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Abstract. Our input is a graph G = (V,E) where each vertex ranks its neighbors in a strict order of
preference. The problem is to compute a matching in G that captures the preferences of the vertices
in a popular way. Matching M is more popular than matching M ′ if the number of vertices that prefer
M to M ′ is more than those that prefer M ′ to M . The unpopularity factor of M measures by what
factor any matching can be more popular than M . We show that G always admits a matching whose
unpopularity factor is O(log |V |) and such a matching can be computed in linear time. In our problem
the optimal matching would be a least unpopularity factor matching - we show that computing such a
matching is NP-hard. In fact, for any ε > 0, it is NP-hard to compute a matching whose unpopularity
factor is at most 4/3− ε of the optimal.
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1 Introduction

Let V be a set of n people, each of whom seeks a roommate. Every person has a strict ranking over those
people in V whom he/she considers as acceptable roommates. This can be modeled as a graph G = (V,E)
where each u ∈ V ranks its neighbors in a strict order of preference. Preference lists can be incomplete,
i.e., a vertex need not be adjacent to all the other vertices. Each vertex seeks to be matched to a neighbor
and for any u ∈ V , if u ranks v higher than v′ in its preference list, then u prefers v as its roommate to v′.
This is called an instance of the roommates problem with incomplete lists, which is a generalization of the
stable marriage problem.

In the stable marriage problem, the input graph G is bipartite and the problem is to compute a
matching M in G that admits no blocking edges: such a matching M is called a stable matching. An
edge (a, b) is a blocking edge to M if a is either unmatched or prefers b to M(a) and similarly, b is either
unmatched or prefers a to M(b). While every bipartite graph admits a stable matching [3], it is easy to
come up with roommates instances that admit no stable matchings. Consider the instance H on 3 vertices
{a0, a1, a2} where for i = 0, 1, 2, ai prefers ai+1 to ai+2 (all subscripts are modulo 3). None of the matchings
M0 = {(a0, a1)}, M1 = {(a1, a2)}, M2 = {(a2, a3)} is stable since each Mi (for i = 0, 1, 2) admits a blocking
edge (ai+1, ai+2) (the subscripts are modulo 3).

Given a roommates instance G, there is a linear time algorithm by Irving [7] to determine if G admits
a stable matching or not and if so, to compute one. Our goal now is to come up with a notion of optimality
that is weaker than stability such that a matching satisfying this optimality criterion always exists in G.
We also want such an optimal matching to be computed efficiently.

1.1 Popular Matchings

Popularity is a weaker notion than stability. We define popular matchings below. For any two matchings
M and M ′, we say that vertex u prefers M to M ′ if u is better off in M than in M ′ (i.e., u is either matched
in M and unmatched in M ′ or matched in both and prefers M(u) to M ′(u)).

Let φ(M,M ′) = the number of vertices that prefer M to M ′. We say that M ′ is more popular than M
if φ(M ′,M) > φ(M,M ′).

Definition 1. A matching M is popular if there is no matching that is more popular than M , i.e.,
φ(M,M ′) ≥ φ(M ′,M) for all matchings M ′ in G.

It is easy to see that every stable matching is popular [2]: while comparing a stable matching S with
any matching M , observe that for any edge (u, v) ∈M \ S, both u and v cannot prefer M to S; otherwise
(u, v) would be a blocking edge to S, contradicting its stability. Also, no vertex left unmatched by M
can prefer M to S. Thus summing all the votes, it follows that φ(M,S) ≤ φ(S,M). A simple instance
from [2] that admits no stable matching but has popular matchings is the following: consider the graph H
described above with a fourth vertex a3 added to this instance such that a3 is at the tail of the preference
lists of a0, a1, and a2. The vertex a3’s preference list is a0 followed by a1, and then a2. It can be checked
that this instance has no stable matching, however it admits 2 popular matchings: {(a0, a3), (a1, a2)} and
{(a1, a3), (a0, a2)}.

Since there is no matching where more vertices are better-off than in a popular matching, a popular
matching is a natural candidate for an optimal matching. But popular matchings also do not always exist.
The instance H on {a0, a1, a2} described earlier, is one such instance. In any instance G, let us measure
by what factor one matching (say, M1) can be more popular than another (say, M0) as follows:

∆(M0,M1) =


φ(M1,M0)
φ(M0,M1)

if φ(M0,M1) 6= 0;

1 if φ(M0,M1) = φ(M1,M0) = 0;

∞ otherwise.

Let M denote the set of all matchings in G. The unpopularity factor of M is

u(M) = max
M ′∈M

∆(M,M ′).



Observe that by definition, ∆(M,M) = 1. Hence for any matching M , u(M) ≥ 1. In particular, M is
popular if and only if u(M) = 1. In general, a matching M with a low value of u(M) can be considered
a good matching because φ(M ′,M) ≤ u(M) · φ(M,M ′) for all M ′; hence when comparing M with any
matching M ′, the number of vertices that prefer M ′ to M cannot be larger than the number of other
vertices by a factor of more than u(M).

Least unpopularity factor matchings. Among all the matchings in M, the one with the least value of
unpopularity factor is called a least unpopularity factor matching. When G admits popular matchings, it is
easy to see that every popular matching is a least unpopularity factor matching. However unlike popular
matchings, least unpopularity factor matchings always exist. In the instance H on vertex set {a0, a1, a2}
described earlier, M0,M1, and M2 are least unpopularity factor matchings: the unpopularity factor of each
of these matchings is 2 and the only other matching in H is the empty matching, whose unpopularity factor
is ∞.

Since least unpopularity factor matchings are a generalization of popular matchings and because they
always exist, a least unpopularity matching is a promising candidate for an optimal matching in G. However
finding such a matching is APX-hard, as shown by our following result.

Theorem 1. It is NP-hard to find a least unpopularity factor matching in a roommates instance G =
(V,E). In fact, for any ε > 0, it is NP-hard to compute a matching whose unpopularity factor is at most
4/3− ε of the optimal. These hardness results hold even in the special case when G is a complete graph.

Nevertheless, there is always a matching whose unpopularity factor is O(log n) and this can be computed
efficiently, as shown by our following result.

Theorem 2. Let G be a roommates instance on n vertices and m edges. Then G always admits a matching
whose unpopularity factor is at most 4 log n + O(1) and such a matching can be computed in O(m + n)
time.

Thus though popular matchings do not always exist in the roommates instance, there is always a
solution that is not very unpopular and it is efficiently computable. Thus we propose a solution that is
reasonably optimal and efficiently computable for the problem of finding a good matching in a roommates
instance. We show an instance G = (V,E) where every matching has unpopularity factor Ω(log |V |), hence
the upper bound in Theorem 2 cannot be improved to o(log n).

Our algorithm can be also regarded an O(log |V |) approximation algorithm for finding the least unpop-
ularity factor matching. We show that this approximation ratio cannot be improved to o(log |V |) by better
analysis, since we construct an example in which our algorithm produces a matching whose unpopularity
factor is Ω(log |V |) while there exists a matching whose unpopularity factor is O(1).

Popular matchings have been well-studied during the last few years [1, 6, 8–13]. Much of this work is in
bipartite graphs where only vertices on one side (called applicants) have preferences while vertices on the
other side (called jobs) have no preferences. So when we compare two matchings with respect to popularity,
it is only applicants that cast their votes. This is called the one-sided preference lists model and popular
matchings need not always exist here. Also, there exist simple instances here where every matching has
unpopularity factor Ω(n): for instance, A = {a1, . . . , an} and B = {b1, . . . , bn} where each a ∈ A has
the same preference list, which is, b1 followed by b2 followed by b3 and so on till bn as the last choice -
every perfect matching here has unpopularity factor n− 1 (and non-perfect matchings have unpopularity
factor ∞). Thus the existence of an O(log n) unpopularity factor matching in the roommates problem is
surprising.

Background and Related Results. Gale and Shapley [3] introduced the stable marriage problem and as
mentioned earlier, Irving [7] showed an efficient algorithm for determining if a roommates problem admits
a stable matching or not and if so, to compute one. Gärdenfors [4] introduced the notion of popularity in
the stable marriage problem. When ties are allowed in preference lists here, it has been shown by Biró,
Irving, and Manlove [2] that the problem of computing an arbitrary popular matching is NP-hard.

For one-sided preference lists, there are efficient algorithms known for determining if the input instance
admits a popular matching or not, and if so, to compute one [1]. McCutchen [12] defined two measures
of unpopularity called the unpopularity factor and unpopularity margin and showed that in the one-sided



preference lists model, the problem of computing a matching that minimized either of these two measures
is NP-hard. In bipartite graphs with two-sided strict preference lists, the problem of computing a least
unpopularity factor/margin matching becomes easy due to the existence of stable matchings. Our hardness
result shows that the hardness returns when we generalize to non-bipartite graphs.

Organization of the paper. Section 2 contains our linear time algorithm to construct a matching whose
unpopularity factor is O(log n). Section 3 has our hardness result. In the Appendix, we show two instances:
one where every matching has unpopularity factor Ω(log |V |) and another which admits a matching of
unpopularity factor O(1), however our algorithm returns a matching of unpopularity factor Θ(log |V |).

2 A low unpopularity factor matching

Let G = (V,E) be an instance of the roommates problem. Tan [14] showed that, whether G admits a stable
matching or not, G always admits a stable partition, which generalizes the notion of a stable matching.
Note that a stable matching S can be regarded as a partition of V into sets, each of which has size either
2 (a pair matched to each other in S) or 1 (an unmatched vertex).

A stable partition is a partition {A1, . . . , Ak} of the vertex set V , where each Ai is an ordered set
〈a0i , . . . , a`i〉. We call aj−1i the predecessor of aji and for every i and j, if aj+1

i 6= aj−1i , then aji prefers aj+1
i

(its successor) to aj−1i , where all superscripts are modulo |Ai|. When Ai = 〈a0i 〉, i.e., if Ai is a singleton
set, we say that a0i has no predecessor. Note that any cyclic permutation of Ai is also an ordered set. For
every edge (a, b) in G, the following stable condition holds:

(∗) If a prefers b to its predecessor, then b does not prefer a to its predecessor.

If Ai = 〈a0i 〉, then ai prefers any neighbor to its predecessor (which is non-existent) since ai being
matched to its predecessor is the same as ai being left unmatched and this is the least preferred state
for any vertex. Thus no neighbor of ai can belong to a singleton set in a stable partition as that would
contradict the stable condition. By this observation, for any (a, b) ∈ E, either a is b’s predecessor/vice-
versa or one of {a, b} strictly prefers its predecessor to the other. A stable partition for the graph H on
{a0, . . . , a3} described in Section 1 is {〈a0, a1, a2〉, 〈a3〉}.

We will use the following notation: for any vertex u and neighbors v and w of u, voteu(v, w) is 1 if u
prefers v to w, it is −1 if u prefers w to v, and it is 0 otherwise (i.e., v = w). Also, if matching M leaves u
unmatched, then voteu(v,M(u)) = 1 where v is any neighbor of u.

2.1 Our algorithm

We present below an algorithm for finding an O(log |V |) unpopularity factor matching in G = (V,E). Our
input is the graph G0 = G (so the vertex set V0 refers to V ).

1. Let P0 be a stable partition {A1, . . . , Ak} of G0.
1.1 Set X0 = ∪ki=1{a

2t−1
i : t = 1, . . . , d|Ai|/2e}, that is, X0 is the set of all odd indexed vertices in all

the ordered sets in the partition P0.

{recall that vertices in the ordered set Ai are indexed 〈a0i , a1i , . . . , a
|Ai|−1
i 〉}

1.2 Run the Gale-Shapley algorithm on (X0, V0 \X0).
{vertices of X0 propose to those in V0 \X0 and vertices of V0 \X0 dispose}
Let M0 denote the resulting matching and let Y0 denote the set of matched vertices in V0 \X0.

2. Let V1 denote the set of unmatched vertices in V0 \X0. In other words, V1 = V0 \ (X0 ∪ Y0).
2.1 Let G1 be the induced subgraph on V1. Delete all isolated vertices from G1 (and V1).
2.2 If V1 = ∅, then return S = M0. Else let S′ be the matching returned by running our algorithm

recursively on G1. Return S = M0 ∪ S′.

Note that the Gale-Shapley algorithm is described in the proof of Lemma 1. In our algorithm above,
just as V0 was partitioned into X0, Y0, V1, in the recursive call for G1, the vertex set V1 gets partitioned into
X1, Y1, V2, and in the recursive call for G2 (the induced subgraph on V2), the vertex set V2 gets partitioned
into X2, Y2, V3, and so on till Vr+1 is empty, where r is the recursion depth in our algorithm. We also add
all isolated vertices pruned from Vi in Step 2.1, for i = 1, . . . , r + 1, to Vr+1. Let X = X0 ∪X1 ∪ · · · ∪Xr

and let Y = Y0 ∪ Y1 ∪ · · · ∪ Yr ∪ Vr+1. We will show that the following properties hold:



(I) For each 0 ≤ i ≤ r, every vertex in Xi is matched to a vertex in Yi and vice-versa. Every unmatched
vertex has to be in Vr+1.

(II) If we label each edge (u, v) ∈ E \ S by (α, β) where α is voteu(v, S(u)) and β is votev(u, S(v)), then
• there is no edge labeled (1, 1) between any two vertices in X, and
• there is no edge labeled (1, 1) between any x ∈ Xi and any y ∈ Yi ∪ Yi+1 ∪ · · · ∪ Yr ∪ Vr+1.

Lemma 1. For each i, every x ∈ Xi gets matched in S to a vertex that x considers at least as good as its
predecessor in the stable partition Pi of Gi.

Proof. Recall the Gale-Shapley algorithm on the edge set restricted to Xi × (Vi \Xi) when vertices of Xi

propose and vertices of Vi \Xi dispose. We assume that all the unmatched vertices of Xi are placed in a
queue. While there exists a vertex x in the queue that has not yet been rejected by all its neighbors, x is
removed from the queue and it proposes to its most preferred neighbor y in Vi \Xi that has not yet rejected
x. If y is unmatched or prefers x to its current neighbor z, then x gets matched to y; else x is rejected by
y. If y was already matched to some vertex z when x proposes to y, then the vertex who is rejected by
y (either x or z) gets added to the queue of unmatched vertices. This goes on till every x ∈ Xi is either
matched or has been rejected by all its neighbors in Vi \Xi.

For each x ∈ Xi, let pi(x) denote the predecessor of x in the stable partition Pi of Gi. We need to show
that each x ∈ Xi gets matched to a vertex y that x considers at least as good as pi(x). Suppose not. Let
z ∈ Xi be the first vertex in the Gale-Shapley algorithm that gets rejected by pi(z). That is, the vertex
pi(z) is matched to a vertex w that pi(z) prefers to z. Since z was the first vertex that is rejected by its
predecessor in the Gale-Shapley algorithm, it has to be the case that w prefers pi(z) to pi(w). Also, pi(z)
prefers w to its predecessor - this is because pi(z) prefers w to its successor z (recall that in any ordered set,
every vertex likes its successor at least as much as its predecessor). The fact that both w and pi(z) prefer
each other to their respective predecessors contradicts the stable property (∗) stated at the beginning of
Section 2. Hence there cannot be any vertex z during the entire course of the Gale-Shapley algorithm that
gets rejected by its predecessor. The lemma follows. ut

It follows from Lemma 1 that every x ∈ Xi is matched in S. For each 0 ≤ i ≤ r, let Mi be the matching
S restricted to Xi∪Yi. Since Yi ⊆ Vi\Xi is the set of matched vertices in Mi, we can conclude the following
corollary.

Corollary 1. For each 0 ≤ i ≤ r, Mi is a perfect matching on Xi ∪ Yi.

Hence it follows that every unmatched vertex has to be in V \ (∪ri=0Xi ∪ri=0 Yi), which is Vr+1. Thus
we have proved property (I). Now we show property (II).

Lemma 2. With respect to the matching S,

(1) there is no edge labeled (1, 1) between any pair of vertices in X, and
(2) for every 0 ≤ i ≤ r, there is no edge labeled (1, 1) between a vertex x ∈ Xi and a vertex y ∈ Yi ∪ Yi+1 ∪
· · · ∪ Yr ∪ Vr+1.

Proof. Lemma 1 tells us that each vertex x ∈ X0 gets matched to a vertex that is at least as good as its
predecessor in P0. So property (∗) of a stable partition implies that there can be no (1, 1) edge between any
two vertices of X0. Since we run Gale-Shapley algorithm between (X0, V \X0), there can be no (1, 1) edge
between a vertex of X0 and a vertex of V \X0. Thus it follows that there can be no (1, 1) edge between an
x0 ∈ X0 and any vertex of V . Hence there is no (1, 1) edge between an x0 ∈ X0 and any x ∈ X; also there
is no (1, 1) edge between an x0 ∈ X0 and a vertex y ∈ Y0 ∪ · · · ∪ Yr ∪ Vr+1.

Applying the same argument in G1, we see that there is no (1, 1) edge between an x1 ∈ X1 and any
vertex of V1, i.e., there is no (1, 1) edge between an x1 ∈ X1 and any vertex of X1 ∪ · · ·Xr; also there is no
(1, 1) edge between an x1 ∈ X1 and a vertex y ∈ Y1 ∪ · · · ∪ Yr ∪ Vr+1.

Continuing this argument, we see that there is no (1, 1) edge between an xi ∈ Xi and any vertex of
Xi ∪ · · ·Xr; also there is no (1, 1) edge between an xi ∈ Xi and a vertex y ∈ Yi ∪ · · · ∪ Yr ∪ Vr+1.

Thus there is no (1, 1) edge between any pair of vertices in X and for every 0 ≤ i ≤ r, there is no (1, 1)
edge between a vertex x ∈ Xi and a vertex y ∈ Yi ∪ Yi+1 ∪ · · · ∪ Yr ∪ Vr+1. ut



The properties of the matching S (as given by Lemmas 1 and 2) enable us to show Lemma 3. We say
an alternating path/cycle ρ with respect to S has k consecutive (1, 1) edges if ρ has a subpath v0-v1-S(v1)-
v2 · · ·S(vk−1)-vk where every unmatched edge (note that there are k of them) is labeled (1, 1).

Lemma 3. There can be at most 2r+ 1 consecutive (1, 1) edges in any alternating path/cycle with respect
to S. No alternating cycle can consist solely of (1, 1) edges.

Proof. Let ρ be an alternating path with respect to S and let ρ′ be the longest subpath of consecutive
(1, 1) edges in ρ. Since it is only edges of E \ S that get labeled by the votes of their endpoints, we can
assume that the first edge of ρ′ is an unmatched edge. Let u0 be an endpoint of ρ′. There are two cases:
(i) u0 ∈ X, (ii) u0 ∈ Y .

Case (i). Let u0 be in Xi. Since every unmatched edge of ρ′ is marked (1, 1), it has to be the case that
the vertex that follows u0 in ρ′, call this vertex v0, has to be in Yi−1 ∪ Yi−2 ∪ · · · ∪ Y0, since there are no
(1, 1) edges in Xi × (X ∪ Yi ∪ · · · ∪ Vr+1). Suppose v0 ∈ Yj , where 0 ≤ j ≤ i− 1. Then S(v0) ∈ Xj . Let u1
be the vertex S(v0). It follows from the same argument that the vertex after u1 in ρ′, call this vertex v1,
has to be in Yj−1 ∪ Yj−2 ∪ · · · ∪ Y0. Suppose v1 ∈ Yk, where 0 ≤ k ≤ j − 1. Then S(v1) ∈ Xk. However we
cannot continue in this manner for more than r edges since we will be at a vertex in X0 after at most r
such edges and there are no (1, 1) edges incident on any vertex in X0. Thus ρ′ has at most r consecutive
(1, 1) edges in this case.

Case (ii). Let u0 be in Yi. The vertex v0 succeeding u0 in ρ′ can be either in X or in Y . If v0 ∈ Y ,
then u1 = S(v0) has to be in X and this becomes exactly the same as Case (i) and so there can be at most
r consecutive (1, 1) edges after u1. So let us assume that v0 ∈ X. Since the edge (u0, v0) is labeled (1, 1)
and there are no (1, 1) edges between Yi and Xi ∪Xi−1 ∪ · · · ∪X0, the vertex v0 has to be in Xj , where
j ≥ i + 1. Hence u1 = S(v0) is in Yj . Again, the vertex v1 that follows u1 in ρ′ is either in X or in Y . If
v1 ∈ Y , then this again becomes exactly the same as Case (i). Hence we assume that v1 ∈ X. Since (u1, v1)
is labeled (1, 1), it follows that v1 has to be in Xk, where k ≥ j + 1. We cannot see more than r such (1, 1)
edges of Y ×X in ρ′, since after seeing at most r such edges, we reach a vertex in Yr (call this vertex u`)
and there are no (1, 1) edges between any vertex in Yr and a vertex in X. Hence the vertex v` that follows
u` is also in Y . Then the vertex u`+1 = S(v`) is in X and the same argument as in Case (i) goes through,
and so we have at most r consecutive (1, 1) edges in ρ′ after we reach u`+1 ∈ X. Thus the total number of
(1, 1) edges in ρ′ is at most r (from u0 to u`) + 1 (for the edge (u`, v`)) + r (from u`+1 onwards), which
adds up to 2r + 1.

Let ρ be an alternating cycle. First, we prove that not every non-matching edge in ρ can be a (1, 1)
edge. Pick any vertex u0 ∈ X as our starting vertex in ρ. The same argument as in Case (i) holds and if we
traverse r consecutive (1, 1) edges starting from u0, then we have to be at a vertex u` in X0. As there are
no (1, 1) edges incident on any vertex in X0, we have to see an edge labeled (−1, 1), (1,−1), or (−1,−1)
after reaching u`. Thus there cannot be an alternating cycle with only (1, 1) edges. Let ρ′ be a subpath of
ρ that consists of only (1, 1) edges. Now the same proof as above (when ρ was an alternating path) holds
here too: thus the total number of (1, 1) edges in ρ′ is at most 2r + 1. ut

Lemma 3 leads to Lemma 4 that bounds u(S) in terms of r. Lemma 5 bounds r in terms of |V |.

Lemma 4. u(S) ≤ 4r +O(1).

Proof. Let M be any matching. It is easy to see that ∆(S,M) is upper bounded by maxρ∆(S, S ⊕ ρ),
where ρ ∈ S ⊕M . So we bound ∆(S, S ⊕ ρ) for all ρ ∈ S ⊕M by 4r +O(1) now.

Suppose ρ is an alternating cycle. Lemma 3 tells us that after seeing 2r + 1 consecutive (1, 1) edges in
ρ, we have to see an edge marked (α, β) where either α or β (or both) is −1. Thus sandwiched between 2
non-(1, 1) edges, we can have at most 2r + 1 consecutive (1, 1) edges. Thus in the list 〈voteu(M(u), S(u))〉
where u ∈ ρ, we can assign to every −1, at most 4r + 3 1’s. This implies that ∆(S, S ⊕ ρ) ≤ 4r + 3.

Suppose ρ is an alternating path. If ρ has an endpoint unmatched in S, then that vertex (call it u) has
to be in Vr+1. It follows from Case (ii) of the proof of Lemma 3 that we can have at most r+ 1 consecutive
(1, 1) edges starting from u. Hence if we look at the list 〈voteu(M(u), S(u))〉 for all u ∈ ρ, we can have at
most 2r + 2 consecutive 1’s as a prefix (similarly, suffix), and thereafter there can be at most 4r + 4 1’s
sandwiched between 2 −1’s. Thus ∆(S, S⊕ρ) is maximized by assuming ρ to be a prefix of r+1 consecutive



(1, 1) edges, followed by a (−1, 1) edge, and followed by a suffix of r + 1 consecutive (1, 1) edges. Hence
∆(S, S ⊕ ρ) ≤ 4r + 5.

Hence it follows that maxρ∆(S, S ⊕ ρ) is at most 4r +O(1). Thus ∆(S,M) for any matching M is at
most 4r +O(1), in other words, u(S) ≤ 4r +O(1). ut

Lemma 5. The recursion depth in our algorithm, i.e., r, is at most log |V |.

Proof. For any i, where 0 ≤ i ≤ r, let Pi be the stable partition of the graph Gi computed in our algorithm.
Let oi be the number of odd cardinality ordered sets in Pi. Since |Mi| = 2|Xi| where Xi includes exactly
b|Aj |/2c vertices from each ordered set Aj in Pi, it follows that the number of unmatched vertices in Mi

is oi. That is, the size of Vi+1, before isolated vertices are deleted from Vi+1, is exactly oi.

All vertices that formed singleton sets in Pi are in Vi+1 before we delete isolated vertices from Vi+1. Let
Ui denote the set of vertices that formed singleton sets in Pi. From the definition of a stable partition, it
follows that Ui has to form an independent set in Gi. Thus the size of a minimum cardinality vertex cover
in Gi+1 is at most oi − |Ui|, which is the number of odd cardinality ordered sets of size ≥ 3 in Pi.

Let Ci be a vertex cover of Gi. Since Ci has to include at least 2 vertices from every odd cardinality
ordered set of size ≥ 3 in Pi, we have |Ci| ≥ 2(oi − |Ui|). Thus ci ≥ 2ci+1, where ci (similarly, ci+1) is the
size of a minimum cardinality vertex cover of Gi (resp., Gi+1). This inequality holds for every 0 ≤ i ≤ r.
Since the edge set of Gr is non-empty, cr ≥ 1. Thus we get r ≤ log c0 ≤ log |V |. ut

It follows from Lemmas 4 and 5 that u(S) ≤ 4 log |V | + O(1), and the first part of Theorem 2 is
proved. We next discuss how to bound the running time of our algorithm so as to prove the second part of
Theorem 2.

Running time of the algorithm The running time of the algorithm in the i-th recursive call is O(|Vi|+
|Ei|), where Vi and Ei are the sets of vertices and edges in Gi, respectively. Since all isolated vertices get
deleted from the vertex set Vi, it follows that |Ei| ≥ |Vi|/2. Hence the running time of our algorithm is
O(n+

∑r
i=0 |Ei|).

For each 0 ≤ i ≤ r, we would like to upper bound |Ei+1| by 2|Ei|/3. Let Aj = 〈a1j , . . . , atj〉 be an ordered
set of cardinality at least 2 in Pi. Let mj be the total number of edges incident on vertices of Aj in Gi.
We would like to ensure that at least 1/3 of these mj edges have one or more endpoints in the set of all
the odd indexed vertices in Aj . If this property holds for each Aj such that |Aj | ≥ 2, because the singleton
sets in Pi form an independent set, it follows that the number of edges in Gi+1 is at most 2

3 (the number
of edges in Gi).

If in the current order in Aj , all the odd indexed vertices in Aj have less than mj/3 edges incident
on them, then we will perform a clockwise rotation on Aj , call this ordered set σ(Aj), and also a counter
clockwise rotation on Aj , call this ordered set σ−1(Aj). If |Aj | is even, then all the even indexed vertices
of Aj become odd indexed vertices in σ(Aj). If |Aj | is odd, then we cannot make this claim; however, all
the even indexed vertices of Aj become odd indexed vertices in either σ(Aj) or σ−1(Aj). Thus all the odd
indexed vertices in one of Aj , σ(Aj), σ

−1(Aj) have at least mj/3 edges incident on them.

So in the recursive call for Gi, after we obtain Pi, for each Aj , we either leave it as it is or perform a
clockwise/counter clockwise rotation on it and call the resulting ordered set Aj so that all the odd indexed
vertices in Aj have at least mj/3 edges incident on them. Thus the running time of our algorithm, which is
O(n+

∑r
i=0 |Ei|), becomes O(n+

∑r
i=0( 2

3 )im)), which is O(n+m). This completes the proof of Theorem 2.

As mentioned in Section 1, we show the following instances in the Appendix:

(1) an instance where every matching has unpopularity factor at least Ω(log |V |)—therefore the upper
bound as stated in Theorem 2 cannot be further improved

(2) an instance where our algorithm returns a matching of unpopularity factor Θ(log |V |) while there exists
a matching of unpopularity factor O(1). Thus the approximation guarantee of our algorithm (when
viewed as an approximation algorithm) cannot be improved to a bound better than O(log |V |), by
better analysis.



3 Least unpopularity factor matching

In this section, we prove Theorem 1 by presenting a reduction from 1-in-3 sat. In 1-in-3 sat, a formula
φ = C1 ∧ C2 ∧ · · · ∧ Cm in conjunctive normal form is given, where each clause Cj = xj1 ∨ x

j
2 ∨ x

j
3 is a

disjunction of three non-negated literals. The formula φ is satisfiable iff there exists an assignment where
exactly one literal in each clause is set to true. This decision problem is NP-complete [5].

Our reduction will construct a roommates instance Gφ such that if φ is a yes instance for 1-in-3 sat,
then there exists a matching M with u(M) ≤ 1.5, and if φ is a no instance, then every matching M has
u(M) ≥ 2. Also, Gφ will be a complete graph.

To avoid confusion, we use the upper case Xi to refer to a variable, while the lower case xjt means the
t-th literal in clause Cj . For instance, if Cj = (X1 ∨X5 ∨X10), then xj1 = X1, xj2 = X5, and xj3 = X10.

We have two types of gadgets: variable gadget and clause gadget. For each variable Xi, we create 16
vertices that form a variable gadget and for each clause Cj , we create 20 vertices that form a clause gadget.
Note that since the preferences are complete and the number of vertices is even, if a matching is not perfect,
then its unpopularity factor will be ∞. In the following discussion, we implicitly assume that a matching
is perfect.

3.1 Variable Gadget

For each variable Xi, we create 16 vertices: a1, . . . , a7 and b1, . . . , b9. Their preference lists are shown in
Table 1. The function π(·) is an arbitrary permutation of some vertices from clause gadgets and we will
explain who they are later. The “· · · ” is an arbitrary permutation of all the remaining vertices.

Table 1. The preference lists of the vertices in the variable gadget for Xi.

Vertex Preference List Vertex Preference List

ai1 ai2 b
i
1 a

i
7 · · · bi1 bi2 b

i
9 π(bi1) ai1 · · ·

ai2 ai3 a
i
1 · · · bi2 bi3 b

i
1 · · ·

ai3 ai4 π(ai3) ai2 · · · bi3 bi4 b
i
2 · · ·

ai4 ai5 a
i
3 · · · bi4 bi5 b

i
3 · · ·

ai5 ai6 b
i
9 a

i
4 · · · bi5 bi6 b

i
4 · · ·

ai6 ai7 a
i
5 · · · bi6 bi7 b

i
5 · · ·

ai7 ai1 π(ai7) ai6 · · · bi7 bi8 b
i
6 · · ·

bi8 bi9 b
i
7 · · ·

bi9 bi1 b
i
8 π(bi9) ai5 · · ·

We will define the function π(·) in such as way so that the following holds.

Proposition 1 In any matching M in Gφ, if u(M) < 2, then for every i:

(i) bik is not matched to any vertex in π(bik) for k = 1 and k = 9.
(ii) None of the vertices in {ait}7t=1 ∪ {bit}9t=1 is matched to any vertex in the “· · · ” part of their preference

lists.

We will show Proposition 1 holds after we finish the description of Gφ. For now, we assume it is true
and show Lemma 6.

Lemma 6. If there is a matching M with u(M) < 2, then the vertices corresponding to variable Xi can
only be matched in one of the following two ways.

(i) (ai1, b
i
1), (ai2, a

i
3), (ai4, a

i
5), (ai6, a

i
7), (bi2, b

i
3), (bi4, b

i
5), (bi6, b

i
7), (bi8, b

i
9) ∈ M—in this case, we say the

variable Xi is set to true.
(ii) (ai1, a

i
2), (ai3, a

i
4), (ai5, b

i
9), (ai6, a

i
7), (bi1, b

i
2), (bi3, b

i
4), (bi5, b

i
6), (bi7, b

i
8) ∈ M—in this case, we say the

variable Xi is set to false.



Proof. We cannot have M match all the vertices in {bi1, . . . , bi9} among themselves, since there are an odd
number of these vertices. Since u(M) < 2, by Proposition 1, it follows that either bi1 is matched to ai1, or
bi9 is matched to ai5, but not both, otherwise, some vertices in {bit}8t=2 would have to be matched to the
vertices in the “· · · ” part in their lists, contradicting Proposition 1.

Now if (ai1, b
i
1) ∈ M , it is easy to see that (i) is the only possible way to match these vertices so as to

maintain the property that u(M) < 2. The same applies to (ii) if (ai5, b
i
9) ∈M . ut

3.2 Clause Gadget

For each clause Cj = xj1 ∨ x
j
2 ∨ x

j
3, we create 20 vertices: cj1, c

j
2, c

j
3, d

j
1, . . . , d

j
17. The preference list for 14 of

the vertices is given below:

djt : djt+1 djt−1 · · · for t ∈ {2, . . . , 8} ∪ {10, . . . , 16}.

The “· · · ” is an arbitrary permutation of those remaining vertices not explicitly listed. The preference
lists of the other vertices are shown in Table 2. As before, π(·) stands for an arbitrary permutation of some
vertices from variable gadgets and we will explain who they are later.

Table 2. The preference lists of six vertices in the clause gadget for Cj = xj1 ∨ x
j
2 ∨ x

j
3.

Vertex Preference List Vertex Preference List

cj1 cj2 d
j
1 c

j
3 π(cj1) · · · dj1 dj2 d

j
17 π(dj1) cj1 · · ·

cj2 cj3 d
j
9 c

j
1 π(cj2) · · · dj9 dj10 d

j
8 π(dj9) cj2 · · ·

cj3 cj1 d
j
17 c

j
2 π(cj3) · · · dj17 dj1 d

j
16 π(dj17) cj3 · · ·

We will define the function π(·) in such as way so that the following holds.

Proposition 2 In any matching M in Gφ, if u(M) < 2, then for every j:

(i) djk is not matched to any vertex in π(djk) for k = 1, 9, and 17.

(ii) None of the vertices in {cjt}3t=1 ∪ {d
j
t}17t=1 is matched to any vertex in the “· · · ” part of their preference

lists.

We will show Proposition 2 holds after we finish the description of Gφ. For now, we assume it is true
and show Lemma 7.

Lemma 7. If there is a matching M such that u(M) < 2, then the vertices corresponding to clause
Cj = xj1 ∨ x

j
2 ∨ x

j
3 can only be matched in one of the following three ways:

(i) (cj1, d
j
1), (cj2, c

j
3), (dj2k, d

j
2k+1), for 1 ≤ k ≤ 8, are in M —in this case we say the first literal xj1 is set to

true.
(ii) (cj2, d

j
9), (cj1, c

j
3), (dj2k−1, d

j
2k), for 1 ≤ k ≤ 4, (dj2k, d

j
2k+1), for 5 ≤ k ≤ 8, are in M —in this case we

say the second literal xj2 is set to true.

(iii) (cj3, d
j
17), (cj1, c

j
2), (dj2k−1, d

j
2k), for 1 ≤ k ≤ 8, are in M —in this case we say the third literal xj3 is set

to true.

Proof. If u(M) < 2, then by Proposition 2, exactly one of the following three edges can be in M : (cj1, d
j
1),

(cj2, d
j
9), (cj3, d

j
17), otherwise, some vertices in {djt}8t=2 ∪ {d

j
t}16t=10 would have to be matched to the vertices

in the “· · · ” part in their lists, contradicting Proposition 2.
Now if (cj1, d

j
1) ∈M , it is easy to see that (i) is the only possible way to match all the vertices so as to

maintain the property that u(M) < 2. The same applies to (ii) if (cj2, d
j
9) ∈M and to (iii) if (cj3, d

j
17) ∈M .

ut



3.3 How the two types of gadgets interact

We now explain how the two types of gadgets work together by specifying the function π. It may be helpful
to first use a simple example to illustrate our ideas. Suppose C1 = (X1 ∨X5 ∨X10). Intuitively, we want
the following when the derived instance has a matching M with u(M) < 2: if the first literal of C1 is set
to true (i.e., (c11, d

1
1) ∈M—see Lemma 7), then we want to make sure that X1 is set to true while X5 and

X10 are set to false (i.e., we want (a11, b
1
1), (a55, b

5
9), and (a105 , b

10
9 ) part of M—see Lemma 6.)

Our construction of the function π makes sure if the assignment is “inconsistent”, for instance, the first
literal xj1 = X1 of C1 is set to true but the variable X1 itself is set to false, i.e., if both (c11, d

1
1) and (a15, b

1
9)

are in M , then we can find an alternating cycle with a (1, 1) and two (1,−1) edges, where every edge in
(u, v) ∈ E \M is labeled (voteu(v,M(u)), votev(u,M(v))). This would cause M to have unpopularity factor
at least 2. Specifically, we define π(·) as follows.

1. For all i and j: ai3, a
i
7 are in π(cj1), in π(cj2), and in π(cj3). Symmetrically, cj1, c

j
2, c

j
3 are in π(ai3) and in

π(ai7).
2. For each j, we ensure the following inclusions: suppose Cj = xj1 ∨ x

j
2 ∨ x

j
3 and Xi = xj1, Xk = xj2,

Xt = xj3. Then

(a) bi9, bk1 , bt1 are in π(dj1); symmetrically, dj1 is in π(bi9), π(bk1), and π(bt1).

(b) bi1, bk9 , bt1 are in π(dj9); symmetrically, dj9 is in π(bi1), π(bk9), and π(bt1).

(c) bi1, bk1 , bt9 are in π(dj17); symmetrically, dj17 is in π(bi1), π(bk1), and π(bt9).

[Observe that the function π is symmetrical. If a vertex c ∈ π(a), then a ∈ π(c); if a vertex b ∈ π(d),
then d ∈ π(b). Moreover, our construction ensures that β belongs to the “· · · ” part of α’s list if and only
is α belongs to the “· · · ” part of β’s list.]

To illustrate how the above definitions of π(·) help us achieve consistency, consider the above example.
Suppose that (c11, d

1
1), (a15, b

1
9) are in M . Consider the alternating cycle ρ = c11-d11-b19-a15-a16-a17-c11. ∆(M,M⊕

ρ) = 4/2 since d11, b
1
9, a

1
5, and a17 are better off in M ⊕ ρ while a16 and c11 are worse off. Thus u(M) ≥ 2.

The construction of Gφ is complete and we now prove Propositions 1 and 2.

Proofs of Propositions 1 and 2. Let bit be an element in π(djs), so djs is also in π(bit). Suppose the edge
(bit, d

j
s) ∈M . Then (bit, b

i
t−1) and (djs, d

j
s−1) are both (1, 1) edges, where bi0 (similarly, dj0) is the same as bi9

(resp., dj17).

The matching obtained by augmenting M along the alternating path ρ = M(bit−1)-bit−1-bit-d
j
s-d

j
s−1-

M(djs−1) makes bit, b
i
t−1, d

j
s, and djs−1 better off while M(bit−1) and M(djs−1) are worse off. Thus ∆(M,M ⊕

ρ) = 2. Thus u(M) ≥ 2 and we have proved (i) in both propositions.
To prove (ii) in both the propositions, assume that (y, z) ∈M and y and z list each other in the “· · · ”

part of their preference lists.

– for 1 ≤ t ≤ 7, if y (or z) is ait, then y′ (resp., z′) is ait−1 (where ai0 is ai7);
– for 1 ≤ t ≤ 9, if y (or z) is bit, then y′ (resp., z′) is bit−1 (where bi0 is bi9);

– for 1 ≤ t ≤ 3, if y (or z) is cjt , then y′ (resp., z′) is cjt−1 (where cj0 is cj3);

– for 1 ≤ t ≤ 17, if y (or z) is djt , then y′ (resp., z′) is djt−1 (where dj0 is dj17).

Consider the alternating path ρ = M(y′)-y′-y-z-z′-M(z′). Augmenting M along ρ makes y, y′, z, and z′

better off while M(y′) and M(z′) are worse off. Thus u(M) ≥ 2 and we have proved (ii) in both propositions.
ut

3.4 Correctness of Our Reduction

Lemma 8. Suppose that there is a matching M with u(M) < 2 in Gφ. Then there exists a satisfying
assignment to φ.

Proof. We construct a truth assignment for φ based on M as follows. By Lemma 7, for each clause gadget
of Cj = xj1 ∨ x

j
2 ∨ x

j
3, one of its three literals xjt is set to true. Set the variable Xi to true if Xi = xjt . Xi is

set to false if it is never set to true. We claim that this yields a satisfying assignment for φ.



First note that at least one of the literals in each clause is set to true. So if we do not have a satisfying
assignment, it must be the case that some clause Cj = xj1 ∨ x

j
2 ∨ x

j
3 has two (or more) literals being set to

true. Without loss of generality, assume that X1 = xj1 and X2 = xj2 and X1 is set to true because in the

matching M , the first literal of Cj is satisfied, i.e., the edges (cj1, d
j
1), (cj2, c

j
3), (dj2k, d

j
2k+1), for 1 ≤ k ≤ 8,

are in M .
Then as X2 is also set to true, there must exist another clause Ct 6= Cj and Ct = xt1 ∨ xt2 ∨ xt3 and Ct

is satisfied by its, say, first literal. So xt1 = X2 and (ct1, d
t
1), (ct2, c

t
3), (dt2k, d

t
2k+1), for 1 ≤ k ≤ 8, are in M .

Now by Lemma 6, either (a21, b
2
1) and (a22, a

2
3) are in M , or (a25, b

2
9) and (a26, a

2
7) are in M . In the former

case, augmenting M along the alternating cycle b21-dj1-cj1-a23-a22-a21-b21 makes b21, dj1 ,a23, and a21 better off

while cj1 and a22 are worse off; in the latter case, augmenting M along the alternating cycle b29-dt1-ct1-a27-a26-
a25-b29 makes b29, dt1, a27, and a25 better off while ct1 and a26 are worse off. In both cases, we have u(M) ≥ 2, a
contradiction. ut

Conversely, suppose φ is satisfiable. Then Lemma 9 constructs a matching M in Gφ, based on Lemmas 6
and 7, so that u(M) ≤ 1.5.

Lemma 9. Suppose that there is a satisfying assignment for φ. Then there is a matching M with u(M) ≤
1.5 in Gφ.

We will first show that Theorem 1 follows from Lemmas 8 and 9. Then we will present the proof of
Lemma 9.

Proof of Theorem 1. Given an input instance φ of 1-in-3 sat, we build the graph Gφ. Let M be a matching
in Gφ whose unpopularity factor is strictly smaller than 4/3 of the least unpopularity factor matching.

• If u(M) < 2, then φ is a yes instance (as shown by Lemma 8).
• If u(M) ≥ 2, then φ has to be a no instance. Otherwise, by Lemma 9, we know that there is a matching

with unpopularity factor at most 1.5. This implies u(M) < 2 since u(M) has to be smaller than 4/3 of
the optimal.

Thus the problem of computing a matching whose unpopularity factor is strictly smaller than 4/3 of the
optimal is NP-hard. ut

Proof of Lemma 9 The formula φ is a satisfiable instance of 1-in-3 sat. We have to show a matching
M in Gφ whose unpopularity factor is at most 1.5. Suppose φ has n variables and m clauses. Then
M = ∪ni=1Ti ∪mj=1 T

′
j , where Ti for 1 ≤ i ≤ n and T ′j for 1 ≤ j ≤ m are defined as follows:

• Suppose the variable Xi is set to true. Then Ti consists of the edges (ai1, b
i
1), (ai2k, a

i
2k+1), for k = 1 to

3 and (bi2t, b
i
2t+1), for t = 1 to 4.

• Suppose Xi is set to false. Then Ti consists of the edges (ai1, a
i
2), (ai3, a

i
4), (ai5, b

i
9), (ai6, a

i
7), (bi2t−1, b

i
2t),

for t = 1 to 4.
• Suppose clause Cj is satisfied by its first literal. Then T ′j consists of the edges (cj1, d

j
1), (cj2, c

j
3),

(dj2t, d
j
2t+1), for t = 1 to 8.

• Suppose clause Cj is satisfied by its second literal. Then T ′j consists of the edges (cj2, d
j
9), (cj1, c

j
3),

(dj2t−1, d
j
2t), for t = 1 to 4, (dj2t, d

j
2t+1) for t = 5 to 8.

• Suppose clause Cj is satisfied by its third literal. Then T ′j consists of the edges (cj3, d
j
17), (cj1, c

j
2),

(dj2t−1, d
j
2t), for t = 1 to 8.

The matching M defined above is a perfect matching. We now analyze its unpopularity factor. Let M ′

be another matching. We can assume that M ′ is also perfect (this only increases the unpopularity factor of
M .) So M ⊕M ′ is a set of disjoint cycles. We consider each cycle ρ ∈M ⊕M ′ separately. If ρ has no (1, 1)
edge, then we are done. So let us assume that ρ has some (1, 1) edges. Since M is based on a satisfying
assignment of φ, none of the edges between a vertex in {bit}∀i,∀t∈{1,9} and a vertex in {djt}∀j,∀t∈{1,9,17} can
be a (1, 1) edge. Therefore, it can be verified that there are only five types of (1, 1) edges.



(1) (bi1, b
i
9), when the variable Xi is set to true

(2) (bi9, b
i
8), when the variable Xi is set to false

(3) (dj1, d
j
17), when the first literal of Cj is set to true

(4) (dj9, d
j
8), when the second literal of Cj is set to true

(5) (dj17, d
j
16), when the third literal of Cj is set to true

Call edges listed in (1), (2) above as Type 1 edges and call edges listed in (3), (4), (5) above as Type 2
edges. Two (1, 1) edges e1 and e2 in ρ are called neighbors if there is no other (1, 1) edge in ρ between e1
and e2. It is also possible that a (1, 1) edge is a neighbor of itself (when there is only one (1, 1) edge in ρ).

Let e ∈ ρ be a (1, 1) edge.

– Let e = (b, b′) be of Type 1. We refer to its neighboring (1, 1) edge that is first encountered when we
traverse ρ in the direction of b, b′, . . . as e’s B-neighbor and its other neighbor as e’s A-neighbor.

– Let e = (d, d′) be of Type 2. We refer to its neighboring (1, 1) edge that is first encountered when we
traverse ρ in the direction of d, d′, . . . as e’s D-neighbor, and its other neighbor as e’s C-neighbor.

Observe that by construction, no two (1, 1) edges contain vertices from the same gadget. If a (1,−1)
edge e′ contains only vertices from the same gadget as those in a (1, 1) edge e, we say e′ is e’s fellow edge.
Clearly a (1,−1) edge can be the fellow edge of at most one (1, 1) edge.

The main idea of our proof is that, for each (1, 1) edge in ρ, we find a sufficient number of (1,−1) and
(−1,−1) edges to “pay” for it. The claim below shows that between every two neighboring (1, 1) edges,
there is either a (−1,−1) edge or quite a few (1,−1) edges.

Claim 3 Let e ∈ ρ be a (1, 1) edge. Suppose e is of Type 1. Then

(1.1) when we traverse from e to its B-neighbor along ρ, either we first encounter three consecutive (1,−1)
edges and they are fellow edges of e, or we encounter a (−1,−1) edge.

(1.2) when we traverse from e to its A-neighbor along ρ, either we first encounter two consecutive (1,−1)
edges, and the first (1,−1) edge is a fellow edge of e, or we encounter a (−1,−1) edge.

– Suppose e is of Type 2. Then

(2.1) when we traverse from e to its D-neighbor along ρ, either we first encounter three consecutive (1,−1)
edges and they are fellow edges of e, or we encounter a (−1,−1) edge.

(2.2) when we traverse from e to its C-neighbor along ρ, either we first encounter two consecutive (1,−1)
edges, or we encounter a (−1,−1) edge. In the former case, the first (1,−1) is either a fellow edge of
e or is not a fellow edge of any (1, 1) edge.

We first finish the proof of Lemma 9 using the above claim and then prove the claim. If there is a
(−1,−1) edge between two neighboring (1, 1) edges, then we assign a −1 to each (1, 1) edge. If there is no
(−1,−1) edge between two neighboring (1, 1) edges e1 and e2, then we distribute the (1,−1) edges among
them as follows.

– If e2 is e1’s B- or D-neighbor, then by (1.1) and (2.1) of the above claim, there are three (1,−1) fellow
edges of e1. We assign them to e1.

– If e2 is e1’s A-neighbor, then by (1.2) of the above claim, there are at least 2 (1,−1) edges between
them and one of them (the one that is closer to e1) is a fellow edge of e1. We assign this edge to e1.

– If e2 is e1’s C-neighbor, then by (2.2) of the above claim, there are at least 2 (1,−1) edges between
them. Assign the one that is closer to e1 to e1.

The critical thing is that we never assign a (1,−1) edge to multiple (1, 1) edges in ρ. In all but one
case, we assign a (1,−1) edge e′ to a (1, 1) edge e only when the former is a fellow edge of the latter. The
one subtle case is that when e1 is of Type 2, we assign some (1,−1) edge e∗ between it and its C-neighbor
e2 to e1, and e∗ may not be a fellow edge of e1. But note that (2.2) of the claim states that e∗ cannot be
a fellow edge of any other (1, 1) edge also.

We now show that it cannot happen that e∗ is also assigned to e2. First note that if e1 is e2’s A-, B-,
or D-neighbor, we only assign the fellow (1,−1) edges of e2 to e2. So none of these edges can be e∗. If e1



happens to be e2’s C-neighbor, observe that there are at least two (1,−1) edges between e1 and e2, and by
our procedure, we will assign the (1,−1) edge closer to e1 to e1 and the one closer to e2 to e2. Thus there
is no danger that we assign e∗ to both.

We now prove that for each (1, 1) edge e, the number of 1’s and −1’s we assign to it guarantees that
the ratio of 1’s against −1’s is bounded by 1.5. This will complete the proof. (Those (1,−1) and (−1,−1)
edges that are not assigned to any (1, 1) edge in the above procedure obviously have the ratio of at most
1 among themselves).

– Suppose that there is a (−1,−1) edge between e and both of its neighbors, then we have 2 1’s and 2
−1’s.

– Suppose that there is a (−1,−1) edge between e and one of its neighbors but there is none between e
and its other neighbor e′. Consider the following sub-cases.

• If e′ is the B- or D- neighbor of e, then we give three (1,−1) edges to e. In total, we have 5 1’s and
4 −1’s.
• If e′ is the A- or C- neighbor of e, then we give one (1,−1) edge to e. In total, we have 3 1’s and 2
−1’s.

– Suppose that there is no (−1,−1) edge between e and both of its neighbors. Then we assign to e three
(1,−1) edges between e and its B- or D-neighbor, and one extra (1,−1) edge between e and its A- or
C-neighbor. In total, we have 6 1’s and 4 −1’s. This finishes the proof of the lemma. ut
Proof of Claim 3: To show (1.1) and (1.2) for Type 1 edges e, we assume that e = (bi1, b

i
9). The other

case (i.e., e = (bi9, b
i
8)) follows symmetrically. As M(bi9) = bi8, if bi8 is matched to a vertex in the “· · · ” part

of its list in M ′, then we have a (−1,−1) edge, since by our construction of M , all vertices prefer their
partners to those in the “· · · ” of their preference lists. So the only other possibility is that M ′(bi8) = bi7 and
this gives us a (1,−1) edge and it is a fellow edge of e. Now repeating the same argument on M(bi7) = bi6,
and on M(bi5) = bi4 gives the proof of (1.1).

For (1.2), first note that M(bi1) = ai1. If M ′(ai1) is any vertex belonging to the “· · · ” part of the
preference list of ai1, then we have a (−1,−1) edge. So there are only two other possibilities to consider:
either M ′(ai1) = ai2, or M ′(ai1) = ai7 and both would give us a (1,−1) edge, which is a fellow edge of e.

If M ′(ai1) = ai2, then M(ai2) = ai3. In M ′, independent of whether ai3 is matched to ai4 or a vertex in
π(ai3), we have another (1,−1) edge.3 This is because ai4 prefers ai5 to ai3, and all vertices in {cjt}∀j,∀1≤t≤3
(these are contained in π(ai3)) prefer their partners in M to any vertex listed in π(cjt ). The other case, i.e.,
M ′(ai1) = ai7 can be argued similarly and this completes the proof of (1.2).

To show (2.1) and (2.2) for Type 2 edges e, we assume e = (dj1, d
i
17). The other cases follow symmet-

rically. (2.1) can be proved using essentially the same argument as was used in proving (1.1). For (2.2),
consider the following cases.

– Suppose M ′(cj1) = cj2 or cj3. Then we have a (1,−1) edge, which is a fellow edge of e. If M ′(cj1) = cj2,

then M(cj2) = cj3, and cj3 can be matched in M ′ to either dj17, or to vertices in π(cj3), or to those in
the “· · · ” part of its list. In all cases, we have another (1,−1) edge or a (−1,−1) edge. The case when
M ′(cj1) = cj3 follows symmetrically.

– Suppose M ′(cj1) ∈ π(cj1). Then M ′(cj1) = ai3 or M ′(cj1) = ai7 for some variable Xi. Suppose that

M ′(cj1) = ai3. If Xi is set to false in the truth assignment, then M(ai3) = ai4, and as ai3 prefers ai4 to cj1,
we have a (−1,−1) edge. So assume that Xi is set to true and M(ai3) = ai2. Then we have a (1,−1)
edge consisting of cj1 and ai3. Moreover, such an edge cannot be a fellow edge of any (1, 1) edge. Now as
M(ai3) = ai2, if ai2 is matched to ai1 in M ′, then we have yet another (1,−1) edge and if ai2 is matched
to some other vertex in the “· · · ” part of its list, then we again have a (−1,−1) edge. This completes
the proof of (2.2). The case that M ′(cj1) = ai7 follows a symmetrical argument to the one above. This
finishes the proof of the claim. ut

Conclusions and Open problems. We considered the problem of computing a least unpopularity matching
in a roommates instance G = (V,E) with strict preferences and incomplete lists. We showed that this
problem is NP-hard. It is, in fact, NP-hard to compute a matching whose unpopularity factor is at most

3 Note that this edge may not be a fellow edge of e, but this does not affect the statement of the claim.



4/3− ε of the optimal, for any ε > 0. On the positive side, we showed that there always exists a matching
whose unpopularity factor is O(log |V |) and such a matching can be computed in linear time.

Our positive result is also an O(log |V |) approximation algorithm for the problem of computing a least
unpopularity factor matching. An open problem is to design an algorithm with a better approximation
guarantee. Another open problem is to design an efficient algorithm to determine if G admits a popular
matching or not. No polynomial time algorithm is known for this problem.
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Appendix

An instance where every matching has large unpopularity factor

We show a graph G = (V,E) on N = 3k vertices where u(M) ≥ 2k for all matchings M . Let V =
{a1, . . . , aN/3, b1, . . . , bN/3, c1, . . . , cN/3} where every a ∈ A = {a1, . . . , aN/3} has its own permutation of
vertices in A \ {a} as its top N/3 − 1 neighbors, followed by b1, . . . , bN/3 (in this order), further followed
by c1, . . . , cN/3 (in this order). Symmetrically, every b ∈ B = {b1, . . . , bN/3} has its own permutation of
vertices in B \ {b} as its top N/3− 1 neighbors, followed by c1, . . . , cN/3 (in this order), further followed by
a1, . . . , aN/3 (in this order). Similarly, every c ∈ C = {c1, . . . , cN/3} has its own permutation of vertices in
C \{c} as its top N/3−1 neighbors, followed by a1, . . . , aN/3 (in this order), further followed by b1, . . . , bN/3
(in this order). Recursively, A can be further partitioned to 3 subsets A0, A1, A2, where for i = 0, 1, 2, every
a ∈ Ai has its own permutation of vertices in Ai \ {a} as its top N/9− 1 neighbors, followed by vertices in
A(i+1) mod 3 in a fixed order, further followed by vertices in A(i+2) mod 3 in a fixed order and this goes on.
Similarly, this holds for B and C also.

Lemma 10. Any matching M in G satisfies u(M) ≥ 2k, where k = log3N .

Proof. Let M be any matching in G. We can assume that M leaves just 1 vertex unmatched, otherwise its
unpopularity factor would be ∞. We know that the vertex set of G can be partitioned into 3 subsets A,
B, and C. Assume without loss of generality that the vertex unmatched by M is in C. Since the sizes of
A, B, and C are odd, each of A, B, and C has an odd number of vertices that are not matched to one of



their own kind. That is, there are an odd number of vertices in A that are not matched by M to a partner
in A; there are an odd number of vertices in B that are not matched by M to a partner in B; and there
are an odd number of vertices in C that are not matched by M to a partner in C (and this includes the
unmatched vertex of C).

Thus there are an even number of vertices in C that are not matched among themselves, but are matched
to vertices in A∪B. Recall that our job is to come up with a matching M ′ such that ∆(M,M ′) ≥ 2k. We
define M ′ as follows:

– M ′ matches all the vertices in B (similarly, C) that are matched by M to another vertex in B (resp.,
C) in the same way as M .

– The vertices in B that are matched by M to vertices in C remain matched by M ′ in the same way as
in M .

– Now there are 2 cases now to consider: whether there are an even number or an odd number of vertices
in B that are matched to vertices in A.
• In the former case, there are an odd number of vertices of C that are matched to vertices in A:

this odd number of vertices of C along with the unmatched vertex in M form an even sized set -
we will match these vertices among themselves arbitrarily. Similarly, the even number of vertices
in B that are matched by M to vertices in A - we will match these vertices of B arbitrarily among
themselves in M ′.
• In the latter case, there are an even number of vertices of C that are matched to vertices in A -

match all these vertices among themselves arbitrarily. There have to be an odd number of vertices
of B that are matched to vertices in A - match exactly one of these to the unmatched vertex in C
and match the remaining among themselves arbitrarily.

Note that all the vertices in B ∪C whose assignments in M ′ are different from M , are all happier with
M ′ than M , and this includes at least 1 vertex from B and at least 1 vertex from C. Also, note that every
vertex in B ∪C is matched in M ′ and no vertex in B ∪C is matched to a vertex in A. We would now like
to extend M ′ to A also. For that purpose, we focus exclusively on how M matches vertices in A.

So instead of the original matching M that matched some vertices of A to vertices in B ∪ C which is
not possible in M ′ now, we will look at a slightly modified matching M where all the vertices of A that
were matched by M to another vertex in A remain matched the same way, however all the vertices of A
that were matched by M to vertices in B ∪ C get rematched among themselves arbitrarily. Since every
vertex in B ∪ C is matched in M ′, this will leave us with exactly 1 vertex of A that is unmatched now.

Now consider this revised matching M on A. By applying the above strategy (whatever we did on
A,B,C to get M ′ on B ∪C) on A0, A1, A2 and recursively continuing till we are at a set of size 1, in which
case this lone vertex is left unmatched, we come up with the matching M ′ on A.

We have gone through k levels of recursion here and in each level of recursion, we fix partners in M ′ for
2/3 fraction of the current set of vertices (for instance, for vertices in B ∪C in our first level of recursion)
and every vertex in this 2/3 fraction that gets a new assignment is better off in M ′ than its assignment in
M . Observe that there are at least 2 vertices that get new partners in each level of recursion. Thus there
are at least 2k vertices that are happier with M ′ than with M . Exactly one vertex is unhappier with M ′

than with M - this is the vertex left unmatched in M ′. Hence ∆(M,M ′) ≥ 2k, thus u(M) ≥ 2k. ut

A bad instance for our algorithm

We construct an instance G = (V,E) on N = 3k vertices where our algorithm, as presented at the beginning
of Section 2.1, returns a matching M with u(M) ≥ 2k while there exists a matching M ′ with u(M ′) = 2.
This shows that this algorithm has an approximation factor that is at least k = log3 |V |. Note that in the
original algorithm, all the odd indexed vertices in the ordered sets form the set Xi (recall that the vertices
in Xi propose to those in Vi \ Xi). However in our implementation (refer to Section 2.1), we choose the
vertices that constitute Xi in a more careful manner. Nevertheless, we will show later that with some slight
modification of the instance, we still can guarantee that the approximation ratio of our final algorithm is
Θ(log |V |).

Let the vertices be a0,· · · , aN−1. We now describe our instance in the form of layers: all the vertices

a0, · · · , aN−1 belong to the first layer; all the vertices in ∪N/3−1i=0 {a3i} also belong to the second layer; and



more generally, the vertices in ∪N/3
t−1

i=0 {a3t−1i} also belong to the t-th layer. So a3pi where p 6= 0 (mod 3)
belongs to the first p+ 1 layers and no more.

Roughly speaking, we will construct the preferences in such a way that when we apply our algorithm,
if au is matched to av, then both of them belong only to the first t layers for some t. We describe the
preference lists of all vertices in the first layer. For all 0 ≤ i ≤ N

3 − 1, let the preference lists be as follows:

a3i : a3i+1 a3i+2 · · · ; a3i+1 : a3i+2 a3i; a3i+2 : a3i a3i+1.

Note that both a3i+1 and a3i+2 belong only to the first layer, while a3i belongs to more layers. So a3i
has a longer preference list (the · · · part) and the · · · part will be explained below. For the second layer,
for all 0 ≤ i ≤ N

9 − 1, let the preference lists be as follows:

a9i : a9i+1 a9i+2 a9i+3 a9i+6 · · · ; a9i+3 : a9i+4 a9i+5 a9i+6 a9i; a9i+6 : a9i+7 a9i+8 a9i a9i+3.

Again, observe that a9i+3 and a9i+6 belong to only the first two layers, while a9i belongs to more layers
and it has a longer preference list. We construct the rest of the preference lists recursively. For the t-th
layer, for any 0 ≤ i ≤ N

3t − 1, let the preference lists be as follows:

a3ti : · · · a3ti+3t−1 a3ti+2∗3t−1 · · · ; a3ti+3t−1 : · · · a3ti+2∗3t−1 a3ti;

a3ti+2∗3t−1 : · · · a3ti a3ti+3t−1 .

The initial · · · part of the three preference lists refers to the part of the preferences that have been
built in earlier recursions. The second · · · part of a3ti refers to the preference that will be built in the next
iteration. In the special case, t = k − 1 (the last recursion), this second · · · part of aN/3 is empty. This
completes our construction. See Table 3 for an example of N = 33 = 27 vertices.

Table 3. The preference lists of 27 vertices in G = (V,E).

Vertex Preference List Vertex Preference List Vertex Preference List

a0 a1 a2 a3 a6 a9 a18 a9 a10 a11 a12 a15 a18 a0 a18 a19 a20 a22 a24 a0 a9
a1 a2 a0 a10 a11 a9 a19 a20 a18
a2 a0 a1 a11 a9 a10 a20 a18 a19
a3 a4 a5 a6 a0 a12 a13 a14 a15 a9 a21 a22 a23 a24 a18
a4 a5 a3 a13 a14 a12 a22 a23 a21
a5 a3 a4 a14 a12 a13 a23 a21 a22
a6 a7 a8 a0 a3 a15 a16 a17 a9 a12 a24 a25a26a18a21
a7 a8 a6 a16 a17 a15 a25 a26 a24
a8 a6 a7 a17 a15 a16 a26 a24 a25

Apply our algorithm on the constructed instance.

– In the first iteration, ∪N/3−1i=0 {〈a3i, a3i+1, a3i+2〉} is a stable partition. The set X0 is ∪N/3−1i=0 {a3i+1}.
The Gale-Shapley algorithm pairs a3i+1 with a3i+2 while leaving a3i alone for 0 ≤ i ≤ N

3 − 1.

– In the second iteration, ∪N/9−1i=0 {〈a9i, a9i+3, a9i+6〉} is a stable partition. The set X1 is ∪N/9−1i=0 {a9i+3}.
The Gale-Shapley algorithm pairs a9i+3 with a9i+6 while leaving a9i alone for 0 ≤ i ≤ N

9 − 1.
– Repeating this process, the final matching is

M = ∪N/3−1i=0 {(a3i+1, a3i+2)} ∪N/9−1i=0 {(a9i+3, a9i+6)} ∪ · · · ∪N/3
t−1

i=0 {(a3ti+3t−1 , a3ti+2∗3t−1)} ∪
· · · ∪ {(aN/3, a2N/3)},

with the vertex a0 left unmatched.

Consider the following alternating path ρ:

a0 − a2N/3 − aN/3 − aN/3+2N/9 − aN/3+N/9 − · · · −
a(

∑t−1
i=1 N/3

i)+2N/3t − a(∑t−1
i=1 N/3

i)+N/3t − · · · − a(∑k−1
i=1 N/3

i)+2 − a(∑k−1
i=1 N/3

i)+1,



where a0 is the only vertex unmatched in M . Observe that a0, a2N/3, aN/3 all belong to k layers and by
the preferences we construct, the edge (a0, a2N/3) is a (1, 1) edge. Similarly, aN/3, aN/3+2N/9, aN/3+N/9 all
belong to the first (k− 1) layers and by the preferences, the edge (aN/3, aN/3+2N/9) is a (1, 1) edge, and so
on. Therefore, every non-matched edge in ρ is a (1, 1) edge. Since there are in total k such edges and only
one vertex, that is a(

∑k−1
i=1 N/3

i)+1, which remains unmatched in M ⊕ ρ, we have ∆(M,M ⊕ ρ) ≥ 2k, thus

u(M) ≥ 2k.

We now construct a matching M ′. Let M ′ = {(a3i, a3i+1)}N/3−1i=0 , with all the vertices a3i+2, for i =
0, . . . , N3 − 1, left unmatched. We claim that u(M ′) = 2.

To see this, note that for all 0 ≤ i ≤ N
3 − 1, (a3i+1, a3i+2) is a (1, 1) edge and (a3i, a3i+2) is a (1,−1)

edge. Moreover, all other possible edges not in M ′ are (−1,−1) edges. By this observation, the alternat-
ing/augmenting paths that have the largest ratio of 1’s against −1’s are a3i+2-a3i+1-a3i-a3j-a3j+1-a3j+2

and a3i+2-a3i+1-a3i, the former has four 1’s and two −1’s while the latter has two 1’s and one −1. So we
conclude that u(M ′) = 2.

We now consider our refined algorithm that takes O(n+m) time to find the matching. In our current
constructed instance, in the first iteration, 〈a0, a1, a2〉 is a tuple in the stable partition. Instead of choosing
the odd indexed vertex, which is a1, the refined algorithm chooses the vertex with at least mj/3 incident
edges, where mj is the total number of edges incident on a0∪a1∪a2. This is the vertex a0. Thus our refined

algorithm chooses {a3i}N/3−1i=0 as the set X0 to do the proposing. Thus the outcome will be M ′, instead of
M .

We modify our instance to “fool” our refined algorithm so that it would behave the same as the original

algorithm, returning M . Introduce edges between vertices of the set ∪N/3−1i=0 {a3i+1}. For each vertex a3i+1,
0 ≤ i ≤ N/3 − 1, the ranks on these newly added edges are arbitrary, but all these ranks are worse than
those on the existing edges (a3i+1, a3i+2) and (a3i+1, a3i). Similarly, for vertices in the t-th layer, where

1 < t < k, let the vertices in ∪N/3
t−1

i=0 {a3ti+3t−1} have edges with one another and let the ranks on these
edges be worse than the old edges incident on these vertices.

We now consider the first iteration of the refined algorithm. Clearly, the stable partition remains un-

changed after we add all those extra edges. For each part ∪N/3−1i=0 {〈a3i, a3i+1, a3i+2〉}, a3i+1 has 2 + (N/3−
1) = 1 +N/3 incident edges, a3i+2 has only 2 edges, while a3i has at most 4 +N/9− 1 = 3 +N/9 edges.
(This happens when a3i belongs only to the first two layers; if a3i belongs to only the first t layers, it has

2k + N/3t − 1 incident edges, which is even less). As a result, ∪N/3−1i=0 {a3i+1} becomes the set X0. The
argument for the following iterations is essentially the same. So the matching M with u(M) ≥ 2k will be
output by our refined algorithm. Finally, the matching M ′ still obeys u(M ′) = 2, since all these extra edges
are (−1,−1) edges with respect to M ′.


