COLORING GRAPHS ON SURFACES

Louis Esperet

CNRS, Laboratoire G-SCOP, Grenoble, France

EPIT 2016 May 11, 2016

Francis Guthrie (1852)

Is it possible to color the regions of every map with 4 colors, such that adjacent regions receive different colors?

Francis Guthrie (1852)

Is it possible to color the regions of every map with 4 colors, such that adjacent regions receive different colors?

1879: proof of Kempe

Francis Guthrie (1852)

Is it possible to color the regions of every map with 4 colors, such that adjacent regions receive different colors?

1879: proof of Kempe

1890 : Kempe's proof is incorrect (Heawood)

Francis Guthrie (1852)

Is it possible to color the regions of every map with 4 colors, such that adjacent regions receive different colors?

1879: proof of Kempe

1890 : Kempe's proof is incorrect (Heawood)

1977: computer-assisted proof by Appel and Haken

Francis Guthrie (1852)

Is it possible to color the regions of every map with 4 colors, such that adjacent regions receive different colors?

1879: proof of Kempe

1890 : Kempe's proof is incorrect (Heawood)

1977 : computer-assisted proof by Appel and Haken

1997: Robertson, Seymour and Thomas simplify the proof

Francis Guthrie (1852)

Is it possible to color the regions of every map with 4 colors, such that adjacent regions receive different colors?

1879: proof of Kempe

1890 : Kempe's proof is incorrect (Heawood)

1977 : computer-assisted proof by Appel and Haken

1997: Robertson, Seymour and Thomas simplify the proof

2005 : the proof is verified by Gonthier using Coq (a formal proof management system).

A *k*-coloring of a graph G = (V, E) is a function $c : V \to \{1, ..., k\}$ such that for any pair u, v of adjacent vertices in G, $c(u) \neq c(v)$.

A *k*-coloring of a graph G = (V, E) is a function $c : V \to \{1, ..., k\}$ such that for any pair u, v of adjacent vertices in G, $c(u) \neq c(v)$.

The chromatic number of G, denoted by $\chi(G)$, is the least k such that G has a k-coloring.

A *k*-coloring of a graph G = (V, E) is a function $c : V \to \{1, ..., k\}$ such that for any pair u, v of adjacent vertices in G, $c(u) \neq c(v)$.

The chromatic number of G, denoted by $\chi(G)$, is the least k such that G has a k-coloring.

Some results:

A *k*-coloring of a graph G = (V, E) is a function $c : V \to \{1, ..., k\}$ such that for any pair u, v of adjacent vertices in G, $c(u) \neq c(v)$.

The chromatic number of G, denoted by $\chi(G)$, is the least k such that G has a k-coloring.

Some results:

• $\chi(G) \leq 2$ if and only if G has no odd cycle.

A *k*-coloring of a graph G = (V, E) is a function $c : V \to \{1, ..., k\}$ such that for any pair u, v of adjacent vertices in G, $c(u) \neq c(v)$.

The chromatic number of G, denoted by $\chi(G)$, is the least k such that G has a k-coloring.

Some results:

- $\chi(G) \leq 2$ if and only if G has no odd cycle.
- Determining whether $\chi(G) \leq 3$ is an NP-complete problem (even if G is planar).

A *k*-coloring of a graph G = (V, E) is a function $c : V \to \{1, ..., k\}$ such that for any pair u, v of adjacent vertices in G, $c(u) \neq c(v)$.

The chromatic number of G, denoted by $\chi(G)$, is the least k such that G has a k-coloring.

Some results:

- $\chi(G) \leq 2$ if and only if G has no odd cycle.
- Determining whether $\chi(G) \leq 3$ is an NP-complete problem (even if G is planar).
- For every planar graph G, $\chi(G) \leq 4$.

The Four color theorem

Planar graphs are 4-colorable.

The Four color theorem

Planar graphs are 4-colorable.

The Four color theorem

The edges of every 2-edge-connected cubic planar graph can be colored with 3 colors (i.e. partitioned into 3 perfect matchings).

Theorem (Folklore)

Planar graphs are 6-colorable.

Theorem (Folklore)

Planar graphs are 6-colorable.

Euler's formula. If G is a connected planar graph, with N vertices, M edges, and F faces, then N-M+F=2.

Theorem (Folklore)

Planar graphs are 6-colorable.

Euler's formula. If G is a connected planar graph, with N vertices, M edges, and F faces, then N-M+F=2.

Assume that each vertex v has weight w(v) = d(v) - 6 and each face f has weight $w(f) = 2d(f) - 6 \ge 0$.

Theorem (Folklore)

Planar graphs are 6-colorable.

Euler's formula. If G is a connected planar graph, with N vertices, M edges, and F faces, then N-M+F=2.

Assume that each vertex v has weight w(v) = d(v) - 6 and each face f has weight $w(f) = 2d(f) - 6 \ge 0$.

The total weight is (2M - 6N) + (4M - 6F) = -6(N - M + F) = -12.

Theorem (Folklore)

Planar graphs are 6-colorable.

Euler's formula. If G is a connected planar graph, with N vertices, M edges, and F faces, then N-M+F=2.

Assume that each vertex v has weight w(v) = d(v) - 6 and each face f has weight $w(f) = 2d(f) - 6 \ge 0$.

The total weight is (2M - 6N) + (4M - 6F) = -6(N - M + F) = -12.

As a consequence, any planar graph contains a vertex of degree at most 5.

DISCHARGING

Theorem (Folklore)

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5 adjacent to a vertex of degree at most 6.

DISCHARGING

Theorem (Folklore)

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5 adjacent to a vertex of degree at most 6.

Proof. We can assume that the graph is a planar triangulation.

DISCHARGING

Theorem (Folklore)

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5 adjacent to a vertex of degree at most 6.

Proof. We can assume that the graph is a planar triangulation.

Assume for the sake of contradiction that the minimum degree is 5, and all the neighbors of a vertex of degree 5 have degree at least 7.

Theorem (Folklore)

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5 adjacent to a vertex of degree at most 6.

Proof. We can assume that the graph is a planar triangulation.

Assume for the sake of contradiction that the minimum degree is 5, and all the neighbors of a vertex of degree 5 have degree at least 7.

Give each vertex v a weight w(v) = d(v) - 6. (The total weight is still ≤ -12).

Theorem (Folklore)

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5 adjacent to a vertex of degree at most 6.

Proof. We can assume that the graph is a planar triangulation.

Assume for the sake of contradiction that the minimum degree is 5, and all the neighbors of a vertex of degree 5 have degree at least 7.

Give each vertex v a weight w(v) = d(v) - 6. (The total weight is still ≤ -12).

Theorem (Folklore)

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5 adjacent to a vertex of degree at most 6.

Proof. We can assume that the graph is a planar triangulation.

Assume for the sake of contradiction that the minimum degree is 5, and all the neighbors of a vertex of degree 5 have degree at least 7.

Give each vertex v a weight w(v) = d(v) - 6. (The total weight is still ≤ -12).

Theorem (Folklore)

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5 adjacent to a vertex of degree at most 6.

Proof. We can assume that the graph is a planar triangulation.

Assume for the sake of contradiction that the minimum degree is 5, and all the neighbors of a vertex of degree 5 have degree at least 7.

Give each vertex v a weight w(v) = d(v) - 6. (The total weight is still ≤ -12).

Theorem (Folklore)

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5 adjacent to a vertex of degree at most 6.

Proof. We can assume that the graph is a planar triangulation.

Assume for the sake of contradiction that the minimum degree is 5, and all the neighbors of a vertex of degree 5 have degree at least 7.

Give each vertex v a weight w(v) = d(v) - 6. (The total weight is still ≤ -12).

Theorem (Folklore)

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5 adjacent to a vertex of degree at most 6.

Proof. We can assume that the graph is a planar triangulation.

Assume for the sake of contradiction that the minimum degree is 5, and all the neighbors of a vertex of degree 5 have degree at least 7.

Give each vertex v a weight w(v) = d(v) - 6. (The total weight is still ≤ -12).

Theorem (Folklore)

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5 adjacent to a vertex of degree at most 6.

Proof. We can assume that the graph is a planar triangulation.

Assume for the sake of contradiction that the minimum degree is 5, and all the neighbors of a vertex of degree 5 have degree at least 7.

Give each vertex v a weight w(v) = d(v) - 6. (The total weight is still ≤ -12).

Each vertex of degree ≥ 7 gives 1/5 to each neighbor of degree 5

A vertex of degree $d \geq 7$ starts with d-6 and gives at most $\frac{d}{2} \cdot \frac{1}{5}$

Theorem (Folklore)

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5 adjacent to a vertex of degree at most 6.

Proof. We can assume that the graph is a planar triangulation.

Assume for the sake of contradiction that the minimum degree is 5, and all the neighbors of a vertex of degree 5 have degree at least 7.

Give each vertex v a weight w(v) = d(v) - 6. (The total weight is still ≤ -12).

Each vertex of degree ≥ 7 gives 1/5 to each neighbor of degree 5

A vertex of degree $d \geq 7$ starts with d-6 and gives at most $\frac{d}{2} \cdot \frac{1}{5}$

Its final charge is at least $d - 6 - \frac{d}{2} \cdot \frac{1}{5} \ge 0$

Theorem (Heawood 1890)

If G is embedded in a surface of Euler genus g > 0, then

$$\chi(G) \leq \frac{1}{2}(7+\sqrt{1+24g}).$$

Theorem (Heawood 1890)

If G is embedded in a surface of Euler genus g > 0, then

$$\chi(G) \leq \frac{1}{2}(7+\sqrt{1+24g}).$$

Proof. We can assume without loss of generality that G is cellularly embedded in Σ , and all faces have degree at least 3.

Theorem (Heawood 1890)

If G is embedded in a surface of Euler genus g > 0, then

$$\chi(G) \leq \frac{1}{2}(7+\sqrt{1+24g}).$$

Proof. We can assume without loss of generality that G is cellularly embedded in Σ , and all faces have degree at least 3.

Again, Euler's formula implies that $\sum_{\nu} (d(\nu) - 6) \le 6g - 12$.

Theorem (Heawood 1890)

If G is embedded in a surface of Euler genus g > 0, then

$$\chi(G) \leq \frac{1}{2}(7+\sqrt{1+24g}).$$

Proof. We can assume without loss of generality that G is cellularly embedded in Σ , and all faces have degree at least 3.

Again, Euler's formula implies that $\sum_{v} (d(v) - 6) \le 6g - 12$.

Let δ be the minimum degree of a vertex of G.

Theorem (Heawood 1890)

If G is embedded in a surface of Euler genus g > 0, then

$$\chi(G) \leq \frac{1}{2}(7+\sqrt{1+24g}).$$

Proof. We can assume without loss of generality that G is cellularly embedded in Σ , and all faces have degree at least 3.

Again, Euler's formula implies that $\sum_{v} (d(v) - 6) \le 6g - 12$.

Let δ be the minimum degree of a vertex of G.

Then $\delta \le 6 + (6g - 12)/N \le 6 + (6g - 12)/(\delta + 1)$ (since $N \ge \delta + 1$).

Theorem (Heawood 1890)

If G is embedded in a surface of Euler genus g > 0, then

$$\chi(G) \leq \frac{1}{2}(7+\sqrt{1+24g}).$$

Proof. We can assume without loss of generality that G is cellularly embedded in Σ , and all faces have degree at least 3.

Again, Euler's formula implies that $\sum_{v} (d(v) - 6) \le 6g - 12$.

Let δ be the minimum degree of a vertex of G.

Then $\delta \le 6 + (6g - 12)/N \le 6 + (6g - 12)/(\delta + 1)$ (since $N \ge \delta + 1$). Equivalently, $\delta(\delta + 1) \le 6(\delta + 1) + 6g - 12$.

Theorem (Heawood 1890)

If G is embedded in a surface of Euler genus g > 0, then

$$\chi(G) \leq \frac{1}{2}(7+\sqrt{1+24g}).$$

Proof. We can assume without loss of generality that G is cellularly embedded in Σ , and all faces have degree at least 3.

Again, Euler's formula implies that $\sum_{v} (d(v) - 6) \le 6g - 12$.

Let δ be the minimum degree of a vertex of G.

Then $\delta \leq 6 + (6g-12)/N \leq 6 + (6g-12)/(\delta+1)$ (since $N \geq \delta+1$).

Equivalently, $\delta(\delta+1) \leq 6(\delta+1) + 6g - 12$.

As a consequence, $\delta \leq \frac{1}{2}(5 + \sqrt{1 + 24g})$.

Theorem (Heawood 1890)

If G is embedded in a surface of Euler genus g>0, then

$$\chi(G) \leq \frac{1}{2}(7+\sqrt{1+24g}).$$

Theorem (Ringel and Youngs 1968)

For any surface Σ of Euler genus g, except the Klein bottle, the complete graph on $\lfloor \frac{1}{2}(7+\sqrt{1+24g}) \rfloor$ can be embedded in Σ .

Theorem (Heawood 1890)

If G is embedded in a surface of Euler genus g > 0, then

$$\chi(G) \leq \frac{1}{2}(7 + \sqrt{1 + 24g}).$$

Theorem (Ringel and Youngs 1968)

For any surface Σ of Euler genus g, except the Klein bottle, the complete graph on $\lfloor \frac{1}{2}(7+\sqrt{1+24g}) \rfloor$ can be embedded in Σ .

For the Klein bottle, Heawood's formula gives a bound of 7, whereas it can be proved that every graph embedded on the Klein bottle has chromatic number at most 6 (and this is best possible, since K_6 vertices can be embedded in this surface).

A graph embedded on some surface of Euler genus g is locally planar if it has large edge-width (= minimum length of a non-contractible cycle) compared to g.

A graph embedded on some surface of Euler genus g is locally planar if it has large edge-width (= minimum length of a non-contractible cycle) compared to g.

Theorem (Thomassen 1993)

Locally planar graphs are 5-colorable.

A graph embedded on some surface of Euler genus g is locally planar if it has large edge-width (= minimum length of a non-contractible cycle) compared to g.

Theorem (Thomassen 1993)

Locally planar graphs are 5-colorable.

Fisk (1978). If G is a triangulation of a surface such that all the vertices except 2 have even degree, and the 2 vertices of odd degree are adjacent, then $\chi(G) \ge 5$.

A graph embedded on some surface of Euler genus g is locally planar if it has large edge-width (= minimum length of a non-contractible cycle) compared to g.

Theorem (Thomassen 1993)

Locally planar graphs are 5-colorable.

Fisk (1978). If G is a triangulation of a surface such that all the vertices except 2 have even degree, and the 2 vertices of odd degree are adjacent, then $\chi(G) \ge 5$.

Theorem (Hutchinson 1995)

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_g with edge-width at least 2^{3g+5} , such that all faces have even size, then G is 3-colorable.

Youngs (1996). Any non-bipartite quadrangulation G of the projective plane satisfies $\chi(G)=4$.

Theorem (Hutchinson 1995)

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_g with edge-width at least 2^{3g+5} , such that all faces have even size, then G is 3-colorable.

G quadrangulation with edge-width at least 2^{3g+5} .

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_g with edge-width at least 2^{3g+5} , such that all faces have even size, then G is 3-colorable.

G quadrangulation with edge-width at least 2^{3g+5} .

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_g with edge-width at least 2^{3g+5} , such that all faces have even size, then G is 3-colorable.

G quadrangulation with edge-width at least 2^{3g+5} .

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_g with edge-width at least 2^{3g+5} , such that all faces have even size, then G is 3-colorable.

G quadrangulation with edge-width at least 2^{3g+5} .

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_g with edge-width at least 2^{3g+5} , such that all faces have even size, then G is 3-colorable.

G quadrangulation with edge-width at least 2^{3g+5} .

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_g with edge-width at least 2^{3g+5} , such that all faces have even size, then G is 3-colorable.

G quadrangulation with edge-width at least 2^{3g+5} .

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_g with edge-width at least 2^{3g+5} , such that all faces have even size, then G is 3-colorable.

G quadrangulation with edge-width at least 2^{3g+5} .

Theorem (Hutchinson 1995)

Theorem (Hutchinson 1995)

Theorem (Hutchinson 1995)

Theorem (Hutchinson 1995)

Theorem (Hutchinson 1995)

SOME CONSEQUENCES

Lemma (Folklore)

Assume that some property \mathcal{P} holds for locally planar graphs. Then there is a function f such that for any graph of Euler genus g, at most f(g) vertices can be removed so that the resulting graph satisfies property \mathcal{P} .

SOME CONSEQUENCES

Lemma (Folklore)

Assume that some property \mathcal{P} holds for locally planar graphs. Then there is a function f such that for any graph of Euler genus g, at most f(g) vertices can be removed so that the resulting graph satisfies property \mathcal{P} .

As a consequence of the result of Thomassen, in any graph embedded on some surface of bounded Euler genus, a constant number of vertices can be removed so that the resulting graph is 5-colorable.

SOME CONSEQUENCES

Lemma (Folklore)

Assume that some property \mathcal{P} holds for locally planar graphs. Then there is a function f such that for any graph of Euler genus g, at most f(g) vertices can be removed so that the resulting graph satisfies property \mathcal{P} .

As a consequence of the result of Thomassen, in any graph embedded on some surface of bounded Euler genus, a constant number of vertices can be removed so that the resulting graph is 5-colorable.

Problem (Albertson 1981)

Is there a function f, such that any graph embedded on a surface of Euler genus g can be made 4-colorable by removing at most f(g) vertices?

The Four color theorem

Planar graphs are 4-colorable.

The Four color theorem

Planar graphs are 4-colorable.

The Four color theorem

The edges of every 2-edge-connected cubic planar graph can be colored with 3 colors (i.e. partitioned into 3 perfect matchings).

The Four color theorem

Planar graphs are 4-colorable.

The Four color theorem

The edges of every 2-edge-connected cubic planar graph can be colored with 3 colors (i.e. partitioned into 3 perfect matchings).

Theorem (Thomassen 1993)

Locally planar graphs are 5-colorable.

The Four color theorem

Planar graphs are 4-colorable.

The Four color theorem

The edges of every 2-edge-connected cubic planar graph can be colored with 3 colors (i.e. partitioned into 3 perfect matchings).

Theorem (Thomassen 1993)

Locally planar graphs are 5-colorable.

Question (Robertson 1992)

Is it true that the edges of every 2-edge-connected cubic locally planar graph can be colored with 3 colors (i.e. partitioned into 3 perfect matchings)?

BONUS: LIST-COLORING OF PLANAR GRAPHS

Theorem (Thomassen 1995)

If G is planar, and any vertex is given an arbitrary list of 5 colors, then G has a coloring in which each vertex receives a color from its list.

Bonus: List-coloring of Planar Graphs

Theorem (Thomassen 1995)

If G is planar, and any vertex is given an arbitrary list of 5 colors, then G has a coloring in which each vertex receives a color from its list.

Stronger version (for the induction)

If G is planar, and vertices have arbitrary lists of size

- 1 for two adjacent vertices of the outerface
- 3 for the other vertices of the outerface
- 5 for the remaining vertices

then G has a coloring in which each vertex receives a color from its list.