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Abstract
Fault-tolerant distributed algorithms play an important role in many
critical/high-availability applications. These algorithms are notori-
ously difficult to implement correctly, due to asynchronous com-
munication and the occurrence of faults, such as the network drop-
ping messages or computers crashing.

We introduce PSYNC, a domain specific language based on the
Heard-Of model, which views asynchronous faulty systems as syn-
chronous ones with an adversarial environment that simulates asyn-
chrony and faults by dropping messages. We define a runtime sys-
tem for PSYNC that efficiently executes on asynchronous networks.
We formalize the relation between the runtime system and PSYNC
in terms of observational refinement. The high-level lockstep ab-
straction introduced by PSYNC simplifies the design and imple-
mentation of fault-tolerant distributed algorithms and enables auto-
mated formal verification.

We have implemented an embedding of PSYNC in the SCALA
programming language with a runtime system for asynchronous
networks. We show the applicability of PSYNC by implementing
several important fault-tolerant distributed algorithms and we com-
pare the implementation of consensus algorithms in PSYNC against
implementations in other languages in terms of code size, runtime
efficiency, and verification.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Verification

Keywords Fault-tolerant distributed algorithms, Round model,
Partially synchrony, Automated verification, Consensus

1. Introduction
The need for highly available data storage systems and for higher
processing power has led to the development of distributed systems.
A distributed system is a set of independent nodes in a network, that
communicate and synchronize via message passing, giving the illu-
sion of acting as a single system. The difficulty in designing these
systems comes from the network unreliability and the host failures:
messages can be dropped and nodes can crash. The processes have
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only a limited view over the entire system and they must coordinate
to achieve global goals.

A general mechanism for implementing a fault-tolerant service
is replication: the application is copied on different replicas which
are kept consistent. Clients send requests to a replica running the
service, the service communicates with the other nodes to maintain
a consistent state of the global system, and replies to the clients.
Consistency is maintained by solving consensus problems. Each
process has an initial value, and all processes have to agree on a
unique decision value among the initial ones. Therefore all repli-
cas return the same value when queried for the attribute of an
object. Consensus algorithms have received a lot of attention in
academia and industry, because they are at the core of most high-
availability systems, but are difficult to design and implement. Be-
cause consensus is not solvable in asynchronous networks in the
presence of faults [38], a large number of algorithms have been de-
veloped [19, 34, 47, 50, 56, 62], each of them solving consensus
under different assumptions on the type of faults, and the degree of
synchrony of the system. Moreover, many other problems in dis-
tributed systems can be reduced to consensus, e.g., atomic broad-
cast. Noteworthy examples of applications from industry that use
consensus algorithms include the Chubby lock service [16], which
uses the Paxos [50] consensus algorithm, and Apache Zookeeper
which has a dedicated algorithm [47] for primary-backup replica-
tion.

In this paper we unify the modeling, programming, and verifica-
tion of fault-tolerant distributed algorithms with a domain specific
language, called PSYNC, that

• has a high-level, round-based, control structure that helps the
programmer focus on the algorithmic questions rather than
spending time fiddling with low-level network and timer code;
• compiles into working, efficient systems that preserve the im-

portant user-defined properties of high-level algorithms;
• is amenable to automated verification.

Despite the importance of fault-tolerant algorithms, no widely
accepted programming model has emerged for these systems. The
algorithms are often published with English descriptions, or, in
the best case, pseudo-code. Moreover, fault-tolerant algorithms are
rarely implemented as published, but modified to fit the constraints
and requirements of the system in which they are incorporated [20].
General purpose programming languages lack the primitives to im-
plement these algorithms in a simple way. A developer is forced to
choose between low-level libraries, e.g., POSIX, to write network
and timer code, or high-level abstractions, like supervision trees,
that come with their own limitations. The first approach leads to
programs with a very complex control structure that hides the al-
gorithm’s principles. The latter may not work because the abstrac-
tion’s assumptions do not fit the system’s requirements.



The complexity of fault-tolerant implementations makes them
prone to error so they are prime candidates for automated verifi-
cation. Their complexity is twofold: (1) the algorithms these im-
plementations are based on, have an intricate data-flow and (2) the
implementations have complex concurrent control structures, e.g.,
an unbounded number of replicas communicate via event-handlers,
and complex data structures, e.g., unbounded buffers. Although
fault-tolerant algorithms are at the core of critical applications,
there are no automated verification techniques that can deal with
the complexity of an implementation of an algorithm like Paxos.

The standard programming paradigm for implementing fault-
tolerant distributed algorithms requires reasoning about asynchrony
and faults separately. Programming languages provide only asyn-
chronous communication primitives. A fundamental result on dis-
tributed algorithms [38] shows that it is impossible to reach con-
sensus in asynchronous systems where at least one process might
crash. Therefore the algorithms that solve consensus make net-
work assumptions finer than asynchrony, i.e., they need to reason
about time explicitly. In order to reconcile the modeling of var-
ious network assumptions, the distributed algorithms community
introduced computational models that uniformly model uniformly
asynchrony and faults using an adversarial environment that drops
messages [23, 40]. We take a programming language perspective
on this matter and propose a domain specific language, PSYNC,
that offers the programmer the illusion of synchrony, uses the ad-
versarial environment to reason about faults and asynchrony, and
efficiently executes on asynchronous networks.

High-level computational model. PSYNC is based on the Heard-
Of model [23], which structures algorithms in communication-
closed rounds [35]. A PSYNC program is defined by a sequence
of rounds, and has a lockstep semantics where all the processes
execute the same round. Each round consists of two consecutive
operations: (1) a send method for sending messages and (2) an
update method that updates the local state according to the mes-
sages received during the round. A round is communication-closed
if all the messages are either delivered in the round they are sent or
dropped. Communication-closed rounds provide a clear scope for
the messages and the associated computations.

In the HO-model, a distributed system is a set of processes to-
gether with an adversarial environment, where the environment de-
termines the set of messages received in a round. Each process has a
Heard-Of set, denoted HO, which is a variable over sets of process
identities exclusively under the control of the environment. HO-
sets abstract the asynchronous and faulty behaviors of the network.
In a given round, process p receives a message from process q if
q sends a message to p and q ∈ HO(p). The network’s degree of
synchrony and the type of faults correspond to assumptions on how
the environment assigns the HO-sets.

The round structure together with the HO-sets define an abstract
notion of time. Using communication-closed rounds, PSYNC intro-
duces a high-level control structure that allows the programmer to
focus on the data computation performed by each process to en-
sure progress towards solving the considered problem, as opposed
to spending time on the programming language constructs, e.g., in-
crementing message counters, and setting timers.

Runtime. We define a runtime that executes PSYNC programs
on top of asynchronous faulty networks. The runtime defines an
asynchronous semantics for PSYNC programs.

The main challenge in deriving asynchronous code from a
PSYNC program is defining a procedure that decides when to go
to the next round while allowing sufficiently many messages to be
delivered. Our approached is based on timeouts: during an execu-
tion a process, after sending the messages for a round, accumulates
messages for a duration specified by a timeout before calling the

update method and moving to the next round. The timeout is a pa-
rameter that influences performance and can be fine-tuned to take
advantage of the network and the algorithm specificity.

We have implemented PSYNC as an embedding in Scala.
PSYNC programs link against a runtime system that manages the
interface with the network and the resources used by the PSYNC
program. The code runs on top of an event-driven framework for
asynchronous network applications, uses UDP to transmit data, in
a context where processes may permanently crash.

We show that for any PSYNC program P the asynchronous
executions of P generated by the runtime are indistinguishable
from the lockstep executions of P . Indistinguishability is a relation
between executions which roughly says that no process can locally
distinguish between them. Intuitively, this relation is important
because it is not possible to solve a problem that requires different
answers for executions which are indistinguishable from the local
perspective of processes.

Using indistinguishability we show that the asynchronous sys-
tem defined by the runtime of a program P observationally refines
the lockstep system defined by P , that is every behavior of a client
that uses the runtime can be reproduced if the client uses P instead,
provided that the client operations that are not calls to P are com-
mutative. This result makes it possible for developers to program
using the lockstep semantics while the actual semantics is asyn-
chronous.

Verification. Due to the complexity distributed systems have
reached, we believe it is no longer realistic nor efficient to assume
that high level specifications can be proved when development and
verification are two disconnected steps in the software production
process. PSYNC provides a simple round structure whose lockstep
semantics leads to a smaller number of interleavings and simpler
inductive characterizations of the set of reachable states. We have
identified a large class of specifications such that if a PSYNC pro-
gram satisfies the specification under the lockstep semantics, then
its asynchronous semantics defined by the runtime satisfies the
specification as well.

We have implemented a state-based verification engine for
PSYNC, that checks safety and liveness properties. The engine
assumes that the program is annotated with inductive invariants
and ranking functions, and proves the validity of those annotations
and the fact that they imply the specification. In general annotating
a program with inductive invariants is a hard task even for an ex-
pert. The advantage of PSYNC lies in the simplicity of the required
inductive invariants. Compared with asynchronous programming
models, the round structure allows looking at the system’s invari-
ants at the boundary between rounds where the communication
channels are empty.

Contributions. We introduce PSYNC a domain specific language
for fault-tolerant algorithms.

• PSYNC makes it possible to write, execute, and verify high-
level implementations of fault-tolerant algorithms.
• PSYNC has a simple lockstep semantics used to write programs

which abstracts an asynchronous semantics defining the execu-
tions of PSYNC on general asynchronous networks.
• We prove that for any programP , the runtime ofP observation-

ally refines P , assuming clients with commutative operations.
• We prove that, for an important class of specifications including

consensus, if a PSYNC program satisfies the specification, then
its runtime system satisfies it as well.
• We have implemented and verified several fault-tolerant algo-

rithms using PSYNC. We evaluate the LastVoting [23] that cor-
responds to Paxos [50] in the HO-model, in a distributed key-



value store, and show that the PSYNC implementation performs
comparably to high-performance consensus implementations.

Sec. 2 introduces PSYNC using an example. Sec. 3 defines
indistinguishability and observational refinement. Sec. 4 defines
the domain specific language PSYNC, while Sec. 5 describes its
runtime system. The verification techniques are presented in Sec. 6.
Finally, Sec. 7 presents the experimental evaluation of PSYNC.

2. Overview
In this section we present the main features of PSYNC using the
LastVoting [23] algorithm, shown in Fig. 1. This algorithm is an
adaptation of the Paxos algorithm to the HO-model and solves
consensus for integer values.

LastVoting communicates with clients using an interface defined
by input operations, denoted init, and output operations, denoted
out. A client sends a request to the LastVoting program using the
input event init(v), which triggers a new instance the program,
and the program replies to the client by generating an output event
out(v′), where v, v′ are integers.

A process that receives a client request init(v), starts execut-
ing LastVoting by calling its initialization function init with the
same parameters. We assume that all processes receive constantly
client requests so all process start executing LastVoting. Each pro-
cess receives its initial value from the client via init events and
stores it in the variable x. After the initialization phase processs
typically have different x values. The goal of the algorithm is to
make the processs agree on one of these values. The execution of
LastVoting terminates when all processs agree. The client receives
the agreed value from the process it communicates with, via an out-
put even out(v′), where v′ is the agreed value.

LastVoting roughly works by first establishing a majority of pro-
cesses that agree on the same value. A designated process, called
the coordinator, collects proposals for the value of x from the other
processs and picks one of them (execution of the round Collect,
Line 2). In the next round, Candidate (Line 9), the coordinator
tries to impose the chosen value to a majority of processs. The
round Quorum (Line 17) checks that this majority has been cor-
rectly established. If a quorum is formed then a decision is made,
and all processs will accept it as the decision value, during the
Accept round (Line 24). The execution of these rounds repeats,
starting again with the Collect round, possibly with a different
coordinator. The crux for the correctness of the algorithm is that
strict majorities have a non-empty intersection. Since a decision
requires the agreement of a majority of processes, the decision is
unique.

Program structure. A PSYNC program is composed of an in-
terface, a set of local variables, an initialization function, and a
sequence of rounds. Each round defines a send and an update
method. All processes execute in lockstep the same round. A part
from the declared local variables processes use build-in read-only
variables: r represents the round number, n the number of processes
in the system, and id is the process unique identifier.

The init method takes as argument an integer. The send func-
tion returns the messages sent by the process executing it during the
current round. Messages are of the form (recipient, payload), where
the recipient is identified by its process identity. A set of messages
is represented by a map indexed by process identities, associating
the message payload to its recipient. The payload type might dif-
fer across rounds. For example, in Collect processes send pairs
of integers while in Quorum they send one integer. The statement
broadcast(T) returns a map from ProcessId to T where T is the
type of payload. This map contains one message for every process
in the system (all messages have the same payload).

p1

p2

p3

Collect Candidate Quorum Accept

Figure 2: Execution of the LastVoting in a synchronous environ-
ment without faults. Process p1 is the coordinator. Dotted lines rep-
resent the boundaries between rounds.

The update takes as argument the set of messages received
during the current round and modifies the local state of the pro-
cess. The input of update is a map from sender (ProcessId) to
payload (T). The update method can use external functions to per-
form sequential computations and modify the local state. For ex-
ample, mbox.valWithMaxTs used in Collect scans the received
messages and returns a value v such that (v, t) belongs to mbox and
for any other (v′, t′) in mbox, t′ ≤ t.

Execution. A run of a PSYNC program starts with a call to the
initialization function init (on each process). In LastVoting the
init function initializes the value of x known locally by each
process. The run continues with processes repeatedly executing, in
lock step, the array of rounds defined by phase in the program.

In an ideal system (where no message is lost or delayed) an
execution of one phase of the LastVoting program would result
in the trace shown in Fig. 2. The processes proceed in lockstep,
messages are delivered in time, and agreement is reached after four
rounds. In reality an execution is more likely to look like the one
shown in Fig. 3a, due to different delivery times for messages,
different processors speeds, and crashes.

To reason about asynchrony and faults, the PSYNC semantics
is based on the HO-model. Each process has a variable interpreted
over sets of processes, called the HO-set. The messages received by
a process p in round r, are the messages that were sent to p by the
processes in its HO-set. At the beginning of each round, HO-sets
are non-deterministically modified by the environment.

The HO-model models uniformly asynchronous behaviors and
faults while providing the illusion of a lockstep semantics. There-
fore, it is possible to reflect the faults in Fig. 3a using a lockstep
semantics by setting the HO-sets to the appropriate values. Fig. 3b
shows a lockstep execution where each process receives the same
messages as in Fig. 3a. If a message is dropped by the network,
e.g., the message p2 sends to p1 in Collect, then p2 is not in-
cluded in the HO of p1. If a message is delayed far too long, then
the sender is not included in the HO-set of the receiver. For ex-
ample, in Quorum, the coordinator decides on a value if a majority
of processes agrees with its proposal. Therefore, the coordinator
moves to the next round, without waiting for acknowledgements
from all processes. In Fig. 3a the coordinator p1 starts executing
round Accept despite not receiving the acknowledgement sent by
p3 in round Quorum. However, this acknowledgement is eventually
delivered when the coordinator is in the fourth round, but the mes-
sage comes too late to influence the local computation. Therefore,
it is as if the message was lost. In the lockstep execution, Fig. 3b,
p3 is not included in the HO-set of p1 in the Quorum round. Fi-
nally, crashes do not directly impact the view of correct processes.
Crashed processes are modeled using correct processes which are
not included in the HO-set of any other process. It is as if all mes-
sages they send are dropped after the instant of the actual crash.

Specification and Verification. We have developed a state-based
verification engine for PSYNC programs. The specification of
LastVoting includes properties like agreement, which say that all
processes decided on the same value:
�(∀p, p′. p.decided ∧ p′.decided⇒ p.decision = p′.decision),



1 interface
2 init(v: Int); out(v: Int)
3

4 variable
5 x: Int; ts: Int; vote: Int
6 ready: Boolean; commit: Boolean
7 decided: Boolean; decision: Int
8

9 //auxiliary function: rotating coordinator
10 def coord(phi: Int): ProcessID =
11 new ProcessID((phi/phase.length) % n)
12

13 //initialization
14 def init(v: Int) =
15 x := v
16 ts := -1
17 ready := false
18 commit := false
19 decided := false

A simplified version of LastVoting in PSYNC. The program has
one phase defined by four rounds, The phase is executed in
a loop. r contains the round number. The function coord(r)
returns the identity of the coordinator of round r. Its identity
changes between phases. In one phase, the coordinator collects
proposals from the other replicas, picks one of them (Collect),
and tries to impose it to the other replicas (Candidate). If
a majority of processes agree with the coordinator’s proposal
(Quorum) then eventually all processes will accept this value as
their decision (Accept).

1 val phase = Array[Round]( //the rounds
2 Round /* Collect */ {
3 def send(): Map[ProcessID, (Int,Int)] =
4 return MapOf(coord(r) → (x, ts))
5 def update(mbox: Map[ProcessID, (Int,Int)]) =
6 if (id = coord(r) ∧ mbox.size > n/2)
7 vote := mbox.valWithMaxTS
8 commit := true },
9 Round /* Candidate */ {

10 def send(): Map[ProcessID, Int] =
11 if (id = coord(r) ∧ commit) return

broadcast(vote)
12 else return ∅
13 def update(mbox: Map[ProcessID, Int]) =
14 if (mbox contains coord(r))
15 x := mbox(coord(r))
16 ts := r/4 },
17 Round /* Quorum */ {
18 def send(): Map[ProcessID, Int] =
19 if ( ts = r/4 ) return MapOf(coord(r) → x)
20 else return ∅
21 def update(mbox: Map[ProcessID, Int]) =
22 if (id = coord(r) ∧ mbox.size > n/2)
23 ready := true },
24 Round /* Accept */ {
25 def send(): Map[ProcessID, Int] =
26 if (id = coord(r) ∧ ready) return broadcast(vote)
27 else return ∅
28 def update(mbox: Map[ProcessID, Int]) =
29 if (mbox contains coord(r) ∧ ¬decided)
30 decision := mbox(coord(r))
31 out(decision)
32 decided := true
33 ready := false
34 commit := false })

Figure 1: The LastVoting consensus algorithm in PSYNC

p1

p2

p3

Collect Candidate Quorum Accept

(a) An asynchronous, faulty execution of the LastVoting

p1

p2

p3

Collect Candidate Quorum Accept

(b) Corresponding indistinguishable lockstep execution

Figure 3: Correspondence between the semantics and execution

where p, p′ are processes and p.decided, p.decision is the value
of the local variable decided, resp. decision, of process p.

The verification engine is based on deductive verification. This
assumes that the program is annotated with inductive invariants and
the engine proves the validity of the annotations and the fact that
they imply the specification. The lockstep semantics is essential in
order to have simple inductive invariants. For instance, the crux of
the invariant that shows agreement is the existence of a majority of
processes that agree on a value v when at least one process decides:

∀p. p.decided = false

∨ ∃v, t, A. A = {p | p.ts ≥ t} ∧ |A| > n/2

∧ ∀p. p ∈ A⇒ p.x = v.

Beyond safety properties, we are also interested in proving live-
ness properties, such as, ♦(∀p. p.decided). Because consensus

is not solvable in asynchronous networks with faults, the network
must satisfy liveness assumptions to ensure progress of the algo-
rithm. The liveness assumptions impose constraints, typically lower
bounds on the cardinality of the HO-sets. For example, proving that
LastVoting eventually makes a decision requires a sequence of four
rounds starting with Collect during which the environment picks
values for the HO-sets such that:

|HO(coord(r))| > n/2 ∧ ∀q. coord(r) ∈ HO(q). (1)

For fault-tolerant distributed algorithms, the specification, the
liveness assumptions, and the inductive invariants, require reason-
ing about set comprehensions, cardinality constraints, and process
quantification. To express these properties and check their validity
we use a fragment of first-order logic, called CL, and its semi-
decision procedure [33].

3. Indistinguishability and Observational
Refinement

In this section we define the main theoretical concepts used in the
paper: indistinguishability, observational refinement, and the rela-
tionship between them. The semantics of PSYNC programs is de-
fined in terms of labeled transition systems. Most of the definitions
given here are used in Section 5 and Section 6.

3.1 Definitions
A transition system is a tuple TS = (P, V,A, s0, T ), where P is a
set of processes, V is a finite set of variables, V =

⋃
p∈P Vp with

Vp the set of local variables of process p ∈ P , A is a (possibly
infinite) set of labels, A =

⋃
p∈P Ap with Ap the set of transition

labels of process p ∈ P , Σ = [P → V → D] ] {∗} is the state
space of TS , where ∗ is a special state different from the other ones



andD is the data domain where variables are evaluated, and s0 ∈ Σ
is the initial state of the system. Let Atr be the set of subsets of A
such that each subset in Atr contains at most one label from each
Ap, with p ∈ P . The transition relations of TS is T ⊆ Σ×Atr×Σ.

A state s ∈ Σ is a valuation of the processes variables. Given a
process p ∈ P , s(p) is the local state of p, which is a valuation of
p’s local variables, i.e., s(p) ∈ [Vp → D]. We use a special value⊥
to represent the state of crashed processes. When comparing local
states, ⊥ is treated as a wildcard state that matches any state.

An execution of a system TS is an infinite sequence s0A0s1A1 . . .
such that for all i ≥ 0, si ∈ Σ, Ai ∈ Atr (Ai 6= ∅), and
(si, Ai, si+i) ∈ T . We denote by JTSK the set of executions of
the system TS . A run is the sequence of states in an execution
and a trace is the sequence of labels in an execution. We denote
by Runs(TS), Traces(TS), the set of runs, respectively the set of
traces, of a transition system TS .

The projection of an execution π on a process p, denoted π�p,
is obtained from π by keeping only the state of the variables and
transition labels local to p, i.e., π�p= s′0A

′
1s
′
1 . . . where s′i = si(p)

and A′i = Ai ∩Ap.
Let π be a sequence alternating symbols from Σ and respec-

tively, A. The stuttering closure of an execution π is the set of se-
quences obtained from π by replacing every state s ∈ Σ with an
arbitrary sequence of the form s(∅s)∗. We write π1 ≡ π2 iff the
execution π1 is equivalent to the execution π2 up to stuttering, i.e.,
there is an execution in the stuttering closure of both π1 and π2.

3.2 Indistinguishability
We define indistinguishability, an equivalence relation between ex-
ecutions of transition systems.

Definition 1 (Indistinguishability). Given two executions π and π′

of a transition system TS , a process p cannot distinguish locally
between π and π′, denoted π 'p π′, iff the projection of both
executions on p agree up to finite stuttering, i.e., π�p≡ π′�p.

Two executions π and π′ are indistinguishable, denoted π ' π′,
iff no process can distinguish between them, i.e., ∀p ∈ P. π 'p π′.

To relate executions of different systems, we first consider their
projections on the sets W and L of common variables and respec-
tively, labels, and relate the executions of these projected systems
using the standard indistinguishability relation '. The obtained re-
lation is denoted 'W,L.

Definition 2 (Indistinguishable systems). A system TS1 is in-
distinguishable from a system TS2 denoted TS1 D TS2 iff they
are defined over the same set of processes and for any execu-
tion π ∈ JTS1K there exists an execution π′ ∈ JTS2K such that
π 'W,L π′ where W = V1 ∩ V2 and L = A1 ∩A2.

Notice that indistinguishability is agnostic to the order between
transitions of different processes. For example, the two executions
in Fig 3 are indistinguishable, although the Quorum round is exe-
cuted during non-overlapping periods of time by process p1 and p2
in Fig. 3a while in Fig. 3b they are executed at the same time.

3.3 Observational refinement
We model clients and PSYNC programs as transition systems and
their composition as the standard synchronized product (only the
transitions labeled with common symbols are synchronized). The
interface of a PSYNC program is the alphabet (of transitions labels)
shared with the client.

A distributed client is a transition system defined by the parallel
compositions of a set of n transitions systems over disjoint alpha-
bets, each of this transition systems representing one client process
in the system. This definition implies that transitions of different

client processes commute, which intuitively means client processes
do not synchronize with each other directly.

Definition 3 (Distributed client). 1 Let TS i = ({pi}, Vi, Ai, si0, Ti)
be the transition system associated with a client process, with
Ai ∩ Aj = ∅ for all 1 ≤ i 6= j ≤ n. Formally, the transitions
system associated with the client is CTS = (P, V,A, s0, T ), where
P = {p1, p2, . . . pn}, V =

⊎
i Vi,A =

⋃
iAi, s0 = (s10, . . . , s

n
0 ),

and T ⊆ Σ × A × Σ, with Σ = [P → V → D], such that
Σ(pi) ∈ [Vi → D], and (s,B, s′) ∈ T iff for every b ∈ B ∩ Ai
(s(pi), b, s

′(pi)) ∈ Ti and each processes takes at most one tran-
sition.

Composition between a client and a PSYNC program. Let P =
(P, V ′, A′ ] I, s′0, T ′) be a PSYNC program of interface I . A
client C = (P, V,A, s0, T ) communicates with P iff I ⊆ A and
A ∩ A′ = ∅. We define a program interface I = ]p∈P Ip to be the
set of shared labels between P and C, that is Ip is the set of labels
of the transitions taken by the process p, in both P and C.

For presentation reasons we assume that the client processes
and the processes running P have the same identities. Otherwise
the labels in the interface should include the identities of the clients
and the identities of the processes running P .

We define the behaviors of clientC that interacts with a program
P as the set of executions of a transition system denotedC(P). The
system C(P) is obtained by (1) taking the asynchronous product
between C and P and forcing that any transitions labeled by b ∈ I
is always taken simultaneously by C and P , and (2) projecting out
P from the product (we are only interested in the client), (3) after
projecting out P , we remove the transitions with no labels. We
obtain a transition system with the same state space as the original
client, but with fewer behaviors.

For example, a client communicates with LastVoting in Fig. 1
using the interface Iinit,out = {initp(v), outp(v) | p ∈ P, v ∈
Z}. For the client, an initp(v) transition sends a request to process
p executing LastVoting and makes the client wait for the reply
outp(v

′). An initp(v) transitions of LastVoting corresponds a call
to the initialization function init on process p with v as input
parameter. Similarly outp(v

′) transitions are used to handle the
replies between the service process p and the client process p.

In the following sections we introduce different semantics for
PSYNC programs. Here, we define a general notion of refinement
between different semantics.

Definition 4 (Observational Refinement). Let TS1 and TS2 be
two transition systems and a common interface I . Then, TS1 re-
fines TS2 w.r.t. I denoted TS1 vI TS2, if for any client C,

Runs(C(TS1)) ⊆ Runs(C(TS2)).

We say that TS1 observationally refines TS2 if every run of a client
that uses TS1 is also a run of the same client using TS2.

Moreover, since we consider clients which do not impose an
order between the transitions on different client processes, indistin-
guishability is equivalent with observational refinement.

Theorem 1. Let TS1 and TS2 be two systems with a common
interface I . If TS1 D TS2 then TS1 vI TS2.

Proof. (Sketch) The proof is based on the Corollary 43 from [37],
which states that sequential consistency is equivalent with obser-
vational refinement when client transitions commute across pro-
cesses. Indistinguishability is equivalent with sequential consis-
tency, that is, TS1 D TS2 iff TS1 is sequentially consistent with
TS2.

1 We consider all distributed clients to be commutative by definition.



program ::= interface variable∗ init phase
interface ::= init: type→ () (name: type→ ())∗

variable ::= name: type
init ::= init: type→ ()

phase ::= round+

roundT ::= send: ()→ [P 7→ T] update: [P 7→ T]→ ()

Figure 4: PSYNC abstract syntax.

4. Syntax and semantics of PSYNC
PSYNC is designed as a domain specific language embedded
within a general purpose programming language. In this section
we present the main programming constructs of PSYNC and its
lockstep semantics.

Syntax. We give an abstract syntax for PSYNC programs in
Fig. 4. A program has an interface, a number of local variables,
an initialization operation init, and a non-empty sequence of
rounds, called phase. Each process executes in a loop the sequence
of rounds defined by the phase.

The interface is a set of functions, used by clients to interact
with a PSYNC program. The interface includes an init operation,
which is called by the client to send a request and multiple output
functions, denoted name , used by the program to reply to the
client’s request.

Each round is parameterized by a type T which represents the
payload of the messages. The messages are grouped in (partial)
maps that associate processes, i.e., senders or recipients, to pay-
loads. We use set-like notations for maps, where a map is set of
pairs whose first elements are distinct. In a round, the parameters
of send and update are defined over the same type T. However,
different rounds can have different payload types. For instance, the
payload of Collect in Fig 1 is (Int,Int) while the payload in
the other rounds is Int.

The operations in a PSYNC program do not use directly any
iterative control structure. For complex sequential computations
they can use auxiliary operations implemented in the host language.
The init, send, and update operations are assumed to terminate
within a number of steps that depends on the number of processes
and the input values of the initialization function. PSYNC is de-
signed to facilitate the implementation of message passing concur-
rency. Proving total correctness of the sequential code executed by
each process is orthogonal to the scope of PSYNC.

Lockstep semantics. Assuming a finite, non-empty set of n pro-
cesses P , the state of a PSYNC program is represented by the tuple
〈SU, s, r,msg,HO〉 where:

• SU ∈ {Snd, Updt} indicates whether the next operation is
send or update;
• s ∈ [P → V → D] stores the local states of the processes;
• r ∈ N is a counter for the executed rounds;
• msg ⊆ 2P,T,P stores the messages which are in transit between

the SEND and UPDATE operations of a round;
• HO ∈ [P → 2P ] evaluates the HO-sets for the current round.

The semantics of a PSYNC program is shown in Figure 5.
A transition is written as S

I,O−→ S′ where S, S′ are states, O
is a set of labels from the interface, corresponding to observable
transitions, I is a set of labels not in the interface corresponding to
internal transitions. A client of a PSYNC program can only observe
the transition labels in O.

We consider the following shorthands: |phase| is the num-
ber of rounds in a phase and phase[r] is used to identify the (r
mod |phase|) round in a phase. For example, Fig. 1 has |phase| =

INIT

∀p ∈ P. ∗
init(vp)−→ s(p)

∗
∅,{initp(vp)|p∈P}−→ 〈Snd, s, 0, ∅,HO〉

SEND

∀p ∈ P. s(p)
phase[r].send(mp)−→ s(p)

msg = {(p, t, q) | p ∈ P ∧ (t, q) ∈ mp}

〈Snd, s, r, ∅,HO〉
{sendp(mp)|p∈P},∅−→

〈
Updt, s, r,msg,HO′

〉
UPDATE
∀p ∈ P. mboxp = {(q, t) | (q, t, p) ∈ msg ∧ q ∈ HO(p)}

∀p ∈ P. s(p)
phase[r].update(mboxp),op−→ s′(p)

r′ = r + 1 O = {op | p ∈ p}

〈Updt, s, r,msg,HO〉
{updatep(mboxp)|p∈p},O−→

〈
Snd, s′, r′, ∅,HO

〉
Figure 5: PSYNC semantics.

4 and phase[3] identifies a Quorum round. The operation m of a
round phase[r] is phase[r].m. A transition s(p)

op,o→ s′(p) says
that p executes operation op in local state s(p) and reaches local
state s′(p). The execution of op produces an observable transition
o, i.e., o is in the interface.

Initially the state of the system is undefined, denoted by ∗. The
first transition of every process p is to call the init operation upon
receiving a client request via an initp event. The arguments of
the init operation executed by process p match the values in the
initp request sent by the client (see INIT in Fig. 5). The init
operation does not return a value but initializes the state of the
system. Initially, the round counter is 0, there are no messages in
the system, and the first operation is Snd. An execution alternates
the SEND and UPDATE transitions from Fig 5.

During a SEND transition, the messages sent by each process
are added to a pool of messages msg. The messages in msg are
triples of the form (sender, payload, recipient), where the sender
and receiver are processes and the payload has type T. The triples
are obtained from the map returned by send to which we add the
identity of the process that executed send. The send operation does
not affect the state of the processes. The values of the HO-sets are
updated non-deterministically by the environment.

In an UPDATE step, messages are received and the update
operation is applied locally in each process. The set of received
messages is the input of update. A message is received only if
the sender is in the receiver’s HO-set. The update operation might
produce an observable transition op. At the end of the round, msg
is purged and r is incremented by 1.

To obtain a transition system as defined in Section 3, the fields
SU , r, HO are copied locally on each process, the interface to-
gether with send and update are the labels of the transition system
and the pool of messages msg is represented by a special network
process whose only local variable is msg.

Environment assumptions. Many problems, such as consensus,
are not solvable in asynchronous networks with faults [38]. There-
fore, many algorithms make assumptions on the network and the
faults in order to progress.

In PSYNC the network assumptions translate into assumptions
on the environment actions. They are given as linear temporal logic
(LTL) formulas over atomic propositions that constrain the values
of the HO-sets. The classic taxonomy of distributed systems classi-
fies in different categories the synchrony degree of the network, the
reliability of the links, and the different types of process failures.



The relation between the classic types of systems and the corre-
sponding assumptions on the HO-sets is given in [23, Table 1].

In this work, we consider that the network assumptions are re-
quired only to guarantee liveness properties. Without making any
assumption on the environment a program might never make any
progress. For example, the environment can decide that the HO-
sets are always empty and no message is delivered. In order to en-
sure termination LastVoting assumes that eventually there exists a
sequence of four rounds, starting with Collect, where the coor-
dinator is in the HO-set of every process, and during the Collect
and Quorum rounds of this sequence the HO-set of each process
contains at least n/2 processes. In LTL this environment assump-
tion is expressed by the formula �♦(ψ ∧ ◦(ψ ∧ ◦(ψ ∧ ◦ψ))),
where ψ is given in (1). Notice that at the end of these four rounds,
all processes have decided the value proposed by the coordinator in
the Collect round.

The lockstep semantics of a PSYNC program is defined by the
set of executions of the transition system in Figure 5 that respect
the environment assumptions given in the program.

Definition 5 (Lockstep execution). Given a PSYNC program P
and a non-empty set of processes P , a lockstep execution of P is
the sequence ∗A0s1A1s2 . . . such that

• ∗A0s1 is the result of the INIT rule;
• ∀i. siAisi+1 satisfy the SEND or the UPDATE rule;
• the environment assumptions on HO-sets are satisfied.

The set of lockstep executions of P is denoted by JPKls .

For any program P , we consider that the environment assump-
tions of P are time-invariant, i.e., they are of the form �♦ϕ, where
ϕ is the network assumption that P relies on during its execution.
Time invariance is important because we don’t want the correctness
of P to depend on the time it starts executing.

Any lockstep execution of LastVoting has a finite prefix defined
by a sequence of rounds, called bad rounds, when the environment
assigns values to the HO-set without respecting the assumptions.
This prefix is followed by a sequence of good rounds when the
environment assumptions are met. Moreover, all infinite executions
of LastVoting are an alternation of sequences of bad, respectively
good rounds. However, since consensus is a stable property, i.e., if
it holds in a state than it holds in any of the following ones, and
consensus is reached after the first sequence of good rounds, the
local state of processes remains unchanged during the remaining
sequences of bad or good rounds.

5. Runtime
In this section we define a runtime that executes PSYNC programs
on asynchronous faulty networks. We describe the runtime algo-
rithm, which induces an asynchronous semantics for PSYNC pro-
grams, and we show that a client cannot distinguish between the
lockstep and the asynchronous semantics of PSYNC programs. Fi-
nally, we discuss how to tune the parameters of the runtime in rela-
tion to the network environment and liveness assumptions.

5.1 Runtime Algorithm
The runtime is responsible for executing PSYNC programs with an
asynchronous semantics. Its most delicate task is to decide when
a process moves to the next round. The problem is that, in an
asynchronous network, it is not possible to distinguish between
crashed and slow processes or between dropped and delayed mes-
sages. The lockstep semantics PSYNC deals uniformly with good
and bad rounds due to the non-deterministic values of the HO-
sets. So even if a round does not satisfy the liveness assumptions,
the lockstep execution does not block. Therefore, the runtime can-
not wait for every message as it would get stuck (some might be

dropped or delayed forever). On the other hand, it needs to wait
long enough to receive sufficiently many messages to guarantee
progress of the system. Since there is no precise way to distinguish
between bad and good runs in the asynchronous semantics, the de-
cision to switch rounds is based on approximations.

We consider an implementation of the round structure based on
timeouts. Roughly, the set of messages received in one round equals
the set of messages received within the time interval defined by a
timeout. The timeout approach ensures that processes don’t block
during bad rounds, when the network behaves arbitrarily. However,
if the timeout value is too small, the round switch might happen
too fast and some messages are ignored at runtime even if they are
properly delivered by the network. Therefore, the timeout values
must be chosen carefully, to ensure that the runtime can simulate
the good rounds. The values of the timeout are architecture and
algorithm dependent, so the timeout is a parameter of the PSYNC
runtime.

The runtime system is defined by the asynchronous compo-
sition of all processes in the network intersected with the net-
work assumptions required to guarantee liveness properties. Given
a PSYNC program P , Fig. 6 shows the code executed by each pro-
cess to run P . Roughly, processes execute locally the same se-
quence of rounds as in P , but the parallel composition is asyn-
chronous.

The algorithm in Fig. 6 uses two while-loops. One iteration of
the outer loop (line 9) executes one round. The inner loop (line 15)
accumulates messages until a timeout is reached. Because the net-
work is not synchronous, the runtime deals with messages of past
or future rounds, i.e., messages tagged with round numbers strictly
smaller or bigger than the process’s current round number. Late
messages are dropped (line 18), and a message from a future round
forces the runtime to execute the outer loop until it catches up
and reaches the round of the received message (line 11). The send
and update operations, on line 10 and 26, are those defined in
the executed PSYNC program P . To deal with messages duplica-
tion the accumulated messages are stored in a set. The function
tryReceive(d) tries to receive a message if one is available, or
becomes available during the next d time units. If no message is
available in this period then the method returns ⊥.

The variable to has the same reference value across processes.
It is used to measure locally a time interval of length to in refer-
ence time units. We assume that the processor’s speed is not re-
lated to its clock and also we assume a bounded clock drift across
processes. Therefore, processes can execute a different number
of instructions while measuring the same interval. The function
currentTime returns the value of a local clock. The implementa-
tion of currentTime ensures that processes can measure the elaps-
ing of to reference time units. The clock drift is factored in the
currentTime function.

Messages are tuples of the form (sender , payload , receiver , round),
where sender , receiver are the sender and respectively the receiver
of the message, payload is the content of the message, and round
is the sender’s round number when the message was sent.

Asynchronous semantics In the following, given a PSYNC pro-
gram P , we define the asynchronous semantics of P , induced by
the runtime. A state is a tuple 〈s ] sr,msg〉 where:

• s ∈ [P → V → D] is a valuation of the variables in P;
• sr ∈ [P → Vr → D] is a valuation of the variables introduced

by the runtime;
• msg ∈ [(P,T, P,N)→ N] is a multiset of messages in transit.

In Fig. 7 we define the semantics of the most important in-
structions of the algorithm in Fig. 6. Each transition has the form
s
I,O−→ s′, where s, s′ are global states and I , resp. O, are the in-



1 //local variables
2 p //initialized PSync process
3 to //timeout
4 r := 0 //current round number
5 msg := ⊥ //last received message
6 mbox := ∅ //messages received but not yet processed
7 t := currentTime() //time at which the current round began
8

9 while (true) {
10 p.phase[r % p.phase.size].send() //send event
11 if (msg 6= ⊥ ∧ msg.round = r) {
12 mbox := {msg}
13 msg := ⊥
14 }
15 while (msg = ⊥ ∧ currentTime() < t + to) {
16 msg := tryReceive(t + to - currentTime())//receive event
17 if (msg 6= ⊥) {
18 if (msg.round < r) {
19 msg := ⊥
20 } else if (msg.round = r) {
21 mbox := mbox ∪ {msg}
22 msg := ⊥
23 }
24 }
25 }
26 p.phase[r % p.phase.size].update(mbox) //update event
27 r := r + 1
28 t := currentTime()
29 mbox := ∅
30 }

Figure 6: Algorithm to implement the round structure

ternal, resp. observable labels of the transition. The runtime of a
program P interacts with a client using the interface of P defining
the observable transitions. By considering msg a specific network
process, we obtain a transition system as defined in Section 3.

Local process transitions. The SEND rule states that the mes-
sages sent by one process are tagged with the current round of the
sender, i.e., s(p).r, and added to the global pool of messages,msg.
The messages sent by one process in round r are defined by the
send operation of the same round from P . The RECEIVE1 and
RECEIVE2 rules define the reception of a message. The RECEIVE2
rule describes a failed reception due to a timeout. The WAIT rule
models a process waiting for a message. The UPDATE rule states
that the semantics of update when called by a process whose cur-
rent round is r is the the semantics of the update operation of
round r from P .

The CRASH, CRASHED, DUPLICATE, DROP describe the fault
model. Progresses can crash, but do not recover. Messages can be
duplicated and dropped by the network. The CRASHED rule states
that crashed process do not modify the global state.

The runtime does not include HO-sets. To evaluate the environ-
ment assumptions from P on asynchronous executions, the HO-
sets are replaced with the set of received messages. That is, any
constraint on HO(p) in round r, is replaced by the same constraint
over mboxp, the set of messages received by process p in round r.
The update called by process p in round r takes mboxp as argu-
ment. The environment assumptions must hold only for the non-
crashed processes.

Definition 6 (Asynchronous executions). The set of asynchronous
executions of a PSYNC program P , denoted by JPKa , is the set
of executions of the transition system in Fig. 7 which satisfy the
environment assumptions defined in P .

5.2 Correctness
We have introduced in Section 4 a lockstep semantics for PSYNC
programs that helps the developer to focus on the algorithmic task.

Local transitions
SEND

p
send(ms)−→ p′ msg′ = {(p,m, q, p.r) | (m, q) ∈ ms} ∪msg

〈p,msg〉
{sendp(ms)},∅−→

〈
p′,msg′

〉
RECEIVE1

m ∈ msg
m.receiver = p p

receive(m)−→ p′ msg′ = msg \m

〈p,msg〉
{receivep(m)},∅

−→
〈
p′,msg′

〉
RECEIVE2

∀m ∈ msg. m.receiver 6= p p
receive(⊥)−→ p′

〈p,msg〉
{receivep(⊥)},∅

−→
〈
p′,msg

〉
UPDATE

m = p.mbox p
update(m),αp−→ p′

〈p,msg〉
{updatep(m)},{αp}

−→
〈
p′,msg

〉
DROP

ms′ ⊂ ms

〈p,ms〉 ∅,∅−→
〈
p,ms′

〉
CRASH

p 6= ⊥ p′ = ⊥

〈p,msg〉 ∅,∅−→
〈
p′,msg

〉
WAIT

p 6= ⊥

〈p,msg〉
{waitp},∅−→ 〈p,msg〉

CRASHED
p = ⊥

〈p,msg〉
{⊥p},{⊥p}−→ 〈p,msg〉

DUPLICATE
m ∈ ms ms′ = ms ∪ {m}

〈p,ms〉 ∅,∅−→
〈
p,ms′

〉
Global transitions

INIT

∀p ∈ P. ∗
init(vp)−→ s(p)

∗
∅,{initp(vp)|p∈P}−→ 〈s, ∅〉

PARALLEL COMPOSITION
P ′ ⊆ P msg = ]p∈P ′msgp msg′ = ∪p∈P ′msg′p

I = ∪p∈P ′I′p O = ∪p∈P ′O′p ∀p ∈ P \ P ′. s(p) = s′(p)

∀p ∈ P ′. 〈s(p),msgp〉
Ip,Op−→

〈
s′(p),msg′p

〉
〈s,msg〉 I,O−→

〈
s′,msg′

〉
Figure 7: Asynchronous semantics of a PSYNC program P . The
local, respectively global, transitions are defined over local, respec-
tively global states. We give the important local transition of a pro-
cess executing the algorithm in Fig. 6. The rules SEND, RECEIVE,
and UPDATE correspond to Line 10, 16, and 26 of the algorithm.
The semantics of send and update are given by the program P .

However, PSYNC programs are not executed only on top of syn-
chronous networks. The runtime algorithm in Section 5.1 induces
an asynchronous semantics for PSYNC programs which allows exe-
cuting PSYNC programs on a wide variety of networks. In this sec-
tion we state one of the main results of the paper which shows that
the lockstep semantics models the asynchronous semantics faith-
fully.

Theorem 2. For any PSYNC program P , the transition system
defining the asynchronous semantics of P is indistinguishable from
the transition system defining the lockstep semantics of P , i.e.,
∀P. JPKa D JPKls .

Proof. (Sketch) Given an execution π from JPKa , we define an
execution π′ such that π′ ∈ JPKls and π ' π′. We recall that the
local variables V declared in P are modified only by the update



operation, which has the same semantics in both JPKls and JPKa .
Therefore, in define π′ we need to show that (1) we can associate
to every round r of π an execution of the same round under the
PSYNC semantics, with the same output for the send operation and
the same input for the update operation and (2) this sequence of
PSYNC rounds satisfies the environment assumptions.

The execution π′ is build from π by eliminating all receive
steps, and shifting send and update operations to the left and right
such that they execute in lockstep. Shifting the send and update of
a process preserves the order of the operations within that process.
For each round r the environment defines HO(p) to be the identity
of the senders of the set of messages delivered to p tagged by
round r. Without loss of generality, in JPKa we assume that at each
round every process sends a message to every other process. If the
algorithm sends less messages we can introduce additional ghost
messages for the proof purpose.

Notice that the asynchronous executions π obeys to the envi-
ronment assumptions, translated as constraints on mailboxes, i.e.,
the set of received messages of each round. Since the the HO-sets
are defined from the processes mailboxes the execution π′ respects
also the environment assumption given in P .

Finally, the crashed processes, represented by ⊥ in π, can be
matched to any lockstep execution where the corresponding pro-
cesses do not appear in the HO set of any process after the crash.

The execution π is indistinguishable from π′ because (1) for
every round the state preceding the send, resp. update, operations
is the same in π and π′; (2) for every round the update operations
have the same inputs in both π and π′; (3) receive steps in the
runtime trace correspond to stuttering in the lockstep trace.

Corollary 1. For any PSYNC program P , JPKa v JPKls .

Theorem 2 ensures that the asynchronous semantics of PSYNC
is a refinement of the lockstep one, independently of the time-
out values. However, if the timeout is not carefully chosen the set
of asynchronous executions in the semantics of PSYNC might be
empty because the timeout is too short and it does not allow the
environment assumptions to be satisfied. The asynchronous execu-
tions which don’t respect the environment assumptions loose the
progress guarantees of the PSYNC program.

Nevertheless, if we include in the asynchronous, respectively
the lockstep, semantics of a program P , the executions which do
not respect the environment assumptions, the refinement relation
between the two semantics still holds. This result is a corollary of
Theorem 2.

Corollary 2. For any asynchronous execution of a program P ,
that does not respect the environment assumptions there exists an
indistinguishable lockstep execution of P that does not respect the
environment assumptions.

5.3 Timeout estimation
In this section we define an under-approximation of the timeout
values ensuring that the runtime produces a non-empty set of asyn-
chronous executions that respect the environment assumptions. To
compute this estimation we consider partial synchronous networks.

Partial synchrony means that the network alternates between
bad and good time periods, where during a good period the com-
munication and the processes are synchronous while through a bad
period they are asynchronous.

Definition 7 (Synchronous network). A network is synchronous if
there exists Θ and ∆ two positive integers, such that:

• Θ is the minimal time interval in which any process is guaran-
teed to take a step;

• ∆ is the maximal transmission delay between any two pro-
cesses.

Intuitively, Θ corresponds to process synchrony and ∆ to com-
munication synchrony. Their values can be obtained by measuring
the latency of processors and the bandwidth of the network. Both
are required in order to solve problems like consensus [31]. When
the network is asynchronous there are no bounds on the communi-
cation delay and relative speed.

Remark 1. The transmission delay is typically much larger than
the time required to ensure a computation step, i.e., ∆� Θ > 0.

Definition 8 (Partially synchronous network [34]2). A network is
partially synchronous if the constants Θ,∆ exist, are known, and
eventually hold after a time gst, called the global stabilization time.

Def. 8 characterizes the partial synchrony assumption w.r.t. an
initial time. Wlog we assume this time coincide with the start of the
program execution. To avoid depending on the time processes start,
a network is partially synchronous if it alternates between good and
bad time periods, where the good periods are as long as needed. The
required length of good periods depends on the program. Def. 8
takes the supremum of good periods for any program to allow a
general statement about liveness of the system.

To characterize the partial synchronous executions of the run-
time we need to reason about the message delays and the speed of
the processes. To this we add a reference time to the executions
generated by the system of transitions defined in Fig. 7 using a
function τ . τ maps each state si in π to a time in N, it is mono-
tonic: ∀i, j. i ≤ j ⇒ τ(si) ≤ τ(sj), and in any finite time interval
each process takes only a finite number of steps.

An execution π = s0A0s1A2 . . . of the transition system in
Fig. 7 satisfies the partially synchrony assumption iff there exits a
global stabilization time, gst, s.t. π = πaπs and

• for any s ∈ πs, τ(s) > gst;
• for any i, j such that τ(si) > gts and τ(sj) − τ(si) ≥ Θ,

every process takes at least one step in the sequence si . . . sj ;
• for any i,j such that τ(si) > gst, sendp(ms) ∈ Ai, and
receiveq(m) ∈ Aj with m ∈ ms, either the delay is 0 <
τ(sj) − τ(si+1) ≤ ∆ or if k ∈ [i, j] s.t. sk is the first state
with τ(sk) − τ(si+1) > ∆ then q does not take any WAIT or
RECEIVE2 step in the sk . . . sj interval;
• there is no message duplication after gts3.

Remark 2. Because the environment assumptions are time invari-
ant, i.e., they are LTL formulas of the form �♦ϕ, we consider that
π = πaπs ∈ JPKa satisfies the environment assumption iff πs sat-
isfies �♦ϕ.

In the following we define the timeout values using polynomial
functions depending on Θ, ∆, and n (the number of processes). We
recall that the HO-sets are an abstraction of (1) the synchrony de-
gree and (2) the types of faults. The computed timeouts ensure that
the degree of synchrony required by the environment assumptions
is captured by the runtime (the round structure is correctly imple-
mented). The values of the timeout which include an estimation for
faulty behaviors are algorithm dependent, and have larger values.
Since the timeout is a parameter of the runtime it can be tuned to
meet the algorithms specificity. First, we derive a sufficiently large

2 In [34] a second definition is proposed where Θ and ∆, are unknown
but they hold from the beginning. Our results hold under both definitions of
partial synchrony. We have chosen Def. 8 for performance reason.
3 Limiting duplication only simplifies the proof. It is possible to tolerate a
bounded amount of duplication after gts. The time to process the duplicate
messages has to be factored in the timeout.
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Figure 8: Processes synchronizing. The colors represent rounds.

timeout value to ensure liveness of any algorithm when the net-
work is synchronous and then we compute the timeout for partially
synchronous networks. We assume that every process periodically
communicates with every other process. If the algorithm does not
send messages, the runtime inserts heatbeat messages. Communi-
cation is needed for synchronization.

Definition 9 (Synchronous execution). An execution of JPKa is
called synchronous if in any time interval of length Θ each process
takes at least a send, update, or receive step and every message
sent in a given round is received in the same round, dropped by the
network, or the receiver has crashed.

Lemma 1. If the network is synchronous any execution of JPKa is
synchronous if the value of the timeout is at least (n+ 1)Θ + ∆.

When the network is synchronous the slowest process takes ex-
actly one step within Θ time units. Therefore, the maximal du-
ration of a round is given by the slowest process and it equals
(n + 1)Θ + ∆ reference time units. (n + 1)Θ is needed to re-
ceive n − 1 messages from the other processes (excluding itself)
and execute the send, and the update method, and ∆ is the max-
imal duration messages are in transit. The timeout needs to be at
least (n+ 1)Θ + ∆. This timeout slows down the faster processes
such that the slower processes have enough time to process all the
messages sent in the current round before the faster processes move
to the next round.

Lemma 2. If the timeout is at least (n+3)Θ+2∆ and the network
is partially synchronous, any execution π of JPKa is of the form
π = πaπs where πa is finite and πs is synchronous.

Proof. Let s be the first state after gts, i.e., τ(s) ≥ gst. We divide
the asynchronous prefix in two parts πa = π1π2, where π2 states
with the state s. We show that the length of π2 is bounded.

The actual computation time for a round is (n + 2)Θ, the
remaining time Θ + 2∆ is the slack required to take into account
message delays and relative speed. After gts, the processes can use
the slack time in each round to process more messages than the
number of messages sent during that round. Because π1 is finite
(follows from the definition of partial synchrony), the number of
messages that separate the fastest process from the slowest is also
finite. Thus, the slowest process will eventually consume all these
messages. When there are no more pending messages, the process
are within one round of each others, but their respective round start
might still be offset by more than 3Θ + ∆.

Consider the case when the slowest process is in round r and
receives a message sent by a process in round r + 1. This message
will be received in at most Θ + ∆ time units after it was sent. The
catch-up mechanism of the runtime will force the slowest process to
directly call update and move to the next round, taking 2Θ. Notice
that the slowest process call send 3Θ + ∆ time units after the
fastest process called the send operation of the same round. When
the slowest process starts receiving messages for the round r + 1,
it will be at most 3Θ + ∆ behind the fastest process. Therefore, the
fastest process will receive the messages from the slowest process
in at most 4Θ + 2∆ time units after it started the round r + 1. As

their might be (n − 1) such messages, the timeout needs to be at
least (n + 3)Θ + 2∆ to receive the remaining messages for the
round r + 1. Fig. 8 illustrates how the synchronizations happens.

After the system reaches synchrony. The remaining suffix πs
stays synchronous, the timeout is greater than the sum of (n +
1)Θ + ∆ (the timeout for the synchronous case) and 3Θ + ∆− 1
(the maximal slack minus the message send by a process to itself
can be processed more quickly).

5.4 Extensions
In the above, we focus on the case of partially synchronous systems
where crashed processes do not recover. However, PSYNC is not
restricted to this assumption and the runtime can be adapted to a
wide variety of systems. We give a short overview of the changes
required to implement a round structure under different network
assumptions.

Alternative definition of partial synchrony. The runtime algo-
rithm also works with the definition of partial synchrony where
the bounds Θ and ∆ exist during the entire execution but are not
known. In this setting, the runtime must use incremental timeout.
More precisely, the initial value of the timeout is greater than 0 and
when a message from a previous round is received, i.e., on line 19
in Fig. 6, the timeout is incremented with a fixed value.

Crash-recovery. From the perspective of the HO-model crash-
recovery is similar to network partition. A process that has crashed
but not yet recovered has an empty HO-set and is not in the HO-
sets of any other process. However, from an implementation per-
spective, to allow recovery, the runtime must store in stable mem-
ory, i.e., hard disk, the state of the system before sending messages
(Fig. 6, line 10). Upon recovery, the system resumes from the last
state in the stable memory.

Byzantine failures. Byzantine failures require a more complex
algorithm to implement the round structure. In that setting, the
round structure is akin to clock synchronization and supporting
arbitrary transient faults can be done through the self-stabilizing
pulsing algorithm [30]. The decision moving to the next round re-
quires receiving enough messages (2/3 majority). The messages
need to be signed (HMAC) to avoid one process trying to imper-
sonate another [18] and more complex message filtering strategies
are needed to prevent a few malicious processes from flooding the
correct processes [26]. We plan to extend the PSync runtime to sup-
port Byzantine faults in our future work.

6. Verification
In this section we identify a class of specifications such that if the
lockstep semantics of a PSYNC program satisfies the specification
then its asynchronous semantics satisfies it as well. Roughly, the
refinement relation between these semantics preserves the local
properties of processes. We underline the advantages of PSYNC for
automated verification. Finally, we present a deductive verification
engine for PSYNC.

6.1 From Verified PSYNC to Verified Runtime Executions
We develop a state-based verification engine for PSYNC which
considers that specifications are sets of program runs. A state-based
specification Spec for a program P is a set of sequences of states
in Σ = [P → Vp → D], where Vp is a subset of the local variables
declared in the program. The specification does not talk about the
HO-sets.

For example, consensus is defined by the conjunction of four
properties: (1) Agreement, all processes decide on the same value;
(2) Validity, the decision is the initial value of a process; (3) Irrevo-
cability, a process cannot change its decision; (4) Termination, all



correct processes eventually decide. These properties correspond to
the following set of runs, denoted Consensus:

∗s0s1s2 . . . ∈ Consensus ⇔
∃q. ∀p. ∀i. si(p).decided⇒ si(p).decision = s0(q).x
∧ ∀p, i. si(p).decided⇒ si+1(p).decided
∧ ∀p, i. si(p).decided⇒ si(p).decision = si+1(p).decision
∧ ∀p. ∃i. si(p).decided,

where p, q denote a process, decided, decision are variables
declared in the program, and s0, si are states in Σ.

A program P satisfies a state-based specification Spec if all the
runs of P under the lockstep semantics are included in Spec, i.e.,
Runsls(P)�VSpec⊆ Spec, where Runsls(P) is the set of runs of P
under the lockstep semantics, and �VSpec denotes the projection
on the variables in VSpec used in Spec. We associate to each set of
runs a transition system that produces them.

Transition system associated with a specification. Given a state-
based specification Spec we build TS(Spec) = (P, VSpec, A, s0, T )
the transition systems associated with Spec, where A = ∅ and
s0 = ∗, such that Runs(TS(Spec)) = Spec.

We consider state-based specifications, therefore to prove that
the lockstep, respectively the asynchronous, semantics refine the
specification, we need to relate sequences of observable program
transitions to the specification. To this, we introduce input-output
interfaces which associate the labels of observable process transi-
tions to sets of process local states.

Definition 10 (Input-Output Interface). Let TS = (P,W,A, s0, T )
be a transition system. Let I = ∪p∈P Ip be a subset ofA and f be a
mapping from I to sets of states over the variablesW = ∪p∈PWp.
The pair (I, f) is an input-output interface of system TS if for any
process p, for any a ∈ Ip, and for any (s,B, s′) ∈ T , a ∈ B iff
s(p)�Wp 6∈ f(a) ∧ s′(p)�Wp∈ f(a).

Given a program P with interface I and a state-based specifica-
tion Spec for P let TS(Spec, f) be the transition system obtained
from TS(Spec) by setting A = I and adding labels in I to the
transitions in TS(Spec) such that (I, f) is an input-output inter-
face of TS(Spec, f). In this case, the pair (I, f) is also called the
input-output interface of Spec w.r.t. the program P .

The input-output interface of Consensus w.r.t LastVoting,
called (IC , fC ), associates, for every p ∈ P , initp(vp) with the
first initialized state when s(p).x = v, and outp(vp) to the states
where decided is set to true and decision is v. The mapping
fC relates (initp(v) to {s | s(p).x = v ∧ s(p).ts = −1} and
outp(v) to {s | s(p).decided ∧ s(p).decision = v}).

Proposition 1. For any PSYNC program P , specification Spec,
and input-output interface (I, f) of Spec w.r.t. P:

Runsls(P)�VSpec⊆ Spec ⇒ JPKls�VSpec,I⊆ JTS(Spec, f)K,

where �VSpec,I keeps only transition labels in I and projects the
states on the variables in VSpec.

The asynchronous semantics contains more executions than the
lockstep semantics. However, these executions are indistinguish-
able from the lockstep ones. Therefore, if the specification is closed
under indistinguishability, then the specification is preserved from
the lockstep semantics to the asynchronous one. Formally, given
a transition system TS we denote by Closure'(TS) its closure
w.r.t. the indistinguishability relation, i.e., JClosure'(TS)K =
{π | ∃π′ ∈ JTSK. π ' π′}.

Theorem 3. For any PSYNC program P , specification Spec, and
input-output interface (I, f) of Spec w.r.t. P , if P satisfies Spec

and TS(Spec, f) is closed under indistinguishability, then

JPKa D JTS(Spec, f)K and JPKa vI TS(Spec, f).

Proof. Let π ∈ JPKa be an asynchronous execution of P . Th. 2
implies that there exists π′ ∈ JPKls s.t. π ' π′. Moreover, since
VSpec is included in the set of program variables in P and the inter-
face I is common for P and its runtime, (and indistinguishability
between the runtime and PSYNC holds w.r.t. all the variables in P
and all common labels), it implies that π�VSpec,I' π

′�VSpec,I .
Since P satisfies the specification, from Prop. 1 it follows

that π′ �VSpec,I∈ JTS(Spec, f)K. Finally, since JTS(Spec, f)K
is closed under indistinguishability π �VSpec,I∈ JTS(Spec, f)K.
Therefore, JPKa D JTS(Spec, f)K and, using Th. 1, it follows that
JPKa vI TS(Spec, f).

In the asynchronous semantics the specification applies only to
correct processes, e.g., showing that every process decides means
that every correct process decides in the runtime executions. For
clients interacting with a PSYNC program, we assume that the
failure of a process carries over to the client.

Proposition 2. Consensus is closed under indistinguishabil-
ity and if a program P satisfies Consensus then JPKa vIC

JPKls vIC TS(Consensus, fC ).

Roughly, consensus is closed under indistinguishability because
it does not impose an order on the updates performed on different
processes: processes can decide on a value in any order and at any
time. The same reasoning also holds for other agreement specifica-
tions, like the k-set agreement [25], or the lattice agreement [36].

6.2 Benefits of PSYNC for Verification
Distributed algorithms are challenging to verify because of sev-
eral sources of unboundedness. Messages come from unbounded
domains, the number of processes is a parameter, and channels
may also be unbounded. Using communication-closed rounds and
a lockstep semantics helps mitigate or avoid these challenges.

Model checking Model checking techniques are based on algo-
rithms that explore the system’s reachable states. It requires a fixed
number of finite state processes. With an asynchronous semantics,
a model checker explores all the possible interleavings of processes
transitions and suffers from combinatorial explosion. The lockstep
semantics of PSYNC abstracts away many of these interleavings.
Another difficulty comes from the communication channels. Un-
bounded FIFO channels cause undecidability even for two pro-
cesses [15]. Making the channels lossy [1] and fixing the number of
processes makes the problem non-primitive recursive [67]. Weaker
channel models are usually at least EXPSPACE-hard for verifica-
tion. Communication-closed rounds sidestep this difficulty.

Deductive verification Deductive verification relies on user pro-
vided inductive invariants and ranking functions. The invariants de-
scribe an over-approximation of the set of reachable states which is
inductive w.r.t. the program transitions. Ranking functions show
progress toward satisfying the program goals. However, finding
these annotations is not easy even for an expert. Automated tech-
niques, such as static analysis, are far from being able to generate
these annotations automatically for our targeted class of systems.

The lockstep semantics leads to much simpler invariants, be-
cause they are required to describe the set of reachable states only
at the boundaries between rounds.

In the literature, the HO-model has been shown to be suited for
verification using bounded state-space exploration [21, 70–72] and
interactive theorem provers [22, 24, 27, 57].



6.3 A Verifier for PSYNC

We consider specifications that include both safety and liveness
properties written in LTL with state properties in the logic CL [33].
The verifier inputs are the specification and a PSYNC program
annotated with inductive invariant candidates. The verifier checks
the validity of the invariants and that they imply the specification
by generating verification conditions that can be discharged using
an SMT solver.

Expressiveness CL is a first-order logic over sets of program
states. The variables are interpreted over the different types de-
clared in the program. The value of the program variable x of type
T of a process p is denoted in the logic by the term x(p), where
x is a function of type P → T with P being the type of process
ids. To characterize global states, CL uses universal quantification
over variables of type P , set comprehensions, and cardinality con-
straints.

The programmer provides the inductive invariant candidates and
the pre/post conditions of the send, and update functions. Typ-
ically the correctness argument for consensus solving algorithms,
which are captured in the inductive invariants, is centred around the
existence of a majority of processes that support a decision. For ex-
ample, the formula ∃v. |{p | x(p) = v}| > n/2 defines a majority
(> n/2) of processes that agree on value v using a comprehension,
where x is the function symbol associated with the local variable x.

The inductive invariant that shows agreement in LastVoting is

∀p. ¬decided(p) ∧ ¬ready(p)
∨ ∃v, t, A. A = {p | ts(p) ≥ t} ∧ t ≤ r/4

∧ |A| > n/2 ∧ ∀p. p ∈ A⇒ x(p) = v
∧ ∀p. decided(p)⇒ decision(p) = v
∧ ∀p. commit(p) ∨ ready(p)⇒ vote(p) = v
∧ ∀p. ts(p) = r/4⇒ commit(coord(r/4)).

The invariant is a case split characterizing the states in which
processes can safely decide. A process decides when there is a
majority of processes agreeing on a proposal with timestamps more
recent than t. The additional clauses are required to make the
invariant inductive and to relate it to the specification. For instance,
if a process is ready then its vote is v and it agrees with the
majority. Also the decision of any process that has decided is v.

Methodology To prove safety properties we implement a standard
verification conditions generator for PSYNC programs. For the
round R, the generator builds a CL formula corresponding to the
transitions relation as follows. Let s, s′ be the primed and unprimed
function used to represent the global state of the system. The
transition relation associated with a local send, resp. update, of
a round R is sendR(s(p),m) resp. updateR(m, s(p), s′(p)).

Then the transition relation of round R, TRR(s, s′) is

∀p. sendR(s(p),ms(p))
∧ ∀p, q, t. (t, q) ∈ mu(p)⇔ (t, p) ∈ ms(q) ∧ q ∈ HO(p)
∧ ∀p. updateR(mu(p), s(p), s′(p)) ∧ r′ = r + 1.

Safety. We generate verification conditions that imply partial cor-
rectness: (1) the invariant contains the initial state (TRinit(s) ⇒
Inv(s)), (2) for any round R the invariant is inductive (Inv(s) ∧
TRR(s, s′) ⇒ Inv(s′)), (3) the safety specification ϕ is implied
by the invariant (Inv(s)⇒ ϕ(s)).

Liveness. We also prove liveness properties, such as, every pro-
cess eventually decides in LastVoting. Showing these properties
typically requires ranking functions. However, in many cases we
can simplify the proof. We show that there exists a fixed num-
ber of good rounds, i.e., rounds when the environment assump-
tions hold, such that after the execution of the last good round
the program reaches a set of good states, e.g., processes have de-
cided. To prove that the program makes progress after each good

Algorithm implemented in PSYNC LOC Use rounds Async.
Last voting [23] 89 X X
One third rule [23] 50 X X
Flood min consensus [54] 22 X ×
Ben-Or randomized consensus [11] 58 X X
k-set agreement [25] 39 X X
k-set agreement early stopping [64] 30 X ×
Lattice agreement [36] 30 × X
ε-agreement [49] 49 X X
Two phases commit [41] 53 X ×
Eager reliable broadcast [17] 27 × ×

Table 1: Fault-tolerant algorithms implemented in PSYNC

round the user provides additional invariants, expressing how a
good round strengthens the safety invariant. For instance, in the
LastVoting the program makes a decision if the formula (1) holds
during one complete phase of the algorithms. An intermediate in-
variant specifies that between round Collect and Candidate the
formula commit(coord(r)) holds on top of the safety invariant.

7. Evaluation
We have implemented PSYNC as an embedding in the SCALA pro-
gramming language. The runtime of PSYNC is built on top of the
NETTY [68] framework. For the transport layer, we use UDP. The
serialization of messages uses the pickling library [59]. The im-
plementation is available at https://github.com/dzufferey/
psync under an Apache 2.0 license.

The set of processes executing a PSYNC program is specified in
a configuration file. The runtime manages the interface between a
PSYNC program P and the client application, and also the commu-
nication between the different processs running P .

The execution of P is launched from a client application, us-
ing P’s interface. More specifically, the interface contains callback
methods provided by the application. Regarding termination, many
consensus algorithms presented in the literature assume that pro-
cesses continue executing the algorithm after a decision is taken,
because not all processes decide simultaneously. For example, in
a case of a network partition, some processes learn the decision
value much later. To safely free the memory allocated by the run-
time when a process decides, each process stores only the decision
value in a log. In our experiments we implement a key-value store
using LastVoting iteratively. Each process terminates an execution
of LastVoting once it decides, but the process keeps a log of the
most recent decisions. Any process detects the messages send by
late processes, e.g., those that got disconnected or slowed down
temporary, and send them the decision from the log (if present).

To achieve the good performances, the timeout is an important
parameter determined empirically. ∆ can easily be measured, i.e.,
latency and bandwidth. Θ is harder to measure but can easily be
over-approximated. To decrease the reliance on an accurate time-
out, we implemented several optimizations that allows the runtime
to progress before the timeout occurs.

7.1 Implementing Algorithms in PSYNC

PSYNC can implement a wide variety of fault-tolerant distributed
algorithms. Table 1 lists several implementations in PSYNC of al-
gorithms that solve different agreement problems. For each algo-
rithm, we indicate if it is designed for a synchronous or an asyn-
chronous network and if the presentation uses some form of rounds.
Many asynchronous algorithms are tagging messages with infor-
mation that implicitly structures programs in rounds (not necessar-
ily executing in lockstep). However, even when the original algo-
rithm presentation is event-driven, they can be encoded in PSYNC.

The first three algorithms focus on the traditional consensus
problem, the others are weaker agreement problem. Ben-Or algo-

https://github.com/dzufferey/psync
https://github.com/dzufferey/psync


Paxos implemented in LOC Executable Verification
PSYNC 89 X semi-automated
DistAlgo 43 X ×
Distal 157 X ×
Overlog 107 X ×
TLA+ 53 × mechanized
IO Automata 142 × mechanized
EventML 1729N X mechanized
Verdi (Raft algorithm) 520 X mechanized
Bloom 224 X ×

Table 2: Comparison of the code size and verification of Paxos in
different languages. For EventML, Schiper et. al. [66] report the
number of AST nodes.

rithm [11] solves binary consensus and almost surely terminates.
The k-set agreement [25] is a weaker version of consensus that
allows processes to decide on k-different values. The generalized
lattice agreement [36] asks processes to choose values in a lattice,
such that these values form a chain. ε-agreement is a form of con-
sensus over R in which all the decision values lie in an interval
of size ε. Two phases commit is a degenerate version of the bi-
nary consensus where the decision value true is allowed only if
all processes propose true . Reliable broadcast guarantees that if a
correct process delivers a value, then all correct processes deliver
that value.

We compare PSYNC against other high-level languages for dis-
tributed algorithms. Table 2 shows a comparison between different
implementations of Paxos in different programming and specifica-
tion languages. For PSYNC we used LastVoting. For each imple-
mentation we count the number of lines of code without comments
or blank lines. Also we focus on the algorithm itself and remove
boilerplates like include statements.

We compare against the following languages: DistAlgo [53]
is a programming language for distributed algorithm that uses in-
crementalization to compile a high-level specification into Python
code. Distal [14] is designed to express fault-tolerant distributed al-
gorithms in a pseudo-code-like manner. It is built as a library on top
of Scala. Bloom [5] is a programming language based on a mono-
tonic logic for building consistent distributed systems. Overlog [4]
is a logic programming language for distributed systems inspired
by Datalog. EventML [58] is a programming and verification lan-
guage for distributed algorithms connected to the Nuprl interactive
theorem prover [3]. Verdi [74] is a Coq framework for implement-
ing and proving distributed systems correct. TLA+ [51] is a logic-
based specification language designed to describe concurrent and
distributed systems. IO Automata [55] is a specification language
with automata theoretic foundations to describe asynchronous con-
current and distributed systems. Except for TLA+ which can en-
code both synchronous and asynchronous programs, and Verdi that
starts with a synchronous model and transforms it into an asyn-
chronous one, the other languages have an asynchronous seman-
tics. Currently only mechanized proofs in Nuprl or Coq exist for
Paxos, when implemented in EventML or Verdi.

Limitations of the model PSYNC keeps an order between mes-
sages only if they are sent in different rounds. It is oblivious to the
order in which messages arrive in one round. As a consequence, one
cannot implement the runtime system of PSYNC in PSYNC itself.
Also, for the moment we don’t have an efficient way of composing
PSYNC programs to create other programs. The composing round
based models is a problem that currently receives attention.

7.2 Comparing PSYNC to existing Paxos implementations
We evaluate our PSYNC implementation of Paxos (LastVoting from
Fig. 1) and compare it to existing Paxos implementations. We use
LastVoting to order write requests in a simple key-value store. The

Implementation Source Year Throughput
×1000 req/s

Last Voting (Batching) 20154 170
Egalitarian Paxos [62] 2013 450
Paxos in Distal [14] 2013 150
JPaxos / SPaxos [13] 2012 75 / 300
Paxos for system builder [6] 2008 40

Table 3: Performance of Paxos implementations with 3 processs

submitted requests are collected into batches of about 300 requests,
then LastVoting is used to make all processs agrees on the next set
of writes. Adding batching to LastVoting requires only changing
the type of the messages sent in each round, i.e., modifying only a
few lines of code (<10) because batching does not interfere with
the control structure of the algorithm.

Table 3 shows throughput numbers for the different implemen-
tations of Paxos we considered. All the algorithms try to maximize
the throughput when dealing with requests of small sizes. However,
the exact settings is sightly different for every experiment. Due to
the difficulty of processting published results, we report the pub-
lished numbers. We run PSYNC on three servers with Intel Xeon
X5460 cpu and 8 GB ram 4, running Linux 2.6.32 and the JRE 1.8.
We also ran experiments incorporating crashes. The throughput of
the system roughly halves after one crash. The point of this com-
parison is to show that the overhead of the runtime to implement the
round structure is acceptable and does not preclude PSYNC adop-
tion. We believe that the benefits of PSYNC, i.e., an intuitive se-
mantics, simple control structures, and the ability to use automated
verification tools, make it a compelling language.

PSYNC and Distal both are based on SCALA. JPaxos and
SPaxos [13] are written in Java. JPaxos is Java implementa-
tion of Paxos and SPaxos is an improved algorithm to achieve
higher-throughput when the coordinator is CPU bound. Egalitar-
ian Paxos [62] is implemented in Go and improves over Paxos
by processing independent requests in parallel. Paxos for system
builder [6] is an implementation of Paxos in C. To achieve high
throughput, all the implementations use batching.

7.3 Verification in PSYNC

We implemented a verification conditions generator for PSYNC,
based on the logic CL. To compute the verification conditions the
tool computes, at compile time, (1) the transition relation of the
program and (2) transforms the program assertions given in the
SCALA language in CL formulas.

We implemented the semi-decision procedure for CL [33] on
top of the SMT solver Z3 [63] and using the VC generator we
verified the PSYNC programs One third rule [23] and LastVoting.
Their specification and invariants are provided by the user. We used
the invariants from [33]. For the One Third Rule, we need for
4 invariants (23 LOCs), 27 VCs are generated, solved in 5s. For
the LastVoting, we need for 8 invariants (35 LOCs), 45 VCs are
generated, solved in 16s.

The verification of programs solving weaker agreement prob-
lem requires reasoning about sets of data. For example, k-set con-
sensus needs to reason about the cardinality of the set of decision
values. CL supports only reasoning about sets of processes. We are
working on extending the scope of our implementation to verify a
larger class of examples.

4 We use 5 years old machines which makes the comparison with older
results relevant



8. Related Work
In this section we compare PSYNC to the related work from a
programming language and verification perspective.

Formalizations of distributed algorithms. Distributed algorithms
are typically defined in English or pseudo-code [42] using different
computational models. Synchronous and asynchronous models are
the most frequent ones. Synchrony allows solving a larger class
of problems, while asynchrony is close to the network behavior.
Finding an uniform model is still an open problem in the distributed
algorithms community. Multiple models that abstract uniformly
faults and (a)synchrony have been introduced [2, 12, 23, 34, 40, 65,
73? ]. We have chosen the HO-model [23] because of its simplicity.
It handles asynchrony, host and network failures uniformly.

In the classic setting, distributed systems are formalized using
the π-calculus [60, 61], CSP [45], and I/O-automata [55]. These
formalisms are used to give a formal semantics to message-passing
systems and to analyze them, but not as programming languages.

The Actor model [44] is probably the most successful high-level
programming abstraction for message-passing systems. Actors are
either built-in languages, e.g., Erlang [8], or supported through
libraries, e.g., Scala [43]. Erlang via the OTP library [69] has
support to handle faults in distributed systems. Faults are handled
using a supervision hierarchy: when a replica fails its superior in
the hierarchy is notified and takes action. PSYNC allows reasoning
about faults when processes are not organized in a strict hierarchy.

Several domain specific languages for distributed algorithms
have been developed [4, 5, 9, 14, 48, 53, 58]. Languages like
Meld [9], Overlog [4], and Bloom [5], which are based on Data-
log, do not have a formal operational semantics, and do not support
automated verification. The closest domain specific languages to
PSYNC are Mace [48], DistAlgo [53] and Distal [14]. However,
they all have an asynchronous semantics and lack high-level pro-
gramming construct to reason explicitly about faults.

Verification. The verification of parametric systems is in general
undecidable [7]. Therefore, mainly bug finding tools are developed.
They are based on state-space exploration up to a bounded, gener-
ally small, number of processes or messages [32, 39, 48, 70, 71], or
uses specialized abstractions [46]. Static analysis techniques [29]
are used to prove only simple properties, such as type errors or
dead code detection, not for complex functional properties.

Recently a few programming languages were designed with
build-in support for verification. Mace [48] has an integrated model
checker which cannot prove total functional correctness. The most
successful programming languages from a verification perspective
are EventML [58] and Verdi [74]. EventML is a functional pro-
gramming language and Verdi is a Coq framework for implement-
ing and proving correct distributed algorithms. Verdi starts with a
synchronous implementation and progressively transforms it using
refinement into an asynchronous fault-tolerant one. The correct-
ness of the implemented programs is mechanically proved using
theorem provers: EventML uses Nuprl and Verdi uses Coq. These
two languages have a small trusted base but reduced performances.
For example, the throughputs of PSYNC implementations are sev-
eral orders of magnitude faster than corresponding ones in Verdi.
Moreover PSYNC’s verifier is designed for automated verification,
currently based on SMT solvers.

In the algorithms community specification languages like +Cal [52]
and TLA+ [51] are used to write formal specification of distributed
algorithm and to model check or to mechanically prove them. How-
ever, these specifications are not executable.

Finally, the exploration of synchronous behavior of asyn-
chronous systems for verification purposes has been investigated in
[10, 28]. Our approach starts with a (partially) synchronous abstrac-
tion rather than retrofitting synchrony in existing asynchronous

systems. The approach in [10, 28] makes the verification more
complex without offering any guarantees about its applicability.

9. Conclusion
We have presented PSYNC a domain specific language for fault-
tolerant systems that strikes a balance between high-level con-
structs, performance, and automated verification. PSYNC offers a
simple lockstep semantics that is indistinguishable from its runtime
asynchronous executions. We have implemented a prototype run-
time for PSYNC for partial synchronous networks and shown that it
performs within a constant factor from highly optimized low-level
implementations. For future work we intend to enlarge the appli-
cation domain of PSYNC and to raise the automation level of the
verification engine by developing static analysis that generate in-
ductive invariants. We plan to generalize the runtime to cover more
fault-models, such a Byzantine faults.
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