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Foreword and introduction

Introduction

This is an introduction to some tools from computational topology of
graphs on surfaces.

Chapters 1 and 2 serve as topological preliminaries for this spring school.
The first chapter introduces planar graphs from the topological and com-
binatorial point of view. Then, we consider graphs on surfaces (planar
graphs being an important special case). In Chapter 2, we introduce sur-
faces from the topological point of view.

Chapter 3 and 4 present basic concepts and algorithms in the field of
topological algorithms for graphs on surfaces. In Chapter 3, we present
algorithms using the cut locus to build short curves and decompositions of
surfaces. In Chapter 4, we introduce two important topological concepts,
homotopy and the universal cover, and describe an algorithm to decide
whether a curve can be continuously deformed to a point on a surface.

The course will continue with applications of the aforementioned algo-
rithms, presented using slides and thus not decribed in these notes:

� an algorithm to compute shortest curves up to homotopy [10];
� an efficient minimum cut algorithm for graphs on a fixed surface [6];
� depending on the time remaining, an algorithm to solve the mini-
mum multicut problem for graphs on a fixed surface with a bounded
number of terminals [9].

This document is mostly taken from more complete course notes available
at www.di.ens.fr/~colin/cours/all-algo-embedded-graphs.pdf.

Date of this version: May 4, 2016.

Each exercise is labeled with one to three stars, supposed to be an indica-
tion of its importance (in particular, depending on whether the result or
technique is used later), not of its difficulty.

Only a part of the material covered in this course appeared in textbooks.
For further reading or different expositions, mostly on the topological as-
pects, recommended books are Mohar and Thomassen [32], Armstrong [1],
and Stillwell [37]. For more examples on recent algorithms for topologi-
cal problems on graphs on surfaces, see [8]. For a wider perspective in
computational topology, see the recent course notes by Erickson [17].

Acknowledgments

I would like to thank several people who suggested some corrections in
previous versions: Jeff Erickson, Francis Lazarus, Arthur Milchior, and
Vincent Pilaud.

2

www.di.ens.fr/~colin/cours/all-algo-embedded-graphs.pdf


GRAPHS ON SURFACES: TOPOLOGICAL ALGORITHMS 1. Basic properties of planar graphs

Chapter 1

Basic properties of planar
graphs

1.1 Topology

1.1.1 Preliminaries on topology

We assume some familiarity with basic topology, but we recall some defi-
nitions nonetheless.

A topological space is a set X with a collection of subsets of X, called
open sets, satisfying the three following axioms:

� the empty set and X are open;
� any union of open sets is open;
� any finite intersection of open sets is open.

There is, in particular, no notion of metric (or distance, angle, area) in a
topological space. The open sets give merely an information of neighbor-
hood : a neighborhood of x ∈ X is a set containing an open set contain-
ing x. This is already a lot of information, allowing to define continuity,
homeomorphisms, connectivity, boundary, isolated points, dimension. . . .
Specifically, a map f : X → Y is continuous if the inverse image of any
open set by f is an open set. If X and Y are two topological spaces, a map
f : X → Y is a homeomorphism if it is continuous, bijective, and if its
inverse f−1 is also continuous. A point of detail, ruling out pathological
spaces: the topological spaces considered in these notes are assumed to be

Figure 1.1. The stereographic projection.

Hausdorff, which means that two distinct points have disjoint neighbor-
hoods.

Example 1.1. Most of the topological spaces here are endowed with a
natural metric, which should be “forgotten”, but define the topology:

� Rn (n ≥ 1);
� the n-dimensional sphere Sn, i.e., the set of unit vectors of Rn+1;
� the n-dimensional ball Bn, i.e., the set of vectors in Rn of norm at
most 1; in particular B1 = [−1, 1] and [0, 1] are homeomorphic;

� the set of lines in R2, or more generally the Grassmannian, the set
of k-dimensional vector spaces in Rn.

Exercise 1.2 (stereographic projection). 99 Prove that the plane is
homeomorphic to S2 with an arbitrary point removed. (Indication: see
Figure 1.1.)

A closed set in X is the complement of an open set. The closure of
a subset of X is the (unique) smallest closed set containing it. The in-
terior of a subset of X is the (unique) largest open set contained in it.
The boundary of a subset of X equals its closure minus its interior. A
topological space X is compact if any set of open sets whose union is X
admits a finite subset whose union is still X.
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A path in X is a continuous map p : [0, 1] → X; its endpoints are p(0)
and p(1). Its relative interior is the image by p of the open interval (0, 1).
A path is simple if it is one-to-one. A space X is connected1 if it is non-
empty and, for any points a and b in X, there exists a path in X whose
endpoints are a and b. The connected components of a topological
space X are the classes of the equivalence relation on X defined by: a
is equivalent to b if there exists a path between a and b. A topological
space X is disconnected (or separated) by Y ⊆ X if and only if X \ Y
is not connected; points in different connected components of X \ Y are
separated by Y .

1.1.2 Graphs and embeddings

We will use standard terminology for graphs. Unless noted otherwise, all
graphs are undirected and finite but may have loops and multiple edges.
A circuit in a graph G is a closed walk without repeated vertices.2

A graph yields naturally a topological space:
� for each edge e, let Xe be a topological space homeomorphic to [0, 1];
let X be the disjoint union of the Xe;

� for e, e′, identify (quotient topology), in X, endpoints of Xe and Xe′

if these endpoints correspond to the same vertex in G.

An embedding ofG in the plane R2 is a continuous one-to-one map fromG
(viewed as a topological space) to R2. Said differently, it is a “crossing-free
drawing” of G on R2, being the data of two maps:

� ΓV , which associates to each vertex of G a point of R2;
� ΓE , which associates to each edge e of G a path in R2 between the
images by ΓV of the endpoints of e,

in such a way that:
� the map ΓV is one-to-one (two distinct vertices are sent to distinct
points of R2);

1In this course, the only type of connectivity considered is path connectivity.
2This is often called a cycle; however, in the context of these notes, this word is also

used to mean a homology cycle, so it seems preferable to avoid overloading it.

� for each edge e, the relative interior of ΓE(e) is one-to-one (the image
of an edge is a simple path, except possibly at its endpoints);

� for all distinct edges e and e′, the relative interiors of ΓE(e) and
ΓE(e′) are disjoint (two edges cannot cross);

� for each edge e and for each vertex v, the relative interior of ΓE(e)
does not meet ΓV (v) (no edge passes through a vertex).

We can actually replace R2 above with any topological space Y and talk
about an embedding of a graph in Y .

When we speak of embedded graphs, we sometimes implicitly identify the
graph, its embedding, and the image of its embedding.

1.1.3 Planar graphs and the Jordan curve theorem

In the remaining part of this chapter, we only consider embeddings of
graphs into the sphere S2 or the plane R2.

A graph is planar if it admits an embedding into the plane. By Ex-
ercise 1.2, this is equivalent to the existence of an embedding into the
sphere S2.
The faces of a graph embedding are the connected components of the
complement of the image of the vertices and edges of the graph.

Here are the most-often used results in the area.

Theorem 1.3 (Jordan curve theorem, reformulated; see [39]). Let G be
a graph embedded on S2 (or R2). Then G disconnects S2 if and only if it
contains a circuit.

Theorem 1.4 (Jordan–Schönflies theorem; see [39]). Let f : S1 → S2 be
a one-to-one continuous map. Then S2 \ f(S1) is homeomorphic to two
disjoint copies of the open disk.

These results are, perhaps surprisingly, difficult to prove: the difficulty
comes from the generality of the hypotheses (only continuity is required).
For example, if in the Jordan curve theorem one assumes that G is em-
bedded in the plane with polygonal edges, the theorem is not hard to
prove.
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A graph, embedded in S2, is cellularly embedded if its faces are (homeo-
morphic to) open disks. Henceforth, we only consider cellular embeddings.
It turns out that a graph embedded on the sphere is cellularly embedded
if and only if it is connected.3

1.2 Combinatorics

So far, we have considered curves and graph embeddings in the plane that
are rather general.

1.2.1 Combinatorial maps for planar graph embeddings

We now focus on the combinatorial properties of cellular graph embeddings
in the sphere. Since we are not interested in the geometric properties, and
since each face is homeomorphic to a disk, it suffices to specify how the
faces are “glued together”, or alternatively the cyclic order of the edges
around a vertex. Embeddings of graphs on the plane are treated similarly:
just choose a distinguished face of the embedding into S2, representing the
“infinite” face of the embedding in the plane.

An algorithmically sound way of representing combinatorially a cellular
graph embedding in S2 is via combinatorial maps. The combinatorial
map associated to a cellular graph embedding G is the set of closed walks
in G, obtained from walking around the boundary of each face of G. (In
general, these walks may repeat edges and/or vertices). This information is
enough to “reconstruct” the sphere combinatorially, by taking the abstract
graph and attaching a disk to each facial walk.

However, in terms of data structures, these facial walks are not very easy
to manipulate, so we now present a more elaborated data structure that
contains the same information but is more convenient.

3Although this statement should be intuitively clear, it is not so obvious to prove. It
may help to use the results of Chapter 2, especially the fact that every face of a graph
embedding is a surface with boundary.

fivi

ei

Figure 1.2. The flags are represented as line segments parallel to the edges;
there are four flags per edge. The involutions vi, ei, and fi on the thick flag are
also shown.

The basic notion is the flag , which represents an incidence between a ver-
tex, an edge, and a face of the embedding. Three involutions allow to move
to a nearby flag, and, by iterating, to visit the whole graph embedding;
see Figure 1.2:

� vi moves to the flag with the same edge-face incidence, but with a
different vertex incidence;

� ei moves to the flag with the same vertex-face incidence, but with a
different edge incidence;

� fi moves to the flag with the same vertex-edge incidence, but with a
different face incidence.

Example 1.5. Figure 1.3, left, presents code to compute the degree of
a vertex, i.e., the number of vertex-edge incidences of this vertex. The
function takes as input a flag incident with that vertex. Note that a loop
incident with the vertex makes a contribution of two to the degree. Dually,
on the right, code to compute the degree of a face (the number of edge-face
incidences of this face) is shown.

Note that a flag is not necessarily uniquely defined by its triple (vertex,
edge, and face), as shows the example of a graph with a single vertex and
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int vertex_degree(Flag fl) {
int j=0;
Flag fl2=fl;
do {

++j;
fl2=fl2->ei()->fi();

} while (fl2!=fl);
return j;

}

int face_degree(Flag fl) {
int j=0;
Flag fl2=fl;
do {

++j;
fl2=fl2->ei()->vi();

} while (fl2!=fl);
return j;

}

Figure 1.3. C++ code for degree computation.

a single (loop) edge.

The complexity of a graph G = (V,E) is |V |+ |E|. The complexity of
a cellular graph embedding is the total number of flags involved, which is
linear in the number of edges (every edge bears four flags), and also in the
number of vertices, edges, and faces. Therefore the complexity of a graph
cellularly embedded in the plane and of one of its embeddings are linearly
related.

The data structure indicated above allows to “navigate” throughout the
data structure, but does not store vertices, edges, and faces explicitly. In
many cases, however, it is necessary to have one data structure (“object”)
per vertex, edge, or face. For example:

� if one has to be able to check in constant time whether an edge is
a loop (incident twice to the same vertex), the data structure given
above is not sufficient. On the other hand, if every flag has a pointer
to the incident vertex, then testing whether an edge is a loop can be
done by testing the equality of two pointers in constant time;

� in coloring problems, one need to store colors on the vertices of the
graph. Such information can be stored in the data structure used for
each vertex.

For such purposes, each flag can have a pointer to the underlying vertex,
edge, and face (called respectively vu, eu, fu). Each such vertex, edge,
or face contains no information on the incident elements, only informa-
tion needed in the algorithms. If needed, one may similarly put some in-
formation in the vertex-edge, edge-face, vertex-face, and vertex-edge-face

Figure 1.4. Duality.

incidences. Maintaining such informations, however, comes with a cost,
which is not always desirable. For example, assume we want to be able
to remove one edge incident to two different faces in constant time. If we
keep the information fu, this must take time proportional to the smaller
degree of the two faces (since the two faces are merged, the fu pointer has
to be updated at least on one side of the edge). If we only keep vu, say,
then such an update is not needed, and this edge removal can be done in
constant time.

1.2.2 Duality and Euler’s formula

A dual graph of a cellular graph embedding G = (V,E) on S2 is a graph
embedding G∗ defined as follows: put one vertex f∗ of G∗ in the interior
of each face f of G; for each edge e of G, create an edge e∗ in G∗ crossing e
and no other edge of G (if e separates faces f1 and f2, then e∗ connects
f∗1 and f∗2 ). See Figure 1.4.

A dual graph embedding is also cellular. The combinatorial map of the
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dual graph is unique. Actually, with the map representation, dualizing is
easy: simply replace fi with vi and vice-versa. This in particular proves
that duality is an involution: G∗∗ = G.

Exercise 1.6 (easy). 999 Every tree (acyclic connected graph) with
v vertices and e edges satisfies v − e = 1.

Lemma 1.7. Let G = (V,E) be a cellular graph embedding in S2, and let
G∗ = (F ∗, E∗) be its dual graph. Furthermore, let E′ ⊆ E.
Then (V,E′) is acyclic if and only if (F ∗, (E \ E′)∗) is connected. In
particular, (V,E′) is a spanning tree if and only if (F ∗, (E \ E′)∗) is a
spanning tree.

Proof. (V,E′) is acyclic if and only if S2 \ E′ is connected, by the Jordan
curve theorem 1.3. Furthermore, S2\E′ is connected if and only if (F ∗, (E\
E′)∗) is connected: Two points x and x′ in faces f and f ′ of G can be
connected by a path avoiding E′ and not entering any face other than f
and f ′ if and only if f and f ′ are adjacent by some edge not in E′, i.e. if
and only if f∗ and f ′∗ are adjacent in (F ∗, (E \ E′)∗).

Corollary 1.8 (Euler’s formula for cellular graph embeddings in S2). For
every cellular graph embedding in S2 with v vertices, e edges, and f faces,
we have v − e+ f = 2.

Hence this formula also holds for every embedding of a connected graph
in the plane.

Proof. Let T be the edge set of a spanning tree of G. The dual edges of its
complement, (E \ T )∗, is also a spanning tree. The number of edges of G
is e = |T |+ |(E \T )∗|, which, by Exercise 1.6, equals (v− 1) + (f − 1).

Exercise 1.9 (easy direction of Kuratowski’s theorem). 999 Show
that the complete graph with 5 vertices, K5, is not planar. Indication:
Use Euler’s formula and double-counting on the number of vertex-edge
and edge-face incidences. Also show that the bipartite graph K3,3 (with
6 vertices v1, v2, v3, w1, w2, w3 and 9 edges, connecting every possible pair
{vi, wj}) is not planar.

Figure 1.5. The barycentric subdivision of the part of the graph shown in
Figure 1.4.

1.3 Notes

For more information on basic topology, see for example Armstrong [1] or Henle [22];
see also Stillwell [37]. For more informations on planar graphs, see (the next two
chapters and) Mohar and Thomassen [32, Chapter 2].

There are many essentially equivalent ways of representing planar graph em-
beddings [14, 23]; the computational geometry library CGAL implements one
of them4. We will see later that (most of) these data structures generalize to
graphs embedded on surfaces. There are further generalizations to higher dimen-
sions [2, 28,29]; this is important especially in geometric modelling.

Eppstein provides many proofs of Euler’s formula5.

Exercise 1.9 shows that K5 and K3,3 are not planar. There is a converse state-
ment: Kuratowski’s theorem asserts that a graph G is planar if and only if it does
not contain K5 or K3,3 as a subdivision; in other words, if and only if one cannot

4http://www.cgal.org/Manual/3.4/doc_html/cgal_manual/HalfedgeDS/
Chapter_main.html.

5http://www.ics.uci.edu/~eppstein/junkyard/euler/.
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obtain K5 or K3,3 from G by removing edges and isolated vertices and replacing
every degree-two vertex and its two incident edges with a single edge [24,30,38].

Let G be a cellular embedding of a graph on S2. By overlaying G with its dual
graph G∗, we obtain a quadrangulation: a cellular embedding of a graph G+

where each face has degree four. See Figure 1.4. Every face of G+ is incident
with four vertices: one vertex vG of G, one vertex vG∗ of G∗, and two vertices
that are the intersection of an edge of G and an edge of G∗. If, within each
face, we connect vG with vG∗ , we obtain a triangulation, called the barycentric
subdivision of G (Figure 1.5). Each triangle in the barycentric subdivision
corresponds to a flag; its three neighbors are the flags reachable via the operations
vi, ei, and fi.

Chapter 2

Topology of surfaces

2.1 Definition and examples

A surface is a topological space in which each point has a neighborhood
homeomorphic to the unit open disk

{
(x, y) ∈ R2

∣∣ x2 + y2 < 1
}
. We only

consider compact surfaces in this chapter (and even later, unless specifically
noted).

Examples of surfaces are the sphere, the torus, and the double torus:
these are compact, connected, orientable (to be defined later) surfaces
with zero, one, and two handles, respectively (see Figure 2.1). The clas-
sification of surfaces (Theorem 2.5) asserts that two compact, connected,
and orientable surfaces are homeomorphic if and only if they have the same
number of “handles”.

Despite the figures, note that a surface is “abstract”: the only knowledge
we have of it is the neighborhoods of each point. A surface is not nec-
essarily embedded in R3. Actually, the non-orientable surfaces cannot be

Figure 2.1. A torus and a double-torus.
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a1

a9

a10

a1

a11

a12a8
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a10
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a11

a1

a7

a3 a4a2

a8

a7

a7
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a8
a10

a10

a9
a9

Figure 2.2. A polygonal schema of a graph embedded on a sphere (the graph
of the cube) is: a2a11ā1ā12, a3a7ā2ā8, a4ā5ā3a6, a1ā9ā4a10, a9ā11ā7a5, and
a12ā10ā6a8.

embedded in R3.

2.2 Surface (de)construction

2.2.1 Surface deconstruction

A graph embedded on a surface is cellularly embedded if all its faces
are topological disks. As in the case of the plane, we may consider the
combinatorial map of a graph cellularly embedded on a surface; the data
structures are identical. The dual graph is defined similarly.

The polygonal schema associated with a cellular graph embedding is
defined as follows: assign an arbitrary orientation to each edge; for each
face, record the cyclic list of edges around the face, with a bar if and only
if it appears in reverse orientation around the face. See Figure 2.2.

2.2.2 Surface construction

Conversely, the data of a polygonal schema allows to build up a surface
and the cellular graph embedding. More precisely, let S be a finite set of
symbols and let S̄ = {s̄ | s ∈ S}. Let R be a finite set of relations, each
relation being a non-empty word in the alphabet S ∪ S̄, so that for every

v

Figure 2.3. The “corners” incident to some vertex v can be ordered cyclically.

s ∈ S, the total number of occurrences of s plus the number of occurrences
of s̄ in R is exactly two.

For each relation of size n, build an n-gon; label its edges by the elements
of R, in order, the presence of a bar indicating the orientation of the edge
(see Figure 2.2). (Polygons with one or two sides are also allowed.) Now,
identify the “twin” edges of the polygons corresponding to the same symbol
in S, taking the orientation into account. (As a consequence, vertices get
identified, too.)

Lemma 2.1. The topological space obtained by the above process is a com-
pact surface.

Proof. Let X be the resulting topological space; X is certainly compact.
We have to show that every point of X has a neighborhood homeomorphic
to the unit disk. The only non-obvious case is that of a vertex v in X, that
is, a point corresponding to a vertex of some polygons. But it is not hard
to prove that a neighborhood of v is an umbrella: the “corners” (vertices)
of the polygons corresponding to v can be arranged into a cyclic order; see
Figure 2.3.

We admit the following converse:

Theorem 2.2 (Kerékjártó-Radó; see Thomassen [39] or Doyle and Moran [13]).
Any compact surface is homeomorphic to a surface obtained by the gluing
process above.

This amounts to saying that, on any compact surface, there exists a cellular
embedding of a graph. Equivalently, every surface can be triangulated.
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(a) (b)

Figure 2.4. (a) The orientations of these two faces (triangles) are compatible.
(b) Two non-compatible orientations of the faces. A surface is orientable if there
exist orientations of all faces that are compatible.

2.3 Classification of surfaces

2.3.1 Euler characteristic and orientability character

Let G be a graph cellularly embedded on a compact surface S . The Euler
characteristic of G equals v − e+ f , where v is the number of vertices,
e is the number of edges, and f is the number of faces of the graph.

Proposition 2.3. The Euler characteristic is a topological invariant:
it only depends on the surface S , not on the cellular embedding.

Sketch of proof. The Euler characteristic is easily seen to be invariant under
Euler operations. The result is then implied by the following claim: any
two cellular embeddings on a given surface can be transformed one into
the other via a finite sequence of Euler operations. Proving this is not very
difficult but requires some work; a key property is that one can assume both
embeddings to be piecewise linear with respect to a given triangulation of
the surface (using for example the method by Epstein [15, Appendix]).

G is orientable if the boundary of its faces can be oriented so that each
edge gets two opposite orientations by its incident faces (Figure 2.4). The
orientability character is a topological invariant as well; the same proof as
that of Proposition 2.3 works, but it can also be proven directly:

Exercise 2.4. 99 G is orientable if and only if no subset of S is a
Möbius strip.

2.3.2 Classification theorem

Theorem 2.5. Every compact, connected surface S is homeomorphic to a
surface given by the following polygonal schemata, called canonical (each
made of a single relation):

i. aā (the sphere; Euler characteristic 2, orientable);

ii. a1b1ā1b̄1 . . . agbgāg b̄g, for g ≥ 1 (Euler characteristic 2 − 2g, ori-
entable);

iii. a1a1 . . . agag, for g ≥ 1 (Euler characteristic 2− g, non-orientable).
Furthermore, the surfaces having these polygonal schemata are pairwise
non-homeomorphic. In particular, two connected surfaces are homeomor-
phic if and only if they have the same Euler characteristic and the same
orientability character.

In the above theorem, g is called the genus of the surface; by convention
g = 0 for the sphere. The orientable surface of genus g is obtained from
the sphere by cutting g disks and attaching g “handles” in place of them.
Similarly, the non-orientable surface of genus g is obtained from the sphere
by cutting g disks and attaching g Möbius strips (since a Möbius strip has
exactly one boundary component). See Figure 2.5. See also Figure 2.6 for
a representation of a double-torus in canonical form.

Proof. Let S be a compact, connected surface, and G be a graph em-
bedded on S (by Theorem 2.2). By iteratively removing edges incident
with different faces, we may assume that G has only one face.1 By iter-
atively contracting edges incident with different vertices, we may assume
that G has only one vertex and one face2 (unless this yields a sphere, so
the polygonal schema is aā — actually, we could say that the polygonal
schema made of the empty relation is a degenerate polygonal schema for
the sphere). The surface S cut along G is therefore a topological disk; we
use cut-and-paste operations on this polygonal schema to obtain a stan-
dard form.

1This amounts to removing all primal edges of a spanning tree in the dual graph.
2This amounts to contracting the edges of a spanning tree in the primal graph.
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Figure 2.5. Every compact, connected surface is obtained from a sphere by
removing disjoint disks and attaching handles (orientable case) or Möbius strips
(non-orientable case). However, the non-orientable surfaces are not embeddable
in R3.

(a) (b)

(c) (d)

d

c
b

ac

d b

a

a

a

b

c

c
d

d

b

a

b c

d

Figure 2.6. (a) A canonical polygonal schema of the double torus. (b) The
identification of the edges of the schema. (c) The actual graph embedded on the
double torus. (d) Closeup on the order of the loops around the basepoint of the
surface, as seen from below; it can be derived directly from (a).
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Q

a a

P

Q

a a

P

Q

ab b
P

b

Figure 2.7. The classification of surfaces: grouping the twin edges appearing
with the same orientation.

If the polygonal schema has the form aPaQ (where P and Q are possibly
empty sequences of symbols), then we can transform it into bbP̄Q (Fig-
ure 2.7)—Q̄ denotes the symbols of Q in reverse order, inverting also the
presence or absence of a bar above each letter. So inductively, we may
assume that each pair of symbols appearing in the polygonal schema with
the same orientation is made of two consecutive symbols. We still have
one face and one vertex.

Assume some edge appears twice in the polygonal schema with opposite
orientations: aP āQ. Then P and Q must share an edge b, because oth-
erwise the endpoints of a would not be identified on the surface. By the
preceding step, b must appear in opposite orientations in P and Q, so we
may assume that the polygonal schema has the form aPbQāRb̄S. Then, by
further cut-and-paste operations, we may transform the polygonal schema
into dcd̄c̄RQPS (Figure 2.8). We still have one face and one vertex, and
can iterate the process. After this stage, the polygonal schema is the
concatenation of blocks of the form aa and abāb̄.

If there are no blocks of the form aa, or no blocks of the form abāb̄, then we
are in form (ii) or (iii), respectively. Otherwise, onea part of the boundary
of the polygonal schema has the form aabcb̄c̄. We may transform it to
d̄c̄b̄d̄b̄c̄ (Figure 2.9), and, applying the method of Figure 2.7 to b, c, and d
in order, we obtain that we replaced the part of the boundary we considered
into eeffgg; the other part of the boundary is unchanged. So iterating,
we may convert the polygonal schema into form (iii).

The Euler characteristics and orientability characters of the surfaces are
readily computed, since the canonical polygonal schemata have exactly one

(a) (b) (c)

a a

(d) (e) (f)

P Q

RS

P Q

RS

P

S R

Q

PS RQ

RQPS

a a

b

b

a a

b

c

b

c

d

a
d

a a

c

b

a a

c

c

d

cc

Figure 2.8. The classification of surfaces: grouping pairs of twin edges appearing
with different orientations.
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c b
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d
b

c

d

Figure 2.9. The classification of surfaces: transforming one form into the other.

12



GRAPHS ON SURFACES: TOPOLOGICAL ALGORITHMS 2. Topology of surfaces

vertex and one face. Since two distinct canonical polygonal schemata do
not have the same Euler characteristic and the same orientability charac-
ter, they cannot be homeomorphic, by Proposition 2.3 and Exercise 2.4.

Example 2.6.
� The orientable surface with genus 1 is a torus; the orientable surface
with genus 2 is the double torus; and so on.

� The non-orientable surface with genus 1 is a projective plane ; with
genus 2 it is the Klein bottle .

Exercise 2.7. 99 Identify the surfaces with the following schemata:

1. aābb̄;

2. abab;

3. abab̄;

4. a1a2 . . . anā1ā2 . . . ān;

5. a1a2 . . . an−1anā1ā2 . . . ān−1an.

2.4 Surfaces with boundary

A surface (possibly) with boundary S is a topological space in which
each point has a neighborhood homeomorphic to the unit open disk {(x, y) ∈
R2 | x2+y2 < 1} or to the unit half disk {(x, y) ∈ R2 | x2+y2 < 1 and x ≥
0}.
The boundary of S , denoted by ∂S , comprise the points of this surface
that have no neighborhood homeomorphic to the unit disk. The interior
of S is the complementary part of its boundary.

A cellular embedding on a surface with boundary is defined as in the
case of surfaces without boundary. In particular, since each face must be
an open disk, the boundary of the surface must be the union of some edges
of the graph. The classification theorem (Theorem 2.5) can be extended for
surfaces with boundary: Given a surface with boundary S , we may attach
a disk to each of its boundary components, obtaining a surface without

boundary S̄ , and apply the previous classification theorem. Furthermore,
the number of boundary components is a topological invariant.

The Euler characteristic and the orientability character of a cellular em-
bedding on a surface with boundary S are defined as in the case of surfaces
without boundary; they are also topological invariants. The Euler charac-
teristic of S equals that of S̄ minus the number of boundary components
of S . So two surfaces with boundary S and S ′ are homeomorphic if and
only if they have the same Euler characteristic, orientability character, and
number of boundary components.

If we have a graph embedding G without isolated vertex on a surface S ,
then cutting S along G is a well-defined operation that yields a surface
with boundary, denoted by S \\G.3 This fact is not trivial, and follows
from the fact that every graph embedding on a surface S can be mapped
by a homeomorphism of S (actually, an isotopy) to a piecewise-linear
embedding with respect to a fixed triangulation of S , using, e.g., the
method by Epstein [15, Appendix].

2.5 Notes

The classification theorem is due to Brahana, Dehn, and Heegaard; the present
proof is inspired from Stillwell [37]. For another, more visual proof, see Francis
and Weeks [21].

The proofs of the classification theorem usually involve two steps, the first one
being topological (Theorem 2.2, Proposition 2.3, Exercise 2.4), the second one
being combinatorial. In the same vein, the Hauptvermutung (“main conjecture”)
says that any two embeddings of a graph on a surface are subdivisions of graph
embeddings that are combinatorially identical. This is true, but some higher-
dimensional analogs do not hold.

Let G and M be simple graphs (that is, without loops or multiple edges). M
is a minor of G if M can be obtained from G by iteratively contracting edges,
deleting edges, and deleting isolated vertices (at each step, the graph should be
made simple by removing loops and identifying multiple edges). Let S be a
fixed surface. Clearly, if G is embeddable on S , then every minor of G is also

3This notation is not standard (yet).

13



GRAPHS ON SURFACES: TOPOLOGICAL ALGORITHMS 3. Computing shortest graphs with cut loci

embeddable on S . Let F be the set of minor-minimal graphs not embeddable
on S ; thus G is embeddable on S if and only if no graph in F is a minor of G.
Kuratowski’s theorem asserts that G is planar if and only if it does not have K5

or K3,3 as a minor; in other words, if S is the sphere, the family F is finite. This
actually holds for every surface S ; however, no algorithm is known to enumerate
the family F .
More generally, this property is implied by a deep result by Robertson and Sey-
mour [36] (whose proof needed no less than 20 papers and several hundreds of
pages): In any infinite family of graphs, at least one is a minor of another.

Chapter 3

Computing shortest graphs
with cut loci

In this chapter, we describe algorithms to compute shortest curves and
graphs that “cut” a given surface into simpler pieces.

3.1 Combinatorial and cross-metric surfaces

We aim at computing “short” graphs and curves on surfaces. For this, we
need to define a metric on a surface that is both accurate in the applications
and simple enough so as to be handled algorithmically. We shall introduce
two ways of doing this, which are dual of each other. Depending on the
context, some results and algorithms are more easily described using one
setting or the other.

In this chapter, all surfaces are compact, connected, and orientable. They
do not have boundaries.

3.1.1 More types of curves

We already defined paths on surfaces; we need to introduce more types of
curves.

A loop ` is a path with the same endpoints; `(0) = `(1) is called the
basepoint of the loop. A path is simple if it is one-to-one. A loop
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is simple if its restriction to [0, 1) is one-to-one (of course, due to the
identified endpoints, it cannot be one-to-one on [0, 1]).

The concatenation of p and q, denoted by p · q, is the path defined by:
� (p · q)(t) = p(2t), if 0 ≤ t ≤ 1/2;
� (p · q)(t) = q(2t− 1), if 1/2 ≤ t ≤ 1.

A reparameterization of a path p is a path of the form p ◦ ϕ, where
ϕ : [0, 1]→ [0, 1] is bijective and increasing. If the paths are considered up
to reparameterization, the concatenation is associative. The inverse of a
path p, denoted by p̄, is the map t 7→ p(1− t).

3.1.2 Combinatorial surfaces

A combinatorial surface (S ,M) is the data of a surface S (possi-
bly with boundary), together with a cellular embedding M of a weighted
graph. The weights must be non-negative. In this model, the only allowed
curves are walks in M ; the length of a curve is the sum of the weights of
the edges traversed by the curve, counted with multiplicity.

3.1.3 Cross-metric surfaces

We will, however, use a dual formulation of this model, which allows to
define crossings between curves: this turns out to be helpful both for
stating the results and as intermediate steps. A cross-metric surface
(S ,M∗) is a surface S together with a cellular embedding of a weighted
graphM∗. We consider only regular paths on S , which intersect the edges
ofM∗ only transversely and away from the vertices. The length length(γ)
of a regular curve γ is defined to be the sum of the weights of the dual
edges that γ crosses, counted with multiplicity. To emphasize this usage,
we sometimes refer to the weight of a dual edge as its crossing weight.

To any combinatorial surface (S ,M) without boundary, we associate by
duality a cross-metric surface (S ,M∗), whereM∗ is (as notation suggests)
the dual graph of M . To any curve on a combinatorial surface, traversing
edges e1, . . . , ep, we can associate a curve in the corresponding cross-metric

surface, crossing edges e∗1, . . . , e∗p, and conversely. This transformation
preserves the lengths of the curves. So far, the notions of combinatorial
and of cross-metric surfaces (without boundary) are thus essentially the
same, up to duality. We can easily construct shortest paths on a cross-
metric surface by restating the usual algorithms (for example, Dijkstra’s
algorithm) on M in terms of the dual graph M∗.

3.1.4 Curves on cross-metric surfaces, algorithmically

We can represent an arbitrary set of possibly (self-)intersecting curves on a
cross-metric surface (S ,M∗) by maintaining the arrangement of M∗ and
of the curves, i.e., the combinatorial embedding associated with the union
of the curves (assuming this union forms a cellular embedding, which will
always be the case). Contrary to combinatorial surfaces, this data struc-
ture also encodes the crossings between curves. The initial arrangement
is just the graph M∗, without any additional curve. We embed each new
curve regularly : every crossing point of the new curve and the existing
arrangement, and every self-crossing of the new curve, creates a vertex of
degree four.

Whenever we split an edge e∗ of M∗ to insert a new curve, we give both
sub-edges the same crossing weight as e∗. Each segment of the curve
between two intersection points becomes a new edge, which is, unless noted
otherwise, assigned weight zero. However, it is sometimes desirable to
assign a non-zero weight to the edges of a curve. For example, the cross-
metric surface S \\α obtained by cutting S along an embedded curve α
can be represented simply by assigning infinite crossing weights to the
edges that comprise α, indicating that these edges cannot be crossed by
other curves.

3.1.5 Complexity

The complexity of a combinatorial surface (S ,M) is the total number of
vertices, edges, and faces ofM ; similarly, the complexity of a cross-metric
surface (S ,M∗) is the total number of vertices, edges, and faces of M∗.
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The complexity of a set of curves is the number of times it crosses edges
of M∗.

3.2 Cut loci

Let us fix the notations for the remaining part of this chapter. Unless
otherwise noted, (S ,M∗) is a cross-metric surface (connected, compact,
orientable, without boundary) of genus g and complexity n. Furthermore,
b is a point inside a face of M∗ and is the basepoint of all loops considered
in this chapter (we omit the precision that the basepoint is b in the sequel).

Let T be the shortest path tree from b to a point in each face of M∗.1

The cut locus C of (S ,M∗) with respect to b is the subgraph of M∗

obtained by removing all edges ofM∗ crossed by T . It is therefore a graph
embedded on S . See Figure 3.1.

Lemma 3.1. S \\C is a disk.

Proof. At some stage of the growth of the shortest path tree T , consider
the union of all open faces of M∗ visited by T , and of all edges of M∗

crossed by T . This is an open disk; at the end, it contains all faces of M∗,
and its complement is C. In particular, S \\C is a disk.

Intuitively, we are inflating a disk around b progressively, without allowing
self-intersections, until it occupies the whole surface; the cut locus C is the
set of points of the surface where the boundary of the disk touches itself.

Dijkstra’s algorithm implies that we can compute C in O(n log n) time.

Exercise 3.2 (Complexity of the reduced cut locus). 9 Let C ′ be the
graph obtained from the cut locus C ′ by repeatedly removing every degree-
one vertex, together with its incident edge, and replacing every degree-two

1Strictly speaking, the shortest path tree is not always unique: there may be several
shortest paths between two given points. However, uniqueness holds for generic choices
of the weights; in other words, it can be enforced using an arbitrarily small perturbation
of the lengths. By a slight abuse of language, we will therefore use the article “the” in
such cases, since it does not harm (and may help the reader) to think that unique-
ness holds. Nevertheless, no algorithm or result presented here requires uniqueness of
shortest paths.

b

Figure 3.1. The cut locus C of a double torus (in bold lines) and the remaining
edges of M∗ (in thin lines).

vertex v and its incident edges with an edge connecting the two neighbors
of v. Prove that C ′ has complexity O(g).

Given an edge e ∈ C, the loop σ(e) is defined as a loop with basepoint b
that follows the shortest path tree to go from its root b to a face incident
with e, crosses e, and goes back from the other face incident with e to the
root. This can be done so that all the loops σ(e) are simple and disjoint
(except, of course, at their basepoint b—we shall omit this triviality in the
sequel). See Figure 3.2.

Define the weight of an edge e of C to be the length of the corresponding
loop σ(e) (this is not the same as the crossing weight, defined for every
edge ofM∗!); these weights can be computed with no time overhead during
the cut locus computation.

3.3 Shortest non-contractible loop

A (possibly non-simple) loop is contractible if it can be continuously
deformed into a point.

Exercise 3.3. 999 Prove that, on a disk or a sphere, every loop is
contractible.
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b

Figure 3.2. The loops σ(e), for three edges e ∈ C.

Lemma 3.4. A simple loop is contractible if and only if it bounds a disk.

Proof. If a loop bounds a disk, it is certainly contractible. The proof of
the converse is more difficult, and we admit it.

Our goal now is to give an algorithm to compute the shortest non-contractible
loop.

3.3.1 3-path condition

A set L of loops satisfies the 3-path condition if, for any point a 6= b and
any three paths p, q, and r from b to a, if p · q̄ and q · r̄ belong to L, then
p · r̄ belongs to L.

Lemma 3.5. The set of contractible loops satisfies the 3-path condition.

Proof. If p · q̄ and q · r̄ are contractible, then so is their concatenation,
(p · q̄) · (q · r̄), which deforms continuously to p · r̄.

Lemma 3.6. Let L be a set of loops satisfying the 3-path condition. Some
shortest loop not in L crosses the cut locus C at most once.

Proof. See Figure 3.3 for an illustration of the proof. Let ` be a shortest
loop not in L; without loss of generality, we can choose ` such that it

r

p

q
a

b

Figure 3.3. Illustration of Lemma 3.6.

crosses C as few times as possible. Assume, for the sake of a contradiction,
that ` crosses C at least twice; let a be a point on ` not on M∗ between
its first and last crossing with C. This point a splits ` into two paths p
and q, both from b to a, and we have ` = p · q̄. Furthermore, let r be the
shortest path from b to a; this path does not cross C.

The 3-path condition applied to p, q, and r implies that p · r̄ or q · r̄ does
not belong to L. Both paths are no longer than ` = p · q̄ and cross C fewer
times than `, implying the desired contradiction.

3.3.2 Structural lemmas

Lemma 3.7. Some shortest non-contractible loop has the form σ(e).

Proof. Let ` be a shortest non-contractible loop. By Lemmas 3.5 and 3.6,
some shortest non-contractible loop crosses the cut locus at most once. On
the other hand, every non-contractible loop has to cross C at least once
(since S \\C is a disk). Hence some shortest non-contractible loop crosses
the cut locus exactly once, at some edge e. This loop deforms continuously
to σ(e), which cannot be longer. The result follows.

Lemma 3.8. Let e be an edge of C. Then σ(e) is contractible if and only
if some component of C − e is a tree.
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Proof. Assume first that one component of C − e is a tree. One can
them move σ(e) continuously over the tree to make it disjoint from C; the
resulting loop is contractible.

Conversely, if σ(e) is contractible, it bounds a disk D by Lemma 3.4. We
want to prove that the part of C inside D is a tree. But if it is not the
case, this part contains a circuit, which further bounds a disk D′ ⊂ D,
and therefore C cuts S into at least two pieces, one of which is D′; this
is impossible (Lemma 3.1).

3.3.3 Algorithm

Theorem 3.9. Finding a shortest non-contractible loop can be done in
O(n log n) time. The loop computed is simple.

Proof of Theorem 3.9. We first compute the cut locus C, and assign to
every edge e of C a weight that is the length of σ(e), in O(n log n) time.
We show how to eliminate the edges e such that at least one component
of C − e is a tree. This concludes, since it then suffices to select the
minimum-weight remaining edge of C (by Lemmas 3.7 and 3.8).

This graph pruning can be done in O(n) time: put all edges incident with
a degree-one vertex in a list. Then, while the list is non-empty, remove an
edge e from it; remove it from C (unless it was already removed); if one
or both of its endpoints have now degree one in C, put the corresponding
edge(s) in the list. Clearly, this removes only edges e such that no compo-
nent of C − e is a tree. All them must eventually be removed, because a
tree has a degree-one vertex (a leaf).

Corollary 3.10. Finding a shortest non-contractible loop without specified
basepoint can be done in O(n2 log n) time.

Proof. For every face of M∗, run the algorithm in Theorem 3.9 with the
basepoint in that face, and return the shortest loop.

3.4 Shortest non-separating loop

3.4.1 Types of simple loops

A simple loop ` is separating if S \\` is not connected. A simple con-
tractible loop bounds a disk, hence is separating; the converse is false. So
there are (essentially) three kinds of simple loops: contractible, separating
but not contractible, and non-separating. These three types are illustrated
in Figure 3.2.

Exercise 3.11. 9
1. Give an algorithm that determines whether a given simple loop is sep-

arating.

2. Give an algorithm that determines whether a given simple loop is con-
tractible. Indication: use Lemma 3.4.

Our present goal is to compute the shortest non-separating (simple) loop.
We need first to define the notion of homology boundary, which generalizes
the notion of separating loop to possibly non-simple loops. To anticipate,
we introduce a bit more technicalities than those needed for this sole pur-
pose.

3.4.2 Preliminaries on homology

We introduce 1-dimensional homology for graphs embedded on sur-
faces, over Z/2Z.
To simplify matters, we assume here (and in Section 3.5) that all curves
considered are drawn on a very dense graph G = (V,E) embedded on S ,
transversely to M∗.2 We consider chains: subsets of E. It is a natural

2This would not be needed if we introduced singular homology, but it seems prefer-
able to avoid doing so. The assumption above is actually not needed: we only require G
to be dense enough so that the loops σ(e) are disjoint walks on G and so that G contains
some shortest non-separating loop (or some shortest system of loops, in Section 3.5).
The existence of such a graph G is clear, and it is never used in the algorithms, only in
proofs, so its complexity does not matter.
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Z/2Z-vector space: the addition of two subsets of E is the symmetric dif-
ference, multiplication by 0 gives the empty subset of E, and multiplication
by 1 is the identity.

A chain E′ ⊆ E is a homology cycle if every vertex of V is incident with
an even number of edges of E′. A chain E′ ⊆ E is a homology boundary
if the faces of G can be colored black and white so that E′ is the set of edges
of E with exactly one black and one white incident face. Equivalently, if
we consider the “dual” graph of (V,E′), which has one vertex inside each
face of (V,E′) and one edge crossing each edge of (V,E′), then E′ is a
homology boundary if and only if this dual graph is bipartite.

Exercise 3.12. 999
1. Prove that the set of homology cycles (resp. homology boundaries)

forms a vector space, and that every homology boundary is a homology
cycle.

2. Assume S is a sphere. Prove that every homology cycle is a homology
boundary.

Lemma 3.13. A simple loop ` in G disconnects S if and only if its edge
set forms a homology boundary.

Proof. Let E′ be the set of edges of `. Either the graph (V,E′) has one
face, in which case the only boundary is the empty set, or it has two faces,
in which case coloring one face in black and the other one in white yields
a non-zero boundary formed by the edge set of `.

So the notion of homology boundary extends the notion of being separat-
ing.

As shown in Exercise 3.12, the set of homology boundaries, B, is included
in the set of homology cycles, Z. The reverse inclusion does not hold in
general. Homology measures the “difference” between Z and B; formally, it
is Z/B, the Z/2Z-vector space that is the quotient of the two Z/2Z-vector
spaces Z and B.

Given a loop ` in G, its mod 2 image is the set of edges of G used an
odd number of times by `. (We sometimes identify a loop with its mod 2
image.)

b

σ(v)

σ(u)

σ(u)

σ(v)

u

v

w

w

u

v

Figure 3.4. A view of the disk S \\C, whose polygonal schema is uvww̄ūv̄. The
loops σ(u) and σ(v) are cut into two paths connecting the basepoint to twin
points.

3.4.3 Algorithm

We prove here:

Theorem 3.14. Finding a shortest loop that is not a homology bound-
ary can be done in O(n log n) time. The loop computed is simple, and is
(therefore) also a shortest simple non-separating loop.

Corollary 3.15. Finding a shortest loop without specified basepoint that
is not a homology boundary (or a shortest simple non-separating closed
curve) can be done in O(n2 log n) time.

Lemma 3.16. A subset A of the edges of C disconnects C if and only if
the set of loops σ(A) disconnects S .

Proof. We may certainly assume A 6= ∅. Let D be the disk S \\C; the
basepoint b belongs to the interior of D. Each loop σ(e) in σ(A) corre-
sponds, in D, to two paths from b to the boundary of D, connecting twins
of e. See Figure 3.4.
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Therefore, if we let τ(e) be the intersection of e with σ(e), any path in
S \ σ(A) continuously retracts to a path in C \ τ(A), without moving
the endpoints if they already belong to C. This implies that S \ σ(A) is
connected if and only if C \ τ(A) is connected; this is in turn equivalent
to having C −A connected.

Proof of Theorem 3.14. The general strategy is very similar to the proof
of Theorem 3.9. The set of all loops in G whose mod 2 images are ho-
mology boundaries satisfies the 3-path condition. Hence, by Lemma 3.6,
some shortest loop in G whose mod 2 image is not a homology boundary
crosses the cut locus at most once, hence exactly once, at some edge e, by
Exercise 3.12. A slight extension of that exercise implies that σ(e) is in
the same homology class, and it is no longer. Hence some shortest loop
whose mod 2 image is not a homology boundary has the form σ(e).

In particular, it is simple, and is therefore a non-separating loop (Lemma 3.13).
It must be a shortest non-separating loop in G because every separating
loop is a homology boundary. It is therefore a shortest non-separating
loop, because we can (retroactively) assume that G contains some short-
est non-separating loop.

By Lemma 3.16, we are thus looking for a minimum-weight edge e of C
such that C − e is connected; such edges are called non-bridge edges.
By Lemma 3.17 below, we can determine all non-bridge edges in linear
time. Alternatively, note that any minimum-weight edge not in a maxi-
mum spanning tree of C is such an edge.

Lemma 3.17. Let G be a graph of complexity n. One can in O(n) time
determine all the bridge edges of G.

Proof. Run a depth-first search on the graph G, starting from an arbitrary
root vertex. Recall that this partitions the edges of G into link edges,
which belong to the rooted search tree T , and back edges, which connect
a vertex v with an ascendent of v in T . Clearly, no back edge is a bridge.
A link edge e with endpoints u and v, where u is visited before v, is a
non-bridge edge if and only if there exists a back edge from a descendent
of v (maybe v itself) to an ascendent of u (maybe u itself). The algorithm
will consider each back edge (uv) in turn and mark as non-bridge the edges

on the path from u to v in T ; the remaining edges are exactly the bridge
edges.

To achieve this in linear time, take all back edges (x1, y1), . . . , (xk, yk)
(where yk is an ascendent of xk), ordered such that y1, . . . , yk are discovered
in this order during the depth-first search (such an ordering can easily be
found in O(n) time). Starting from x1, and walking towards the root
of T , mark every edge as being a non-bridge edge until reaching y1. Start
from x2, and walk towards the root of the tree, marking every edge as non-
bridge, until either reaching y2 or reaching an edge e that is already marked
as non-bridge. If the latter possibility occurs, y1 must be an ancester of y2
in T by the choice of the ordering, so all edges between e and y2 must
be already marked. Continue similarly with the other back edges. This
process clearly takes linear time in total.

3.5 Shortest system of loops

In this section, we describe an algorithm to compute a shortest topological
decomposition of the surface. Namely, a system of loops L is a set of
simple loops meeting pairwise only at their common basepoint b, such
that S \\L is a disk (refer to Figure 2.6(c) for an example). We give an
algorithm to compute the shortest system of loops of a given surface.

3.5.1 Algorithm

Define a homology basis of loops to be a set of loops whose homology
classes (of their mod 2 images) form a basis of the homology vector space.
There exist homology bases of loops:

Exercise 3.18. 999 Prove that every homology cycle is the mod 2
image of a loop.

Recall that a system of loops L is a set of simple loops meeting pairwise
only at their common basepoint, such that S \\L is a disk. Denote by [`]
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the homology class of a loop `, and by [L] the set of homology classes of a
set of loops L.

Lemma 3.19. Some shortest homology basis is made of loops of the form
σ(e). In particular, the loops in that basis are simple and disjoint.

Proof. Let ` be a loop in the shortest homology basis. Let e1, . . . , ek be
the edges of the cut locus crossed by `. Then it is not too hard, using
Exercise 3.12(2), to prove that [`] = [σ(e1)] + . . .+ [σ(ek)].

In particular, ` crosses at least one edge of the cut locus. Furthermore,
since [`] is linearly independent from the homology classes of the other
loops in the basis, one of the [σ(ei)] must be linearly independent from
the homology classes of the other loops in the basis. Replacing ` with
σ(ei) still yields a homology basis, which is no longer than the original
one because σ(ei) is a shortest loop with basepoint b among the loops that
cross ei, and ` indeed crosses ei. Iterating, we obtain that some shortest
homology basis is made of loops of the form σ(e).

Exercise 3.20. 999 Let L be a set of simple, disjoint loops in G.
Prove that L disconnects S if and only if the homology classes of the
loops in L are linearly dependent.

Theorem 3.21. We can compute a a shortest homology basis of loops in
O(gn + n log n) time. Furthermore, there are 2g loops, each of the form
σ(e).

Proof. By Lemma 3.19, computing a shortest homology basis of loops
boils down to computing a shortest inclusionwise maximal set of loops
σ(e1), . . . , σ(ek) with linearly independent homology classes, or, equiva-
lently, that does not disconnect S (Exercise 3.20). This is equivalent to
computing an inclusionwise maximal set S of edges of C such that C − S
is connected, with minimal sum of weights (Lemma 3.16). This precisely
means computing the complement of a maximum-weight spanning tree
of C.

Recall that C is cellularly embedded on S with one face (Lemma 3.1).
Therefore, by Euler’s formula, the number of vertices, v, and edges, e, of C
satisfy v− e = 2− 2g− 1 = 1− 2g. A spanning tree always contains v− 1

edges (Lemma 1.6), so the complement of a spanning tree of C has exactly
2g edges; we conclude that there are 2g loops in L.

Computing the cut locus C takes O(n log n) time. A maximum spanning
tree can be computed in O(n log n) time using any textbook algorithm.
The actual loops may each have O(n) size, and there are 2g of these.

Proposition 3.22. The shortest homology basis of loops L computed in
Theorem 3.21 is actually a shortest system of loops.

Proof. Every system of loops is made of 2g loops by Euler’s formula. The
homology classes of a system of loops are linearly independent (Exer-
cise 3.20), and there are 2g of these, so they form a basis. So any system of
loops is a homology basis. It therefore suffices to prove that L is a system
of loops.

L is a set of 2g simple, disjoint loops that does not disconnect S . Cutting
along it yields a (connected) surface of Euler characteristic 1 (because
cutting along the first loop keeps the Euler characteristic unchanged and
cutting along each subsequent loop increases it by one), hence a disk.

3.6 Notes

3.6.1 Discrete vs. continuous setting

Most of the combinatorial and cross-metric surface model is taken from Colin
de Verdière and Erickson [10]. Several tools of this section were described in
a combinatorial setting for simplicity of exposition, but they have well-studied
continuous counterparts.

In general, the cut locus of a point x in a metric space S is the set of points in S
for which there exist at least two distinct shortest paths to x. It is closely related
to the notion of the medial axis of a compact set K ⊂ S: it is the set of points
of S \ K whose distance to K is realized by at least two points of K. If K is
finite, the medial axis contains in particular the Voronoi diagram of K.

The main topological property of a cut locus we have used (in Lemmas 3.8
and 3.16) can be stated as follows for a surface with boundary: for any sub-
set A of the edges of C, S \ σ(A) deformation retracts to C −A. In particular,
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they have the same number of connected components, and one of the components
of S \ σ(A) is a disk if and only if the corresponding component of C − A (is
connected and) contains no non-contractible loop, i.e., is a tree.

As mentioned earlier, homology can be defined in a continuous setting (singular
homology), which vastly generalizes the ad-hoc route we took. Let S be any
topological space. Let ∆n be the n-dimensional simplex. The set of n-chains Cn

is the vector space (say over Z/2Z, but this generalizes to arbitrary fields, and
even rings) generated by all continuous maps ∆n → S. There is a boundary
operator ∂n taking Cn to Cn−1: the boundary of ∆n → S is a sum of n+ 1 maps
∆n−1 → S, one for each face of ∆n. One checks the important property that
∂n−1◦∂n = 0, so Im ∂n ⊆ Ker ∂n−1. The set of homology cycles is Zn := Ker ∂n−1

and the set of homology boundaries is Bn := Im ∂n. These vector spaces have
infinite dimension (except in trivial cases), but their quotient Hn := Zn/Bn,
the homology vector space, is usually of finite dimension; it is non-trivial to prove
that, under reasonable conditions, H1 is isomorphic to the homology vector space
as introduced in Section 3.4.2.

3.6.2 Algorithms

Erickson and Har-Peled [18] gave the first algorithms to compute the shortest
non-contractible or non-separating loop, relying on the idea of “wavefront propa-
gation”. The method presented here is different; the idea of considering the edges
of the cut locus is borrowed from Erickson and Whittlesey [19]. The 3-path
condition is a variation on Mohar and Thomassen [32, p. 110].

If the genus is small, then our O(n2 log n) algorithm is not very efficient; af-
ter successive improvements [4, 25], the best algorithm up to date has running-
time O(g3n log n) [3]. In contrast, computing the shortest separating but non-
contractible simple loop (without specified basepoint) is NP-hard [5].

Erickson andWhittlesey [19] described the algorithm of Section 3.5; the algorithm
was further generalized, and the proof was simplified, by Colin de Verdière [7],
which was in turn simplified by Erickson [16].

Note that there are systems of loops whose polygonal schema is not in canonical
form (for example abcdāb̄c̄d̄). The shortest system of loops is not necessarily in
canonical form. There is an O(gn) time algorithm to compute a system of loops
in canonical form [26, 40], but computing the shortest such system is likely to
be NP-hard. There are other kinds of topological decompositions of surfaces,
such as pants decompositions: sets of disjoint simple closed curves that cut the

surface into spheres with three boundary components. The status of computing
the shortest pants decomposition is open [35].
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Chapter 4

Testing homotopy via the
universal cover

In this chapter, we introduce two important tools related to surfaces. The
notion of homotopy captures the intuitive notion of deformation. The
universal cover of a surface provides a way to compute paths restricted to
a given homotopy class, i.e., up to deformation.

In this section, S is a compact, connected, orientable surface, although
the definition would apply to almost arbitrary topological spaces.

4.1 Homotopy

4.1.1 Definition

Two paths p and q on S , having both u and v as endpoints, are homo-
topic if there exists a continuous family of paths whose endpoints are u
and v between p and q. More formally, a homotopy between p and q is
a continuous map h : [0, 1]× [0, 1]→ S such that h(0, ·) = p, h(1, ·) = q,
h(·, 0) = u, and h(·, 1) = v. This definition applies in particular to the
case of loops (u = v).

4.1.2 Fundamental group

Let b be a point of S . The relation “is homotopic to” partitions the
set of loops with basepoint b into homotopy classes. Let us denote by
[[`]] the homotopy class of a loop `. The set of homotopy classes can be
equipped with the law “·” defined by [[`]] · [[`′]] = [[` · `′]], and, with this law,
the set of homotopy classes of loops with basepoint b is a group, called the
fundamental group of (S , b) and denoted by π1(S , b) or more concisely
π1(S ), whose unit element is the class of contractible loops.

In particular, the fundamental group of the disk or the sphere is trivial:
two paths having the same endpoints are homotopic. The fundamental
group of the annulus is Z (the homotopy class of a loop is the same as the
signed number of times it “winds around the hole”), and the fundamental
group of the torus is Z2.

4.2 Universal cover

Informally, the universal cover S̃ of a surface S is a surface S̃ which
“locally looks like S ”, but is “much larger than S ”: it is not compact
(except in trivial cases) and every point in S generally corresponds (“lifts”)
to infinitely many points in S̃ ; two paths are homotopic in S if and only
if these paths can be lifted to paths which have the same endpoints in S̃ .
The universal cover is thus a tool to compute homotopy.

4.2.1 Examples

Let S be the annulus depicted on Figure 4.1(a). If this annulus is cut along
the dashed line segment, we obtain a rectangle; if we glue together infinitely
many copies of this rectangle, we obtain an “infinite strip”, depicted on
Figure 4.1(b), which will be denoted by S̃ . There is a natural “projection”
π from S̃ onto S , such that a path in S can be lifted to a path (in
fact, infinitely many paths) in S̃ . We see that two paths p and p′ are
homotopic in S if two lifts of p and p′ starting at the same point of S̃
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(a) (b)

Figure 4.1. (a): An annulus S and two loops with the same basepoint (in
black). (b): Its universal cover S̃ , with lifts of these loops. The vertices of S̃
in black are the lifts of the basepoint.

(c)(b)(a)

a

b

a

b

Figure 4.2. (a): A torus. (b): A polygonal schema of the torus. (c): The
universal cover of the torus.

have the same targets. The two loops represented on the figure are not
homotopic, because one of them is contractible (its lifts in S̃ are loops),
and the other one is non-contractible (its lifts are not closed).

The same kind of figure can be drawn for the torus (Figure 4.2(a)). If this
torus S is viewed as a polygonal schema in canonical form (Figure 4.2(b)),
a square whose opposite sides will be identified to obtain S , its universal
cover consists of infinitely many copies of this copy organized in a grid-like
fashion: hence, it is the plane (Figure 4.2(c)).

4.2.2 Definition and properties

Precisely, a universal cover of a connected surface S is the data of a
pair (S̃ , π), where:

� S̃ is a (possibly non-compact) surface which is simply connected,
i.e., every loop in S̃ is contractible;

� π is a continuous map from S̃ onto S , called projection, which is
a local homeomorphism: any point x of S has an open, connected
neighborhood U such that π−1(U) is a disjoint union of open sets
(Ui)i∈I and π|Ui : Ui → U is a homeomorphism.

Every connected surface (possibly with boundary) has a universal cover
(we will provide constructions in the following sections). On the other
hand, two universal covers are isomorphic (that is, there is a homeomor-
phism between them that “projects” to the identity map). This allows to
speak without ambiguity of the universal cover of a surface S .

A lift of a path p is a path p̃ in S̃ such that π ◦ p̃ = p.

The main properties of (S̃ , π) that we will use are:
� the lift property : let p be a path in S whose source is y; let x ∈
π−1(y). Then there exists a unique path p̃ in S̃ , whose source is x,
such that π ◦ p̃ = p;

� the homotopy property : two paths p1 and p2 with the same endpoints
are homotopic in S if and only if they have two lifts p̃1 and p̃2 sharing
the same endpoints in S̃ ;

� the intersection property : a path p in S self-intersects if and only if
either a lift of p self-intersects, or two lifts of p intersect.

4.2.3 General construction for surfaces without boundary

Let S be an orientable surface without boundary, with genus g. If g = 0,
S is the sphere, and the universal cover is S itself, as every loop in S is
contractible. If g = 1, S is the torus, and the universal cover is described
in Figure 4.2. We now explain how to build the universal cover of S ,
assuming g ≥ 2.
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Figure 4.3. Two views of the universal cover of the double torus (images taken
from http://topologygeometry.blogspot.fr/2010/06/notes-from-062310.
html).

S has a polygonal schema of the form a1b1ā1b̄1 . . . agbgāg b̄g; namely, a
4g-gon with sides identified by pairs. Moreover, the unique vertex of the
corresponding graph on S has a single vertex, of degree 4g. By analogy
with the case g = 1, the universal cover of S can be built by gluing
together 4g-gons in the plane in a way that each vertex has degree 4g,
see Figure 4.3 for an example for g = 2. Of course the 4g-gons become
quickly distorted, but there is no obstruction in designing this construction
combinatorially by induction as follows (see Figure 4.4).

For each positive integer i, let Ci be the circle centered at the origin with
radius i. We place 4g points on the first circle C1, whose interior forms
the first 4g-gon. Now, each vertex of C1 must have degree 4g, so needs to
be connected with 4g − 2 new vertices, which we place on C2. Each arc
between consecutive vertices on C2 is now subdivided with the appropriate
number of vertices (4g− 2 or 4g− 3) so that each face between C1 and C2

is a 4g-gon. Now, each vertex on C2 is linked to 4g−2 new vertices on C3.
And so on.

Moreover, if we choose the labels of the sides of the initial polygon as pre-
scribed by the polygonal schema a1b1ā1b̄1 . . ., one sees that, by induction,

Figure 4.4. The combinatorial construction of the universal cover of the double
torus.

one can label the edges of the polygons in a way consistent with the polyg-
onal schema. This defines the projection from our space to S . We have
thus built the universal cover of S .

4.3 Testing homotopy

The contractibility problem is defined as follows: Given a loop ` in a
graph G cellularly embedded on a surface with genus g, determine whether
` is contractible. This is an instance of the word problem in combinatorial
group theory (given a group specified in terms of generators and relations,
and a word in the generators and their inverses, decide whether the element
represented by the word is the unit element).

Deciding whether ` is contractible can be done in time linear in the input
size (namely, the complexity of G and the number of edges of `) [12,20,27].
We provide a simpler algorithm with worse running time, but still linear
if the genus g is fixed. We start with a special case.

Lemma 4.1. If G is a system of loops, then one can determine whether
a loop ` with k edges is contractible in time O(k poly(g)).
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The proof is essentially an argument due to Dehn [11] more than one
century ago. In the proof below, we make no attempt to optimize the
dependence on g, because more complicated linear-time algorithms exist.

Proof. The case g = 0 is obvious, as every loop is contractible. The case
g = 1 is easy; as can be seen from the universal cover of the torus, if G is
made of two loops a and b, then ` is contractible if the algebraic numbers
of occurrences of both a and b in ` are zero. So we now assume g ≥ 2.

If ` has a spur, an edge of G used twice consecutively in opposite directions,
we can remove that spur. Removing iteratively all spurs takes O(k) time;
so we can assume that ` has no spur.

Assume that ` is contractible but not reduced to a single point. We claim
that a subpath of ` consists of strictly more than half of the facial walk
of G. To see this, look at a lift ˜̀ of ` in the universal cover, defined as
above. Let Ck be the outermost circle used by ˜̀, and let ˜̀′ be a maximal
subpath of ˜̀on Ck. Since ` has no spur, ˜̀′ is made of at least 4g−2 edges
on Ck, because ˜̀ arrives and leaves Ck by an edge going to Ck−1. Thus
the first 4g−2 > 2g edges of ˜̀′ project to a subpath of ` that is more than
half of the facial walk of G. This proves the claim.

Accordingly, here is the algorithm to test contractibility. While some sub-
path of ` consists of strictly more than half of the facial walk of G, we
replace that subpath with the complementary part of the facial walk of G;
this strictly decreases the length of ` and does not change its homotopy
class. When no such subpath exists, the loop ` is contractible if and only
if it is reduced to a single vertex.

Encoding ` with the word of the oriented edges used by `, finding an
appropriate subpath of ` boils down to combinatorial pattern matching.
Each time we find an appropriate subpath, we replace it with the comple-
mentary part, decreasing the length of `. We need to go back along ` by
O(g) edges, because the replacement may have created a new appropriate
subpath starting O(g) edges earlier. So each step either moves forward
along `, or decreases its length and goes back by O(g) edges. Each such
step takes poly(g) time, and there are at most k steps.

More generally:

Theorem 4.2. Let ` be a loop with k edges in a graph G with complexity n
cellularly embedded on a surface with genus g. In O(n + k) poly(g) time,
we can determine whether ` is contractible.

Proof. We iteratively contract edges of G until we get a single vertex,
removing the occurrences of the corresponding edges in `. Each time we
have a face with degree one, we remove the incident edge in G, and all its
occurrences in ` (since the face is a disk, the edge is contractible). Each
time we have a face with degree two, we remove one of the two incident
edges in G, and replace every occurrence of that edge in ` with the other
edge incident to the face.

Euler’s formula with double counting now implies that G has O(g) edges.
We choose a subset of edges that form a system of loops G′, as in the
beginning of the proof of Theorem 2.5. Each edge not in G′ used by `
can be replaced with a homotopic subpath of O(g) edges in G′. The new
loop ` has O(gk) edges. We have thus reduced the problem to the case
where G is a system of loops, for which we can apply Lemma 4.1.

4.4 Notes

Homotopy is a very natural and “geometric” notion (compared with homology, for
example). However, homology has more algebraic structure and is therefore more
tractable. Homotopy problems are generally hard: determining whether a loop
is contractible is undecidable in innocent-looking spaces such as two-dimensional
simplicial complexes and four-dimensional manifolds. The case of manifolds of
dimension three is related to the Poincaré conjecture, solved only recently [33,34].

Massey [31, Chapter 5] contains details on the construction of the universal cover
of more general topological spaces. The description of the universal cover for
surfaces without boundary is also described by Stillwell [37, Sect. 6.1.3].

The aforementioned algorithms [20, 27] provide linear-time algorithms not only
for the contractibility problem, but also for the free homotopy problem (corre-
sponding, in group theory, to the conjugacy problem): Given two loops `1 and `2,
can one transform one into the other by a free homotopy, a deformation that al-
lows moving the basepoint during the deformation?
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