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Summary

Fault-tolerant distributed data structures are at the core distributed systems. Due to the
multiple sources of non-determinism, their development is challenging. The project aims to
increase the confidence we have in distributed implementations of data structures. We think
that the difficulty does not only come from the algorithms but from the way we think about
distributed systems. We will investigate partially synchronous programming abstractions that
reduce the number of interleavings, simplifying the reasoning about distributed systems and their
proof arguments. We will use partial synchrony to define reduction theorems from asynchronous
semantics to partially synchronous ones, enabling the transfer of proofs from the synchronous
world to the asynchronous one. Moreover, we will define a domain specific language, that allows
the programmer to focus on the algorithm task, it compiles into efficient asynchronous code, and
it is equipped with automated verification engines. The internship is financed by the ANR project
SAFTA - Static analysis of fault-tolerant algorithms.

2 Context

Highly available data storage systems and high processing power systems are available today due
the massive development of fault-tolerant distributed systems. The standard way to make any
applications fault-tolerant (available independently of network and hardware faults) is replication:
the application is copied on different sites and all its clients are free to interact with any of the
replicas deploying the application. The challenge posed by replication is to keep the replicas
consistent, i.e., the application is in the same state at all replicas, despite any interaction with
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the client. Notorious examples are Amazon Dynamo (highly-available key-value storage system),
Apache Zookeeper (distributed hierarchical key-value store used to provide a configuration service
and synchronization service), or the blockchain, the data structure bitcoin is built on top of.

The complexity of the design of distributed algorithms is rooted in the FLP theorem [6] which
states that in asynchronous networks (there are no bounds on the message delay), in the presence
of faults (messages are lost or processes crash) it impossible for all processes to agree on a value,
i.e., to solve consensus. State machine replication can be roughly implemented by using consensus
iteratively. To cope with impossibility results, existing algorithms make various assumptions on
the network (e.g., bounding the number of messages that are dropped, or the number of processes
that may crash) or on the provided consistency guarantees (e.g., processes might be allowed to
agree on two different values instead of one). This leads to solutions with extremely complex
flow of data, that simultaneously deal with the asynchronous nature of the network, the presence
of byzantine (message corruption) or benign (message lost) faults, and updates of the processes
local state.

Given the massive usage and the intricacy of distributed system, they are a prime candi-
date for automate verification. From a theoretical perspective, these are infinite state systems,
communicating via unbounded channels, whose verification is in general undecidable. However,
the state of the art shows that static analysis techniques like deductive verification and abstract
interpretation, had a great impact on increasing correctness of sequential software, despite the
fact that the verification of sequential programs is in general undecidable. These are incomplete
verification tools, that either prove that the program satisfies the specification or they launch
alarms, that is a collection of potential bugs in the program. We can cite the impact the Satisfia-
bility Modulo Theory (SMT) solver Z3 [9] had for the verification of device drivers, or the static
Analyzer Astrèe which was successfully applied to numeric embedded software. However, there
are no automated verification tools to accompany the design of fault-tolerant protocols.

3 Objective

The goal of this project is to increase the confidence we have in replicated systems. We think
that the difficulty does not only come from the algorithms but from the way we think about
distributed systems. Therefore we propose to:

• identify high-level programming abstractions that focus on algorithmic aspects sim-
plifying the reasoning about fault-tolerant implementations,

• build a domain-specific language based on the identified programming abstraction, that
allows the programmer to focus on the algorithmic task, it is equipped with an automated
verification engine, and it compiles into efficient asynchronous code.

Due to the complexity distributed systems have reached, and their continuous evolution, we
believe it is no longer neither realistic nor efficient to assume that high level specifications can be
proved when development and verification are two disconnected steps in the software production
process.

One fundamental obstacle in achieving proved correctness of distributed systems is the lack
of abstractions when reasoning about their behaviors. The standard programming paradigm for
implementing fault-tolerant distributed algorithms is highly error-prone, providing only asyn-
chronous communication primitives and timer constraints. The programmer has to reason sepa-
rately about the degree of synchrony of the network and the various types of faults, e.g., process
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crash, message loss, network partition. Therefore we aim to identify programming abstractions
that simplify the representation of program behaviors, leading to simpler proof arguments, with-
out sacrifying the explosiveness power.

We focus on programming abstraction that distinguish the high-level algorithmic task from
the network assumptions. In order to reconcile the modeling of various network assumptions, the
distributed algorithms community introduced partially synchronous computational models
that unify reasoning about (a)synchrony and fault assumptions, separating it from the algorithmic
task. We start out quest for programming abstraction from two such partially synchronous models
Round-by-round fault detectors [7] by E. Gafny and Heard-Of [4] by B. Charron-Bost and A.
Schiper.

The partially synchronous programming abstraction simplifies the proofs arguments of fault-
tolerant distributed algorithms. Algorithms are structured in rounds executed in lock-step and
the round number plays the role of an abstract clock. The lock-step semantics reduces the number
of interleavings between actions performed by different processes, leading to simpler invariants
and variant functions that describe the system only at the boundary between rounds.

We will define efficient compilation schemes from partial-synchronous abstraction to asyn-
chronous code. To this, the most important step is the procedure that implements the round
switch: this procedure decides when a process goes to the next round while allowing sufficiently
many messages to be delivered. We plan to investigate algorithms for determining the round
switch that (1) preserves the safety assumptions of the algorithm (if any) and (2) checks (under-
approximations of) the network assumptions that ensure progress. In [5] we have defined a
compilation technique parametrized by timeouts.

Synchronization services like Apache Zookeeper [1] or Chubby [2] (developed by Google) are
based on the agreement algorithms whose modelization we directly target in our benchmarks,
e.g., Zab [8], Viewstamped [10], Multi-Paxos [3].
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[4] Bernadette Charron-Bost and André Schiper. The heard-of model: computing in distributed
systems with benign faults. Distributed Computing, 22(1):49–71, 2009.

[5] Cezara Dragoi, Thomas A. Henzinger, and Damien Zufferey. Psync: a partially synchronous
language for fault-tolerant distributed algorithms. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St.
Petersburg, FL, USA, January 20 - 22, 2016, pages 400–415, 2016.

[6] Michael J. Fischer, Nancy A. Lynch, and M. S. Paterson. Impossibility of distributed con-
sensus with one faulty process. J. ACM, 32(2):374–382, April 1985.

3



[7] Eli Gafni. Round-by-round fault detectors (extended abstract): unifying synchrony and
asynchrony. In PODC, pages 143–152, 1998.

[8] Flavio Paiva Junqueira, Benjamin C. Reed, and Marco Serafini. Zab: High-performance
broadcast for primary-backup systems. In Proceedings of the 2011 IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2011, Hong Kong, China, June
27-30 2011, pages 245–256. IEEE, 2011.

[9] Leonardo Moura and Nikolaj Bjorner. Z3: An efficient SMT solver, 2008.

[10] Brian M. Oki and Barbara Liskov. Viewstamped replication: A general primary copy. In
Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed Computing,
Toronto, Ontario, Canada, August 15-17, 1988, pages 8–17, 1988.

4


	General information
	Context
	Objective

