
Streaming Algorithms for Maximizing Monotone Submodular

Functions under a Knapsack Constraint

Chien-Chung Huang
CNRS, Ecole Normale Supérieure

villars@gmail.com

Naonori Kakimura
Keio University

kakimura@math.keio.ac.jp

Yuichi Yoshida
National Institute of Informatics

yyoshida@nii.ac.jp

Abstract

In this paper, we consider the problem of maximizing a monotone submodular function
subject to a knapsack constraint in the streaming setting. In particular, the elements arrive
sequentially and at any point of time, the algorithm has access only to a small fraction of the
data stored in primary memory. For this problem, we propose a (0.363 − ε)-approximation
algorithm, requiring only a single pass through the data; moreover, we propose a (0.4 − ε)-
approximation algorithm requiring a constant number of passes through the data. The required
memory space of both algorithms depends only on the size of the knapsack capacity and ε.

1 Introduction

A set function f : 2E → R+ on a ground set E is called submodular if it satisfies the diminishing
marginal return property, i.e., for any subsets S ⊆ T (E and e ∈ E \ T , we have

f(S ∪ {e})− f(S) ≥ f(T ∪ {e})− f(T).

A function is monotone if f(S) ≤ f(T) for any S ⊆ T . Submodular functions play a fundamental
role in combinatorial optimization, as they capture rank functions of matroids, edge cuts of graphs,
and set coverage, just to name a few examples. Besides their theoretical interests, submodular
functions have attracted much attention from the machine learning community because they can
model various practical problems such as online advertising [1, 11, 18], sensor location [12], text
summarization [17, 16], and maximum entropy sampling [14].

Many of the aforementioned applications can be formulated as the maximization of a monotone
submodular function under a knapsack constraint. In this problem, we are given a monotone
submodular function f : 2E → R+, a size function c : E → N, and an integer K ∈ N, where N
denotes the set of positive integers. The problem is defined as

maximize f(S) subject to c(S) ≤ K, (1)

where we denote c(S) =
∑

e∈S c(e) for a subset S ⊆ E. Throughout this paper, we assume that
every item e ∈ E satisfies c(e) ≤ K as otherwise we can simply discard it. Note that, when c(e) = 1
for every item e ∈ E, the constraint coincides with a cardinality constraint.

1

The problem of maximizing a monotone submodular function under a knapsack constraint is
classical and well-studied. First introduced by Wolsey [20], the problem is known to be NP-hard
but can be approximated within the factor of (close to) 1− 1/e; see e.g., [3, 10, 13, 8, 19].

In some applications, the amount of input data is much larger than the main memory capacity
of individual computers. In such a case, we need to process data in a streaming fashion. That is, we
consider the situation where each item in the ground set E arrives sequentially, and we are allowed
to keep only a small number of the items in memory at any point. This setting effectively rules out
most of the techniques in the literature, as they typically require random access to the data. In this
work, we also assume that the function oracle of f is available at any point of the process. Such
an assumption is standard in the submodular function literature and in the context of streaming
setting [2, 7, 21]. Badanidiyuru et al. [2] discuss several interesting and useful functions where the
oracle can be implemented using a small subset of the entire ground set E.

We note that the problem, under the streaming model, has so far not received its deserved
attention in the community. Prior to the present work, we are aware of only two: for the special
case of cardinality constraint, Badanidiyuru et al. [2] gave a single-pass (1/2 − ε)-approximation
algorithm; for the general case of a knapsack constraint, Yu et al. [21] gave a single-pass (1/3− ε)-
approximation algorithm, both using O(K log(K)/ε) space.

We now state our contribution.

Theorem 1.1. For the problem (1),

1. there is a single-pass streaming algorithm with approximation ratio 4/11− ε ≈ 0.363− ε.
2. there is a multiple-pass streaming algorithm with approximation ratio 2/5− ε = 0.4− ε.

Both algorithms use O(K · poly(ε−1)polylog(K)) space.

Our Technique We begin by a straightforward generalization of the algorithm of [2] for the
special case of cardinality constraint (Section 2). This algorithm proceeds by adding a new item
into the current set only if its marginal-ratio (its marginal return with respect to the current set
divided by its size) exceeds a certain threshold. This algorithm performs well when all items in
OPT are relatively small in size, where OPT is an optimal solution. However, in general, it only
gives (1/3− ε)-approximation. Note that this technique can be regarded as a variation of the one
in [21]. To obtain better approximation ratio, we need new ideas.

The difficulty in improving this algorithm lies in the following case: A new arriving item that
is relatively large in size, passes the marginal-ratio threshold, and is part of OPT, but its addition
would cause the current set to exceed the capacity K. In this case, we are forced to throw it away,
but in doing so, we are unable to bound the ratio of the function value of the current set against
that of OPT properly.

We propose a branching procedure to overcome this issue. Roughly speaking, when the function
value of the current set is large enough (depending on the parameters), we create a secondary set.
We add an item to the secondary set only if it passes the marginal-ratio threshold (with respect
to the original set) but its addition to the original set would violate the size constraint. In the
end, whichever set achieves the higher value is returned. In a way, the secondary set serves as a
“back-up” with enough space in case the original set does not have it, and this allows us to bound
the ratio properly. Sections 3 and 4 are devoted to explaining this branching algorithm, which gives
(4/11− ε)-approximation with a single pass.

We note that the main bottleneck of the above singe-pass algorithm lies in the situation where
there is a large item in OPT whose size exceeds K/2. In Section 5, we show that we can first focus

2

Algorithm 1
1: procedure MarginalRatioThresholding(α, v) . α ∈ (0, 1], v ∈ R+

2: S := ∅.
3: while item e is arriving do

4: if f(e|S)
c(e)

≥ αv−f(S)
K−c(S) and c(S + e) ≤ K then S := S + e.

5: return S.

on only the large items (more specifically, those items whose size differ from the largest item in
OPT by (1 + ε) factor) and choose O(1) of them so that at least one of them, along with the rest of
OPT (excluding the largest item in it), gives a good approximation to f(OPT). Then in the next
pass, we can apply a modified version of the original single-pass algorithm to collect small items.
This multiple-pass algorithm gives a (2/5− ε)-approximation.

Related Work Maximizing a monotone submodular function subject to various constraints is a
subject that has been extensively studied in the literature. We are unable to give a complete survey
here and only highlight the most representative and relevant results. Besides a knapsack constraint
or a cardinality constraint mentioned above, the problem has also been studied under (multiple)
matroid constraint(s), p-system constraint, multiple knapsack constraints. See [4, 9, 13, 8, 15] and
the references therein. In the streaming setting, other than the knapsack constraint that we have
discussed before, there are also works considering a matroid constraint. Chakrabarti and Kale [5]
gave 1/4-approximation; Chekuri et al. [7] gave the same ratio. Very recently, for the special case
of partition matroid, Chan et al. [6] improved the ratio to 0.3178.

Notation For a subset S ⊆ E and an element e ∈ E, we use the shorthand S + e and S − e to
stand for S ∪ {e} and S \ {e}, respectively. For a function f : 2E → R, we also use the shorthand
f(e) to stand for f({e}). The marginal return of adding e ∈ E with respect to S ⊆ E is defined
as f(e | S) = f(S + e) − f(S). We frequently use the following, which is immediate from the
diminishing marginal return property:

Proposition 1.2. Let f : 2E → R+ be a monotone submodular function. For two subsets S ⊆ T ⊆
E, it holds that f(T) ≤ f(S) +

∑
e∈T\S f(e | S).

2 Single-Pass (1/3− ε)-Approximation Algorithm

In this section, we present a simple (1/3−ε)-approximation algorithm that generalizes the algorithm
for a cardinality constraint in [2]. This algorithm will be incorporated into several other algorithms
introduced later.

2.1 Thresholding Algorithm with Approximate Optimal Value

In this subsection, we present an algorithm MarginalRatioThresholding, which achieves (almost)
1/3-approximation given a (good) approximation v to f(OPT) for an optimal solution OPT. This
assumption is removed in Section 2.2.

Given a parameter α ∈ (0, 1] and v ∈ R+, MarginalRatioThresholding attempts to add a new
item e ∈ E to the current set S ⊆ E if its addition does not violate the knapsack constraint and e
passes the marginal-ratio threshold condition, i.e.,

f(e | S)

c(e)
≥ αv − f(S)

K − c(S)
. (2)

3

Algorithm 2
1: procedure Singleton()
2: S := ∅
3: while item e is arriving do
4: if f(e) > f(S) then S := {e}.
5: return S.

The detailed description of MarginalRatioThresholding is given in Algorithm 1.
Throughout this subsection, we fix S̃ = MarginalRatioThresholding(α, v) as the output of the

algorithm. Then, we have the following lemma (see Appendix A.1 for the proof).

Lemma 2.1. The following hold:

(1) During the execution of the algorithm, the current set S ⊆ E always satisfies f(S) ≥
αvc(S)/K. Moreover, if an item e ∈ E passes the condition (2) with the current set S,
then f(S + e) ≥ αvc(S + e)/K.

(2) If an item e ∈ E fails the condition (2), i.e., f(e|S)
c(e) < αv−f(S)

K−c(S) , then we have f(e | S̃) <

αvc(e)/K.

An item e ∈ OPT is not added to S̃ if either e does not pass the condition (2), or its addition
would cause the size of S to exceed the capacity K. We name the latter condition as follows:

Definition 2.2. An item e ∈ OPT is called bad if e passes the condition (2) but the total size

exceeds K when added, i.e., f(e | S) ≥ αv−f(S)
K−c(S) , c(S + e) > K and c(S) ≤ K, where S is the set we

have just before e arrives.

The following lemma says that, if there is no bad item, then we obtain a good approximation.

Lemma 2.3. If v ≤ f(OPT) and there have been no bad item, then f(S̃) ≥ (1− α)v holds.

Proof. By the submodularity and the monotonicity, we have v ≤ f(OPT) ≤ f(OPT∪ S̃) ≤ f(S̃) +∑
e∈OPT\S̃ f(e | S̃). Since we have no bad item, f(e | S̃) ≤ αvc(e)/K for any e ∈ OPT \ S̃ by

Lemma 2.1 (2). Hence, we have v ≤ f(S̃) + αv, implying f(S̃) ≥ (1− α)v.

Consider an algorithm Singleton, which takes the best singleton as shown in Algorithm 2. If
some item e ∈ OPT is bad, then together with S̃′ = Singleton(), then we can achieve (almost)
1/3-approximation.

Theorem 2.4. We have max{f(S̃), f(S̃′)} ≥ min{α/2, 1−α}v. The right-hand side is maximized
to v/3 when α = 2/3.

Proof. If there exists no bad item, we have f(S̃) ≥ (1−α)v by Lemma 2.3. Suppose that we have a
bad item e ∈ E. Let Se ⊆ E be the set just before e arrives in MarginalRatioThresholding. Then, we
have f(Se+e) ≥ αvc(Se+e)/K by Lemma 2.1 (1). Since c(Se+e) > K, this means f(Se+e) ≥ αv.
Since f(Se + e) ≤ f(Se) + f(e) by submodularity, one of f(Se) and f(e) is at least αv/2. Thus
f(S̃) ≥ f(Se) ≥ αv/2 or f(e) ≥ αv/2.

Therefore, if we have v ∈ R+ with v ≤ f(OPT) ≤ (1+ε)v, the algorithm that runs MarginalRatio-
Thresholding(2/3, v) and Singleton() in parallel and chooses the better output has the approximation
ratio of 1

3(1+ε) ≥ 1/3− ε. The space complexity of the algorithm is clearly O(K).

4

Algorithm 3
1: procedure DynamicMRT(ε, α) . ε, α ∈ (0, 1]
2: V := {(1 + ε)i | i ∈ Z+}.
3: For each v ∈ V, set Sv := ∅.
4: while item e is arriving do
5: m := max{m, f(e)}
6: I := {v ∈ V | m ≤ v ≤ Km/α}.
7: Delete Sv for each v 6∈ I.
8: for each v ∈ I do
9: if f(e|Sv)

c(e)
≥ αv−f(Sv)

K−c(Sv)
and c(Sv + e) ≤ K then Sv := Sv + e.

10: return Sv for v ∈ I that maximizes f(Sv).

2.2 Dynamic Updates

MarginalRatioThresholding requires a good approximation to f(OPT). This requirement can be
removed with dynamic updates in a similar way to [2]. We first observe that maxe∈S f(e) ≤
f(OPT) ≤ K maxe∈S f(e). So if we are given m = maxe∈S f(e) in advance, a value v ∈ R+ with
v ≤ f(OPT) ≤ (1 + ε)v for ε ∈ (0, 1] exists in the guess set I = {(1 + ε)i | m ≤ (1 + ε)i ≤ Km, i ∈
Z+}. Then, we can run MarginalRatioThresholding for each v ∈ I in parallel and choose the best
output. As the size of I is O(logK/ε), the total space complexity is O(K logK/ε).

To get rid of the assumption that we are given m in advance, we consider an algorithm, called
DynamicMRT, which dynamically updates m to determine the range of guessed optimal values.
More specifically, it keeps the (tentative) maximum value max f(e), where the maximum is taken
over the items e arrived so far, and keeps the approximations v in the interval between m and
Km/α. The details are provided in Algorithm 3. We have the following guarantee, where the proof
can be found in Appendix A.2.

Theorem 2.5. For ε ∈ (0, 1], the algorithm that runs DynamicMRT(ε, 2/3) and Singleton() in
parallel and outputs the better output is a (1/3 − ε)-approximation streaming algorithm with a
single pass for the problem (1). The space complexity of the algorithm is O(K logK/ε).

3 Improved Single-Pass Algorithm for Small-Size Items

Let OPT = {o1, o2, . . . , o`} be an optimal solution with c(o1) ≥ c(o2) ≥ · · · ≥ c(o`). The main goal
of this section is achieving (2/5 − ε)-approximation, assuming that c(o1) ≤ K/2. The case with
c(o1) > K/2 will be discussed in Section 4.

3.1 Branching Framework with Approximate Optimal Value

We here provide a framework of a branching algorithm BranchingMRT as Algorithm 4. This will
be used with different parameters in Section 3.2.

Let v and c1 be (good) approximations to f(OPT) and c(o1)/K, respectively, and let b ≤ 1/2
be a parameter. The value c1 is supposed to satisfy c1 ≤ c(o1)/K ≤ (1 + ε)c1, and hence we ignore
items e ∈ E with c(e) > min{(1 + ε)c1, 1/2}K. The basic idea of BranchingMRT is to take only
items with large marginal ratios, similarly to MarginalRatioThresholding. The difference is that,
once f(S) exceeds a threshold λ, where λ = 1

2α (1− b) v, we store either the current set S or the
latest added item as S′. This guarantees that f(S′) ≥ λ and c(S′) ≤ (1 − b)K, which means that
S′ has a large function value and sufficient room to add more elements. We call the process of
constructing S′ branching. We continue to add items with large marginal ratios to the current set
S, and if we cannot add an item to S because it exceeds the capacity, we try to add the item to

5

Algorithm 4
1: procedure BranchingMRT(ε, α, v, c1, b) . ε, α ∈ (0, 1], v ∈ R+, and c1, b ∈ [0, 1/2]
2: S := ∅.
3: λ := 1

2
α(1− b)v.

4: while item e is arriving do
5: Delete e with c(e) > min{(1 + ε)c1, 1/2}K.

6: if f(e|S)
c(e)

≥ αv−f(S)
K−c(S) and c(S + e) ≤ K then S := S + e.

7: if f(S) ≥ λ then break // leave the While loop.

8: Let ê be the latest added item in S.
9: if c(S) ≥ (1− b)K then S′0 := {ê} else S′0 := S.
10: S′ := S′0.
11: while item e is arriving do
12: Delete e with c(e) > min{(1 + ε)c1, 1/2}K.

13: if f(e|S)
c(e)

≥ αv−f(S)
K−c(S) and c(S + e) ≤ K then S := S + e.

14: if f(e|S)
c(e)

≥ αv−f(S)
K−c(S) and c(S + e) > K then

15: if f(S′) < f(S′0 + e) then S′ := S′0 + e.

16: return S or S′ whichever has the larger function value.

S′. Note that the set S′, after branching, can have at most one extra item; but this extra item can
be replaced if a better candidate comes along (See line 14–15).

Remark that the sequence of sets S in BranchingMRT is identical to that in MarginalRatio-
Thresholding. Hence, we do not need to run MarginalRatioThresholding in parallel to this algorithm.
We say that an item e ∈ OPT is bad if it is bad in the sense of MarginalRatioThresholding, i.e., it
satisfies the condition in Definition 2.2. We have the following two lemmas.

Lemma 3.1. For a bad item e with c(e) ≤ bK, let Se be the set just before e arrives in Algorithm 4.
Then f(Se) ≥ λ holds. Thus branching has happened before e arrives.

Proof. Sine e is a bad item, we have c(Se) > K− c(e) ≥ (1− b)K. Hence f(Se) ≥ α(1− b)v ≥ λ by
Lemma 2.1 (1). Since the value of f is non-decreasing during the process, it means that branching
has happened before e arrives.

Lemma 3.2. It holds that f(S′0) ≥ λ and c(S′0) ≤ (1− b)K.

Proof. We denote by S the set obtained right after leaving the while loop from Line 4. If c(S) <
(1−b)K, then f(S′0) = f(S) ≥ λ. Otherwise, since c(S) ≥ (1−b)K, we have f(S) ≥ α(1−b)v ≥ 2λ
by Lemma 2.1 (1). Hence f(S′0) = f(ê) ≥ λ since f(S− ê) < λ and the submodularity. The second
part holds since c(ê) ≤ K/2 ≤ (1− b)K by b ≤ 1/2.

Let S̃ and S̃′ be the final two sets computed by BranchingMRT. Note that we can regard S̃ as
the output of MarginalRatioThresholding and S̃′ as the final set obtained by adding at most one
item to S′0.

Observe that the number of bad items depends on the parameter α. As we will show in
Section 3.2, by choosing a suitable α, if we have more than two bad items, then the size of S̃
is large enough, implying that f(S̃) is already good for approximation (due to Lemma 2.1 (1)).
Therefore, in the following, we just concentrate on the case when we have at most two bad items.

Lemma 3.3. Let α be a number in (0, 1], and suppose that we have only one bad item ob. If
v ≤ f(OPT) and b ∈ [c(ob)/K, (1 + ε)c(ob)/K], then it holds that

max{f(S̃), f(S̃′)} ≥ 1

2

(
1− αK − c(ob)

2K

)
v − εαc(ob)

4K
v =

(
1

2

(
1− αK − c(ob)

2K

)
−O(ε)

)
v.

6

Proof. Suppose not, that is, suppose that both of f(S̃) and f(S̃′) are smaller than βv, where

β = 1
2(1− αK−c(ob)2K)− αc(ob)

4K ε. We denote Os = OPT \ {ob}.
Since the bad item ob satisfies c(ob) ≤ bK, it arrives after branching by Lemma 3.1. By

Lemma 3.2, we have c(S′0 + ob) ≤ K. Since f(S̃′) is less than βv, we see that f(S′0 + ob) < βv.
Then, since f(S′0) ≥ λ,

f(OPT) ≤ f(ob | S′0) + f(S′0 ∪Os) < (βv − λ) + f(S′0 ∪Os). (3)

Since S′0 ⊆ S̃, submodularity implies that

f(S′0 ∪Os) ≤ f(S̃ ∪Os) ≤ f(S̃) +
∑

e∈Os\S̃

f(e | S̃). (4)

Since f(S̃) < βv and no item in Os is bad, (3) and (4) imply by Lemma 2.1 (2) that

v ≤ f(OPT) < (βv − λ) + f(S̃ ∪Os) < (βv − λ) + βv +
αc(Os)

K
v ≤ 2βv − 1

2
α(1− b)v + α

(
1− c(ob)

K

)
v

Therefore, we have

β >
1

2

(
1 + α

2c(ob)/K − b− 1

2

)
.

Since b ≤ (1 + ε)c(ob)/K, we obtain

β >
1

2

(
1− (K − c(ob))α

2K

)
− αc(ob)

4K
ε,

which is a contradiction. This completes the proof.

For the case when we have exactly two bad items, we obtain the following guarantee (see
Appendix A.3).

Lemma 3.4. Let α be a number in (0, 1], and suppose that we have exactly two bad items ob and
om with c(ob) ≥ c(om). If v ≤ f(OPT) and b ∈ [c(ob)/K, (1 + ε)c(ob)/K], then it holds that

max{f(S̃), f(S̃′)} ≥ 1

3

(
1 + α

c(om)

K

)
v − αc(ob)

3K
εv =

(
1

3

(
1 + α

c(om)

K

)
−O(ε)

)
v.

3.2 Algorithms with Guessing Large Items

We now use BranchingMRT to obtain a better approximation ratio. In the new algorithm, we guess
the sizes of a few large items in an optimal solution OPT, and then use them to determine the
parameter α.

We first remark that, when |OPT| ≤ 2, we can easily obtain a 1/2-approximate solution with
a single pass. In fact, since f(OPT) ≤

∑`
i=1 f(oi) where ` = |OPT|, at least one of oi’s satisfies

f(oi) ≥ f(OPT)/`, and hence Singleton returns a 1/2-approximate solution when ` ≤ 2. Thus, in
what follows, we may assume that |OPT| ≥ 3.

We start with the case that we have guessed the largest two sizes c(o1) and c(o2) in OPT.

Lemma 3.5. Let ε ∈ (0, 1], and suppose that v ≤ f(OPT) and ci ≤ c(oi)/K ≤ (1 + ε)ci for
i ∈ {1, 2}. Then, S̃′ = BranchingMRT(ε, α, v, c1, b) with α = 1/(2 − c2) or 2/(5 − 4c2 − c1) and
b = min{(1 + ε)c1, 1/2} satisfies

f(S̃′) ≥
(

min

{
1− c2
2− c2

,
2(1− c2)

5− 4c2 − c1

}
−O(ε)

)
v. (5)

7

Proof. Let S̃ = MarginalRatioThresholding(α, v). Note that f(S̃′) ≥ f(S̃). If S̃ has size at least
(1− (1 + ε)c2)K, then Lemma 2.1 (1) implies that

f(S̃) ≥ α(1− (1 + ε)c2)v = α(1− c2)v −O(ε)v.

Otherwise, c(S̃) < (1− (1 + ε)c2)K. In this case, we see that only the item o1 has size more than
(1 + ε)c2K, and hence only o1 can be a bad item. If o1 is not a bad item, then we have no bad
item, and hence Lemma 2.3 implies that

f(S̃) ≥ (1− α)v.

If o1 is bad, then Lemma 3.3 implies that

f(S̃′) ≥ 1

2

(
1− α1− c1

2

)
v −O(ε)v.

Thus the approximation ratio is the minimum of the RHSes of the above three inequalities. This
is maximized when α = 1/(2− c2) or α = 2/(5− 4c2 − c1), and the maximum value is equal to the
RHS of (5).

Note that the approximation ratio achieved in Lemma 3.5 becomes 1/3−O(ε) when, for example,
c1 = c2 = 1/2. Hence, the above lemma does not show any improvement over Theorem 2.4 in the
worst case. Thus, we next consider the case that we have guessed the largest three sizes c(o1),
c(o2), and c(o3) in OPT. Using Lemma 3.4 in addition to Lemmas 2.1 (1), 2.3 and 3.3, we have
the following guarantee (see Appendix A.4 for the proof).

Lemma 3.6. Let ε ∈ (0, 1], and suppose that v ≤ f(OPT) and ci ≤ c(oi)/K ≤ (1 + ε)ci for i ∈
{1, 2, 3}. Then the better output S̃′ of BranchingMRT(ε, α, v, c1, b1) and BranchingMRT(ε, α, v, c1, b2)
with α = 1/(2− c3) or 2/(c2 + 3), b1 = min{(1 + ε)c1, 1/2}, and b2 = min{(1 + ε)c2, 1/2} satisfies

f(S̃′) ≥
(

min

{
1− c3
2− c3

,
c2 + 1

c2 + 3

}
−O(ε)

)
v.

We now see that we get an approximation ratio of 2/5 − O(ε) by combining the above two
lemmas.

Theorem 3.7. Let ε ∈ (0, 1] and suppose that v ≤ f(OPT) ≤ (1+ε)v and ci ≤ c(oi)/K ≤ (1+ε)ci
for i ∈ {1, 2, 3}. If c(o1) ≤ K/2, then we can obtain a (2/5 − O(ε))-approximate solution with a
single pass.

Proof. We run the two algorithms with the optimal α shown in Lemmas 3.5 and 3.6 in parallel.
Let S̃ be the output with the better function value. Then, we have f(S̃) ≥ βv, where

β = max

{
min

{
1− c2
2− c2

,
2(1− c2)

5− 4c2 − c1

}
,min

{
1− c3
2− c3

,
c2 + 1

c2 + 3

}}
−O(ε).

We can confirm that the first term is at least 2/5, and thus S̃ is a (2/5 − O(ε))-approximate
solution.

To eliminate the assumption that we are given v, we can use the same technique as in Theo-
rem 2.5. Similarly to Theorem 2.5, we can design a dynamic-update version of BranchingMRT by
keeping the interval that contains the optimal value. The detailed description of the algorithm,
DynamicBranchingMRT, will be given in Appendix B as Algorithm 5. The number of streams
for guessing v is O(logK/ε). We also guess ci for i ∈ {1, 2, 3} from {(1 + ε)j | j ∈ Z+}. As
1 ≤ c(oi) ≤ K/2, the number of guessing for ci is O(logK/ε). Therefore, there are O((logK/ε)4)
streams in total. To summarize, we obtain the following:

8

Theorem 3.8. Suppose that c(o1) ≤ K/2. The algorithm that runs DynamicBranchingMRT and
Singleton in parallel and takes the better output is a (2/5 − ε)-approximation streaming algorithm
with a single pass for the problem (1). The space complexity of the algorithm is O(K(logK/ε)4).

4 Single-Pass (4/11− ε)-Approximation Algorithm

In this section, we consider the case that c(o1) is larger than K/2. For the purpose, we consider
the problem of finding a set S of items that maximizes f(S) subject to the constraint that the total
size is at most pK, for a given number p ≥ 2. We say that a set S of items is a (p, α)-approximate
solution if c(S) ≤ pK and f(S) ≥ αf(OPT), where OPT is an optimal solution of the original
instance.

Theorem 4.1. For a number p ≥ 2, there is a
(
p, 2p

2p+3 − ε
)

-approximation streaming algo-

rithm with a single pass for the problem (1). In particular, when p = 2, it admits (2, 4/7 − ε)-
approximation. The space complexity of the algorithm is O(K(logK/ε)3).

The proof is given in Appendix C. The basic framework of the algorithm is the same as in
Section 3; we design a thresholding algorithm and a branching algorithm, where the parameters
are different and the analysis is simpler.

Using Theorem 4.1, we can design a (4/11 − ε)-approximation streaming algorithm for an
instance having a large item.

Theorem 4.2. For the problem (1), there exists a (4/11 − ε)-approximation streaming algorithm
with a single pass. The space complexity of the algorithm is O(K(logK/ε)4).

Proof. Let o1 be an item in OPT with the maximum size. If c(o1) ≤ K/2, then Theorem 3.8
gives a (2/5− O(ε))-approximate solution, and thus we may assume that c(o1) > K/2. Note that
there exists only one item whose size is more than K/2. Let β be the target approximation ratio
which will be determined later. We may assume that f(o1) < βv, where v = f(OPT), otherwise
Singleton (Algorithm 2) gives β-approximation. Then, we see f(OPT− o1) > (1− β)f(OPT) and
c(OPT− o1) < K/2. Consider maximizing f(S) subject to c(S) ≤ K/2 in the set {e ∈ E | c(e) ≤
K/2}. The optimal value is at least f(OPT − o1) > (1 − β)f(OPT). We now apply Theorem 4.1
with p = 2 to this problem. Then, the output S̃ has size at most K, and moreover, we have
f(S̃) ≥

(
4
7 −O(ε)

)
(1 − β)f(OPT). Thus, we obtain min{β, (47 − O(ε))(1 − β)}-approximation.

This approximation ratio is maximized to 4/11 when β = 4/11.

5 Multiple-Pass Streaming Algorithm

In this section, we provide a multiple-pass streaming algorithm with approximation ratio 2/5− ε.
We first consider a generalization of the original problem. Let ER ⊆ E be a subset of the ground

set E. For ease of presentation, we will call ER the red items. Consider the problem defined below:

maximize f(S) subject to c(S) ≤ K, |S ∩ ER| ≤ 1. (6)

In the following, we show that, given ε ∈ (0, 1], an approximation v to f(OPT) with v ≤
f(OPT) ≤ (1 + ε)v, and an approximation θ to f(or) for the unique item or in OPT ∩ ER, we
can choose O(1) of the red items so that one of them e ∈ ER satisfies that f(OPT − or + e) ≥
(Γ(θ) − O(ε))v, where Γ(·) is a piecewise linear function lower-bounded by 2/3. For technical
reasons, we will choose θ to be one of the geometric series (1 + ε)i/2 for i ∈ Z. The proof can be
found in Appendix D.1.

9

Theorem 5.1. Suppose that we are given ε ∈ (0, 1], v ∈ R+ with v ≤ f(OPT) ≤ (1 + ε)v,
and θ ∈ R+ with the following property: if θ ≤ 1/2, θv/(1 + ε) ≤ f(or) ≤ θv, and if θ ≥ 1/2,
θv ≤ f(or) ≤ (1+ε)θv ≤ v. Then, there is a single-pass streaming algorithm that chooses a constant
number of red items in ER so that one item e of them satisfies that f(OPT−or+e) ≥ v(Γ(θ)−O(ε)),
where Γ(θ) is defined as follows: when θ ∈ (0, 1/2),

Γ(θ) = max
{ t(t+ 3)

(t+ 1)(t+ 2)
− t− 1

t+ 1
θ | t ∈ Z+, t >

1

θ
− 2
}
, (7)

when θ ∈ [1/2, 2/3), Γ(θ) = 2/3, and when θ ∈ [2/3, 1], Γ(θ) = θ.

We next show that when c(o1) ≥ K/2, we can use multiple passes to get a (2/5−ε)-approximation
for the problem (1). Let OPT = {o1, o2, . . . , o`} be an optimal solution with c(o1) ≥ c(o2) ≥ · · · ≥
c(o`). Suppose that c1 ∈ R+ satisfies 1/2 ≤ c1/(1 + ε) ≤ c(o1)/K ≤ c1.

We observe the following claims. See Appendix D.2–D.3 for the proofs.

Claim 1. When c(o1) ≥ K/2, we may assume that 3
10f(OPT) < f(o1) <

2
5f(OPT).

Claim 2. We may assume that c(o1) ≤ (1 + ε)23K.

We use the first pass to estimate f(OPT) as follows. For an error parameter ε ∈ (0, 1], perform
the single-pass algorithm in Theorem 2.5 to get a (1/3−ε)-approximate solution S ⊆ E, which can
be used to upper bound the value of f(OPT), that is, f(S) ≤ f(OPT) ≤ (3 + ε)f(S). We then find
the geometric series to guess its exact value. Thus, we may assume that we are given the value v
with v ≤ f(OPT) ≤ (1 + ε)v.

Below we show how to obtain a solution of value at least (2/5−O(ε))v, using two more passes.
Before we start, we introduce a slightly modified versions of the algorithms presented in Section 2;
it will be used as a subroutine. See Appendix D.4 for the proof.

Lemma 5.2. Consider the problem (1) with the knapsack capacity K ′. Let h ∈ R+. Suppose that
Algorithms 1 and 2 are modified as follows: At Line 4 in Algorithm 1, a new item e is added into
the current set S only if f(e|S)

c(e) ≥
αv−f(S)
hK′−c(S) and c(S + e) ≤ hK ′; at Line 4 in Algorithm 2, a new

item e is taken into account only if c(e) ≤ hK ′.
Then, the best returned set S̃ of the two algorithms with α = 2h

h+2 satisfies that c(S̃) ≤ hK ′ and

f(S̃) ≥ h
h+2v. Moreover, we can obtain a

(
h
h+2 −O(ε)

)
-approximate solution with the dynamic

update technique.

Let all items e ∈ E whose sizes c(e) satisfy c1/(1 + ε) ≤ c(e)/K ≤ c1 be the red items. By
Theorem 5.1, we can select a set S of the red items so that one of them guarantees f(OPT−o1+e) ≥
(Γ(θ) − O(ε))v, where θ satisfies the condition in Theorem 5.1. Note that any e ∈ S satisfies
f(e) ≥ θv/(1 + ε). Also, by Claim 1, we see 3

10v < θ < 2
5(1 + ε)v.

In the next pass, for each e ∈ S, define a new monotone submodular function ge(·) = f(· | e)
and apply the modified thresholding algorithm (Lemma 5.2) with h = 1− c1. Let Se be the output
of the modified thresholding algorithm. Then our algorithm returns the solution Se ∪ {e} with
maxe∈S f(Se + e). The detail is given as Algorithm 8 in Appendix D.5.

The returned solution has size at most K, since c(Se) ≤ (1− c1)K by Lemma 5.2. Moreover, it
follows that the returned solution S̃ satisfies that f(S̃) ≥ (2/5− O(ε))v (see Appendix D.5). The
next theorem summarizes our results in this section.

Theorem 5.3. Suppose that c(o1) > K/2. There exists a (2/5− ε)-approximation streaming algo-
rithm with 3 passes for the problem (1). The space complexity of the algorithm is O(K(logK/ε)2).

10

References

[1] N. Alon, I. Gamzu, and M. Tennenholtz. Optimizing budget allocation among channels and
influencers. In Proceedings of the 21st International Conference on World Wide Web (WWW),
pages 381–388, 2012.

[2] A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and A. Krause. Streaming submodular max-
imization: massive data summarization on the fly. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), pages 671–680,
2014.

[3] A. Badanidiyuru and J. Vondrák. Fast algorithms for maximizing submodular functions. In
Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1497–1514, 2013.

[4] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a monotone submodular
function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–1766,
2011.

[5] A. Chakrabarti and S. Kale. Submodular maximization meets streaming: matchings, matroids,
and more. Mathematical Programming, 154(1-2):225–247, 2015.

[6] T.-H. H. Chan, Z. Huang, S. H.-C. Jiang, N. Kang, and Z. G. Tang. Online submodular
maximization with free disposal: Randomization beats for partition matroids online. In Pro-
ceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1204–1223, 2017.

[7] C. Chekuri, S. Gupta, and K. Quanrud. Streaming algorithms for submodular function maxi-
mization. In Proceedings of the 42nd International Colloquium on Automata, Languages, and
Programming (ICALP), volume 9134, pages 318–330, 2015.

[8] C. Chekuri, J. Vondrák, and R. Zenklusen. Submodular function maximization via the multi-
linear relaxation and contention resolution schemes. SIAM Journal on Computing, 43(6):1831–
1879, 2014.

[9] Y. Filmus and J. Ward. A tight combinatorial algorithm for submodular maximization subject
to a matroid constraint. SIAM Journal on Computing, 43(2):514–542, 2014.

[10] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An analysis of approximations for maxi-
mizing submodular set functions ii. Mathematical Programming Study, 8:73–87, 1978.

[11] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social
network. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 137–146, 2003.

[12] A. Krause, A. P. Singh, and C. Guestrin. Near-optimal sensor placements in gaussian processes:
Theory, efficient algorithms and empirical studies. Journal of Machine Learning Research,
9:235–284, 2008.

[13] A. Kulik, H. Shachnai, and T. Tamir. Maximizing submodular set functions subject to multiple
linear constraints. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 545–554, 2013.

11

[14] J. Lee. Maximum Entropy Sampling, volume 3 of Encyclopedia of Environmetrics, pages 1229–
1234. John Wiley & Sons, Ltd., 2006.

[15] J. Lee, M. Sviridenko, and J. Vondrák. Submodular maximization over multiple matroids via
generalized exchange properties. Mathematics of Operations Research, 35(4):795–806, 2010.

[16] H. Lin and J. Bilmes. Multi-document summarization via budgeted maximization of submod-
ular functions. In Proceedings of the 2010 Annual Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies (NAACL-
HLT), pages 912–920, 2010.

[17] H. Lin and J. Bilmes. A class of submodular functions for document summarization. In
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies (ACL-HLT), pages 510–520, 2011.

[18] T. Soma, N. Kakimura, K. Inaba, and K. Kawarabayashi. Optimal budget allocation: Theo-
retical guarantee and efficient algorithm. In Proceedings of the 31st International Conference
on Machine Learning (ICML), pages 351–359, 2014.

[19] M. Sviridenko. A note on maximizing a submodular set function subject to a knapsack con-
straint. Operations Research Letters, 32(1):41–43, 2004.

[20] L. Wolsey. Maximising real-valued submodular functions: primal and dual heuristics for loca-
tion problems. Mathematics of Operations Research, 1982.

[21] Q. Yu, E. L. Xu, and S. Cui. Streaming algorithms for news and scientific literature recom-
mendation: Submodular maximization with a d-knapsack constraint. IEEE Global Conference
on Signal and Information Processing, 2016.

12

A Omitted Proofs in Sections 2–3

A.1 Proof of Lemma 2.1

We prove (1) by induction on the size of S. The base case S = ∅ is trivial. For induction step,
suppose that e ∈ E is the new item to be added into the current set S ⊆ E. Then

f(S+e) = f(S)+f(e | S) ≥ f(S)+c(e)
αv − f(S)

K − c(S)
≥ αvc(e)

K − c(S)
+f(S)

K − c(S)− c(e)
K − c(S)

≥ αvc(S + e)

K
,

where the last inequality follows from the induction hypothesis on the lower bound of f(S).
For (2), as the current set satisfies S ⊆ S̃, by the submodularity of f ,

f(e | S̃) ≤ f(e | S) <
c(e)(αv − f(S))

K − c(S)
≤ αvc(e)

K
,

where the last inequality follows from the first part of the lemma.

A.2 Proof of Theorem 2.5

Let e ∈ E be an item arriving. We will show that, if v > Km/α (for α = 2/3), then e always fails
the condition (2) in DynamicMRT. Indeed, if v > Km/α and e passes the condition (2) with the
current set S, then Lemma 2.1 (1) implies that,

f(S + e) ≥ αvc(S + e)

K
> c(S + e)m ≥ |S + e| max

e′∈S+e
f(e′),

where the last inequality follows from the fact that c(e) ≥ 1 and m ≥ maxe′∈S+e f(e′). On the
other hand, f(S + e) ≤ |S + e|maxe′∈S+e f(e′) as f is submodular, which is a contradiction.

Therefore, when an item e ∈ E arrives, e may be added to the current set only if v ≤ Km/α.
Moreover, since Singleton returns an item e with f(e) ≥ m, we can discard the case when v < m
during the process of DynamicMRT. Thus DynamicMRT simulates all the values in V, only keeping
the values in the interval [m,Km/α]. Since one of v ∈ V satisfies v ≤ f(OPT) ≤ (1 + ε)v, the
output gives (1/3− ε)-approximation from Theorem 2.4.

There are O(logK/ε) streams, and each stream may have a solution with size O(K). Thus, the
total space is as desired.

A.3 Proof of Lemma 3.4

Suppose not, that is, suppose that both of f(S̃) and f(S̃′) are smaller than βv, where β = (1 +

α c(om)
K)/3− αc(ob)

3K ε. We denote Os = OPT \ {ob, om}.
Since the bad items ob and om have size at most bK, these two items arrive after branching by

Lemma 3.1. By Lemma 3.2, c(S′0 + ob) ≤ K and c(S′0 + om) ≤ K. Since f(S̃′) < βv, we know
f(S′0 + ob) < βv and f(S′0 + om) < βv. Hence it holds that

f(OPT) ≤ f(ob | S′0) + f(om | S′0) + f(S′0 ∪Os) < (βv − λ) + (βv − λ) + f(S′0 ∪Os), (8)

since f(S′0) ≥ λ. Since S′0 ⊆ S̃, we have

f(S′0 ∪Os) ≤ f(S̃ ∪Os) ≤ f(S̃) +
∑

e∈Os\S̃

f(e | S̃).

13

Since f(S̃) < βv and no items in Os are bad, this implies by Lemma 2.1 (2) that

f(S′0 ∪Os) ≤ βv + α
c(Os)

K
v.

Hence (8) can be transformed to

v ≤ f(OPT) < (βv − λ) + (βv − λ) + βv + α
c(Os)

K
v

≤ 3βv − 2λ+ α

(
1− c(ob)

K
− c(om)

K

)
v

= 3βv − α(1− b)v + α

(
1− c(ob)

K
− c(om)

K

)
v.

Therefore, since b ≤ (1 + ε)c(ob)/K, we have

β >
1

3

(
1 + α

c(om)

K

)
− αc(ob)

3K
ε,

which is a contradiction.

A.4 Proof of Lemma 3.6

Let S̃ be the output of Algorithm 1. If S̃ has size at least (1 − (1 + ε)c3)K, then we have by
Lemma 2.1 (1)

f(S̃) ≥ α(1− (1 + ε)c3)v = α(1− c3)v −O(ε)v.

Otherwise, c(S̃) < (1−(1+ε)c3)K. In this case, we see that only o1 and o2 can have size more than
(1 + ε)c3, and hence only they can be bad items. If we have no bad item, it holds by Lemma 2.3
that

f(S̃) ≥ (1− α)v.

Suppose we have one bad item. If it is o1 then Lemma 3.3 with b1 implies

f(S̃′) ≥
(

1

2

(
1− α1− c1

2

)
−O(ε)

)
v,

and, if it is o2, we obtain by Lemma 3.3 with b2

f(S̃′) ≥
(

1

2

(
1− α1− c2

2

)
−O(ε)

)
v.

Moreover, if we have two bad items o1 and o2, then Lemma 3.4 implies

f(S̃′) ≥
(

1

3
(1 + αc2)−O(ε)

)
v.

Therefore, the approximation ratio is the minimum of the RHSes in the above five inequalities,
which is maximized to

min

{
1− c3
2− c3

,
c2 + 1

c2 + 3

}
−O(ε),

when α = 1/(2− c3) or α = 2/(c2 + 3).

14

Algorithm 5

1: procedure DynamicBranchingMRT(ε)
2: V := {(1 + ε)i | i ∈ Z+}.
3: For each c1, c2, c3 ∈ V with c3 ≤ c2 ≤ c1 ≤ 1/2 and each b ∈ {(1 + ε)c1, (1 + ε)c2, 1/2}, do

the following with α defined based on Lemmas 3.5 and 3.6.
4: For each v ∈ V, set Sv := ∅.
5: while item e is arriving do
6: Delete e with c(e) > (1 + ε)c1K.
7: m := max{m, f(e)}
8: I := {v ∈ V | m ≤ v ≤ Km/α}.
9: Delete Sv (along with Ŝv and S′v if exists) such that v 6∈ I.

10: for v ∈ V do
11: if f(Sv) < λ then

12: if f(e|Sv)
c(e) ≥

αv−f(Sv)
K−c(Sv) and c(Sv + e) ≤ K then Sv := Sv + e.

13: if f(Sv) ≥ λ then
14: if c(S) ≥ (1− b)K then S′ := {e} else S′ := S.
15: Ŝv := S′.

16: else
17: if f(e|Sv)

c(e) ≥
αv−f(Sv)
K−c(Sv) and c(Sv + e) ≤ K then Sv := Sv + e.

18: if f(e|Sv)
c(e) ≥

αv−f(Sv)
K−c(Sv) and c(Sv + e) > K then

19: if f(S′v) < f(Ŝv + e) then S′v := Ŝv + e.

20: S := Sv for v ∈ I that maximizes f(Sv)
21: S′ := S′v for v ∈ I that maximizes f(S′v)
22: return S or S′ whichever has the larger function value.

B (0.4− ε)-Approximation Algorithm with Dynamic Updates

We here present a pseudocode for our (0.4− ε)-approximation algorithm with dynamic updates.

C Proof of Theorem 4.1

We here present the proof of Theorem 4.1. Let p ≥ 2.
The basic framework is the same as in Section 3; we design both a simple-thresholding algorithm

and a branching algorithm, where the parameters are different and the analysis is simpler. It is
sufficient to design algorithms assuming that a (good) approximation v to f(OPT) is given, as we
can get rid of the assumption by using the dynamic update technique.

We design a variant of MarginalRatioThresholding. The new algorithm is parameterized by a
number p ≥ 2. In the algorithm we allow to pack items to the total size at most pK. Also, we
change the marginal-ratio threshold condition to the following:

f(s | S)

c(e)
≥ αpv − f(S)

pK − c(S)
. (9)

Let MarginalRatioThresholding′p be the resulting algorithm.
Similarly to Lemma 2.1, the following lemma holds. The proof is omitted as it is almost identical

to that of Lemma 2.1.

15

Lemma C.1. Let S̃ = MarginalRatioThresholding′p(α, v) for some α ∈ (0, 1] and v ∈ R+. Then,
the following hold:

(1) During the execution of the algorithm, we have f(S) ≥ αvc(S)/K.

(2) If an item e fails the marginal-ratio threshold condition, i.e., f(e|S)
c(e) < αpv−f(S)

pK−c(S) , then f(e |
S̃) < αvc(e)/K.

Determining α using a good approximation to the largest size c(o1) in OPT gives the following
approximation guarantee:

Lemma C.2. For ε ∈ (0, 1], suppose that v ≤ f(OPT) and c1 ≤ c(o1)/K ≤ (1 + ε)c1. Then, S̃ =
MarginalRatioThresholding′p(α, v), where α = 1/(p+ 1− c1), satisfies

f(S̃) ≥
(

p− c1
p+ 1− c1

−O(ε)

)
v.

Proof. If the output S̃ has size at least (p− (1 + ε)c1)K, then we have by Lemma C.1 (1)

f(S̃) ≥ α(p− (1 + ε)c1)v = α(p− c1)v −O(ε)v.

Otherwise, c(S̃) < (p − (1 + ε)c1)K, and hence there is no bad item. Similarly to Lemma 2.3, it
follows from Lemma C.1 (2) that we have

f(S̃) ≥ (1− α)v.

The approximation ratio is the minimum of the RHSes of the above two inequalities, which is
maximized to (p− c1)/(p+ 1− c1)−O(ε) by setting α = 1/(p+ 1− c1).

Next, we design a branching algorithm based on BranchingMRT. Here, the parameter b should
be at most 1, and the marginal-ratio threshold is replaced with (9). Also, λ is set to be

λ =
1

2
α (p− b) v,

and, at Line 8 of Algorithm 4, the condition is changed to (p − b)K instead of (1 − b)K. Let
BranchingMRT′ be the resulting algorithm.

The analysis in Section 3 can be adapted:

Lemma C.3. The following hold for BranchingMRT′:

• For a bad item e ∈ E with c(e) ≤ bK, let Se be the set just before e arrives. Then f(Se) ≥ λ
holds. Thus, branching has happened before e arrives.

• It holds that f(S′0) ≥ λ and c(S′0) ≤ (p− b)K.

Note that in the second statement, we do not need the assumption that b ≤ 1/2 as c(ê) ≤ K ≤
(p− b)K since b ≤ 1.

Determining α using good approximations to the largest two sizes c(o1) and c(o2) in OPT gives
the following approximation guarantee:

Lemma C.4. For ε ∈ (0, 1], suppose that v ≤ f(OPT) and ci ≤ c(oi)/K ≤ (1 + ε)ci for i ∈ {1, 2}.
Then S̃ = BranchingMRT′(ε, α, v, c1, b) with c1 ≤ b ≤ (1 + ε)c1 and α = 2

c1+p+2 satisfies

f(S̃) ≥
(

c1 + p

c1 + p+ 2
−O(ε)

)
v.

16

Proof. If the output S̃ has size at least (p− (1 + ε)c2)K, then we have by Lemma C.1 (1)

f(S̃) ≥ α(p− (1 + ε)c2)v = (α(p− c2)−O(ε)) v.

Otherwise, c(S̃) < (p− (1 + ε)c2)K. In this case, we see that there exists at most one bad item. If
we have no bad item, it holds by Lemma C.1 (2) that

f(S̃) ≥ (1− α)v.

Suppose that we have one bad item, which must be o1. Following the proof of Lemma 3.3, we see
that

f(S̃) ≥
(

1

2

(
1 + α

c1 + p− 2

2

)
−O(ε)

)
v.

The approximation ratio is the minimum of the RHSes of the above three inequalities. It is maxi-
mized to

min

{
p− c2

p+ 1− c2
,

c1 + p

c1 + p+ 2

}
−O(ε).

when α = 1
p−c2+1 or α = 2

c1+p+2 . This is in fact equal to c1+p
c1+p+2 − O(ε) with α = 2

c1+p+2 , since
p ≥ 2.

Therefore, if we apply both of the above algorithms and take the better one, we obtain a set
S̃ ⊆ E satisfying

f(S̃) ≥
(

max

{
p− c1

p+ 1− c1
,

c1 + p

c1 + p+ 2

}
−O(ε)

)
v.

This is minimized when c1 = p/3, and hence we have

f(S̃) ≥
(2p

2p+ 3
−O(ε)

)
v.

This proves Theorem 4.1.

D Omitted Proofs in Section 5

D.1 Proof of Theorem 5.1

Recall that ER ⊆ E is a subset of the ground set E, called the red items. We say that a set S ⊆ E
is feasible if and only if |S ∩ ER| ≤ 1, namely it has at most one red item.

In the following, we show that, given ε ∈ (0, 1], an approximation v to f(OPT) with v ≤
f(OPT) ≤ (1 + ε)v, and an approximation θ to f(or) for the unique item or in OPT ∩ ER, we
can choose O(1) of the red items so that one of them e ∈ ER satisfies that f(OPT − or + e) ≥
(Γ(θ) − O(ε))v, where Γ(·) is a piecewise linear function lower-bounded by 2/3. For technical
reasons, we will choose θ to be one of the geometric series (1 + ε)i/2 for i ∈ Z. Below, we consider
the cases θ ≤ 1/2 and θ ≥ 1/2 separately.

Case 1: θ ≤ 1/2

In this case, θ is supposed to satisfy θv/(1 + ε) ≤ f(or) ≤ θv. Then, we can just ignore all red
items e ∈ ER with f(e) < θv/(1 + ε). Hence in the following, we assume that all the arriving red
items e satisfy f(e) ≥ θv/(1 + ε)

17

Algorithm 6

1: procedure SelectRedItems(ε, v, θ, t, x) . ε ∈ (0, 1], v ∈ R+, θ ≤ 1/2, t ∈ Z+, and x ∈ R+

2: S := ∅.
3: while item e is arriving do
4: if e ∈ ER and f(e) ≥ θv/(1 + ε) then
5: if S = ∅ then
6: S := e.
7: else
8: if f(e | S) > v − v(1− θ + x|S|) then S := S + e.
9: if |S| = t+ 1 then return S.

10: return S.

Our algorithm picks the first red item e1 and then collects up to t + 1 red items, where t is
determined later. Observe that as v ≤ f(OPT) ≤ f(or) + f(OPT − or) ≤ θv + f(OPT − or), we
have f(OPT − or) ≥ (1 − θ)v. The algorithm guarantees that one of the chosen red items, along
with f(OPT − or), gives the value of (1 − θ + x)v, where x is the term we will try to maximize.
Our algorithm, SelectRedItems, is given in Algorithm 6.

The following lemma follows immediately from the algorithm.

Lemma D.1. During the execution of SelectRedItems, f(S) ≥ v(θ(1
1+ε + |S| − 1)− x

∑|S|−1
j=1 j).

Note that it is possible that in the end less than t+ 1 red items are returned by the algorithm.
The next lemma states that if or is thrown away by the algorithm, then one of the red items in S
is already good for our purpose.

Lemma D.2. Suppose that |S| < t+ 1 holds for the current set S ⊆ ER and the arriving item is or
and is thrown away by the algorithm. Then at least one red item e ∈ S satisfies f(OPT− or + e) ≥
v(1− θ + x).

Proof. Suppose that f(S ∪ (OPT− or)) ≥ (1− θ + |S|x)v. Then

f(OPT− or) +
∑
e∈S

f(e | OPT− or) ≥ f(S ∪ (OPT− or)) ≥ v(1− θ + |S|x),

implying that at least one red item e ∈ S ensures that f(e | OPT − or) ≥ (v(1 − θ + |S|x) −
f(OPT − or))/|S|. So f(OPT − or + e) ≥ v(x + 1−θ

|S|) + |S|−1
|S| f(OPT − or) ≥ (1 − θ + x)v, as

f(OPT− or) ≥ v(1− θ).
So next assume that f(S ∪ (OPT− or)) < v(1− θ + |S|x). But if this is the case, or would not

have been thrown away by the algorithm in Line 8, since f(or | S) ≥ f(or | S ∪ (OPT − or)) =
f(OPT ∪ S)− f(S ∪ (OPT− or)) ≥ v − v(1− θ + |S|x).

The next lemma states that if |S| = t+ 1, we can just ignore the rest, no matter or has arrived
or not.

Lemma D.3. Suppose that |S| = t+ 1. Then at least one red item e ∈ S guarantees that

f(OPT− or + e) ≥ v
(θ(1− ε) + t

t+ 1
− tx

2

)
. (10)

18

Proof. As f(OPT − or) +
∑

e∈S f(e | OPT − or) ≥ f(S), there exists an item e ∈ S so that

f(e | OPT− or) ≥ f(S)−f(OPT−or)
|S| , implying that

f(OPT− or + e) ≥ f(S)

t+ 1
+

t

t+ 1
f(OPT− or)

≥ v
(θ(1

1+ε + t)− xt(t+1)
2

t+ 1
+

t

t+ 1
(1− θ)

)
(By Lemma D.1)

≥ v
(t+ θ(1− ε)

t+ 1
− tx

2

)
(Rearranging and using 1/(1 + ε) ≥ 1− ε)

It follows from the two previous lemmas that the output is lower bounded by

min

{
1− θ + x,

θ + t

t+ 1
− tx

2

}
v − θ

t+ 1
εv. (11)

If t > 1/θ−2, then we can ignore the second term because it is O(ε)v, In what follows, we consider
maximizing the first term of (11) subject to t ∈ Z+ with t > 1/θ − 2 and x ∈ [0, θ], for a given
parameter θ.

Suppose that t is a fixed number. Then, since both the terms in (11) are linear functions with
respect to x, the maximum of (11) is attained when they are equal. That is, it is when

x∗ = 2
θt+ 2θ − 1

(t+ 1)(t+ 2)
= 2

(
1

t+ 2
− 1− θ
t+ 1

)
. (12)

We see x∗ ∈ [0, θ] when t > 1/θ−2. Therefore, we can remove x from (11) by substituting for (12),
and then the first term of (11) is changed to 1− θ + x∗, which is a function of t. Since

1− θ + x∗ =
t(t+ 3)

(t+ 1)(t+ 2)
− t− 1

t+ 1
θ

The ratio is bounded by (now we define Γ(θ) for θ < 0.5)

Γ(θ) = max
{ t(t+ 3)

(t+ 1)(t+ 2)
− t− 1

t+ 1
θ | t ∈ Z+, t > 1/θ − 2

}
. (13)

This is a piecewise convex non-increasing function of θ. See Figure 1 for the ratio calculated by
only considering t ≤ 10.

Case 2: θ ≥ 1/2

Now, we present another algorithm for the case of θ ≥ 1/2 and define the function Γ for the interval
of [1/2, 1]. In this case, θ is supposed to satisfy θv ≤ f(or) ≤ θv(1 + ε) ≤ v. Hence in the following,
we assume that f(e) ≥ θv for all red items e ∈ ER.

If θ ≥ 2/3, just pick any red item e with f(e) ≥ θv gives trivially f(OPT − or + e) ≥ θv.
Thus, we can define Γ(θ) = θ when θ ∈ [2/3, 1]. The remaining case is when θ ∈ [0, 5, 2/3). We
present an algorithm, SelectRedItems’, for this case to guarantee that one of the chosen item e has
f(OPT− or + e) = v(2/3− ε). Namely, we will just let Γ(θ) = 2/3 for the interval θ ∈ [1/2, 2/3).
The detail of the algorithm is provided in Algorithm 7.

To avoid triviality, we assume that e1 6= or. The next lemma states that if there are two items
in the returned solution, at least one serves the purpose.

19

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 1: Function Γ(θ) for θ ∈ [0, 1/2].

Algorithm 7

1: procedure SelectRedItems’(ε, v, θ) . ε ∈ (0, 1], v ∈ R+ and θ ≥ 1/2
2: S := {e1}, where e1 is the first arriving item in ER.
3: while item e ∈ ER is arriving do
4: if f(e1 + e) ≥ v(1/3 + θ(1 + ε)) then S := S + e and return S.

5: return S.

Lemma D.4. Suppose that S = {e1, e2}. Then it cannot happen that f(OPT− or + ei) < 2/3v for
both i ∈ {1, 2}.

Proof. As f(OPT − or) + f(or) ≥ f(OPT) ≥ v and f(or) ≤ θv(1 + ε), we have f(OPT − or) ≥
v(1− θ(1 + ε)). Now suppose that f(OPT− or + ei) < 2v/3 for both i ∈ {1, 2}.

f(e1 | OPT− or) ≤ v(2/3− (1− θ(1 + ε)), and

f(e1 | OPT− or + e2) ≥ f(e1, e2)− f(OPT− or + e2) ≥ f(e1 + e2)− 2v/3.

As f(e1 | OPT − or) ≥ f(e1 | OPT − or + e2) by submodularity, the above two inequalities imply
that f(e1 + e2) ≤ v(1/3 + θ(1 + ε)), contradicting Line 4 of the algorithm.

The next lemma states that if or is thrown away by the algorithm, e1 itself is already good for
approximation.

Lemma D.5. If f(e1 + or) ≤ v(1/3 + θ(1 + ε)), then f(OPT− or + e1) ≥ (2/3− ε)v.

Proof. Suppose, for a contradiction, that f(OPT−or+e1) < (2/3−ε)v. Then f(or | OPT−or+e1) ≥
v(1− (2/3− ε)) = v(1/3 + ε). On the other hand, f(or | e1) ≤ v(1/3 + θ(1 + ε))− θ) = v(1/3 + θε).
By submodularity, f(or | OPT − or + e1) ≤ f(or | e1) and the above two inequalities lead to a
contradiction.

By the previous two lemmas, one of the red items in the returned set S, along with OPT− or,
gives v(2/3 − O(ε)). We then can define Γ as 2/3 in the interval θ ∈ [1/2, 2/3). We have covered
all cases of θ and proved Theorem 5.1.

20

D.2 Proof of Claim 1

If f(o1) ≥ 2
5f(OPT), then Algorithm 2 returns a 2/5-approximate solution. So we may assume

that f(o1) <
2
5f(OPT).

Suppose to the contrary that f(o1) <
3
10f(OPT). This implies f(OPT − o1) ≥ 7

10f(OPT).
Consider the problem of maximizing f(S) subject to c(S) ≤ K/2 in the set {e ∈ E | c(e) ≤
K/2}. Since the optimal value is at least f(OPT − o1) > 7

10f(OPT), by applying the bicriteria

approximation algorithm in Theorem 4.1 with p = 2, we obtain a solution S̃ satisfying

f(S̃) ≥
(

4

7
−O(ε)

)
7

10
f(OPT) ≥

(2

5
−O(ε)

)
f(OPT).

Thus the claim holds.

D.3 Proof of Claim 2

Suppose not. Then c(o1) > (1 + ε)23K. By Claim 1, we may assume that f(o1) <
2
5f(OPT), and

hence f(OPT− o1) > 3
5f(OPT) by submodularity.

Consider the problem of maximizing f(S) subject to c(S) ≤ (1− c1
1+ε)K. Since c(OPT− o1) ≤

K − c(o1) ≤ (1 − c1
1+ε)K, the set OPT − o1 is a feasible solution of the problem. Now apply the

bicriteria approximation in Theorem 4.1 with p = (1 − c1
1+ε)

−1 ≥ 2. Then the output S̃ satisfies
that

f(S̃) ≥
(

2p

2p+ 3
−O(ε)

)
f(OPT− o1) ≥

(
2p

2p+ 3
−O(ε)

)
3

5
f(OPT) ≥

(2

5
−O(ε)

)
f(OPT).

Thus the claim holds.

D.4 Proof of Lemma 5.2

It is straightforward to to check that Lemma 2.1 holds with slight variations: (1) f(S) ≥ αvc(S)
hK

where S is the current set, and (2) if an item e fails the marginal-ratio threshold, then f(e|S̃) <
αvc(e)
hK .

If there is no bad item, then v ≤ f(S∗) ≤ f(S̃) +
∑

e∈S∗\S̃ f(e | S̃) ≤ f(S̃) + αv
h , implying that

f(S̃) ≥ (1− α
h)v. If there is a bad item, then the set S just before some bad item e arrives satisfies

that f(S + e) ≥ αv. Hence f(S̃) or some singleton has the value at least αv/2. Therefore, when
α = 2h

h+2 , the lower bound is maximized and the ratio in this case is h
h+2 .

We can combine the dynamic update technique to remove the assumption that we are given v.

D.5 Multi-pass Streaming Algorithm

We first describe a pseudo-code of our algorithm as Algorithm 8.

Theorem D.6. For ε ∈ (0, 1], suppose that v ≤ f(OPT) ≤ (1 + ε)v, 1/2 ≤ c1/(1 + ε) ≤ c(o1)/K ≤
c1, and θ satisfies the condition in Theorem 5.1. After running MultiPassKnapsack(ε, v, θ, c1),
there exists an item e ∈ S chosen in Line 2, which, along with Se collected in Line 6, gives
f(Se + e) ≥ (2/5−O(ε))v.

Proof. By Theorem 5.1, one item e ∈ S has f(OPT − o1 + e) ≥ (Γ(θ) − O(ε))v, where θ satisfies
the condition in Theorem 5.1.

21

Algorithm 8

1: procedure MultiPassKnapsack(ε, v, θ, c1) . ε ∈ (0, 1], v ∈ R+, and θ, c1 ∈ [0, 1].
2: Use the algorithm in Theorem 5.1 to choose a set S of items e with c1/(1+ε) ≤ c(e)/K ≤ c1

so that one of them e ∈ S satisfies f(OPT− o1 + e) ≥ v(Γ(θ)−O(ε)).
3: for each item e ∈ S do
4: Define a submodular function ge(·) = f(· | e).
5: Apply the marginal-ratio thresholding algorithm (Lemma 5.2) with regard to function
ge, where h = 1−c1

1−(c1/(1+ε)) and K ′ = (1− (c1/(1 + ε))K.
6: Let the resultant set be Se.

7: return the solution Se ∪ {e} with maxe∈S f(Se + e).

Consider the problem of maximizing ge(S) subject to c(S) ≤ (1− (c1/(1+ε))K. Since c(OPT−
o1) ≤ K − c(o1) ≤ (1 − (c1/(1 + ε))K, the set OPT − o1 is a feasible solution of this problem.
Therefore, it follows from Lemma 5.2 that the obtained solution Se satisfies that

ge(Se) ≥
(

h

h+ 2
−O(ε)

)
ge(OPT− o1) ≥

(
1− 2

h+ 2
−O(ε)

)
ge(OPT− o1).

Now we have
h ≥ 1− c1

1− c1
ε = 1−O(ε),

since c1
1−c1 is a constant by Claim 2. Therefore, we have

ge(Se) ≥
(

1

3
−O(ε)

)
v.

It follows that the output Se + e satisfies that

f(Se + e) = f(e) + ge(Se) ≥ f(e) +
1

3
(1−O(ε)) ((Γ(θ)−O(ε))v − f(e))

≥ 2

3
f(e) +

1

3
(1−O(ε))Γ(θ)v

≥
(

2

3
θ +

1

3
Γ(θ)

)
(1−O(ε))v

where the last inequality holds since f(e) ≥ θv/(1 + ε). When θ ≥ 1/2, we have Γ(θ) ≥ 2/3 by
Theorem 5.1, and hence the ratio is more than 2/5. Consider the case when θ < 1/2. We observe
that 2

3θ + 1
3Γ(θ) is a non-decreasing function. Hence the minimum is attained when θ = 3/10 by

Claim 1. The ratio is bounded by the linear function in (13) when t = 2, and hence it is at least
2/5.

22

	Introduction
	Single-Pass (1/3-)-Approximation Algorithm
	Thresholding Algorithm with Approximate Optimal Value
	Dynamic Updates

	Improved Single-Pass Algorithm for Small-Size Items
	Branching Framework with Approximate Optimal Value
	Algorithms with Guessing Large Items

	Single-Pass (4/11-)-Approximation Algorithm
	Multiple-Pass Streaming Algorithm
	Omitted Proofs in Sections 2–3
	Proof of Lemma 2.1
	Proof of Theorem 2.5
	Proof of Lemma 3.4
	Proof of Lemma 3.6

	(0.4-)-Approximation Algorithm with Dynamic Updates
	Proof of Theorem 4.1
	Omitted Proofs in Section 5
	Proof of Theorem 5.1
	Proof of Claim 1
	Proof of Claim 2
	Proof of Lemma 5.2
	Multi-pass Streaming Algorithm

