients
(Clarke 1977)

Using Dini derivates bilaterally
(Subbotin 1980)

Using sub- and superdifferentials
[viscosity] (Fleming, Crandall &
Lions 1982, Evans...)

The Hamilton-Jacobi equation: Various solution concepts

ety z) = H(t,z,0.(t,z)) =0  (and bdry cdns)

Classical
(¢ smooth, pointwise equality)

Almost everywhere solutions emutics
(¢ Lipschitz)
Using pgeneralized gradients
(Clarke 1977)
Using Dini derivates bilaterally

(Subbotin 1980)

Using sub- and superdifferentials
[viscosity] (Fleming, Crandall &
Lions 1982, Evans...)

Unilateral/proximal/KAM...




The Hamilton-Jacobi equation: Various solution concepts Example (n = 1)
') -1=0, ¢0)=¢1)=0
delt,z) = H(t,z,0.(t,z)) =0  (and bdry cdns) « No smooth solutions [tp (x)]z P)=e(l)

Classical
(¢ smooth, pointwise equality)

Almost everywhere solutions Caustics

(¢ Lipschitz)

Using generalized gradients

(Clarke 1977)

Using Dini derivates bilaterally ¢ 5

(Subbotin 1980) For linear pde's one can

Using sub- and superdifferentials by dlst:'l;umtlzﬁ.m%m

[viscosity] (Fleming, Crandall & nonlinear case, a careful
Lions 1982, Evans...) analysis of the points of

* Unilateral/proximal/KAM... mﬂdmﬂgemlabmw is

@@F-1=0, ¢0)=g(1)=0 St @@F-1=0, 0)=g(1)=0

« No smooth solutions

+ Many “almost everywhere" solutions:

A DA




Optimal control :

Ex‘ " - l \ ’I" V= ; zit)) — Yt
iy ). [q’ (x)]2_1=0, @0)=¢(1)=0 an example in bioeconomics i 't;c Gl=(8) = u(f)=(0
« No smooth solutions (Clark, Clarke, Meare / Ecensmetrica) mnx] et {rz{t) — k} u(t) dt
a

+ Many "almost everywhere" solutions: 0 < ult) < E

: x = biomass
3 \/\/ u = fishing effort
G = natural growth
+A unique continuous ¢ satisfies [a qu(x)]z -1=0 E =f::;::‘i;um
(ie. 5P -1=0 V¢ €3,¢(x), x=(0.)) i
k = effort cost

& Optimal control : ) = Gl — wlt) ()
T [‘P’(x)]z-1=0, ¢(0)=¢(1)=0 an example in bioeconomics | i e

« No smooth solutions (Clark, Clarke, Menare | Econsmetrica) max /,’:‘i&—'él{ﬂ‘dﬂ = k} u(t) dt
« Many “almost everywhere" solutions: ds =N

/\ y 0 Sult) S B s
+A unique continuous ¢ satisfies [a qu(x)]z -1=0

(ie.[sP-1=0 Vg d,@(x), x=(0,1))

Hint: it is one of these two ¥
functions:
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Optimal control :

an example in bioeconomics =
(Clark, Clarke, Meare / Econsmetrica) mnxf '5”—“&7«‘;{! E k} u(l;‘ At
Os ek

"0 < ult) < E S

x'(t) = G(z(t)) — u(t) z(t)
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x = biomass \
u = fishing effort ’
G =natural
E = maximum

fishing effort

& = discount rate
2 = resource price
k = effort cost

Optimal control :

an example in bioeconomics L
(Clark, Clarke, Meare ' Econsmetrica) max] 'Gﬂ'lmfﬂdﬂ el k} u(t} At
Os e 1

' 0 < ult) < E S

x'(t) = G(z(t)) — ult) z(t)

X

Al

Y
A

x = biomass \
u = fishing effort ’
G =natural
E = maximum
fishing effort
& = discount rate
21 = resource price
k = effort cost

If & is sufficiently large, we have x_= 0 (extinction)




Example: Optimal fishing strategy in the presence of both

investment and depreciation in boats
(Clark, Clarke, Munre | Econometrics)

Example: Optimal fishing strategy in the presence of both

investment and depreciation in boats
{Clark, Clarke, Munro | Econometrica)

nmx/ 'r"“{(mr(t) - kult) - rlu)} dt + l:r""AE(l.)
Jo

z'(t) = g(x(1)) — u(t)x(t), 0 < u(t) < E(t)
E'(t) ~E(t) 4 I(t), 0 < I(t) € +x
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Y minJ(z,u) := /;b L(t,z(t), u(t)) dt r(a) = A

oD ey © Proof: 2(8) = £(t,2(0),u(t), u() €U@ae. "
nonsmooth
verification

functions

c
|uit) < E(t) C

{

< ' wngterm | There is an
. optimal
uit) = E( 7 . feedback

e u(y,E)...
discontinuous

Verification functions

b
min J(z,u) 1= [ L(t,z(t), u(t)) dt r(a) = A

z(b) =B

z'(t) = f(t,z(t), u(t)), u(t) € U(t) a.e.
Goal: verify that a candidate (... }is optimal




“a

z'(t) = f(t,z(t), u(t)), u(t) € U(t) a.e.

b
il / L{t, 2(£), u(t)) dt D |
z(b) = B

Goal: verify that a candidate (... }is optimal
Method: exhibit a function ¢ satisfying

L{t,x,u) > ¢lt,x) + (Sa(t,x), S, u)} V(t,z),u € U(1)
{= at (t,z.(t), u.(t)))

“a

2'(t) = £(t, 2(t), u(t), ult) € U(t) ae.

s ) / " Lt 2(8), u(t)) dt e |

z(b) = B

Goal: verify that a candidate (... }is optimal
Method: exhibit a function ¢ satisfying

L(tyx,u) = o(t,x) + (S (L, x), f(t, 2, u)} V(t.x),u € U(L)
(= at (t,z.(t), u.(t)))
Proof: For any admissible (z, u) we have
L(t, x(t),u(t)) = de(t,x()) + (&=(t, x(1)), f(L,2(t), u(t)))
= d/dt{S(t, z(t))}

il ) / " L(t 2(8), u(t)) dt stararn

“a

z'(t) = f(t,z(t), u(t)), u(t) € U(t) a.e.

z(b) = B

Goal: verify that a candidate (... }is optimal
Method: exhibit a function ¢ satisfying

L(tyx,u) = oty x) + (St x), f(t, 2, u)} V(t.z),u € U(L)
(= at (t, z.(t), u.(t)))
Proof: For any admissible (z, u) we have
L(t, x(t),u(t)) = oe(t,x(1)) + (&=(t, x(1)), f(L,2(t), u(t)))
= d/dt {S(t, (L))}
= J(x,u) > &(b, B) — ¢&(a, A)

il ) / " Lt 2(8), u(t)) dt staran

“a

2'(t) = F(t, 2(t), u(t), ult) € U(t) ace.

z(b) = B

Goal: verify that a candidate (... }is optimal
Method: exhibit a function ¢ satisfying

L(t,x,u) > @(t,x) + (da(t, x), f(t, 2, u)} V(t,x),u € U(L)
{= at (t, x.(t), u.(t)))
Proof: For any admissible (z, u) we have
L(t, z(t), u(t)) = de(t,x(t)) + (@=(t,x(1)), £(L, 2(2), u(t)))
=d/dt {&(t, x(t))}
=+ J(z,u) > &(b, B) — ¢(a, A)
(= for (z,u) = (z.,u.)) QD




minJ(z,u) = /h L(t,z(t),u()) dt z(a) = A A reference

b) =B |
z'(t) = f(t,z(t), u(t)), u(t) € U(t) a.e. =(b) \ Nonsmooth Analysis and Control Theory
) ' by
Goal: verify that a candidate (... ])is optimal F. Clarke, Yu. Ledyaev, R. Stern, P. Wolenski
Method: exhibit a function ¢ satisfying Graduate Texts In Mathematics
L(t,x,u) = ¢(t,x) + {S.(tx), f(t,x,u)} V(t,x),u € U(L) Springer-Verlag 1998
{=at (t,xz.(t), u.(t)))
Proof: For any admissible (z, u) we have There are two kinds of mathematics books: the
Lt 2(6), u(t)) 2 @e(t, z(0) + (0=(t 2(1)), (5, =(t), u(0))) kind you can't read past the first sentence, and
— d/dt {1, z(t))} : i
=+ J(x,u) > (b, B) — (a, A) the kind you can't read past the first page.

(= for (z,u) = (L., u.)) qm

Richard Feynman
Fact: smooth verification Functions may not exist, but

nonsmooth ones do (Clarke & Vinter, 1980%) clarke@math.univ-lyon1.fr
A reference
Nonsmooth Analysis and Control Theory » »
% Generalized Gradients
F. Clarke, Yu. Ledyaev, R. Stern, P. Wolenski an d
Graduate Texts in Mathematics .
Springer-Veriag 1998 Proximal analysis

Francis Clarke

Institut universitaire de France
et Université de Lyon




Yesterday, we motivated the need for
nonsmooth analysis. It appears that
nonsmoothness is more common than one
might have thought, and that the opposite
of “linear” is often “nonsmooth”.

Today, we examine the basic constructs and
some elements of the calculus. We stress
that difficult nonsmooth problems remain
difficult even if one has mastered this
theory! (But it can help...)

Generalized gradients and associated geometry

In an arbitrary Banach space, the starting point
for functions is the generalized directional derivative:

Generalized gradients and associated geometry

In an arbitrary Banach space, the starting point
for functions is the generalized directional derivative:
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t0,y-sx a

z,v € X

Generalized gradients and associated geometry

In an arbitrary Banach space, the starting point
for functions is the generalized directional derivative:

fn(Z: L‘) = lh;l sup f(y g F tvt) = f(y)
t0,y-sx a

v € X

When f is locally Lipschitz, this is finite, and we find:

FPlzsv+w) £ FfFP(z50) + f7(zw) Vo, w
fi(zstv) = tf°(zmv)VE > 0



Generalized gradients and associated geometry

In an arbitrary Banach space, the starting point
for functions is the generalized directional derivative:

f°(z;v) = lim sup fly+ “’t) - f(v)

z,vE X

When f is locally Lipschitz, this is finite, and we find:

fPlziv+w) < f(z5v) + fP(ziw) Vo, w
fi(ztv) = tf°(z3v) VE > 0

These are properties of support functions.

If Z is a nonempty bounded setin X *, then the
support function has these properties:

Hi(v) := sup (¢, v)
(EZ

If Zis a nonempty bounded set in X *, then the
support function has these properties:

Hy(v) = sup (¢, v)
(EZ

When restricted to w¥-closed convex sets, the support
function characterizes Z. The Hahn-Banach theorem

implies the existence of 2 unique w*-closed, convex,
bounded set Z such that

f(z;v) = Hz(v) Vv e X

If Z is a nonempty bounded set in X *, then the
support function has these properties:

Hz(v) := sup (¢, v)

(EZ
When restricted to w¥-closed convex sets, the support
function characterizes Z. The Hahn-Banach theorem

implies the existence of 2 unique w*-closed, convex,
bounded set Z such that

f(z3v) = Hz(v) Vv e X

We denote this set by 8¢ f(x), the generalized gradient.
The following duality holds:

dcf(@) = {C € X" : f(wmiv) = (¢,v) Vo)

I (230) = 08 {¢,v)




dc f(x) is convex, compact, and closed,
which may explain the subscript C.

It is often referred to as the Clarke
generalized gradient.

Other constructs will include:
dp f(z) (proximal subdifferential) and
oL f(x) (limiting subdifferential)

Let S be a nonempty closed subset of X.
Its distance function (Lipschitz) is given by

ds(z) = inf |z -yl

Let S be a nonempty closed subset of X.
Its distance function (Lipschitz) is given by

ds(z) := 32%;.”75 ]|
We define the generalized normal and tangent cones
by
N§(z) := o {tBcds(z) : t > 0}
TS (z) = [N§ ()]
= {v:(¢,v) <0 V¢ € NS(z)}
= {v: d§(z;v) = 0}

If we wish to start with geometry, the last shall be first

Tg(m) = {v:Vm,- —gx, VE; 10,
Jv; = v /zi + tiv; € S}



If we wish to start with geometry, the last shall be first
Tg(m) = {v Va; -2, VE; |0,
Jv; — v /zi + tiv; € S}
Ng () := [T§(z)]"
= {¢: (¢v) <0 W € TS (2)}

If we wish to start with geometry, the last shall be first

TS (x) = {v:Ve; 5sx, Vt; |0,
Jv; = v /zi + tiv; € S}
N§(z) := [TS(=)]°
= {¢: (¢v) <0 Vv € TS ()}

How do we recover the functional constructs?

Classical Calculus

f' (@)= the slope of the tangent line to the graph of f
through the point [ex, f{a)).

Classical Calculus

f' (@)= the slope of the tangent line to the graph of f
through the point (e, f(a)).

Dually, the value { such that (£, —1) is normal
to the graph of f



If we wish to start with geometry, the last shall be first
Tg(a:) = {v Va; -2, VE; |0,
3v,~—>v/m,-+t,~v,-€5}
Ng(z) = [TS(2)]°
= {¢:{(¢,v) <0 Vv e TS (2)}

How do we recover the functional constructs?

If we wish to start with geometry, the last shall be first
TS (x) = {v:Ve; 5sz, Vt; |0,
3v,~—>v/m,-+t,~v,-€5}
Ng(z) := [T5(2)]°
= {¢:(¢,v) <0 Vv e TS (z)}

How do we recover the functional constructs?

dcf (@) = {¢: (6 —1) € NG 4(2 £(=) }

If we wish to start with geometry, the last shall be first

Tg(m) = {v:Vm,- —gx, Vi; 10,
3v.-—>v/m,-+t;v,-€S}

N§ (z) := [T§ (2)]"

= {¢: (¢v) <0 W € TS (2)}
How do we recover the functional constructs?

dcf(@) = {¢: (¢, 1) € NG (2. 1(2) }

(and then f°(x;-)is the support function of 8¢ f(z))

oot

Ts (x) N (z)




f=dsg S=epif

polarity

— epi fo ((B; ') S Tec;[f(ms .f(m))




The smooth case The smooth case
If f is smooth,then 8¢ f(x) = {f'(z)} .since If f is smooth,then 8¢ f(x) = {f'(z)} .since

(f(x)yv) = fl(zv) = f(ziv) = (¢ v) (F(@)yv) = fl(zv) = f(ziv) = (¢ v)

CCBL I(=) Cc8¢ J(=)

If S is a smooth manifold,
or manifold with boundary:

NS = aray

The smooth case The smooth case
If f is smooth,then 8¢ f(x) = {f'(z)} .since If f is smooth,then 8¢ f(x) = {f'(z)} .since

(f(x)yv) = fl(zv) = f(zv) = (¢ v) (f(x)yv) = fl(zv) = f(zv) = (¢ v)

c8¢ J(=) C8( J(=)

If S is a smooth manifold, If S is a smooth manifold,
or manifold with boundary: or manifold with boundary:

NS = aray




The smooth case
If f is smooth,then 8¢ f(x) = {f'(z)} .since

{J'(2),2) = F(z3n) = f(x;0) = ch:fn;%z)((,v)

If S is a smooth manifold,
or manifold with boundary:

NS = aray

! TE = a halfspace

The convex case

The convex case

If f is convex, then

Ocf(z) = 0f(z) the subdifferential
= {¢: f(¥) - f(2) 2 (v —z)Vy € X}

The convex case

If f is convex, then

BCf(m) = 8f($) the subdifferential
= {¢: f(y) - £(2) 2 (Gy —2)Vy € X}

If S is convex, then S

P




The convex case

If f is convex, then

Bcf(m) = 8](:::) the subdifferential
= {{: f(¥) - f(2) 2 {{(,y—2)Vy € X}

If S is convex, then S

C
NS

The convex case

If f is convex, then

Bcf(m) = 8](:1:) the subdifferential
= {¢: fy) — f(z) 2 (Gy—2z)Vy € X}

If S is convex, then S

C
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¢ € Ns(x) <= ((,y—z) <OVy€ES

The convex case

If f is convex, then

dcf(z) = 0f(x) the subdifferential
= {¢: f(¥) - f(2) 2 (v —z)Vy € X}

If S is convex, then S
TS

C
NS

/

¢ € Ns(x) <= ((,.y—z) <OVye€S

An example which is neither smooth nor convex
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An example which is neither smooth nor convex

An example which is neither smooth nor convex

An example which is neither smooth nor convex

An example which is neither smooth nor convex

Bouligand

g = )
Ts(x) 1= { m —— 1z¢ =gz, ti | 0} contingent
=00 t; " cone
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(equality when [y, f2 regular)
Mean value theorem:
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Some calculus
Sums:

8c(fi + f2)(z) C Bchi(x) + Ocfalx)

(equality when [y, f2 regular)
Mean value theorem:

3z € (=) / fly) ~ flz) € ((y—=)

x::z::;n f(x) = JOBX Ji() (each f; smooth)
I(z) = {i€ {1,2,...,n}: fi(z) = f(=)}
Then 8cf(z) = co{fl(z):i€ I(z)}
Optimization:
m:’i'nf atx => 0¢€ 0cf(z) + Nbc."(a:)

(more generally, Lagrange multipliers)

Some calculus
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Some calculus

Swma:
Aol fs + @) © Ofila) + &S]

|ogedd iy when [ f, reguler )

::"m.: Jie) = '?l..ﬂ".,l.'fl {sach £, sroonh)
e = e Ly n) ot Lzl = fle)i Optimirathan:
e f ot x ¥ 0CNofin)+ NE(2)
(rrore peneadly Lagrenpe madtipivers)

Then & fie) = col{fi(e)rc M)l

Graph-closed: (i € Oc¢f(x:)
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Some calculus

Sema:
Aol fs + @) & Ocfila) + & f3)

[equdd iy whe o f, reguler )

::"m.: Jie) = :n.o_»\h,’.lr- {sach £, sroonh)
fep = e (L n) ot Lzl = fle)i Oprimizatian:
i f ot x ¥ 0C N fin)+ NE(#)
(rrore penedly Lagrenpe madtipivers)

Then & fie) = col{fi(e) v M)l

Graph-closed: (: € Ocf(x:)

l I} =» ( € 8cf(z)
¢ T

Gradient formula

When f if locally Lipschitz on [R™, then f is
differentiable a.e. (Rademacher). Let §2 be any set of
measure 0 including the nondifferentiability points. Then

dcf(z) = co{'llglo Vi) :zi — z, z; ¢ N}

("blind to sets of measure 0").

This is a useful tool for calculation.

Example f(z,y) = max{min =z, —y|,y — =}
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max { min z Example f(z z
,y) — max { min 'x ]
ot | y,’ y
!' y yv=2= }

&amp,e ] oy . oy b b ]
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Example  f(z,y) = max { min [z, ~y),y — z} Example  f(2:y) = max { min [z, ~p),y — =}
Yy

vVf=(0,-1)
few) =y

Example f(z,y) = max{min z,—y ,y — z} Example  f(z,y) = max{min z,-y|,y -z}
Yy

&
vf=(0,-1) vVf=(0,-1)
Jlzw) =y Jzw)=—y

f(xyy) =«




Example f(z,y) = max{min z, ~y|,y — =}

y=2

€T

v/ =(0.-1)
e w)=—y

f(xyy) ==

vSe=(1,0)"

Example f(z,y) = max{min =z, —y|,y — =}

y=2

ve=(1,0)"

8 £{0,0) = co {(1,0),(0,-1),{-1,1)}

Gradient formula

When f if locally Lipschitz on [R™ ,then f is
differentiable a.e. (Rademacher). Let £2 be any set of
measure 0 including the nondifferentiability points. Then

dcf(z) = { im Vf(z):z; =, z; ¢ N}

This is a useful tool for calculation.

Gradient formula

When f if locally Lipschitz on [R™ ,then f is
differentiable a.e. (Rademacher). Let £ be any set of
measure 0 including the nondifferentiability points. Then

8cf(m) = { lim Vf(m.) Ly I, I; ¢ ‘2}
1= OO0
This is a useful tool for calculation.

When f:R™ — E™ is locally Lipschitz, we can define
the generalized Jacobian this way:
dcf(z) = { lim Df(z;):z; — z, z; ¢ N},

A convex set of m X n matrices. Then: inverse function
theorem, Sard, etc. [Gereral case £ X — ¥ Pues/Zestan]




Theorem (1973)

Let 8cF(xo) be of maximal rank, where F : R" — R" is Lipschitz
near rg. Then there exist neighborhoods U of g and V of Fzg) and
a Lipschitz function G : V' — K" such that

G{F(u) =uVYuel,

F(G(v)) =v VveV.

Theorem (1973)

Let 8¢ F(xo) be of maximal rank, where F 1 R" — R" is Lipschitz
near rg. Then there exist neighborhoods U of g and V of Fzg) and
a Lipschitz function G : V' — K" such that

G{F(u) =uVYuel,

F(G(v))=v VeveV.

Example
F(z,y) = [lz| + v 2z + |y]]

o
8

OcF(0,0) = {

det [

Let 2y € S:={z: f(x) <0} IT0 ¢ 9. f(xy), then
TE (o) D {v € X : f°(z03v) < O}.
If in addition f is regular at zg, then

TS (20) = {v € X & f'(zpiv) €0} and

NE(2o) = {A¢: A 2 0, € B f(z0) }-

Lt N e i fle) s ). BHog 0 flag), Bae
TEies) D vk Xt i) € 8}

M in sddnion £ b roguier o2 £y,
T, (ag) vt X flapur) 2 tiand

Ny lagl w A 20l e & flag)).

Let Y be another Banach space, and F: X — Y
a continuously differentiable function. Set

S:={z € X: F(x) =0}.
If F'(zq) is surjective, then

TS (20) = {v € X : {F'(x0),v}) = 0} and

NE(zo) = {6F' (z0): 0 € Y ).




Calculus

st N e i fle)l su). Hog i flag), Bee
of Fien) 3 {n € X1 Pl 54
sm M in sddnion £ & reaguier o ro, 0
Lok Y b anntbor Manash span, vl 0 X <o ¥ 15 (2e) v e X i flaur) 2 0 and
wi vwnnly dlervaiialde Tumihom Sot
Aimiad X Vo) =3} N X A A )
" o bive, Chem
s « X r ot
~ (ws cy

If NS (z)—NE. (z) = {0}, then

N¢ g, () C N§ (x)+ NE (z) and
TE ns,(2) D TS (z) N TS (2),

with equality when §; and S, are regular,

Wedged (or epi-Lipschitz) sets
A set S is said to be wedged if:
int TS (z) #0Vz € S

Wedged (or epi-Lipschitz) sets
A set S is said to be wedged if:
int TS (z) #0Vz € S

not wedged

Wedged (or epi-Lipschitz) sets
A set S is said to be wedged if:
int TS (z) #0Vz € S

Let S C X" be wedged. Then =)
o intS#0
* S=cl{int S}

not wedged
e TS (x) =R"iffc € int S

e S is locally the epigraph of a Lipschitz function



Let ¢ : X" —» R"™ be a Lipschitz function satisfying Let ¢ : X" —» R"™ be a Lipschitz function satisfying
&(z) € Tp,1)(x) Ve € B(0,1). &(z) € Tp,1)(x) Ve € B(0,1).

Then there exists zq € B(0,1) such that é(z,) = 0. Then there exists 4 € B(0,1) such that é(z,) = 0.

(<= Brouwer’s Fixed Point Theorem) (<= Brouwer’s Fixed Point Theorem)

Since Brouwer's Theorem holds when the ball is replaced by
a set S homeomorphic to it, we can ask if the above still
holds in that case.

Let ¢ : B — K™ be a Lipschitz function satisfying

¢(z) € TS (z)Vz € S,

where S is wedged and homeomorphic to B(0,1).
Then there exists ¢, € S such that é(z,) = 0.

Let ¢ : X" — K" be a Lipschitz function satisfying Boundary analysis: Inner and outer sphere conditions,

lower C? property, reach, semiconcavity, ¢ -convexity,

$lw) € Ty (0) V& € B(0,1). packing, etc. (Federer, Stern, Colombo, Nour, Cannarsa...)

Then there exists 4 € B(0,1) such that é(z,) = 0.

(<= Brouwer’s Fixed Point Theorem)

Since Brouwer's Theorem holds when the ball is replaced by
a set S homeomorphic to it, we can ask if the above still
holds in that case.




Boundary analysis: Inner and outer sphere conditions,
lower C? property, reach, semiconcavity, ¢ -convexity,
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Example: The union of uniform closed balls conjecture
S C R™ has the R-inner ball property if:
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Is S then the union ]

of balls of radius R? No i S
o in general

Is § the union of balls
of radiusr, 0 <r <R!?



Boundary analysis: Inner and outer sphere conditions,
lower C? property, reach, semiconcavity, ¢ -convexity,
packing, etc. (Federer, Stern, Colombo, Nour, Cannarsa...)

Example: The union of uniform closed balls conjecture
S C R™ has the R-inner ball property if:
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. 2R\
Is S then the union

of balls of radius R? No i X S
o in general

Is § the union of balls

ofradiusr, 0<r<R! o ¢ g is wedged and bounded

Boundary analysis: Inner and outer sphere conditions,
lower C? property, reach, semiconcavity, ¢ -convexity,
packing, etc. (Federer, Stern, Colombo, Nour, Cannarsa...)

Example: The union of uniform closed balls conjecture
S C R™ has the R-inner ball property if:

. 2R\
Is S then the union

of balls of radius R? No i X S
o in general

Is S the union of balls
ofradiusr, 0<r <R? vos if § is wedged and bounded

nR
Does r= suffice?
2vn? — 1
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The classical derivative corresponds to a two-
sided local approximation by an affine function.
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Proximal theory

The classical derivative corresponds to a two-
sided local approximation by an affine function.

f'(a) = slope
N

f(:)

(ad

We may also approximate just from below, using
nonlinear functions: proximal analysis

The set of all “contact slopes’ of lower locally
supporting parabolas is the proximal
(P = proximal) subdifferential 9, f()

The set of all “contact slopes’ of lower locally
supporting parabolas is the proximal

(P = preximal)
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The set of all “contact slopes’ of lower locally
supporting parabolas is the proximal

(P = preximal)

subdifferential 8,f(c)



The set of all “contact slopes’ of lower locally
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(P = proximal) subdifferential 9, f()

The set of all “contact slopes’ of lower locally
supporting parabolas is the proximal
(P = proximal) subdifferential 9, f()

8.f(a) = [~2,1]

The set of all “contact slopes’ of lower locally
supporting parabolas is the proximal
(P = proximal) subdifferential d,f()

A

8.f(a) = [~2,1]

The set of all “contact slopes’ of lower locally
supporting parabolas is the proximal

(P = proximal) subdifferential &,f(c)
8.f(a) = [~2,1] 8,f(a) =0



The set of all “contact slopes’ of lower locally
supporting parabolas is the proximal
(P = proximal) subdifferential d,f(a)

A

8.f(a) = [~2,1] 8,f(a) =0

¢ € &f(a) &=

flz) > .z - a) + fla) - oz —~ a|* locally

The set of all “contact slopes’ of lower locally
supporting parabolas is the proximal
(P = proximal) subdifferential d,f(a)

A

8.f(a) = [~2,1] 8,f(a) =0

¢ € &f(a) &=

f(z) = ({2 — a) + f(a) - olz ~ al” locally

8,.f has a very complete (but fuzzy!) theory and calculus...
Borwein, Ioffe, Ledycev, Loewen, Rockafellar, Vinter, Zeidan...

We cannot expect to have, in general:
p(f1+ f2)(x) C Bpfi(z) + Opf2(z)

In fact, the opposite is true (but not useful)!
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¢ € 8p(fi+ f2)(z) =
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In fact, the opposite is true (but not useful)!
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We cannot expect to have, in general:
Op(f1+ f2)(z) C 8pfi(z) + Opfa(z)

In fact, the opposite is true (but not useful)!

¢ € 8p(fi+ f2)(z) =

Ve>03z1,22,M:
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We cannot expect to have, in general:
Op(f1+ f2)(z) C 8pfi(z) + Opfa(zx)

In fact, the opposite is true (but not useful)!

¢ € 8p(fi+ f2)(z) =
Ve>03z1,22,M:

|mi —.'L'| <E¢& I')l <E§

Si(z:) — fi(z)| < e(i=1,2)

and

¢ € Opfi(x1) + Opfa(z2) + 1

We cannot expect to have, in general:
Op(f1+ f2)(z) C 8pfi(z) + Opfa(z)

In fact, the opposite is true (but not useful)!

¢ € 8p(fi+ f2)(z) =
Ve>03zy,22,m:

|.’b,~ -—-.'L'| <E¢& I')l <E§

fi(z:) — fi(x)| < e(i=1,2)

and near & near small

¢ € 3Pf1(;=1) + apfz(;?z) +;I
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The geometry of proximal normals
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The geometry of proximal normals

Such normals don't exist at every
boundary point of S, but in finite
dimensions they exist “often", and
generate the cone NS (z)

P .
CENs(z) =30 20: ¢ is a proximal normal
to Sata

y—z)<oly—=z]*? VyeS

The geometry of proximal normals
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In infinite dimensions, closest

points may not exist, and proximal

normals may be scarce. But they ¢ is a proximal normal
exist “densely” in 2 Hilbert space to S at @

(Lau’s Theorem), or, more

generally, in smooth Banach spaces

The geometry of proximal normals

Seth roersaly dont ewax ol every
bonrdary posst of 5 bat i feme
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Fact:
if f is lower semicontinuous, finite at x, then

¢ € Bpf(x) <> (¢,—1) € NL, ,(z, f(z))

ty
In infinite dimensions, closest
points may not exist, and proximal

normals may be scarce. But they ¢ is a proximal normal
exist “densely” in 2 Hilbert space to S at @

(Lau’s Theorem), or, more

generally, in smooth Banach spaces




Limiting constructs
When proximal normals exist
densely, as in 2 Hilbert space, we define

N;‘l(:) . {'Efgg 16 € Ns’-’(::.-),z.- —tg :c}

0.8 (z) = {lim¢: : G € Bpf(zi), 2 — =, f(z) — £(z))
L = Limiting

Limiting constructs
When proximal normals exist
densely, as in 2 Hilbert space, we define

N;“(:) . {'l_i_fg(: 16 € N;-’(:l:.'),z,- —tg :c}

0.8 (z) = {lim¢: : G € Bpf(zi), 2 — 2, f(z) = £(z))
L = Limiting

These constructs inherit a
calculus that is “less fuzzy".
For example:

In finite dimensions, if f and g are lower
semicontinuous, and if one of them is Lipschitz near x,

then
AL(f + g)(z) C BLf(x)+ Arg(x)

Ocf vis-a-vis 8pf / O.f

f
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® All of these reduce to the subdifferential if fis convex,

to the derivative if fis smooth
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geometry; most useful for Lipschitz functions; can be
estimated by f°, or by the gradient formula ('blind to sets
of measure 0°); gives directions of decrease and tangency;
has a vector-valued extension ('generalized Jacobian'); used
in all the numerical implementations
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functions; smaller but difficult to calculate; its emptiness
can be a plus in the theory (as in viscosity solutions); has
links to ‘variational principles’

Oc-f vis-a-vis 8pf / O.f
® All of these reduce to the subdifferential if fis convex,
to the derivative if fis smooth

® Jc f can be defined on any Banach space, along with its
geometry; most useful for Lipschitz functions; can be
estimated by f°, or by the gradient formula ('blind to sets
of measure 0°); gives directions of decrease and tangency;
has a vector-valued extension ('generalized Jacobian'); used
in all the numerical implementations

® Jp [ can be defined on ‘smooth spaces’; applies to Isc
functions; smaller but difficult to calculate; its emptiness
can be a plus in the theory (as in viscosity solutions); has
links to ‘variational principles’

® For a Lipschitz function on a Hilbert space we have

Ocf = codLf

Two references chosen at random:

Optimization and Nonsmooth Analysis
Clarke, 1983

Nonsmooth Analysis and Control Theory
Clarke, Ledyaev, Stern and Wolenski,
Graduate Texts in Mathematics 1998

clarke@math.univ-lyonl.fr
(or web site)






