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Abstract. We investigate the following problem: given a set of jobs and a set of people with preferences over the
jobs, what is the optimal way of matching people to jobs? Here we consider the notion of popularity. A matching M
is popular if there is no matching M′ such that more people prefer M′ to M than the other way around. Determining
whether a given instance admits a popular matching and, if so, finding one, was studied in [2]. If there is no popular
matching, a reasonable substitute is a matching whose unpopularity is bounded. We consider two measures of
unpopularity - unpopularity factor denoted by u(M) and unpopularity margin denoted by g(M). It has recently
been shown that computing a matching M with the minimum value of u(M) or g(M) is NP-hard, and that if G does
not admit a popular matching, then we have u(M)≥ 2 for all matchings M in G.
Here we show that a matching M that achieves u(M) = 2 can be computed in O(m

√
n) time (where m is the number

of edges in G and n is the number of nodes) provided a certain graph H admits a matching that matches all nodes
in A . We also describe a sequence of graphs: H = H2,H3, . . . ,Hk such that if Hk admits a matching that matches all
nodes in A , then we can compute in O(km

√
n) time a matching M such that u(M) ≤ k− 1 and g(M) ≤ n(1− 2

k ).
We ran our algorithm on random graphs and our simulation results suggest that our algorithm computes a matching
with low unpopularity.



1 Introduction

The problem of assigning people to positions is a very common problem that arises in many domains. The
input here is a bipartite graph G = (A ∪P ,E), where nodes on one side of the bipartite graph rank edges
incident on them in an order of preference, possibly involving ties. That is, the edge set E is partitioned into
E1 ∪̇E2 . . . ∪̇Er. We call A the set of applicants, P the set of posts, and Ei the set of edges with rank i. If
(a, p) ∈ Ei and (a, p′) ∈ E j with i < j, we say that a prefers p to p′. If i = j, then a is indifferent between p
and p′. The ordering of posts adjacent to a is called a’s preference list. The problem is to assign applicants
to posts that is optimal with respect to these preference lists.

This problem has been well-studied in economics literature, see for example [3, 13, 15]. It models some
important real-world markets, including the allocation of graduates to training positions [7], families to
government-owned housing [14], mail-based DVD rental systems such as NetFlix. Instances of these mar-
kets are can be regarded as restricted stable marriage instances [4, 6], in which members of one side of the
market (posts) are indifferent between members of the other side of the market (applicants).

A matching M of G is a subset of E, such that no two edges of M share a common endpoint. Various
criteria have been proposed to measure the “goodness” of a matching. For example, a matching is Pareto-
optimal [1, 3, 13] if no applicant can improve his/her allocation (say by exchanging posts with another ap-
plicant) without requiring some other applicant to be worse off. There are many Pareto-optimal matchings
and so we need stronger definitions: a matching is rank-maximal [8] if it allocates the maximum number
of applicants to their first choice, and then subject to this, the maximum number to their second choice,
and so on. Such a matching has the lexicographically maximum tuple (n1,n2, . . .) where ni is the number
of people assigned to positions they respectively rank i-th. A matching is maximum utility if it maximizes
∑(a,p)∈M ua,p, where ua,p is the utility of allocating post p to applicant a. Note that ua,p would be a function
of the numerical rank that a associates with the edge (a, p). Thus most of these criteria use the actual values
or numerical ranks expressed by applicants in their preference lists. Such criteria are easily prone to manip-
ulation by people lying about their preferences. Moreover, the preference lists only express the “relative”
ranking of the options. Measuring the optimality of a matching as a function of the actual numerical ranks
may not be the correct approach. One criterion that does not use numerical ranks is popularity. We define it
below.

We say that an applicant a prefers matching M′ to M if (i) a is matched in M′ and unmatched in M, or
(ii) a is matched in both M′ and M, and a prefers M′(a) to M(a) (where M(a),M′(a) are the posts that a is
matched to in M and in M′, respectively).

Definition 1. M′ is more popular than M, denoted by M′ � M, if the number of applicants that prefer M′

to M is greater than the number of applicants preferring M to M′. A matching M is popular if there is no
matching M′ that is more popular than M.

Figure 1 contains an example instance in which A = {a1,a2,a3}, P = {p1, p2, p3}, and each applicant
prefers p1 to p2, and p2 to p3. Consider the three symmetrical matchings M1 = {(a1, p1), (a2, p2), (a3, p3)},
M2 = {(a1, p3), (a2, p1), (a3, p2)} and M3 = {(a1, p2), (a2, p3), (a3, p1)}. None of these matchings is pop-
ular, since M1 ≺ M2, M2 ≺ M3, and M3 ≺ M1. In fact, it turns out that this instance admits no popular
matching, the problem being that the more popular than relation is not transitive.

The popular matching problem is to determine if a given instance admits a popular matching, and to find
such a matching, if one exists. The first polynomial-time algorithms for this problem were given in [2]: when
there are no ties in the preference lists, the problem can be solved in O(n+m) time, where n = |A ∪P | and
m = |E|, and more generally, the problem can be solved in O(m

√
n) time. The main drawback of the notion
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a1 : p1 p2 p3
a2 : p1 p2 p3
a3 : p1 p2 p3

Fig. 1. An instance for which there is no popular matching.

of popular matchings is that such matchings may not exist in the given graph. In this situation, it would be
desirable if we can find some good substitutes of a popular matching. This motivates our paper.

1.1 Problem Definition

In this paper, we assume that the input instance G does not admit a popular matching. Our goal is to compute
a least unpopular matching. We use two criteria given by McCutchen [11] to measure the unpopularity of a
matching. We first need the following definitions.

Given any two matchings X and Y in G, define φ(X ,Y ) = number of applicants that prefer X to Y . Let
us define the following functions to compare two matchings X and Y :

∆(X ,Y ) =


φ(Y,X)/φ(X ,Y ) if φ(X ,Y ) > 0
1 if φ(X ,Y ) = 0 and φ(Y,X) = 0
∞ otherwise.

and δ(X ,Y ) = φ(Y,X)−φ(X ,Y ).

Having the above functions, we can define the unpopularity factor of a matching M as:

u(M) = max
M′

∆(M,M′).

The unpopularity margin of a matching M is defined as:

g(M) = max
M′

δ(M,M′).

The functions u(·) and g(·) were first introduced by McCutchen, who also gave polynomial time al-
gorithms to compute u(M) and g(M) for any given matching M. A matching M is popular if and only if
u(M) = 1 and g(M) = 0. When G does not admit popular matchings, we are interested in computing a
matching M with a low value of u(M). Suppose u(M) ≤ 2. Then such a matching can be considered “rea-
sonably popular” in a model where we say that a matching M′ beats another matching M only when the
number of applicants who prefer M′ to M is more than twice the number of applicants who prefer M to M′.
If u(M)≤ 2, then no other matching can beat M by the above rule. Note that all the 3 matchings M1,M2,M3
described in Figure 1 have their u value equal to 2 and their g value equal to 1. Let us now define a least
unpopular matching.

Definition 2. A matching M which achieves the minimum value of u(M) among all the matchings in G is
defined as the least unpopularity factor matching in G. Similarly, a matching that achieves the minimum
value of g(M) among all matchings in G is defined as the least unpopularity margin matching in G.

2



McCutchen recently showed that either computing a least unpopularity factor matching or a least unpop-
ularity margin matching is NP-hard. He also showed that the unpopularity factor of any matching is always
an integer. Thus when G does not admit a popular matching, the best matching in terms of the unpopularity
factor that one can hope for in G is a matching M that satisfies u(M) = 2. Complementing McCutchen’s
results, we have the following new results here.

• A least unpopularity factor matching can be computed in O(m
√

n) time provided a certain graph H
admits an A-complete matching. Such a matching M that we compute in H satisfies u(M) = 2.

• We also show a more general result. We construct a sequence of graphs: H = H2,H3, . . . ,Hk, . . . and
show that if Hk admits a matching that matches all nodes in A , then we can compute in O(km

√
n) time

a matching M such that u(M)≤ k−1 and g(M)≤ n(1− 2
k ).

• We ran our algorithm on random graphs using a similar setup as in [2]. Our simulation results suggest
that when G is a random graph, then for values of k≤ 4, we see that Hk admits an A-complete matching.
Thus in these graphs our algorithm computes a matching M whose unpopularity factor is a number ≤ 3
and whose unpopularity margin can be upper bounded by n/2. We also give a probabilistic analysis to
upperbound the performance of our algorithm.

1.2 Background and Related Results

The notion of popular matchings was first introduced by Gardenfors [5] in the context of the stable marriage
problem. It is well known that every stable marriage instance admits a weakly stable matching (one for
which there is no pair who strictly prefer each other to their partners in the matching). In fact, there can be
an exponential number of weakly stable matchings, and so Gardenfors considered the problem of finding
one with additional desirable properties, such as popularity. Gardenfors showed that when preference lists
are strictly ordered, every stable matching is popular. He also showed that when preference lists contain ties,
there may be no popular matching.

When only one side has preferences, Abraham et al. [2] gave polynomial time algorithms to find a
popular matching, or to report none exists. Recently, Mahdian [9] showed that a popular matching exists
with high probability, when (i) preference lists are randomly constructed, and (ii) the number of posts is a
factor of α ≈ 1.42 larger than the number of applicants. He in fact showed a phase transition at α, that is,
if the number of posts is smaller than α times the number of applicants, then with high probability popular
matchings do not exist.

Manlove and Sng [10] generalized the algorithms of [2] to the case where each post has an associated
capacity, the number of applicants that it can accommodate. (They described this in the equivalent context
of the house allocation problem.) They gave an O(

√
Cn1 + m) time algorithm for the no-ties case, and an

O((
√

C +n1)m) time algorithm when ties are allowed, where n1 is the number of applicants, m, as usual, is
the total length of all preference lists, and C is the total capacity of all of the posts.

In [12] Mestre designed an efficient algorithm for the weighted popular matching problem, where each
applicant is assigned a priority or weight, and the definition of popularity takes into account the priorities of
the applicants. In this case the algorithm for the no-ties version has O(n+m) complexity, and for the version
that allows ties, the complexity is O(min(k

√
n,n)m), where k is the number of distinct weights assigned to

applicants.

Organization of the paper. In Section 2 we describe the popular matching algorithm from [2], which is
the starting point of our algorithm. We then describe McCutchen’s algorithm to compute the unpopularity
factor of a given matching. In Section 3 we describe our algorithm and bound its unpopularity factor and
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unpopularity margin. In Section 4 we report our experimental results. Section 5 presents a probabilistic
analysis of our algorithm.

2 Preliminaries

In this section, we review the algorithmic characterization of popular matchings given in [2] and the algo-
rithm to compute the unpopularity index of a matching as given by McCutchen.

For exposition purposes, we create a unique strictly-least-preferred post l(a) for each applicant a. In
this way, we can assume that every applicant is matched, since any unmatched applicant a can be paired
with l(a). From now on, matchings are applicant complete (written as A-complete). Also, without loss of
generality, we assume that preference lists contain no gaps, i.e., if a is incident to an edge of rank i, then a
is incident to an edge of rank i−1, for all i > 1.

Let H1 = (A ∪P ,E1) be the graph containing only rank-one edges. Then [2, Lemma 3.1] shows that a
matching M is popular in G only if M∩E1 is a maximum matching of H1. Maximum matchings have the
following important properties, which we use throughout the rest of the paper.

M∩E1 defines a partition of A ∪P into three disjoint sets: a node u ∈ A ∪P is even (resp. odd) if there
is an even (resp. odd) length alternating path in G1 (w.r.t. M∩E1) from an unmatched node to u. Similarly,
a node u is unreachable if there is no alternating path from an unmatched node to u. Denote by N , O and
U the sets of even, odd, and unreachable nodes, respectively.

Lemma 1 (Gallai-Edmonds Decomposition). Let N , O and U be the sets of nodes defined by G1 and
M∩E1 above. Then

(a) N , O and U are pairwise disjoint, and independent of the maximum matching M∩E1.
(b) In any maximum matching of G1, every node in O is matched with a node in N , and every node in U is

matched with another node in U. The size of a maximum matching is |O|+ |U|/2.
(c) No maximum matching of G1 contains an edge between a node in O and a node in O ∪U. Also, G1

contains no edge between a node in N and a node in N ∪U.

Using this node partition, we make the following definitions: for each applicant a, f (a) is the set
odd/unreachable posts amongst a’s most-preferred posts. Also, s(a) is the set of a’s most-preferred posts
amongst all even posts. We refer to posts in ∪a∈A f (a) as f -posts and posts in ∪a∈A s(a) as s-posts. Note that
f -posts and s-posts are disjoint, and that s(a) 6= /0 for any a, since l(a) is always even. Also note that there
may be posts in P that are neither f -posts nor s-posts. The next theorem characterizes the set of all popular
matchings.

Theorem 1 ([2]). A matching M is popular in G iff (i) M∩E1 is a maximum matching of H1 = (A ∪P ,E1),
and (ii) for each applicant a, M(a) ∈ f (a)∪ s(a).

Figure 2 contains the algorithm from [2], based on Theorem 1, for solving the popular matching problem.

2.1 McCutchen’s algorithm

Here we outline the algorithm given by McCutchen for computing the unpopularity factor of a matching.
Given a matching M, the idea is to find a series of promotions (of applicants) at the cost of demoting one
applicant. The longest such promotion path determines the unpopularity factor of the particular matching.
Such a path can be discovered by building a directed weighted graph on the set of posts. We will refer to
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Popular-Matching(G = (A ∪P ,E))
Construct the graph G′ = (A ∪P ,E ′), where E ′ = {(a, p) : a ∈ A and p ∈ f (a)∪ s(a)}.
Construct a maximum matching M of H1 = (A ∪P ,E1).

//Note that M is also a matching in G′.
Remove any edge in G′ between a node in O and a node in O ∪U.

//No maximum matching of H1 contains such an edge.
Augment M in G′ until it is a maximum matching of G′.
Return M if it is A-complete, otherwise return “no popular matching”.

Fig. 2. An O(
√

nm)-time algorithm for the popular matching problem (from [2]).

this graph as the Posts-Graph GP . The vertices of GP represent all the posts P in the original graph. We add
edges into GP based on the following rules: (let M(p) denote the applicant to which post p is matched to in
the matching M)

– an edge with weight −1 is directed from post pi to p j if M(pi) prefers p j to pi.
– an edge with weight 0 is directed from post pi to p j if M(pi) is indifferent between pi and p j.

Note that there is no edge from pi to p j if M(pi) prefers pi to p j. The series of promotions mentioned
above is a negative weight path in this graph. To find the longest negative weight path in this graph, we add
a dummy vertex s with 0 weight edges from s to all posts. An algorithm which finds shortest paths from
source s to all posts will give the longest negative weight path in GP . Existence of a negative weight cycle
implies that there exists a promotion sequence without any demotion and hence the unpopularity factor of the
matching is ∞. Let us assume that no negative weight cycles exist. Then all posts have a 0 or negative weight
shortest path from the source. The post whose distance from the source is the most negative determines the
unpopularity index of the matching M. For details of the proof of correctness, refer to [11].

3 Our algorithm

In this section we describe a greedy strategy to compute a matching of G, whose unpopularity can be
bounded. Our algorithm is iterative and in every iteration it constructs a graph Hi and a maximum matching
Mi in Hi. We show that if Mi is an A-complete matching, then u(Mi)≤ i−1 and g(Mi)≤ n(1−2/i).

We will first give some intuition before we formally describe our algorithm. Recall that the popular
matching algorithm first finds a maximum cardinality matching M1 in the graph H1 (whose edge set is the
set of all rank 1 edges). The algorithm then identifies all even applicants/posts using the Gallai-Edmonds
decomposition and adds the edges (a, p) where a is even and p ∈ s(a) to the pruned graph H1 (all rank 1
edges between an odd node in H1 and a node that is odd or unreachable in H1 are removed from H1). Note
that each such edge (a, p) is new to H1, that is, such an edge is not already present in H1 since by Gallai-
Edmonds decomposition (part (iii)), there is no edge between two even vertices of H1, and here both a and
p are even in H1. In this new graph, call it H2, M1 is augmented to a maximum cardinality matching M2.
In case M2 is A-complete, we declare that the instance admits a popular matching. Otherwise no popular
matching exists.

The idea of our algorithm here is an extension of the same strategy. Since we are considering instances
which do not admit a popular matching, M2 found above will not be A-complete. In this case, we go further
and find the Gallai-Edmonds decomposition of nodes in H2 and identify nodes that are even in H1 and in H2.
A node that is odd or unreachable in either H1 or in H2 will always be matched by a maximum cardinality
matching in H2 that is obtained by augmenting a maximum cardinality matching in H1. Hence the nodes
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that are not guaranteed to be matched by such a matching are the applicants and posts that are even in both
H1 and H2.

So let us now add the edges (a, p) to H2 where a and p are nodes that are even in both H1 and H2 and
among all posts that are even in both H1 and H2, p is a most preferred post of a. We would again like to
point out that such an edge (a, p) did not exist in either H1 or in H2, since a and p were even in H1 and in
H2. We also prune H2 to remove edges that are contained in no maximum cardinality matching of H2 and
call the resulting graph H3. We then augment M2 to get M3 and continue the same procedure till we finally
get an A-complete matching Mi.

We would now like to contrast our approach above with the approach used in the algorithm for rank-
maximal matchings [8]. In the i-th iteration the algorithm for rank-maximal matchings would add edges
from an applicant a that is even in each of the previous iterations to a post p that was even in each of the
previous iterations if and only if p was a rank i post in a’s preference list. On the other hand, our algorithm
will add an edge from an applicant a that is even in each of the previous iterations to a post q that is even in
each of the previous iterations if q is a’s most preferred post among all such posts. Note that the rank of the
edge (a,q) is not necessarily i. Thus the absolute ranks in the preference lists are not important and instead,
what is important here is the relative ordering of posts in each applicant’s preference list. Thus unlike in
the rank-maximal matching algorithm, in our algorithm every applicant a that has been even in all previous
iterations will have some new edge incident on it in the i-th iteration.

With the above intuition, we are now ready to formally define the algorithm.

3.1 The algorithm

We start with H1 = (A ∪P ,E1) where E1 is the set of rank 1 edges. Let M1 be any maximum cardinality
matching in H1.

Initialize i = 1 and let all nodes be unmarked.
While Mi is not A-complete do:

1. Partition the nodes of A ∪P into three disjoint sets: Ni,Oi,Ui.
– Ni and Oi consists of nodes that can be reached in Hi from an unmatched node by an even/odd length alternating
path with respect to Mi, respectively.
– Ui consists of nodes that are unreachable by an alternating path from any unmatched node in Hi.

2. Mark all unmarked nodes in Oi∪Ui.
3. Delete all edges of Hi between a node in Oi and a node in Oi∪Ui
4. Add edges (a, p) to Hi where (i) a in unmarked, (ii) p is unmarked and (iii) p is a’s most preferred post among all

unmarked posts. Call the resulting graph Hi+1.
5. Augment Mi in Hi+1 to get a new matching Mi+1 which is a maximum cardinality matching of Hi+1.
6. i = i+1.

Fig. 3. An O(km
√

n)-time algorithm for finding an applicant-complete matching.

We note that once a post becomes odd or unreachable in any iteration, it gets marked and hence it cannot
get new edges incident upon it in the subsequent iterations. We use this to show that the unpopularity factor
of the matching that we produce is bounded by k− 1 if we find an A-complete matching in the graph Hk.
The running time of our algorithm is determined by the least k such that Hk admits an A-complete matching.
Since each iteration of our algorithm takes O(m

√
n) time, the overall running time is O(km

√
n), where k is

the least number such that Hk admits an A-complete matching.
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Before we prove our main theorems, we need the following definition that defines a level j post for an
applicant a. A level 1 post for each applicant is just its rank 1 post. But from levels ≥ 2, a level j post for an
applicant need not be its rank j post.

Definition 3. A level j post for an applicant a is a post p such that (i) p is an even post in H1, . . . ,H j−1 and
(ii) p is the most preferred post for a amongst all such posts.

Theorem 2. If our algorithm finds an A-complete matching Mk in Hk, then u(Mk)≤ k−1.

Proof. Let Mk be the A-complete matching produced by our algorithm after k iterations. We draw the posts
graph GP corresponding to the matching Mk. The unpopularity index of Mk is the most negative distance of
a vertex (post) in GP from the dummy source s as described in Section 2. We now show that the posts in GP
can be partitioned into k layers (corresponding to the k iterations) such that all negative weight edges always
go from higher numbered layers to lower numbered layers. If we show this, then it is clear that since there
are only k layers and all negative weight edges have weight −1, the longest negative weight path can be of
length at most k−1.

Let us partition the posts of GP such that a post belongs to a layer t if it gets marked for the first time in
iteration t. Let p be a post that belongs to level i. Recall that in GP there is a negative weight edge from p
to q iff Mk(p) strictly prefers q to p. We now show that any such post q should belong to a layer j such that
j < i.

First, note that an edge (a, p) is added to the graph at the end of the ( j−1)-th iteration of our algorithm
(for any j ≥ 1) only if p is a level j post for a. Next, note that since p got marked in the i-th iteration, no
new edges are ever added to p in any of the subsequent iterations. Based on these two observations, we can
conclude that since the edge (Mk(p), p) exists in GP it has to be the case that p is a level ` post for Mk(p)
for some `≤ i.

That is, at the end of the (`−1)-th iteration, p was the most preferred unmarked post for Mk(p). Hence
all the posts that Mk(p) strictly prefers to p were already marked before/during the (`−1)th iteration. That
is, these posts belong to layers j, where j ≤ `−1 ≤ i−1. Thus if (p,q) is a negative weight edge out of p,
then q belongs to layer j, where j < i.

Hence we have shown that all negative weight edges must go from higher numbered layers to lower
numbered layers. This implies that the longest negative weight path in the graph GP corresponding to Mk is
at most k−1. In other words, u(Mk)≤ k−1. ut

Theorem 3. If our algorithm finds an A-complete matching Mk in Hk, then g(Mk)≤ n(1− 2
k ).

Proof. Let Mk be the A-omplete matching produced by our algorithm after k iterations and let M be any
other A-complete matching in G. Now let us construct a weighted directed graph HP similar to the posts
graph GP . The vertices of HP are all posts p such that Mk(p) 6= M(p). For every applicant a we have a
directed edge from Mk(a) to M(a) with a weight of −1,0,+1 if a prefers M(a) better than, the same as or
worse than Mk(a). Any post p that does not belong to HP is matched to the same applicant in Mk as well as
in M and hence the corresponding applicant does not contribute to the unpopularity margin. Furthermore, it
is clear that the sum of weights of all edges in HP gives the negative of the unpopularity margin by which
M dominates Mk.

First note that HP is a set of disjoint paths and cycles. This is because, HP can equivalently be constructed
from S = Mk ⊕M by striking off applicants and giving appropriate directions and weights to edges. Thus
a path in S continues to be a path in HP although it may no longer be of even length. The same is true for
cycles also. If a path or cycle consists of only 0 weight edges, then we can drop such a cycle/path from the
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graph, since these edges do not contribute to the unpopularity margin. In addition, note that any cycle or
path cannot be composed of only negative and zero weight edges, otherwise the unpopularity factor of Mk
is ∞, a contradiction. Hence we can assume that every cycle or path contains at least one positive edge.

Let ρ be any path or cycle in HP . Let us consider the function

frac-margin(ρ) =
number of −1’s in ρ − number of +1’s in ρ

number of edges in ρ

Let us try to bound frac-margin(ρ) for each ρ. For the sake of simplicity, let us first assume that the
preference lists are strict. So there are only ±1 weight edges in HP . Thus frac-margin(ρ) = (α−β)/(α+β)
where α is the number of −1 weight edges in ρ and β is the number of +1 weight edges in ρ. Since the
unpopularity factor of Mk is bounded by k− 1, it is easy to see that the unpopularity factor of ρ is also
bounded by k− 1 (refer to [11] for a proof), thus α/β ≤ k− 1. Thus β/(α + β) ≥ 1/k, and α/(α + β) ≤
1− 1/k. Hence frac-margin(ρ) for any path or cycle ρ is at most 1− 2/k. The contribution of ρ towards
δ(Mk,M) is (number of edges in ρ)·(frac-margin(ρ)). This is at most nρ(1− 2/k) where nρ is the number
of edges in ρ. Since a unique applicant a is associated with each edge (Mk(a),M(a)) of HP , it follows that
∑nρ ≤ n. Thus δ(Mk,M)≤ n(1−2/k) where M is any matching.

The proof for the case with ties also follows from the above argument. Since 0 weight edges in ρ do
not affect the numerator of frac-margin(ρ) and only increase the denominator of frac-margin(ρ), it is easy
to see that frac-margin(ρ) for a path or cycle ρ with 0 weight edges is dominated by frac-margin(ρ′) where
ρ′ is obtained from ρ by contracting 0 weight edges. Thus frac-margin(ρ) ≤ 1− 2/k and thus δ(Mk,M) ≤
n(1−2/k) where M is any matching. Thus maxM′δ(Mk,M)≤ n(1−2/k). ut

Corollary 1. Let G be a graph that does not admit a popular matching. If our algorithm produces an A-
complete matching M in H3, then M is a least unpopularity factor matching in G.

Proof. It follows from Theorem 2 that if our algorithm produces an applicant complete matching M in H3,
then u(M) ≤ 2. McCutchen [11] showed that the unpopularity factor of any matching is always an integer.
Thus if G admits no popular matching, then the lowest value of u(·) we can hope for is 2. Since u(M)≤ 2,
it follows that this is a least unpopularity factor matching. ut

a1 : p1 p8 · · ·
a2 : p2 p9 · · ·
a3 : p3 p10 · · ·
a4 : p4 p1 · · ·
a5 : p4 p1 p5 p6 p7 · · ·
a6 : p4 p2 p5 p6 p7 · · ·
a7 : p4 p3 p5 p6 p7 · · ·

Fig. 4. All preference lists are strictly-ordered.

Starting with the above corollary, it is tempting to push the frontier further. Suppose that the algorithm
gets an A-complete matching M4 in the graph H4 (thus u(M4)≤ 3). Can we also argue that it is impossible
to achieve a better matching? Unfortunately, this is not the case. In the example given in Figure 4, we show a
problem instance, where our algorithm terminates in constructing M4 = {(a1, p1),(a2, p2),(a3, p3),(a4, p4),
(a5, p5),(a6, p6),(a7, p7)} in H4. However, the matching M∗ = {(a1, p8),(a2, p9),(a3, p10),(a5, p1),(a6, p2),
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n = 100
# rounds

k t 2 3 4
0.05 4 996
0.2 28 972

10 0.5 471 529
0.8 729 271
1.0 1000

0.05 991 9
0.2 3 991 6

25 0.5 138 861 1
0.8 773 227
1.0 1000

0.05 948 52
0.2 1 978 21

50 0.5 158 832 10
0.8 793 207
1.0 1000

0.05 952 48
0.2 2 973 25

100 0.5 148 836 16
0.8 783 217
1.0 1000

n = 500
# rounds

k t 2 3 4
0.05 1000
0.2 1000

10 0.5 176 824
0.8 62 938
1.0 1000

0.05 1000
0.2 1000

25 0.5 999 1
0.8 93 907
1.0 1000

0.05 967 33
0.2 994 6

50 0.5 997 3
0.8 104 896
1.0 1000

0.05 828 172
0.2 942 58

100 0.5 989 11
0.8 93 907
1.0 1000

n # rounds
2 3 4

10 585 413 2
25 141 844 15
50 6 962 32
100 952 48
250 896 104
500 820 180

1000 667 333
1500 541 459
2000 320 680

Table 1. The left and middle tables show the number of instances with n = 100 and 500 nodes respectively (out of a 1000 instances)
that finish in round number 2 (popular matching), 3 or 4 for different values of the parameters k and t. The table on the right shows
the number of instances (out of a 1000 instances) that finish in round number 2 (popular matching), 3 or 4 for fixed t = 0.05, k = n
and different values of the parameter n.

(a7, p3),(a4, p4)} does achieve u(M∗) = 2.

It is easy to extend the above instance by adding applicants and posts so that the greedy algorithm takes
as large number of iterations as desired even when the instance admits a matching with u(M) = 2.

4 Experimental Results

Previous work [2] regarding popular matchings presented simulation results about the existence of popular
matchings in random graphs. A follow-up work studied theoretically the necessary conditions for a random
graph to admit a popular matching [9]. On the other hand the algorithm that we propose in this paper is
guarantied to return some matching even if the instance does not admit a popular one. In this section we
study the number of rounds that it requires until it returns a solution. Although the unpopularity grows
linearly with the number of rounds, our simulation results suggest that in random graphs the necessary
rounds are a small constant.

We follow the setting used in [2] in order for our experimental results to be comparable to those reported
in [2]. The number of applicants and posts are equal (denoted by n) and preference lists have the same length
k. Existence of ties is characterized by a single parameter t which denotes the probability of an entry in the
preference list to be tied with its predecessor.

Table 1 contains simulation results for random graphs with n = 100 and n = 500 for different values
of parameters k and t. The table shows the number of instances (out of 1000 instances) that finish in some
particular round of the execution. Round 2 means that the instance has a popular matching. It is easy to
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observe that the difficult cases are the ones where we only have a few ties (t is small). For a fixed value of
k as t decreases the algorithm requires more rounds until it returns a solution. However, the good news are
that it never takes more than four rounds.

As Table 1 suggests the difficult situation is when k is large (roughly n) and t is very small (the prefer-
ences have few ties and these ties are of small length). We study this situation further by varying the value of
n in order to see whether our observations for n = 100 and n = 500 are valid for larger values of n. Let us re-
mark that Mahdian [9] proved the following result. If the right side of the bipartite partition is slightly larger
than (≈ 1.42 times) the left side, then the instance has a popular matching with high probability. Since we
try to identify difficult instances we keep the two sides of the partition equal, which is also the case in many
practical situations, where there are no surplus projects/posts when compared to the number of applicants.

Table 1 shows the number of rounds (again out of a 1000) that is required for different values of n when
t = 0.05 and k = n, i.e., the graph is complete bipartite and there only a few ties of very small length exist.
The table suggests that as n increases the probability of terminating at the second or third round decreases
while the one of the 4th round increases. However, this is not accompanied with any increase in rounds
larger than 4. Due to memory constraints we could not continue the experiment for larger values of n, but
we conjecture that for larger values of n all instances will terminate in round 4.

Our experimental results are very promising. The algorithm behaves nicely in practice, far away from a
possible large approximation.

5 A bound on the number of iterations taken by our algorithm

In this section we probabilistically bound the number of iterations our algorithm takes to compute an A-
complete matching. We show that, on random instances, the expected number of iterations taken by our
algorithm is at most dlnne. In this section, we assume that each preference list is complete and has no ties
in it. Each preference list is a uniform random permutation on the set of all posts. We also assume that the
number of applicants is equal to the number of posts, and let us call this number n.

We now describe our random experiment. Each applicant picks a permutation independently and uni-
formly at random from the set of all permutations on the posts. For the sake of analysis of our algorithm,
we view the experiment in a slightly different manner as was done in [9]. Each applicant picks his/her first
choice post independently and uniformly at random from the set of posts P . We denote the set of first posts
thus picked by all the applicants as L1. If a post in L1 is sought by more than 1 applicant, then we arbitrarily
assign this post to one of the applicants seeking it. So the applicants that do not have a post assigned to them
have to try again in the next round whereas the |L1| applicants who have found posts do not pick any post in
further rounds. So at the end of round 1, we are left with n−|L1| unmatched posts and n−|L1| unmatched
applicants. It is easy to see that the expected value E[n−|L1|] is

E[n−|L1|] = n(1− 1
n
)n ≤ n

e
.

Each of these n− |L1| unmatched applicants further picks his/her level 2 post independently and uni-
formly at random from P −L1. This experiment is identical to the experiment in the first round, except that
we are operating with n−|L1| applicants and n−|L1| posts instead of n applicants and n posts. In round i,
we will have ni applicants and ni posts and each of these applicants picks his/her level i post independently
and uniformly at random from P −{L1 ∪L2 ∪ ·· · ∪Li−1}. It is easy to see that the expected value of ni is
n(1−1/n)n(i−1) ≤ n/ei−1. Thus at the end of round dlnne we expect to have no empty posts, that is, we have
a perfect matching.
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Note that the number of rounds taken by the above experiment is an upper bound on the number of
rounds taken by our algorithm, since for the simplicity of analysis, in the above experiment in each round
we assigned a post that is sought by more than one applicant to arbitrarily one of them, whereas in our
algorithm we make no such arbitrary assignment. Thus the number of rounds taken by our algorithm to find
a perfect matching is possibly much lower than the number of rounds taken by the above experiment to find a
perfect matching, as the experimental results attested. Note that we can also show that the number of rounds
in the above experiment is with high probability c lnn, for a small constant c, using Azuma’s Inequality.
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