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Francis Guthrie (1852)]

Is it possible to color the regions of every map with 4 colors, such that adjacent
regions receive different colors?

1879 : proof of Kempe

1890 : Kempe's proof is incorrect (Heawood)

1977 : computer-assisted proof by Appel and Haken

1997 : Robertson, Seymour and Thomas simplify the proof

2005 : the proof is verified by Gonthier using Coq (a formal proof management
system).
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COLORING

A k-coloring of a graph G = (V/, E) is a function ¢ : V — {1, ..., k} such that for
any pair u, v of adjacent vertices in G, c(u) # c(v).

The chromatic number of G, denoted by x(G), is the least k such that G has a
k-coloring.
Some results:

@ x(G) <2 if and only if G has no odd cycle.

@ Determining whether x(G) < 3 is an NP-complete problem (even if G is
planar).

@ For every planar graph G, x(G) < 4.



DuALITY



DUALITY




DUALITY













DuALITY




DuALITY

Ao



DUALITY



DUALITY

A rd
N '

The Four color theorem )
Planar graphs are 4-colorable.




DUALITY

A rd
N '

The Four color theorem )
Planar graphs are 4-colorable.

The Four color theorem)

The edges of every 2-edge-connected cubic planar graph can be colored with 3
colors (i.e. partitioned into 3 perfect matchings).
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Theorem (FoIhore)]

Planar graphs are 6-colorable.

Euler's formula. If G is a connected planar graph, with N vertices, M edges, and
F faces, then N — M + F = 2.

Assume that each vertex v has weight w(v) = d(v) — 6 and each face f has
weight w(f) = 2d(f) —6 > 0.

The total weight is (2M — 6N) + (4M — 6F) = —6(N — M + F) = —12.

As a consequence, any planar graph contains a vertex of degree at most 5.
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DISCHARGING

Theorem (FoIhore))

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5
adjacent to a vertex of degree at most 6.

Proof. We can assume that the graph is a planar triangulation.
Assume for the sake of contradiction that the minimum degree is 5, and all the
neighbors of a vertex of degree 5 have degree at least 7.

Give each vertex v a weight w(v) = d(v) — 6. (The total weight is still < —12).

Each vertex of degree > 7 gives 1/5
to each neighbor of degree 5
‘ A A vertex of degree d > 7 starts with d — 6
"v and gives at most % . %
Its final charge is at least d —6 — 4 -1 >0

1
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Theorem (Heawood 1890))

If G is embedded in a surface of Euler genus g > 0, then

X(G) < (7 + 1+ 24g).

Proof. We can assume without loss of generality that G is cellularly embedded in
¥, and all faces have degree at least 3.

Again, Euler's formula implies that > (d(v) —6) < 6g — 12.

Let 0 be the minimum degree of a vertex of G.

Then § <6+ (6g —12)/N <6+ (6g —12)/(0 + 1) (since N > § + 1).
Equivalently, 6(6 + 1) < 6(d + 1) + 6g — 12.

As a consequence, § < %(5 + 1+ 24g).
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f_(Theorem (Heawood 1890))
If G is embedded in a surface of Euler genus g > 0, then

X(G) < (7 + 1+ 24g).

.

_(Theorem (Ringel and Youngs 1968))

For any surface ¥ of Euler genus g, except the Klein bottle, the complete graph
on [3(7+ /I + 24g)| can be embedded in .

\.

For the Klein bottle, Heawood's formula gives a bound of 7, whereas it can be
proved that every graph embedded on the Klein bottle has chromatic number at
most 6 (and this is best possible, since Kg vertices can be embedded in this
surface).
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Youngs (1996). Any non-bipartite quadrangulation G of the projective plane
satisfies x(G) = 4.
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SOME CONSEQUENCES

Lemma (FoIhore))

Assume that some property P holds for locally planar graphs. Then there is a
function f such that for any graph of Euler genus g, at most f(g) vertices can
be removed so that the resulting graph satisfies property P.

As a consequence of the result of Thomassen, in any graph embedded on some
surface of bounded Euler genus, a constant number of vertices can be removed so
that the resulting graph is 5-colorable.

Problem (Albertson 1981))

Is there a function f, such that any graph embedded on a surface of Euler genus
g can be made 4-colorable by removing at most f(g) vertices?




ONE MORE QUESTION

The Four color theorem )
Planar graphs are 4-colorable.




ONE MORE QUESTION

The Four color theorem )
Planar graphs are 4-colorable.

The Four color theorem)

The edges of every 2-edge-connected cubic planar graph can be colored with 3
colors (i.e. partitioned into 3 perfect matchings).




ONE MORE QUESTION

The Four color theorem )
Planar graphs are 4-colorable. ]

The Four color theorem) <

The edges of every 2-edge-connected cubic planar graph can be colored with 3
colors (i.e. partitioned into 3 perfect matchings).

Theorem (Thomassen 1993))

Locally planar graphs are 5-colorable.




ONE MORE QUESTION

The Four color theorem )
Planar graphs are 4-colorable. ]

The Four color theorem) <

The edges of every 2-edge-connected cubic planar graph can be colored with 3
colors (i.e. partitioned into 3 perfect matchings).

Theorem (Thomassen 1993))

Locally planar graphs are 5-colorable.

Question (Robertson 1992))

Is it true that the edges of every 2-edge-connected cubic locally planar graph
can be colored with 3 colors (i.e. partitioned into 3 perfect matchings)?
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BoNUS: LIST-COLORING OF PLANAR GRAPHS

Theorem (Thomassen 1995))

If G is planar, and any vertex is given an arbitrary list of 5 colors, then G has
a coloring in which each vertex receives a color from its list.

f_(Stronger version (for the induction))

If G is planar, and vertices have arbitrary lists of size
o 1 for two adjacent vertices of the outerface

@ 3 for the other vertices of the outerface

@ 5 for the remaining vertices
then G has a coloring in which each vertex receives a color from its list.

.




	Main Talk

