
This article was downloaded by: [129.199.97.153] On: 05 December 2016, At: 05:25
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Mathematics of Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

New Algorithms for Maximum Weight Matching and a
Decomposition Theorem
Chien-Chung Huang, Telikepalli Kavitha

To cite this article:
Chien-Chung Huang, Telikepalli Kavitha (2016) New Algorithms for Maximum Weight Matching and a Decomposition Theorem.
Mathematics of Operations Research

Published online in Articles in Advance 21 Oct 2016

.  http://dx.doi.org/10.1287/moor.2016.0806

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2016, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
http://dx.doi.org/10.1287/moor.2016.0806
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org


MATHEMATICS OF OPERATIONS RESEARCH

Articles in Advance, pp. 1–16
ISSN 0364-765X (print) � ISSN 1526-5471 (online)

https://doi.org/10.1287/moor.2016.0806
© 2016 INFORMS

New Algorithms for Maximum Weight Matching and
a Decomposition Theorem

Chien-Chung Huang
Chalmers University of Technology, villars@gmail.com

Telikepalli Kavitha
Tata Institute of Fundamental Research, India, kavitha@tcs.tifr.res.in

We revisit the classical maximum weight matching problem in general graphs with nonnegative integral edge weights. We
present an algorithm that operates by decomposing the problem into W unweighted versions of the problem, where W is
the largest edge weight. Our algorithm has running time as good as the current fastest algorithms for the maximum weight
matching problem when W is small. One of the highlights of our algorithm is that it also produces an integral optimal dual
solution; thus our algorithm also returns an integral certificate corresponding to the maximum weight matching that was
computed.

Our algorithm yields a new proof to the total dual integrality of Edmonds’ matching polytope and it also gives rise to
a decomposition theorem for the maximum weight of a matching in terms of the maximum size of a matching in certain
subgraphs. We also consider the maximum weight capacitated b-matching problem in bipartite graphs with nonnegative
integral edge weights and show that it can also be decomposed into W unweighted versions of the problem, where W is the
largest edge weight. Our second algorithm is competitive with known algorithms when W is small.

Keywords : maximum weight matching; exact algorithms; total dual integrality
MSC2000 subject classification : Primary: 05C70
OR/MS subject classification : Primary: Analysis of algorithms
History : Received November 13, 2014; revised September 25, 2015, and May 10, 2016. Published online in Articles in

Advance October 21, 2016.

1. Introduction. The input here is a graph G = 4V 1E5 with edge weights given by the function w2 E →

81121 : : : 1W9. A matching M is a subset of E such that no two edges in M share an endpoint. The weight of a
matching M is the sum of the weights of the edges in M . Our objective is to find a maximum weight matching
in G. We note that a maximum weight matching need not be a maximum cardinality matching; a maximum weight
matching has many applications. For instance, suppose V is a set of players, E is the set of possible pairings of
players, and the weight of each edge is the utility of pairing its endpoints together. We seek a set of disjoint pairings
so that the sum of utilities is maximized; in other words, what we seek is a maximum weight matching in G.

A closely related problem is that of computing a maximum weight perfect matching, where the goal is to find
a perfect matching, and subject to that, one with the largest weight. Although the maximum weight matching
problem and the maximum weight perfect matching problem can be reduced to each other in polynomial time, the
two problems are different and an algorithm designed for one problem may not achieve the same running time in
the other problem. See Duan and Pettie [9] for a more detailed discussion on this issue. The algorithms presented
in this paper have running time guarantees only for the maximum weight matching problem.

Matching problems lie at the core of graph theory, polyhedral combinatorics, and linear optimization. Because
of their fundamental nature and vast application, in the past decades, intense investigations have been made
for the problem. Edmonds’ pioneering work back in the 1960s especially highlights the intricate correlation
between algorithm design and polyhedral characterization. We refer the interested reader to Duan and Pettie [9]
and Schrijver [41] for a history of the various matching algorithms and their performance. For the polyhedral
characterization aspect of matchings, see Cook et al. [4] and Schrijver [41].

The most common approach to solving the maximum weight matching problem is the primal-dual schema—
often called the Hungarian method (Kuhn [28]) in the special case of bipartite graphs. For general graphs, this
approach was initiated by Edmonds [12], and various later algorithms, such as Gabow [17], can be regarded as
refinements of Edmonds’ algorithm. The idea is to build up feasible primal and dual solutions simultaneously
and show that in the end, both solutions satisfy complementary slackness conditions and hence by the duality
theorem, the primal solution is a maximum weight matching. Another approach in dealing with the maximum
weight matching problem is to maintain a feasible matching and successively augment it to increase its weight,
until no more augmentation is possible. The work of Cunningham and Marsh [6] (and also Derigs [8]) can be
regarded as representative of this approach.

A different approach, though still primal-dual in nature, was proposed by Kao et al. [27]. In the special case
of bipartite graphs, they showed that the problem can be decomposed into W maximum cardinality matchings.
Using the fastest maximum cardinality matching algorithms as a subroutine, their algorithm was faster than other

1

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

19
9.

97
.1

53
] 

on
 0

5 
D

ec
em

be
r 

20
16

, a
t 0

5:
25

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

mailto:villars@gmail.com
mailto:kavitha@tcs.tifr.res.in


Huang and Kavitha: Max-Weight Matching Algorithms
2 Mathematics of Operations Research, Articles in Advance, pp. 1–16, © 2016 INFORMS

Table 1. A summary of the current fastest maximum weight matching algorithms in G = 4V 1E5, where
�V � = n and �E� =m. The Õ notation of the Cyganet et al. [7] algorithm hides some factors of lognW .

Running time Algorithm

O4n4m+ n logn55 Gabow [17]
O4m

√
n logn lognW5, O4m

√
n lognW5 Gabow and Tarjan [20], Duan et al. [10]

Õ4Wn�5 Cygan et al. [7]
O4Wn�5, O4W

√
nm logn n

2/m5 Gabow [15], Pettie [38], this paper

algorithms when W is small. Their algorithm can be roughly described as follows. In the i-th iteration, only edges
of weights higher than W − i are considered and in particular, only edges whose weight minus the vertex potentials
(i.e., the dual solution) equals one are retained. Next, a maximum cardinality matching is computed in the subgraph
and this matching is subsequently used to update the vertex potentials. The final matching and the vertex potentials
can be shown to satisfy the complementary slackness conditions.

In a preliminary version of the paper (Huang and Kavitha [26]), we showed that the same approach can be gener-
alized to the case of general graphs.1 The difficulty mostly lies in how to manipulate the “blossoms” of Edmonds’
algorithm and update the more complicated dual variables. Throughout the paper, let n = �V � and m = �E�. We
show that by using one of the fastest maximum cardinality matchings as a subroutine (Goldberg and Karzanov [22],
Mucha and Sankowski [33]), we can solve the maximum weight matching problem in O4W

√
nm logn4n

2/m55 time
or in O4Wn�5 time with high probability, where �≈ 203728 is the exponent of matrix multiplication (Le Gall [30]).

Table 1 has the running times of the various fastest maximum weight matching algorithms in general graphs. Sub-
sequent to the preliminary version of this paper, Pettie [38] pointed out that the earlier algorithm of Gabow [15] can
be shown to achieve the same running time with a much simpler proof; in fact, he showed that Gabow’s algorithm
also can be regarded as decomposing the problem into W maximum cardinality matching problems. Compared to
the previous algorithms (Duan et al. [10], Gabow [17], Gabow and Tarjan [20]), Gabow’s algorithm (Gabow [15])
and our algorithm (without using the algebraic algorithm of Mucha and Sankowski [33] as a subroutine) are faster
when W = o4logn5, and if the graph is very dense, i.e., m=ä4n25, then the two latter algorithms are faster when
W = o4log2 n5. Compared to the algebraic algorithm (Cygan et al. [7]), Gabow’s algorithm and ours are always
faster by a poly-log factor.

In the present work, we give a new algorithm for solving the maximum weight matching problem in general
graphs. This algorithm is significantly different from our previous one and its proof and presentation are much
simpler. Additionally, our algorithm produces an integral optimal dual solution. This in turn gives a new proof to
the fact that the linear program proposed by Edmonds to describe the matching polytope is totally dual integral. It
is well known that if a matrix A is totally unimodular and b, c are integral vectors, then max8cT x2 Ax ≤ b1x ≥ 09
and min8yT b2 yTA ≥ cT 1 y ≥ 09 are attained by integral vectors x and y whenever the optima exist and are finite
(Schrijver [40]). However, total unimodularity is a very strong condition and, in fact, the integrality of vectors x
and y holds even under the weaker condition that the system of inequalities Ax ≤ b, x ≥ 0 is totally dual integral.
Since TDI is a weaker sufficient condition for the polytopes 8Ax ≤ b1x ≥ 09 and 8yTA≥ cT 1 y ≥ 09 to be integral
(where b and c are integral vectors), it is interesting to know if a given system of inequalities is TDI.

Although the total dual integrality of the constraints describing Edmonds’ matching polytope is well known
and there are several proofs for it (Cook [5], Cunningham and Marsh [6], Hoffman and Oppenheim [25], and
Schrijver [41]), to the best of our knowledge, ours is the fastest algorithm to compute an integral optimal dual
solution when W is small. Note that this dual solution is a witness or certificate to the optimality of our matching.

Our algorithm also gives rise to a decomposition theorem. In a graph G = 4V 1E5 with edge weights in
811 : : : 1W9, we show that the maximum weight of a matching is exactly

∑W
i=1 �Mi�, where for each i∈ 811 : : : 1W9,

Mi is a maximum weight matching in a subgraph Gi of G with the edge set E ′
i = 8e ∈E2 w4e5≥W − 4i− 159 and

the weight function wi2 E
′
i → 811 : : : 1 i9 defined as wi4e5=w4e5− 4W − i5. In particular, we show the following

equation:

�Mi� =
∑

u∈V

yiu +
∑

B∈ì

ziB

(

�B� − 1
2

)

−
∑

u∈V

yi−1
u −

∑

B∈ì

zi−1
B

(

�B� − 1
2

)

1

where �yiu1 z
i
B�4u∈V 1B∈ì5 is an integral optimal solution to the dual program for the maximum weight matching

program in the graph Gi (note that y0
u and z0

B are just 0 for all u ∈ V and B ∈ ì). Since the graph GW = G, the
above equation yields the decomposition theorem.

1 In Kao et al. [27], a decomposition theorem of the maximum weight matching in bipartite graphs is given and their algorithm is then derived
from it. However, in general graphs, the same theorem fails and the correctness of our algorithm rather follows from the complementary
slackness conditions. See Section 2.2 for details.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

19
9.

97
.1

53
] 

on
 0

5 
D

ec
em

be
r 

20
16

, a
t 0

5:
25

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Huang and Kavitha: Max-Weight Matching Algorithms
Mathematics of Operations Research, Articles in Advance, pp. 1–16, © 2016 INFORMS 3

Table 2. A summary of the current fastest maximum weight bipartite capacitated b-matching. Here � =
∑

v∈A∪B b4e5, B = maxv∈A∪B B4e5, C = maxe∈E c4e5, n1 = min4�A�1 �B�5, and SP+4n1m1W5 is the time needed
to solve a shortest path problem in a digraph with n vertices, m arcs, and nonnegative edge length function l

and
∑

e∈E l4e5 ≤ W . Furthermore, the Õ notation of Gabow and Sankowski’s algorithm hides some factors of
log�W ; the Õ notation of Lee and Sidford’s algorithm hides some factors of logm.

Running time Algorithm Note

O4n log� · SP+4n1m1W55 Lawler [29]
O4nm logn2/m lognW5 Goldberg and Tarjan [23, 24]
O4m logn · SP+4n1m1W55 Orlin [34, 35]
O44

√

�m+� log�5 lognW5 Gabow and Tarjan [19]
O44nm+� log�5 lognW5 Gabow and Tarjan [19]
O4n1m+ n3

1 logn1W5 Ahuja et al. [2]
O4n1m log42 + n2

1/m5 logn1W5 Ahuja et al. [2]
Õ4

√
nm · logO415C5 Lee and Sidford [31]

Õ4W��5 Gabow and Sankowski [18] Only for simple graphs
O4Wnm5 This paper
O4W

√

�m5 This paper Only for simple b-matching (c ≡ 1)
O4W4n1m+ n3

155 This paper
O4W4n1m+ n2

1

√
m55 This paper

O4W4n1m+ n2
1

√
logC55 This paper

O4Wn1m log42 + n2
1/m55 This paper

Maximum weight bipartite capacitated b-matching. Let G = 4A∪ B1E5 be a bipartite graph with weight
function w2 E → 811 : : : 1W9. Note that G need not be simple; i.e., multiple edges are allowed. Additionally, there
is a quota b2 A∪B → Z>0 on the vertices and a capacity c2 E → Z>0 on the edges. A function M2 E → Z≥0 is a
feasible solution if (1) M4e5≤ c4e5 for every e ∈ E and (2)

∑

e∈�4v5M4e5≤ b4v5 for every v ∈ A∪B. The goal is
to find a feasible solution M so that

∑

e∈E w4e5M4e5 is maximized.
We show that this problem can also be decomposed into W unweighted (and capacitated) versions of the same

problem. Using Orlin’s new maximum flow algorithm (Orlin [36]) as a subroutine, we can solve the problem in
O4Wnm5 time; in the case of simple b-matching (where c ≡ 1), we can use Gabow’s algorithm (Gabow [14])
to solve the problem in O4W

√

�m5 time, where � =
∑

v∈A∪B b4e5. Moreover, in the case that the graph G is
very “unbalanced,” i.e., the number of vertices on one side is much larger than the number on the other side,
then we can use the algorithms of Ahuja et al. [2] as a subroutine, to solve the problem, in O4W4n1m + n3

155,
O4W4n1m+ n2

1

√
m55, O4W4n1m+ n2

1

√
logC55, or O4Wn1m log42 + n2

1/m55 time, where n1 = min8�A�1 �B�9 and
C = maxe∈E c4e5. See Table 2 for a summary of the fastest algorithms for this problem. As there are many
parameters, it is difficult to compare the running time of these algorithms without resorting to case analysis. But in
general, unless the largest capacity C = maxe∈E c4e5 is really large, the recent algorithm of Lee and Sidford [31]
is the fastest algorithm. Compared to theirs, our algorithms are faster only when the graph is very unbalanced, i.e.,
when min8�A�1 �B�9= o4n5 and W is O(poly-log4m1C5).

Our second algorithm differs from the first in that it does not seek to find the feasible dual solution in each
iteration. A final adjustment step is performed to show that the produced dual solution and the primal matching
satisfy complementary slackness conditions.

2. Maximum weight matching in general graphs. In this section we present our algorithm for computing
a maximum weight matching in G = 4V 1E5 with edge weights in 811 : : : 1W9. As mentioned in Section 1, our
algorithm also computes an integral optimal dual solution along with the optimal matching MW . We recall the linear
program describing the matching polytope and its dual program below. Let ì be the set of all odd sized subsets
of V of size at least three, also referred to as odd sets of vertices. For any set B ⊆ V , let E6B7 be the set of edges
4x1 y5 both of whose endpoints x and y belong to B. For any vertex v, let E4v5 be the set of edges incident on v.

max
∑

e∈E

wexe min
{

∑

v∈V

yv +
∑

B∈ì

zB
�B� − 1

2

}

∑

e∈E4v5

xe ≤ 1 ∀v ∈ V yu + yv +
∑

B2 e∈E6B7

zB ≥we ∀ e = 4u1 v5 ∈E

∑

e∈E6B7

xe ≤
�B� − 1

2
∀B ∈ì yv ≥ 0 ∀v ∈ V

xe ≥ 0 ∀ e ∈E0 zB ≥ 0 ∀B ∈ì

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

19
9.

97
.1

53
] 

on
 0

5 
D

ec
em

be
r 

20
16

, a
t 0

5:
25

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Huang and Kavitha: Max-Weight Matching Algorithms
4 Mathematics of Operations Research, Articles in Advance, pp. 1–16, © 2016 INFORMS

We first briefly review some classical concepts on which our algorithm is built: Edmonds’ blossom algorithm
and Gallai-Edmonds decomposition. We highlight the main features of the blossom algorithm. More details can be
found in Lovász and Plummer [32] and Schrijver [41]. In this and the next section, M4u5 refers to the vertex that
is matched to u under the matching M .

Petersen [37] observed as early as 1891 that a matching M is of maximum cardinality if and only if there is no
augmenting path with respect to M . It is not difficult to detect an augmenting path with respect to a given matching
in bipartite graphs. But finding such a path in general graphs turns out to be more challenging. To overcome this
difficulty, Edmonds introduced the idea of opening/closing blossoms.

Definition 1. Let G= 4V 1E5 be the original graph. Let G4V15 be a shrunken graph of G, defined as follows.
(i) V1 ⊂ V ∪ì; i.e., each vertex v ∈ V is either in V1 or it belongs to an odd set in V1 ∩ì,

(ii) Edges in G4V15 are induced by V1. More precisely, 4a1 b5 is an edge in G4V15 if and only if there exists an
edge 4u1 v5 ∈E so that (1) u= a or u ∈ a (where a ∈ V1 ∩ì) and (2) v = b or v ∈ b (where b ∈ V1 ∩ì).

Suppose G4V15 is a shrunken graph of G and M1 is a matching in it. A set of vertices B = 4a01 a11 : : : 1 a2t5 is a
blossom if (1) there exists a circuit traversing the vertices in B, i.e., 4ai1 a4i+15 mod 2t+1

5 ∈ E1 for 0 ≤ i ≤ 2t, and (2)
M4a2i−15= a2i, for 1 ≤ i ≤ t. The first vertex a0 is called the base of the blossom B. (Note that a0 can be matched
to some vertex in V1\B, or it can be left unmatched.)

Closing a blossom. Suppose B = 4a01 a11 : : : 1 a2t5 is a blossom; then closing the blossom B means we form a
new shrunken graph G4V25, where V2 = 4V1\8ai9

2t
i=05∪ 8B9, and a new matching M2 in G4V25 as follows:

M24a5=M14a5 if a 6∈ B ∪ 8M14a0593 M24B5=M14a050

Notice that once the blossom B is closed in G14V15 to form a new shrunken graph G4V25, there can be another
blossom B′ in G4V25. It can happen that B in G4V25 (now a vertex in V2) forms part of B′. In this case, B is said
to be embedded in B′. A blossom not embedded in any other blossom is an outermost blossom. (Note that by
definition, an outermost blossom must be a vertex in the last shrunken graph).

Definition 2. Opening a blossom. Let G4V15 be an shrunken graph of G derived from G by a sequence
of closing blossoms. Let M1 a matching in G4V15. Let B be an outermost blossom in V1 and assume that B =

4a01 a11 : : : 1 a2t5, where ais are the nodes corresponding to B when B is closed (note that ai can be a vertex or a
blossom). Opening the blossom B means that we form a new shrunken graph G4V25, where V2 = 4V1\8B95∪8ai9

2t
i=0

and create a new matching M2 in G4V25 as follows:
• M24a5=M14a5 if a 6∈ B ∪ 8M14B59.
• If B is unmatched in M1, then a0 is unmatched in M2 as well and M24a2i−15= a2i1∀1 ≤ i ≤ t.
• If M14B5= a′ ∈ V1, then choose ak ∈ B so that there is an edge in E connecting a vertex in a′ and a vertex in

ak; furthermore, let

M24a4k+2i−15 mod 42t+155= a4k+2i5 mod 42t+151 ∀1 ≤ i ≤ t3 M24ak5= a′0

We now describe how Edmonds’ blossom algorithm works. In each round, it seeks to find an augmenting path
by building a Hungarian forest. A Hungarian forest is a disjoint set of trees, whose roots are unmatched nodes;
every vertex in such a tree is connected to the root by an alternating path using the edges in the tree. In the process
of building the Hungarian forest, a blossom may be detected. A detected blossom is then closed and the building
of the Hungarian forest restarts with respect to the updated graph. After the closing of blossoms, if an augmenting
path is found, then the matching is augmented along it. Furthermore, all blossoms are reopened (thus restoring the
graph completely) and this round is terminated.

In the last round of the blossom algorithm, no augmenting path will be detected even after the closing of some
blossoms. Let G̃= 4Ṽ 1 Ẽ5 denote the final (updated) graph, M̃ the current matching in it, and T̃ the final Hungarian
forest that was constructed. Some of the vertices in G̃ can indeed be outermost blossoms. To avoid confusion, we
refer to the vertices Ṽ in G̃ as nodes. Note that M̃ is a maximum cardinality matching in G̃.

By Tutte-Berge formula (Berge [3], Tutte [42]), it can be shown that if we reopen all blossoms, then we have
a maximum cardinality matching in the original graph. At the end of the blossom algorithm, we are left with
a Hungarian forest and a set of matched edges in M̃ (and the latter cannot be reached by any alternating path
starting from an unmatched node). Together they encode the Gallai-Edmonds decomposition (Edmonds [13],
Gallai [21]):

• In T̃ , we have a set of pairwise disjoint trees, whose roots are left unmatched in M̃ . Each tree is composed of
a set of alternating paths starting from the root. A node is odd (similarly, even) if there is an alternating path of odd
(respectively, even) length starting from the root to this node.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

19
9.

97
.1

53
] 

on
 0

5 
D

ec
em

be
r 

20
16

, a
t 0

5:
25

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Huang and Kavitha: Max-Weight Matching Algorithms
Mathematics of Operations Research, Articles in Advance, pp. 1–16, © 2016 INFORMS 5

• We have also the remaining matched edges in M̃ (that are not part of T̃ ). The endpoint nodes of these matched
edges are unreachable.

Furthermore,
• All blossoms are (or are contained in) even nodes.
• There is no edge in the original graph between an even node and an even/unreachable node in Ṽ (but notice

that if an even node is a blossom, then G has some edges between its members).
• No edge between an odd node and an odd/unreachable node is present in M̃ .
For convenience of presentation, in the following, when we say the Hungarian forest and use the notation T̃ , we

mean both the disjoint trees and those remaining matched edges not included in them.
We now show a simple proof that Edmonds’ algorithm produces a maximum cardinality matching. Note that

this proof is different from most found in the textbooks; it highlights the new ingredient in our approach.

Proposition 1. Let T̃ be the Hungarian forest at the end of Edmonds’ blossom algorithm, with the node set
Ṽ ⊂ V ∪ì and M̃ the corresponding matching. Then the matching M obtained by opening all blossoms in Ṽ is a
maximum cardinality matching in G.

Proof. We show the optimality of M by constructing a dual solution �yu1 zB�4u∈V 1B∈ì5 such that this dual
solution and M together satisfy complementary slackness conditions. For each vertex v, the value yv is defined as
follows:

• If v is an odd node in T̃ , then yv = 1;
• If v is an even node in T̃ or is contained in an even node, then yv = 0;
• Let U ⊆ V be the set of remaining vertices—these are the unreachable vertices in T̃ . Choose any one of them

u∗ ∈U ; set yu∗ = 1 and yu = 0 for the remaining vertices in u ∈U\8u∗9.
For each odd set B ∈ì, the value zB is defined as follows:

• If B ∈ì is an outermost blossom in G̃, then zB = 1.
• If �U\8u∗9� ≥ 2, then set zU\8u∗9 = 1; for the remaining odd sets B ∈ì, let zB = 0.
We now verify that �yu1 zB�4u∈V 1B∈ì5 is a dual feasible solution in the original graph G: the nonnegativity

conditions obviously hold. We need to check that all edges are properly covered.
• Edges incident on an odd vertex v are clearly covered since yv = 1.
• It follows from Gallai-Edmonds decomposition that there is no edge between an even node and an

even/unreachable node. If an edge e = 4u1 v5 has both endpoints in the same even node B in T̃ , then zB = 1.
• If an edge e = 4u1 v5 is incident on an unreachable node u, then the other endpoint v is either an odd or an

unreachable node. In the former case, yv = 1; in the latter case, either v = u∗ (then yu∗ = 1) or e ∈E6U\8u∗97 (then
zU\8u∗9 = 1).
We now show that M and the above dual solution �yu1 zB�4u∈V 1B∈ì5 satisfy complementary slackness conditions:

• All vertices v ∈ V with yv > 0 are actually matched in M .
• All odd sets B with zB > 0 have exactly 4�B� − 15/2 edges of E6B7 matched in M ; this also includes the odd

set B =U\8u∗9.
• Every edge in M is between an odd node and an even node, or between 2 unreachable nodes, or within a

blossom. Thus. all edges e = 4u1 v5 ∈M are tight; i.e., yu + yv +
∑

B2 e∈E6B7 zB = 1.
Hence by complementary slackness, �yu1 zB�4u∈V 1B∈ì5 is dual optimal andM is primal optimal, i.e.,M is a maximum
cardinality matching in G. �

A more well-known optimal dual (e.g., see Cook et al. [4, Exercise 5.30]) is the following: all dual variables
remain the same as defined in the proof above except for the following two changes: (1) all unreachable nodes
v ∈ U have yu = 1/2 and (2) the odd set U\8u∗9 has zU\8u∗9 = 0. In fact, this dual was used by the earlier version
of our algorithm and also by the algorithm of Gabow. We choose not to use it because the final dual solution will
only be half-integral here.

Observe that we use the variable zU\8u∗9 to cover all edges in E6U\8u∗97. Roughly speaking, in our algorithm,
we will regard the odd set U\8u∗9 as a “pseudo-blossom.” This pseudo-blossom is shrunk or contracted into a
single node and gets matched to u∗ in M—we will show in the next section that this contraction lasts for exactly
one iteration: this pseudo-blossom will be reopened during the next iteration. The details are described in the next
section.

2.1. The algorithm. Our algorithm runs for W iterations: in the i-th iteration, the algorithm computes a
maximum weight matching Mi in a graph Gi = 4V 1E ′

i5, where E ′
i = EW ∪ · · · ∪ EW+1−i and Et = 8e � w4e5 = t9

for W + 1 − i ≤ t ≤ W . The edge weights in Gi are given by the function wi2 E
′
i → 811 : : : 1 i9 defined as

wi4e5=w4e5− 4W − i5 for e ∈E ′
i . For simplicity of presentation, in case e 6∈E ′

i , we write wi4e5= 0.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

19
9.

97
.1

53
] 

on
 0

5 
D

ec
em

be
r 

20
16

, a
t 0

5:
25

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Huang and Kavitha: Max-Weight Matching Algorithms
6 Mathematics of Operations Research, Articles in Advance, pp. 1–16, © 2016 INFORMS

The optimality of the matching Mi in Gi will be established via the dual variables yiu, for each u ∈ V , and ziB,
for each B ∈ ì. In the i-th iteration we compute integral values for these dual variables and ensure that the dual
feasibility conditions ((1) and (5)) and complementary slackness conditions ((2)–(4)) are satisfied by these dual
values and the matching Mi. This will establish the optimality of Mi and these dual values in Gi.

We will ensure that conditions (1)–(5) hold for all i ∈ 811 : : : 1W9 in our algorithm. In the last iteration, i.e.,
when i=W , the set E ′

W of edges in GW is the same as the original edge set E and its weight function wW coincides
with the original weight function w. This will guarantee that MW is a maximum weight matching in the original
graph G.

yiu + yiv +
∑

B2 e∈E6B7

ziB ≥wi4e5 ∀ edges e = 4u1 v5 in E ′

i (1)

yiu + yiv +
∑

B2 e∈E6B7

ziB =wi4e5 ∀ edges e = 4u1 v5 ∈Mi (2)

yiu > 0 ⇒ u is matched in Mi ∀u ∈ V (3)

ziB > 0 ⇒
�B� − 1

2
edges of E6B7 are in Mi ∀B ∈ì (4)

yiu ≥ 0 and ziB ≥ 0 ∀u ∈ V and B ∈ì0 (5)

The graph Gi and its function wi are introduced mainly to facilitate the proof. In implementation, our algorithm
does not work with Gi = 4V 1E ′

i5. The actual working graph is an unweighted graph Hi = 4Vi1 Fi5. The vertex set
Vi ⊂ V ∪ì is decided by the previous iterations; the edge set Fi consists of edges e ∈E ′

i that satisfy wi4e5− yi−1
u −

yi−1
v −

∑

B2 e∈E4B5 z
i−1
B = 1.

We now describe the i-th iteration: the graph is Hi = 4Vi1 Fi5 and the starting matching is M̃i−1 (inherited from
the previous iteration) and it will be the case that M̃i−1 ⊆ Fi. Edmonds’ blossom algorithm is called to augment
M̃i−1 into M̃i. Let Ṽi be the resulting node set after the execution of Edmonds’ algorithm.2 Recall that Ṽi can be
partitioned into Oi∪̇Ui∪̇Ei, where Oi is the set of odd nodes, Ui is the set of unreachable nodes, and Ei is the set
of even nodes.

We then create a pseudo-blossom B∗
i to replace a subset of unreachable nodes, as discussed in the previous

section, and a unreachable node u∗
i not in the subset is chosen to be B∗

i ’s partner in M̃i. (Note that the pseudo-
blossom B∗

i is also closed as a regular blossom, i.e., the set of unreachable nodes in B∗
i are now replaced by a single

node B∗
i and its incident edges are induced by the nodes contained in B∗

i and the nodes not in B∗
i .) We define the

next round of dual variables �yiu1 z
i
B�4u∈V 1B∈ì5 based on �yi−1

u 1 zi−1
B �4u∈V 1B∈ì5 and the decomposition Oi∪̇Ui∪̇Ei.

We will guarantee that in the i-th iteration, in Hi, u
∗
i−1 has no other incident edge except 4u∗

i−11B
∗
i−15 (see

inequality (7) in Lemma 1 and the discussion immediately before that lemma). This guarantees that the edge
4u∗

i−11B
∗
i−15 is never part of an augmenting path and the edge is never shrunk into other blossoms in the i-th

iteration. Moreover, at the end of i-th iteration, either both B∗
i−1 and u∗

i−1 belong to Ui or the former is in Oi

while the latter is in Ei. In both cases, we will reopen the pseudo-blossom B∗
i−1; thus there will be at most one

pseudo-blossom at the end of the i-th iteration. Note that opening a pseudo-blossom simply means to match the
node originally matched with u∗

i−1 and restore the other originally matched edges contained in B∗
i−1. We now give

the algorithm formally below. Recall that for any e ∈E, wi4e5=w4e5− 4W − i5.
1. Initialization: y0

v = 0 ∀v ∈ V ; z0
B = 0 ∀B ∈ì; M̃0 = �; V1 = V .

2. For i = 1 to W do
(a) Let Hi = 4Vi1 Fi5, where Fi = 8e = 4u1 v5 ∈E ′

i 2 wi4e5− yi−1
u − yi−1

v −
∑

B2e∈E6B7 z
i−1
B = 19.

(b) Let M̃i−1 be the initial matching in Hi.
(c) Call Edmonds’ blossom algorithm to augment M̃i−1 so as to find a maximum cardinality matching

M̃i in Hi.
(d) Let Ṽi be the resultant node set and let Ṽi = Oi∪̇Ui∪̇Ei, where Oi (similarly, Ui or Ei) is the set of odd

(respectively, unreachable or even) nodes.
(e) If i = 1 then choose an arbitrary node u∗

1 ∈ U1. If �U1\8u
∗
19� ≥ 2, then replace U1\8u

∗
19 by a pseudo-

blossom B∗
1 and let 4B∗

11 u
∗
15 ∈ M̃1.

2 Here in the description and also in step 2(c) of the algorithm, we use Edmonds’ algorithm for ease of presentation. In actual implementation,
we can use any other maximum cardinality algorithm to find a maximum cardinality M̃i in Hi, as long as M̃i is an augmentation of M̃i−1

(that is, a node matched in M̃i−1 must be matched in M̃i as well). By building the Hungarian forest according to M̃i, we can shrink the
blossoms and the resultant matching and nodes sets will be M̃i and Ṽi.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

19
9.

97
.1

53
] 

on
 0

5 
D

ec
em

be
r 

20
16

, a
t 0

5:
25

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Huang and Kavitha: Max-Weight Matching Algorithms
Mathematics of Operations Research, Articles in Advance, pp. 1–16, © 2016 INFORMS 7

Else (i.e., i > 1) then choose an arbitrary node u∗
i ∈Ui\8B

∗
i−11 u

∗
i−19.

• If �Ui\8B
∗
i−11 u

∗
i−11 u

∗
i 9� ≥ 2, then replace this set by a pseudo-blossom B∗

i ; in case �Ui\

8B∗
i−11 u

∗
i−11 u

∗
i 9� = 1 and Ui\8B

∗
i−11 u

∗
i−11 u

∗
i 9 is a blossom B, then let B∗

i = B.
• Let 4B∗

i 1 u
∗
i 5 ∈ M̃i.

[We now update the dual values: if no explicit update happens for vertex u, then yiu = yi−1
u ; similarly

ziB = zi−1
B for any odd set B unless otherwise stated.]
(f) For each v ∈ V : if v ∈ Oi or v ∈ B where B ∈ Oi, then set yiv = yi−1

v + 1.
(g) For each outermost blossom or pseudo-blossom B ∈ Oi: set ziB = zi−1

B − 1.
(h) If u∗

i is a vertex v ∈ V , then yiv = yi−1
v + 1.

Else (u∗
i is a blossom B ∈ì) set yiv = yi−1

v + 1 for all v ∈ B and ziB = zi−1
B − 1.

(i) If B∗
i−1 ∈Ui, then set yiv = yi−1

v + 1 for each v ∈ B∗
i−1 and set ziB∗

i−1
= zi−1

B∗
i−1

− 1.
(j) For each outermost blossom B ∈Ei and for B = B∗

i : set ziB = zi−1
B + 1.

(k) If u∗
i−1 is a blossom and is in Ui, then set ziu∗

i−1
= zi−1

u∗
i−1

+ 1.
(l) Suppose that B ∈ì\8u∗

i 9 is a pseudo-blossom or an outermost blossom. If ziB = 0, then open the blossom
B and recursively so any other blossom B′ in B with ziB′ = 0.

(m) Let Vi+1 be the current node set and let M̃i be the corresponding matching.
3. Return the matching MW by opening all blossoms in M̃W .
Step 2 is the heart of the above algorithm and this step essentially consists of two parts: steps (a)–(e) compute the

matching M̃i while steps (f)–(k) set the dual values. The matching M̃i gets further updated in step (l) by opening out
all outermost blossoms whose z-value becomes 0 and now if there are new “outermost” blossoms (these blossoms
were earlier embedded but due to the outermost blossom getting opened, these embedded ones become outermost)
with z-value 0, these get opened and so on. The last step defines the node set Vi+1 to be used in the next iteration.

The steps that update the dual values here are analogous to how dual values are set in Proposition 1. Here we
make yiu = yi−1

u + 1 for every vertex u in Oi and this includes vertices that belong to blossoms in Oi. For outermost
blossoms B in Oi, we decrease ziB by 1. The y-value for vertices in Ei is unchanged and if B is an outermost blossom
in Ei, then we increase ziB by 1.

The node u∗
i is treated as an odd node while B∗

i is treated as an even node. Thus we make yiu = yi−1
u + 1 for

every vertex u in u∗
i and decrease the z-value of u∗

i by 1 (if u∗
i is a blossom) while the y-value for vertices in B∗

i is
unchanged and we increase the z-value of B∗

i by 1. To compensate for this, in the 4i + 15-st iteration, u∗
i will get

treated as an even node while B∗
i will get treated as an odd node—this is seen here in steps (j) and (k) where the

dual variable values for u∗
i−1 and B∗

i−1 are updated: u∗
i−1 is treated as an even node while B∗

i−1 is treated as an odd
node.

Note that after we shrink the pseudo-blossom B∗
i and match it to u∗

i , the dual variables are set in such a way that
in the next iteration, u∗

i has only one incident edge 4u∗
i 1B

∗
i 5 in Hi+1. This can be seen by inequality (7).

Lemma 1. For each 1 ≤ i ≤W , conditions (1)–(5) stated earlier hold, where Mi is the matching derived from
M̃i by opening all blossoms; conditions (6) and (7) stated below hold as well.

There is at most one pseudo-blossom B∗
i in Vi+1 and if such a B∗

i exists, then ziB∗
i
= 1. (6)

Given e = 4u1 v5 ∈E ′
i , u= u∗

i (if u∗
i ∈ V ) or u ∈ u∗

i (if u∗
i ∈ì), and v y B∗

i ∪ u∗
i ,

then yiu + yiv +
∑

B2 e∈E6B7

ziB >wi4e5. (7)

Proof. We show by induction on i that conditions (1)–(7) hold for all 1 ≤ i ≤W . The base case is i = 1. The
matching M1 is the maximum cardinality matching obtained by running Edmonds’ algorithm in the graph H1 and
the setting of dual variables in the first iteration of our algorithm corresponds exactly to the setting of dual variables
in Proposition 1. Thus by the same arguments as in the proof of Proposition 1, conditions (1)–(5) hold.

It is also easy to see that condition (6) holds as there is at most one pseudo-blossom B∗
1 ∈U1 at the end of the first

iteration. We now show condition (7). Since at the end of Edmonds’ algorithm, all blossoms are in even nodes, it
follows that u∗

1 ∈U1 is a vertex in V and we have y1
u∗

1
= 1. Let e= 4u∗

11 v5∈E ′
1 where v yB∗

1 ; then v has to be in O1

(as there are no edges in U1 ×E1 in F1 and E ′
1 = F1). Thus we have y1

v = 1 and so y1
u∗

1
+y1

v +
∑

B2e∈E6B7 z
i
B ≥ 2>w14e5

since w14e5= 1.
We now assume conditions (1)–(7) hold for i = k− 1 and show that conditions (1)–(7) corresponding to i = k

hold as well.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

19
9.

97
.1

53
] 

on
 0

5 
D

ec
em

be
r 

20
16

, a
t 0

5:
25

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Huang and Kavitha: Max-Weight Matching Algorithms
8 Mathematics of Operations Research, Articles in Advance, pp. 1–16, © 2016 INFORMS

Condition (1). We know by conditions (1) and (5) for i = k − 1 that for any edge e = 4u1 v5 in E ′
k, we have

yk−1
u + yk−1

v +
∑

B2 e∈E6B7 z
k−1
B ≥wk−14e5. We now need to show the following inequality:

yku + ykv +
∑

B2 e∈E6B7

zkB ≥wk−14e5+ 1 =wk4e50 (8)

Consider first the case when e ∈ E6B7, where B ∈ Ṽk ∩ì. If B ∈ Ok, then yku = yk−1
u + 1, ykv = yk−1

v + 1, while
zkB = zk−1

B − 1. Thus inequality (8) clearly holds. If B ∈ Ek, then there is some blossom B′ ⊇ B in Ṽk and we set
zkB′ = zk−1

B′ + 1, thereby ensuring inequality (8). If B ∈Uk, then we have the following cases: (i) B = u∗
k, (ii) B =B∗

k

or B ⊂ B∗
k , (iii) B = u∗

k−1, (iv) B = B∗
k−1. Note that cases (i) and (iv) are analogous to B ∈ Ok and cases (ii) and (iii)

are analogous to B ∈Ek. Thus inequality (8) holds when e ∈E6B7.
We now consider the case when u and v are not inside the same blossom in Ṽk. If one of u1 v is in Ok, then

yku + ykv ≥ yk−1
u + yk−1

v + 1. Thus inequality (8) holds. If both u and v are in Ek and the edge 4u1 v5 is in E ′
k, then

it has to be the case that yk−1
u + yk−1

v +
∑

B2 e∈E6B7 z
k−1
B > wk−14e5 (as there are no edges of Fk in Ek × Ek other

than edges inside blossoms). Since yku ≥ yk−1
u , ykv ≥ yk−1

v , zkB = zk−1
B = 0 for every odd set B containing e, and

wk−14e5+ 1 = wk4e5, inequality (8) again holds. The only case left is when one of u1 v is in Uk and the other is
in Ek ∪Uk.

Since Fk has no edges in Ek ×Uk, this means that yk−1
u + yk−1

v +
∑

B2e∈E6B7 z
k−1
B > wk−14e5 and we again have

yk−1
u + yk−1

v +
∑

B2e∈E6B7 z
k−1
B ≥ wk−14e5 + 1 = wk4e5. Thus, inequality (8) holds. Finally, if both u and v are in

Uk and by listing all subcases here, it is easy to see that inequality (8) holds. We show one particular subcase,
which is when u = u∗

k−1 (or u ∈ u∗
k−1). Here we use condition (7) for i = k− 1 which states that if v y B∗

k−1, then
yk−1
u + yk−1

v +
∑

B2e∈E6B7 z
k−1
B >wk−14e5. Thus inequality (8) holds when v yB∗

k−1 and when v ∈B∗
k−1, inequality (8)

holds since ykv = yk−1
v + 1.

Condition (2). Let e = 4u1 v5 be an edge in Mk. It follows from the definition of the edge set Fk that yk−1
u + yk−1

v +
∑

B2 e∈E6B7 z
k−1
B = wk−14e5. By going through the same case analysis as in the proof of inequality (8), we can show

that yku + ykv +
∑

B2 e∈E6B7 z
k
B =wk4e5. For instance, when u1 v ∈ Vk (i.e., u and v do not belong to any odd set B ∈ Vk)

and say u ∈ Ok, then since an odd node can only be matched to an even node, it follows that v ∈ Ek and thus
yku = yk−1

u + 1 while ykv = yk−1
v and zkB = zk−1

B = 0 for any odd set B containing 4u1 v5. Thus we have

yku + ykv +
∑

B2 e∈E6B7

zkB = 4yk−1
u + 15+ yk−1

v +
∑

B2 e∈E6B7

zk−1
B =wk−14e5+ 1 =wk4e50

Condition (3). We are given that yku > 0 and there are two cases here: yk−1
u > 0 or yk−1

u = 0. Consider the former
case—here it follows from condition (3) for i = k − 1 that u was matched in Mk−1 and we now show that u
continues to be matched in Mk. We first claim that all edges of M̃k−1 are present in the edge set Fk, i.e., step 2(b) is
correct. This follows from condition (2) for i = k− 1: for each edge e = 4u1 v5 ∈Mk−1, we have

wk4e5− yk−1
u − yk−1

v −
∑

B2 e∈E6B7

zk−1
B = 4wk−14e5+ 15− yk−1

u − yk−1
v −

∑

B2e∈E6B7

zi−1
B = 10

Thus edge e ∈ Fk. Now condition (3) follows because M̃k is augmented from M̃k−1 and because (pseudo-)blossom
opening guarantees that vertices matched in Mk−1 remain matched in Mk. Now consider the case yk−1

u = 0. For yku
to become positive, it must be the case that u ∈ Ok ∪B∗

k−1 ∪ u∗
k (or u= u∗

k). In all three cases, u is matched in Mk.

Condition (4). This is similar to the above proof that condition (3) holds. We are given that zkB > 0 and if zk−1
B

is also positive, then it means that the odd set B ∈ Vk and B remains a blossom throughout the k-th iteration. By
the definition of opening a blossom, it follows that when Mk is derived from M̃k, there are 4�B� − 15/2 edges of
E6B7 in Mk. If zk−1

B = 0, then it means that the (pseudo-)blossom B was newly formed in the k-th iteration. Thus,
B ∈ Ṽk ∩Ek or B =B∗

k or B = u∗
k−1 and it is easy to see that in all three cases, 4�B�− 15/2 edges in E6B7 are present

in Mk.

Condition (5). The nonnegativity of yku for all vertices u is clear because yku ≥ yk−1
u for each u ∈ V and by

condition (5) for i = k− 1, we have yk−1
u ≥ 0 for all u ∈ V . Regarding zkB, we claim that at the end of the 4k− 15-st

iteration, all outermost blossoms B ∈ Vk, along with B = B∗
k−1, have zkB > 0, with the possible exception of u∗

k−1.
This is because of Step 2(l) where we recursively opened up all outermost blossoms and pseudo-blossoms B that
satisfy zk−1

B = 0. Thus at the beginning of the k-th iteration, all outermost blossoms (other than possibly u∗
k−1) and

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

19
9.

97
.1

53
] 

on
 0

5 
D

ec
em

be
r 

20
16

, a
t 0

5:
25

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Huang and Kavitha: Max-Weight Matching Algorithms
Mathematics of Operations Research, Articles in Advance, pp. 1–16, © 2016 INFORMS 9

pseudo-blossoms B satisfy zkB > 0. Hence in spite of decreasing by 1 the zk-value of some outermost blossoms and
pseudo-blossom B∗

k−1, at the end of the k-th iteration we maintain the condition that zkB ≥ 0 for all B ∈ì.

Condition (6). By condition (7) for i = k − 1, in the edge set E ′
k−1, the only edge incident on the node u∗

k−1 is
4u∗

k−11B
∗
k−15 in Hi. Suppose there is some other edge e = 4u1 v5, where u= u∗

k−1 (or u ∈ u∗
k−1) and v y B∗

k−1 ∪ u∗
k−1,

in the edge set Fk. Then it has to be the case that

yk−1
u + yk−1

v +
∑

B2 e∈E6B7

zk−1
B =wk−14e50

Since e ∈ E ′
k\E

′
k−1, we have wk−14e5 = 0 while we know that yk−1

u ≥ 1 since u = u∗
k−1 (or u ∈ u∗

k−1). This
contradicts the above equation as yk−1

v and zk−1
B are nonnegative for all v ∈ V and B ∈ ì. Thus the only edge

incident on u∗
k−1 in the graph Hk is the edge 4u∗

k−11B
∗
k−15 ∈ M̃k−1. Hence in the k-th iteration of the algorithm,

neither u∗
k−1 nor B∗

k−1 belongs to any augmenting path and so these nodes also cannot become a part of a newly
formed blossom. Thus they remain matched to each other during the k-th iteration.

If B∗
k−1 is a pseudo-blossom, then by condition (6) for i = k − 1, we have zk−1

B∗
k−1

= 1. Thus, zkB∗
k−1

becomes zero
because either B∗

k−1 ∈Ok or B∗
k−1 ∈Uk; hence we open up B∗

k−1 at the end of the k-th iteration. By condition (6) for
i= k− 1, we also know that there is no other pseudo-blossom at the end of the 4k− 15-st iteration. Thus there is at
most one pseudo-blossom B∗

k at the end of the k-th iteration. Finally, if B∗
k is a pseudo-blossom, then zk−1

B∗
k

= 0, so
zkB∗

k
= 1.

Condition (7). Suppose e = 4u1 v5 is an edge in E ′
k with one endpoint u ∈ u∗

k and the other endpoint v y B∗
k ∪ u∗

k

(for simplicity of exposition, we assume u∗
k is a blossom here; the same proof holds when u∗

k is a vertex also). We
consider two cases here: (i) v ∈Ek ∪ u∗

k−1 and (ii) v ∈ Ok ∪B∗
k−1.

We know that Fk has no edges in Uk ×Ek, also we have seen in the proof of condition (6) that the only edge
incident on u∗

k−1 in the graph Hk is the edge 4u∗
k−11B

∗
k−15. Thus in case (i), i.e., when v ∈ Ek ∪ u∗

k−1, there is
no edge 4u1 v5 in Fk; hence we have yk−1

u + yk−1
v +

∑

B2 e∈E6B7 z
k−1
B > wk−14e5. Since yku = yk−1

u + 1, ykv ≥ yk−1
v ,

∑

B2 e∈E6B7 z
k
B =

∑

B2 e∈E6B7 z
k−1
B = 0 (as there is no blossom B⊇ 8u1 v9 either in Vk or in Vk+1) and wk4e5=wk−14e5+1,

we have yku + ykv +
∑

B2 e∈E6B7 z
k
B >wk4e5.

We now consider case (ii). In this case v ∈ Ok ∪ B∗
k−1, so ykv = yk−1

v + 1 ≥ 1. We know that yku = yk−1
u + 1 ≥ 1.

If e y E ′
k−1, then wk4e5 = 1. Thus we have yku + ykv +

∑

B2 e∈E6B7 z
k
B ≥ 2 > wk4e5. Suppose e ∈ E ′

k−1. We have
yku + ykv +

∑

B2 e∈E6B7 z
k
B = 4yk−1

u + 15+ 4yk−1
v + 15+

∑

B2 e∈E6B7 z
k−1
B . Since yk−1

u + yk−1
v +

∑

B2 e∈E6B7 z
k−1
B ≥ wk−14e5

for all edges in E ′
k−1, we have yku + ykv +

∑

B2 e∈E6B7 z
k
B ≥ wk−14e5 + 2 ≥ wk4e5 + 1. This finishes the proof that

conditions (1)–(7) hold for i = k as well. �
Thus, for each i, Mi is a matching in Gi and �yiu1 z

i
B�4u∈V 1B∈ì5 is a setting of dual variables such that condi-

tions (1)–(5) are satisfied. This immediately proves that Mi is an optimal solution for the primal program of the
i-th iteration; in other words, Mi is a maximum weight matching in the graph Gi. Similarly, �yiu1 z

i
B�4u∈V 1B∈ì5 is an

(integral) optimal solution for the dual program of the i-th iteration. Hence we can conclude Theorem 1.

Theorem 1. The matching MW returned by the algorithm is a maximum weight matching. Furthermore,
the variables �yWu 1 zWB �4u∈V 1B∈ì5 are an integral optimal solution for the dual program. Thus the linear program
describing the matching polytope is totally dual integral.

Since the maximum weight matching problem in a graph G = 4V 1E5 with edge weights in 811 : : : 1W9 can
be solved as W maximum cardinality matching problems, we can draw the following computational conclusion.
Recall that m and n are the number of edges and number of vertices in G, respectively.

Theorem 2. The maximum weight matching problem in G can be solved in O4W
√
nm logn4n

2/m55 time, or
in O4Wn�5 time with high probability, using the algorithms of Goldberg and Karzanov [22] and Mucha and
Sankowski [33] as a subroutine, where �≈ 203728 is the exponent of matrix multiplication.

Proof The bottleneck in each iteration is in step 2(c), where the maximum cardinality matching in Hi gets
computed, and we need to spend O4

√
nm logn4n

2/m55 or O4n�5 time, using the algorithms of Goldberg and
Karzanov [22] and Mucha and Sankowski [33]. Each of the other parts of step 2 can be done in O4m5 time.

In case we do not use Edmonds’ blossom algorithm but use Mucha and Sankowski’s algebraic algorithm in
step 2(c), then to ensure condition (3), where we claim that the new maximum cardinality matching in Hi is
augmented from M̃i−1, we can do the following: first find any maximum cardinality matching in Hi and let its
cardinality be t. Create �Vi�−2t dummy vertices and connect each of them to all nodes in Vi that are left unmatched
by M̃i−1. It is easy to see that there is now a perfect matching and we can find it by running the maximum cardinality

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

19
9.

97
.1

53
] 

on
 0

5 
D

ec
em

be
r 

20
16

, a
t 0

5:
25

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Huang and Kavitha: Max-Weight Matching Algorithms
10 Mathematics of Operations Research, Articles in Advance, pp. 1–16, © 2016 INFORMS

matching algorithm again. Moreover, the perfect matching so found must guarantee that only the nodes in Vi left
unmatched by M̃i−1 can be matched to the dummy vertices and the rest of the matching is the desired maximum
cardinality matching M̃i in Hi. In step 2(d) we can build the Hungarian forest according to M̃i to define the resulting
vertex set Ṽi = Oi∪̇Ui∪̇Ei in O4m5 time. �

2.2. Consequences of the above algorithm: A decomposition theorem. Our algorithm gives rise to the fol-
lowing decomposition theorem in a graphG= 4V 1E5with edge weights in 811 : : : 1W9. Define graphsG11 : : : 1GW

as follows: Gi = 4V 1E ′
i5 where E ′

i = 8e∈E 2w4e5≥W −4i−159 with edge weight function wi4e5=w4e5−4W − i5
for each e ∈E ′

i .

Theorem 3. There exist matchings M11 : : : 1MW and dual solutions �yiu1 z
i
B�4u∈V 1B∈ì5 for i = 11 : : : 1W such

that the following properties hold:
1. For 1 ≤ i ≤W , Mi is a maximum weight matching in Gi and �yiu1 z

i
B�4u∈V 1B∈ì5 is an optimal dual solution.

2. For 1 ≤ i ≤W , �yiu1 z
i
B�4u∈V 1B∈ì5 is an integral solution; furthermore, the set of odd sets B with ziB > 0 forms

a laminar family.
3. For 1 ≤ i ≤ W , �Mi� =

∑

u∈V y
i
u +

∑

B∈ì ziB44�B� − 15/25 −
∑

u∈V y
i−1
u −

∑

B∈ì zi−1
B 44�B� − 15/25, where

y0
u = 0 ∀u ∈ V and z0

B = 0 ∀B ∈ì.
4. The maximum weight of a matching in G is equal to

∑W
i=1 �Mi�.

Proof. For 1 ≤ i ≤W , we will show that the matching Mi and the dual solution �yiu1 z
i
B�4u∈V 1B∈ì5 computed in

the i-th iteration of our algorithm satisfy all the four parts of the above theorem. Part 1 is a corollary of Lemma 1.
Part 2 follows in a straightforward manner from our algorithm—it is easy to see that yiu and ziB are integral for

all vertices u and odd sets B. The fact that the sets B with ziB > 0 form a laminar family follows from how the node
set Ṽi is formed and how the z-values are assigned.

We now show part 3 of the above theorem. It follows from conditions (1)–(5) that

∑

e∈Mi

wi4e5=
∑

u∈V

yiu +
∑

B∈ì

ziB

(

�B� − 1
2

)

0

We know that for each edge e, wi4e5 = wi−14e5+ 1. Thus
∑

e∈Mi
wi4e5 =

∑

e∈Mi
wi−14e5+ �Mi�. Since every edge

used in Mi belongs to the edge set Fi, we have wi−14e5= yi−1
u +yi−1

v +
∑

B2 e∈E6B7 z
i−1
B for edge e= 4u1 v5∈Mi. Also,

the vertices that are not matched in Mi are unmatched in Mi−1 as well. Thus yi−1
u = 0 for all vertices unmatched in

Mi (by condition (3)). Hence we have

∑

u∈V

yiu +
∑

B∈ì

ziB

(

�B� − 1
2

)

= �Mi� +
∑

u∈V

yi−1
u +

∑

e∈Mi

∑

B2 e∈E6B7

zi−1
B 0

What is left to show is that
∑

e∈Mi

∑

B2 e∈E6B7 z
i−1
B =

∑

B∈ì zi−1
B 44�B�−15/25. By rearranging the terms in the sum, we

have
∑

e∈Mi

∑

B2 e∈E6B7 z
i−1
B =

∑

B∈ì zi−1
B · �E6B7∩Mi�. Thus we just need to show that for each B ∈ì with zi−1

B > 0,
exactly 4�B� − 15/2 edges of E6B7 are present in Mi.

Consider any such B. Since zi−1
B > 0, at the beginning of the i-th iteration of our algorithm, the odd set B is

shrunk in the node set Ṽi. At the end of the i-th iteration, either ziB > 0, in which case 4�B� − 15/2 edges of B
are present in Mi (by condition (4)), or ziB becomes zero, in which case by the process of opening a blossom,
4�B� − 15/2 edges of E6B7 are present in Mi. This completes the proof of part 3.

Part 4 follows from adding the equations of part 3 for all i ∈ 811 : : : 1W9. Since the right-hand side consists of a
cascading sum and y0

u = 0 for all u and z0
B = 0 for all B, this results in

M
∑

i=1

�Mi� =
∑

u∈V

yWu +
∑

B∈ì

zWB

(

�B� − 1
2

)

0

We also know that the above right side is the optimum value for the dual program in the W -th iteration. This equals
the value of the optimal primal solution, which is the maximum weight of a matching in GW . Since GW = G, the
maximum weight of a matching in G equals

∑W
i=1 �Mi�. �

It may be tempting to try to generalize the following decomposition theorem of Kao et al. [27] to the context of
general graphs.

Theorem 4 (from Kao et al. [27]). Let G be bipartite. Let G′ be Gi with the weight function wi for some
i ∈ 811 : : : 1W9. Let �yiu�u∈V be any minimum weight cover in Gi and G′′ be the subgraph of G with the edge set
8e = 4a1 b52 w4e5− yia − yib > 09 with weight of edge e given by w̃4e5=w4e5− yia − yib. The maximum weight of a
matching in G is then equal to the sum of the maximum weights of a matching in G′ and in G′′.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

19
9.

97
.1

53
] 

on
 0

5 
D

ec
em

be
r 

20
16

, a
t 0

5:
25

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Huang and Kavitha: Max-Weight Matching Algorithms
Mathematics of Operations Research, Articles in Advance, pp. 1–16, © 2016 INFORMS 11

3
1

2

3 3

2

a

b c

x

y z

G

Figure 1. The numbers on edges denote their weights and the bold edges 4x1a5 and 4b1 c5 are the ones in the maximum weight matching.
The weight of a maximum weight matching in G is 5.

Unfortunately, the above theorem with w̃4e5 updated to w4e5− yiu − yiu −
∑

B2 e∈E6B7 z
i
B for e = 4u1 v5 need not

hold in nonbipartite graphs. Consider the example in Figure 1.
The maximum weight of a matching in G is 5. Let G′ =G1, so the weight function is w14e5=w4e5−2; thus we

have w14e5= 1 for e ∈ 84a1 b51 4b1 c51 4c1a59 while w14e5≤ 0 for e ∈ 84a1 x51 4b1 y51 4c1 z59. The maximum weight
of a matching in G′ is 1 and there is a unique optimal dual solution: z1

8a1b1c9 = 1; all other z-values and y-values
are 0. In G′′, the weight of edge e = 4u1 v5 is w̃4e5=w4e5− y1

u − y1
v −

∑

B2 e∈E6B7 z
1
B (see Figure 2). The maximum

weight of a matching in G′′ is 5. However the maximum weight of a matching in G is not 1 + 5 = 6.

3. Maximum weight bipartite capacitated b-matching. The input here is a bipartite graph G= 4A∪B1E5
where as before, there is a weight function w2 E → 811 : : : 1W9. Associated with each vertex is a quota given by
b2 A∪ B → Z+ and the goal is to compute a b-matching of maximum weight. A b-matching is a subset M ⊆ E
such that for any vertex u, at most b4u5 edges incident on u are present in M . When b4u5 = 1 for each vertex u,
the resulting b-matching is the standard matching studied in the previous section.

In fact, here we consider an even more generalized concept called “capacitated b-matchings”: several copies of
an edge e can be present in M . That is, there is an edge capacity function c2 E → Z+ and up to c4e5 copies of
edge e are allowed in M . Recall that E4v5 is the set of edges incident on vertex v. For any vertex v, we assume that
b4v5≤

∑

e∈E4v5 c4e5.
Associated with every capacitated b-matching M is an m-tuple 4M4e151 : : : 1M4em55 where 0 ≤ M4ei5≤ c4ei5

for every edge ei. For simplicity, we refer to capacitated b-matchings as b-matchings here. When w4e5= 1 for all
edges e, a maximum weight b-matching M maximizes

∑

e∈E M4e5, so we will call such a matching a maximum
cardinality b-matching.

We will solve the maximum weight b-matching problem in bipartite graphs by reducing it to several instances
of the maximum cardinality b-matching problem. We will use the following terminology here.

• An edge e is saturated in M if M4e5= c4e5; otherwise, e is unsaturated. Similarly, a vertex v is saturated if
∑

e∈E4v5M4e5= b4v5; otherwise, v is unsaturated.
• An edge e with M4e5 > 0 is a positive edge.

Definition 3. An alternating path with respect to a b-matching M is a path p = �e01 e11 : : : 1 ek� in G such
that e01 e21 : : : are unsaturated edges while e11 e31 : : : are positive edges. That is, unsaturated edges and positive
edges alternate in p.

An alternating path p of odd length with respect to a b-matching M such that both the endpoints of p are
unsaturated in M is also called an “augmenting path” with respect to M . It is easy to see that a maximum cardinality

1 1

1

2

2 2

2

12

a

b c

a

b c

x

y z

G�
G��

Figure 2. In the graph G′, the edges with nonpositive weight have not been shown above. The weight of a maximum weight matching
in G′ is 1 and that in G′′ is 5.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

19
9.

97
.1

53
] 

on
 0

5 
D

ec
em

be
r 

20
16

, a
t 0

5:
25

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Huang and Kavitha: Max-Weight Matching Algorithms
12 Mathematics of Operations Research, Articles in Advance, pp. 1–16, © 2016 INFORMS

b-matching admits no augmenting path with respect to it. We present below a generalization of the coarse version
of Dulmage-Mendelsohn decomposition of bipartite graphs (Dulmage and Mendelsohn [11]). We first need the
following definition.

Definition 4. Let M be a maximum cardinality b-matching in G= 4A∪B1E5.
• Let EA ⊆ A (similarly, OB ⊆ B) be the set of vertices reachable from an unsaturated vertex in A via an

alternating path of even (respectively, odd) length with respect to M .
• Let EB ⊆ B (similarly, OA ⊆ A) be the set of vertices reachable from an unsaturated vertex in B via an

alternating path of even (respectively, odd) length with respect to M .
• Let UA =A\4EA ∪OA5 and let UB = B\4EB ∪OB5.

Proposition 2. Let M be a maximum cardinality b-matching in G = 4A ∪ B1E5 and EA, EB, OA, OB, UA,
UB be the sets of vertices as defined in Definition 4. Furthermore, let M ′ be an arbitrary maximum cardinality
b-matching in G; then the following holds.

(1) The three sets OA, EA, and UA are pairwise disjoint; so are OB, EB, and UB.
(2) All vertices in OA ∪OB ∪UA ∪UB are saturated in M ′.
(3) There is no positive edge in 4UA ∪OA5×OB or in OA ×UB in M ′.
(4) Every edge in EA × 4EB ∪UB5 is saturated in M ′; so is every edge in UA ×EB in M ′.

Proof. To show (1), we first show that OA, EA, and UA are disjoint from one another. It follows from the
definition of UA that UA ∩ 4EA ∪OA5= �. Thus, what is left to show is that EA ∩OA = �. Suppose v ∈EA ∩OA—
then gluing p1 and p2 till their first common vertex yields an augmenting path p with respect to M , where p1

is the even length alternating path between some unsaturated vertex a ∈ A and v (such a path p1 exists because
v ∈ EA) and p2 is the odd length alternating path between some unsaturated vertex b ∈ B and v (such a path p2

exists because v ∈OA). The augmenting path p contradicts that M is a maximum cardinality b-matching. A similar
argument shows that OB, EB, and UB are disjoint from one another. This finishes the proof of (1).

In the following, we first prove (2)–(4) assuming that M ′ =M ; we will later remove this assumption.
It follows from the definition of UA and UB that every vertex u in UA ∪UB has to be saturated in M (otherwise

there is a length zero alternating path from an unsaturated vertex to u, contradicting that u ∈UA ∪UB). If a vertex
a ∈ OA is unsaturated, then there is an alternating path of odd length from some unsaturated vertex in B to the
unsaturated vertex a, i.e., M admits an augmenting path, a contradiction. Similarly every vertex in OB is saturated.
This finishes the proof of (2) when M ′ =M .

Suppose there is an edge e ∈ OA × OB such that M4e5 > 0. Let e = 4u1 v5. We can again show an augmenting
path with respect to M between an unsaturated vertex a ∈ A and an unsaturated vertex b ∈ B using the paths p1,
p2 and the edge 4u1 v5, where p1 is the (odd length) a-u alternating path and p2 is the (odd length) b-v alternating
path. Similarly, if e= 4u1 v5 in UA ×OB satisfies M4e5> 0, then there is an alternating path from some unsaturated
vertex in A to u; this contradicts the fact that u ∈UA. Similarly, there is no positive edge in OA ×UB. This finishes
the proof of (3) when M ′ =M .

Suppose there is an edge e ∈EA ×EB such that M4e5< c4e5. Let e= 4u1 v5. We can again show an augmenting
path between some unsaturated vertex a ∈ A and some unsaturated vertex b ∈ B using p1, p2, and 4u1 v5, where
p1 is the (even length) a-u alternating path and p2 is the (even length) b-v alternating path. Similarly, if e = 4u1 v5
in UA ×EB satisfies M4e5 < c4e5, then there is an alternating path between some unsaturated b ∈ B and u; this
contradicts the fact that u ∈UA. Similarly, there is no unsaturated edge in EA ×UB. This finishes the proof of (4)
when M ′ =M .

We now remove the assumption that M ′ = M . Let M ′ be an arbitrary maximum cardinality b-matching in G.
Let us define a bipartite directed flow f as follows: f 4e5 = �M ′4e5−M4e5�. The direction of the edge e = 4u1 v5
under f is from u to v if M ′4e5 >M4e5 and from v to u if M ′4e5 <M4e5. It is clear that M ′ is the sum of M and
the flow f . Let us summarize what we know about f using what we have proved so far.

(i) Under f , there is no edge going from EA to UB ∪EB and no edge from UA to EB,
(ii) Under f , there is no edge going from OB to UA ∪OA, and no edge from UB to OA,

(iii) For all vertices in OA ∪UA ∪OB ∪UB, the amounts of incoming flow and outgoing flow are equivalent.
It is well known, e.g., Ahuja et al. [1], that f can be decomposed into a set of cycle flows Ci and a set of path

flows Pj by a greedy algorithm. By (i) and (ii), the cycle Ci consists entirely of vertices in EA ∪ OA or EB ∪ OB.
Furthermore, by (iii), the starting and ending vertices of Pj can only be in EA ∪EB. By (i) and (ii), Pj cannot start
from EA and end in EB. Moreover, we cannot have Pj start from EB and end in EA as it would imply an augmenting
path in M ′ from EA to EB. We can thus conclude that the cycle Ci and Pj consist entirely of vertices in EA ∪OA or
in EB ∪OB and the proof follows. �

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

19
9.

97
.1

53
] 

on
 0

5 
D

ec
em

be
r 

20
16

, a
t 0

5:
25

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Huang and Kavitha: Max-Weight Matching Algorithms
Mathematics of Operations Research, Articles in Advance, pp. 1–16, © 2016 INFORMS 13

Note that if a maximum cardinality b-matching M is given, the decomposition A = OA ∪ EA ∪ UA and B =

OB ∪EB ∪UB with respect to M can be determined in O4m+ n5 time easily. We are now ready to describe our
algorithm to compute a maximum weight b-matching in G= 4A∪B1E5. The linear program corresponding to the
maximum weight b-matching problem and the dual LP are given below.

max
∑

e∈E

w4e5xe min
{

∑

v∈V

bvyv +
∑

e∈E

c4e5ze

}

∑

e∈E4v5

xe ≤ b4v5 ∀v ∈A∪B0 ya + yb + ze ≥w4e5 ∀ e = 4a1 b5 ∈E0

0 ≤ xe ≤ c4e5 ∀ e ∈E0 yv ≥ 0 ∀v ∈A∪B0
ze ≥ 0 ∀ e ∈E0

Our algorithm is similar in spirit to the algorithm from Section 2.1 but it also has some subtle differences from
that one. The algorithm here also runs for W iterations, where W = maxe∈E w4e5. In the first iteration, we consider
only edges of weight W : this is the graph H1. We compute a maximum cardinality b-matching M1 here and assign
vertex potentials y1

u; however not all edges get covered by these vertex potentials, i.e., there exist edges e = 4a1 b5
in H1 such that y1

a = y1
b = 0. More precisely, all the uncovered edges are in E1

A × 4E1
B ∪U1

B5; we also know from
Proposition 2(4) that each edge in E1

A × 4E1
B ∪U1

B5 is saturated in M1.
In fact, this will be an important invariant that we will maintain: every uncovered or “not fully paid for” edge will

be saturated. In general, in iteration i we have an unsatisfied set ëi ⊆ E, which consists of those edges e = 4a1 b5
such that yi−1

a + yi−1
b < wi−14e5 and it will be the case that e is saturated by the previous maximum cardinality

b-matching Mi−1.
In the i-th iteration, the algorithm works with the unweighted graph Hi = 4A∪B1Fi5, where Fi = 8e = 4a1 b5 ∈

E2 wi4e5 − yi−1
a − yi−1

b = 19 and wi4e5 = w4e5 − 4W − i5. Furthermore, the quotas of the vertices are updated
according to the unsatisfied set ëi−1, namely, bi4v5 = b4v5 −

∑

e∈ëi−1∩E4v5
c4e5, where E4v5 is the set of edges

incident on vertex v. Our task is to obtain a maximum cardinality b-matching in Hi, where vertex quotas are
described by the function bi; we obtain such a matching M ′

i by augmenting Mi−1\ëi−1 in the graph Hi. The
matching Mi will be M ′

i along with all edges in ëi−1 (these edges are all saturated). We will show that the final
matching MW is a maximum weight b-matching in G. We present our algorithm below.

1. Initialization: Set M0 = �, ë0 = �, and y0
v = 0 ∀v ∈ V .

2. For i = 1 to W do
(a) For each e ∈E: let wi4e5=w4e5− 4W − i5.
(b) Construct Hi = 4A∪B1Fi5, where Fi = 8e = 4a1 b52 wi4e5− yi−1

a − yi−1
b = 19.

(c) For each v ∈A∪B do: set bi4v5= b4v5−
∑

e∈ëi−1∩E4v5
c4e5.

(d) Find a maximum cardinality b-matching M ′
i in Hi (where the quotas of vertices are given by bi) by

augmenting Mi−1\ëi−1 in Hi.
(e) Using M ′

i , partition A= Oi
A ∪Ei

A ∪Ui
A and B = Oi

B ∪Ei
B ∪Ui

B.
• For each v ∈ Oi

A ∪Oi
B ∪Ui

A do: set yiv = yi−1
v + 1.

• For each v ∈Ei
A ∪Ei

B ∪Ui
B do: set yiv = yi−1

v .
(f) Let Mi be M ′

i ∪ëi−1, where Mi4e5= c4e5 for each e ∈ëi−1.
(g) Let Si = 8e = 4a1 b5 ∈ Fi where a ∈Ei

A and b ∈Ei
B ∪Ui

B9;
let Ci = 8e = 4a1 b5 ∈ëi−1 such that wi4e5− yia − yib = 09.

(h) ëi = 4ëi−1\Ci5∪ Si.
3. Return MW .
It follows from the definition of Fi and from step 2(e) (where vertex potentials are updated) that those edges

of Fi with at least one endpoint in Oi
A ∪ Oi

B ∪ Ui
A are covered or paid for while those with both endpoints in

Ei
A × 4Ei

B ∪Ui
B5 are uncovered or not fully paid for. The edges of Fi in Ei

A × 4Ei
B ∪Ui

B5 form the set Si and these
are added to the set ëi in step 2(h).

Regarding the edges that are already in the set ëi−1, it could be the case that some of them get covered now
(because of step 2(e) where vertex potentials are updated)—for this to happen, it is necessary that both the endpoints
of such an edge are in Oi

A ∪Oi
B ∪Ui

A. These newly covered edges form the set Ci and these are no longer present
in the unsatisfied set ëi.

Lemma 2. For each 1 ≤ i ≤W , the above algorithm maintains conditions (9)–(13) listed below.

yia + yib ≥wi4e5 ∀ e = 4a1 b5 ∈E\ëi (9)

yia + yib <wi4e5 and Mi4e5= c4e5 ∀ e ∈ëi (10)

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

19
9.

97
.1

53
] 

on
 0

5 
D

ec
em

be
r 

20
16

, a
t 0

5:
25

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Huang and Kavitha: Max-Weight Matching Algorithms
14 Mathematics of Operations Research, Articles in Advance, pp. 1–16, © 2016 INFORMS

yiu > 0 ⇒ u is saturated in Mi ∀u ∈A∪B (11)

yia + yib =wi4e5 ∀ edges e = 4a1 b5 ∈ Fi\Si such that M ′

i 4e5 > 0 (12)

yiu ≥ 0 ∀u ∈A∪B0 (13)

Proof. We show by induction on i that conditions (9)–(13) hold for all 1 ≤ i≤W . The base case corresponds to
i= 1. The set ë1 =E1

A × 4E1
B ∪U1

B5 and it is easy to see that conditions (9)–(13) for i= 1 follow from Proposition 2
and from how y1

u-values are set in step 2(e).
We now assume that conditions (9)–(13) hold when i = k − 1 and show that the conditions corresponding to

i = k hold as well. To show condition (9) for i = k, assume that e ∈ E\ëk. If e ∈ëk−1\ëk, then e has to be in Ck,
in other words, wk4e5 = yka + ykb . Thus, we can henceforth assume that e y ëk−1. Thus, yk−1

a + yk−1
b ≥ wk−14e5 by

induction hypothesis. We consider two cases here: (i) e ∈ Fk and (ii) e y Fk.
Since Fk consists of edges e = 4a1 b5 such that wk4e5− yk−1

a − yk−1
b = 1 and wk4e5 = wk−14e5+ 1, it is easy to

see that Fk is exactly the set of those edges e = 4a1 b5 such that yk−1
a + yk−1

b = wk−14e5. If e y Fk, then we have
yk−1
a + yk−1

b >wk−14e5, that is, yk−1
a + yk−1

b ≥wk−14e5+ 1. Thus, we have

yka + ykb ≥ yk−1
a + yk−1

b ≥wk−14e5+ 1 =wk4e50

Suppose e ∈ Fk. In this case, at least one of 8a1 b9 has to be in Ok
A ∪Ok

B ∪Uk
A; otherwise e ∈ Sk and thus e ∈ëk.

Since a or b (or both) is in Ok
A ∪Ok

B ∪Uk
A, we have

yka + ykb ≥ yk−1
a + yk−1

b + 1 =wk−14e5+ 1 =wk4e50

Thus condition (9) holds for i = k.
We now show condition (10) for i = k. The set ëk = 4ëk−1\Ck5∪ Sk. It is easy to see that every e = 4a1 b5 ∈ Sk

satisfies yka + ykb <wk4e5 and Mk4e5= c4e5: this is because every such edge belongs to Fk ∩ 4Ek
A × 4Ek

B ∪Uk
B55 and

thus wk4e5=wk−14e5+ 1 = yk−1
a + yk−1

b + 1 = yka + ykb + 1 and by Proposition 2(4), Mk4e5= c4e5.
We now consider the case when e ∈ ëk−1\Ck. By induction hypothesis, every edge e = 4a1 b5 in ëk−1 satisfies

yk−1
a + yk−1

b <wk−14e5 and Mk−14e5= c4e5. In the k-th iteration we have

yka + ykb ≤ yk−1
a + yk−1

b + 2 ≤wk−14e5+ 1 =wk4e50

We are given that eyCk, so yka +ykb 6=wk4e5. Thus yka +ykb <wk4e5. Since e is in ëk−1, it follows that Mk4e5= c4e5.
We now show condition (11) for i = k. We are given that yku > 0. If yk−1

u > 0, then it follows from induction
hypothesis that u is saturated in Mk−1; since M ′

k is obtained by augmenting Mk−1\ëk−1 and Mk = M ′
k ∪ëk−1, it

follows that
∑

e∈E4u5Mk−14u5=
∑

e∈E4u5Mk4u5, and thus u is saturated in Mk. If yk−1
u = 0, then it must be the case

that yku ∈ Ok
A ∪Ok

B ∪UA and it follows from Proposition 2(2) that u is saturated in Mk.
We now show condition (12) for i = k. Let e = 4a1 b5 be an edge such that M ′

k4e5 > 0. We know that M ′
k is a

maximum cardinality b-matching in Hk: since the edge set of Hk is Fk, this implies that yk−1
a + yk−1

b =wk−14e5. We
also know that e y Sk. It follows from Proposition 2(3) that e ∈ 4Ok

A ×Ek
B5 ∪ 4Ek

A × Ok
B5 ∪ 4Uk

A ×Ek
B5. Thus, we

have yka + ykb = yk−1
a + yk−1

b + 1. Thus, yka + ykb = yk−1
a + yk−1

b + 1 =wk−14e5+ 1 =wk4e5.
It is easy to see that condition (13) holds. Initially y0

u = 0 for all vertices u and Step 2(e) (where certain yiu values
increase) is the only step where the yiu values get updated. Thus yku ≥ 0 for all u. �

Theorem 5. The matching MW is a maximum weight b-matching in G.

Proof. We prove the optimality of MW by showing a dual feasible solution �y∗
u1 z

∗
e�4u∈A∪B1e∈E5 such that this

dual solution and MW satisfy complementary slackness conditions. Let y∗
u = yWu for all u∈A∪B and define z∗

e = 0
if e 6∈ëW , else z∗

e =w4e5− y∗
a − y∗

b where e = 4a1 b5.
Observe that wW 4e5=w4e5 for all edges e. The dual feasibility of �y∗

u1 z
∗
e�4u∈A∪B1e∈E5 follows from conditions (9),

(10) and (13) and the definition of z∗
e values. Primal complementary slackness follows from conditions (10) and

(12) along with the definition of z∗
e values for e ∈ëW . Dual complementary slackness follow from conditions (10)

and (11) along with the observation that if z∗
e > 0 then e ∈ ëW . This proves that MW is primal optimal and

�y∗
u1 z

∗
e�4u∈A∪B1e∈E5 is dual optimal. �

Thus the maximum weight bipartite capacitated b-matching problem can be decomposed into W unweighted
versions of the same problem, where W = maxe∈E w4e5. The following computational result is immediate.

Theorem 6. The maximum weight capacitated b-matching problem in G= 4A∪B1E5 can be solved in
1. O4Wnm5 time using Orlin’s maximum flow algorithm (Orlin [36]), or

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

19
9.

97
.1

53
] 

on
 0

5 
D

ec
em

be
r 

20
16

, a
t 0

5:
25

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Huang and Kavitha: Max-Weight Matching Algorithms
Mathematics of Operations Research, Articles in Advance, pp. 1–16, © 2016 INFORMS 15

2. O4W
√

�m5 time, using Gabow’s algorithm (Gabow [14]), where � =
∑

v∈A∪B b4e5, in the case of simple
b-matching (where c ≡ 1), or

3. O4W4n1m+ n3
155 time, using the algorithm of Ahuja et al. (Ahuja et al. [2]), where n1 = min8�A�1 �B�9, or

4. O4W4n1m+ n2
1

√
m55 time, using the algorithm of Ahuja et al. (Ahuja et al. [2]), or

5. O4W4n1m+ n2
1

√
logC55 time, using the algorithm of Ahuja et al. (Ahuja et al. [2]), or

6. O4Wn1m log42 + n2
1/m55 time, using the algorithm of Ahuja et al. (Ahuja et al. [2]).

4. Conclusions and open problems. We considered the maximum weight matching problem in G = 4V 1E5
with integral edge weights. We solved this problem via the maximum cardinality matching algorithm—the running
time of our algorithm is W times the running time of a maximum cardinality matching algorithm, where W is
the largest edge weight. This running time is as good as the current fastest algorithms for the maximum weight
matching problem. Our algorithm also computed an optimal dual solution that is integral, thereby showing an
integral certificate to the optimality of the computed matching.

We then extended this approach to the maximum weight capacitated b-matching problem in bipartite graphs,
where edge weights are in 81121 : : : 1W9. We showed that this problem can also be decomposed into W unweighted
and capacitated versions of the same problem. An open problem is to extend this approach to the maximum weight
b-matching problem in general graphs.

Acknowledgments. The authors thank the anonymous reviewers for their helpful comments. The first author is supported
by the VR Unga Forskare [Grant 2015-03783]. The second author is supported by the Indo-German Max Planck Center for
Computer Science grant.

References

[1] Ahuja R, Magnanti T, Orlin J (1993) Network Flows: Theory, Algorithms, and Applications (Pearson, Upper Saddle River, NJ).
[2] Ahuja R, Orlin J, Stein C, Tarjan R (1994) Improved algorithms for bipartite network flow. SIAM J. Comput. 23(5):906–933.
[3] Berge C (1958) Sur le couplage maximum d’un graphe. Comptes rendus hebdomadaires des séances de l’Académie des sciences

247:258–359.
[4] Cook WJ, Cunningham WH, Pulleyblank WR Schrijver A (1997) Combinatorial Optimization (John Wiley & Sons, New York).
[5] Cook WJ A note on matchings and separability. Discrete Appl. Math. 10(2):202–209.
[6] Cunningham W, Marsh A (1978) A primal algorithm for optimum matching. Balinski ML, Hoffman AJ, eds. Polyhedral

Combinatorics—Dedicated to the Memory of D. R. Fulkerson (Springer, Berlin), 50–72.
[7] Cygan M, Gabow H, Sankowski P (2015) Algorithmic applications of Baur-Strassen’s theorem: Shortest cycles, diameter and matchings.

J. ACM 62(4):article 28.
[8] Derigs U (1981) A shortest augmenting path method for solving minimal perfect matching problems. Networks 11(4):379–390.
[9] Duan R, Pettie S (2014) Linear-time approximation for maximum weight matching. J. ACM 61(1):1–23.

[10] Duan R, Pettie S, Su H-H Scaling algorithms for weighted matching in general graphs. Preprint, arXiv:1411.1919v2.
[11] Dulmage A, Mendelsohn N (1958) Coverings of bipartite graphs. Canadian J. Math. 10:517–534.
[12] Edmonds J (1965a) Maximum matching and a polyhedron with 40115 vertices. J. Res. National Bureau Standards Section 69B:125–130.
[13] Edmonds J (1965b) Paths, trees, and flowers. Canadian J. Math. 17:449–467.
[14] Gabow H (1983) An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems. Proc. 15th

Annual ACM Sympos. Theory Comput., STOC (ACM, New York), 448–456.
[15] Gabow H (1985a) A scaling algorithm for weighted matching on general graphs. Proc. 26th Annual Sympos. Foundations Comput.

Sci., FOCS, (IEEE Computer Society, Washington, DC), 90–100.
[16] Gabow H (1985b) Scaling algorithms for network problems. J. Comput. System Sci. 31:148–168.
[17] Gabow H (1990) Data structures for weighted matching and nearest common ancestors with linking. Johnson DS, ed. Proc 1st Sympos.

Discrete Algorithms, SODA ’90 (SIAM, Philadelphia), 434–443.
[18] Gabow H, Sankowski P (2013) Algebraic algorithms for b-matching, shortest undirected paths, and f-factors. Proc. 54th Sympos.

Foundations Comput. Sci., FOCS ’13 (IEEE Computer Society, Washington, DC), 137–146.
[19] Gabow H, Tarjan R (1989) Faster scaling algorithms for network problems. SIAM J. Comput. 18(5):1013–1036.
[20] Gabow H, Tarjan R (1991) Faster scaling algorithms for general graph-matching problems. J. ACM 38(4):815–853.
[21] Gallai T (1964) Maximale Systeme unabhängiger Kanten. Magyar Tudományos Akadémia—Matematikai Kutató Intézetének

Közleményei 9:401–413.
[22] Goldberg A, Karzanov A (1995) Maximum skew-symmetric flows. Spirakis PG, ed. Proc. 3rd Eur. Sympos. Algorithms, ESA ’95

(Springer, Berlin), 155–170.
[23] Goldberg A, Tarjan R (1987) Solving minimum-cost flow problems by successive approximation. Aho AV, ed. Proc. 9th Sympos.

Theory Comput., STOC ’87 (ACM, New York), 7–18.
[24] Goldberg A, Tarjan R (1990) Solving minimum-cost flow problems by successive approximation. Math. Oper. Res. 15(3):430–466.
[25] Hoffman A, Oppenheim R (1978) Local unimodularity in the matching polytope. Ann. Discrete Math. 2:201–209.
[26] Huang C-C, Kavitha T (2012) Efficient algorithms for maximum weight matchings in general graphs with small edge weights. Rabani

Y, ed. Proc. 23rd Sympos. Discrete Algorithms SODA ’12 (SIAM, Philadelphia), 1400–1412.
[27] Kao M-Y, Lam TW, Sung W-K, Ting H-F (2001) A decomposition theorem for maximum weight bipartite matchings. SIAM J. Comput.

31(1):18–26.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

19
9.

97
.1

53
] 

on
 0

5 
D

ec
em

be
r 

20
16

, a
t 0

5:
25

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Huang and Kavitha: Max-Weight Matching Algorithms
16 Mathematics of Operations Research, Articles in Advance, pp. 1–16, © 2016 INFORMS

[28] Kuhn HW (1955) The Hungarian method for the assignment problem. Naval Res. Logist. Quart. 2:83–97.
[29] Lawler EL (2011) Combinatorial Optimization: Networks and Matroids (Dover Publications, Mineola, NY).
[30] Le Gall F (2014) Power of tensors and fast matrix multiplication. Nabeshima K, Nagasaka K, Winkler F, Szántó, eds. Proc. 39th

Internat. Sympos. Symbolic and Algebraic Comput., ISSAC ’14 (ACM, New York), 296–303.
[31] Lee YT, Sidford A Path Finding II: An Õ4m

√

4n55 Algorithm for the Minimum Cost Flow Problem. Preprint, arXiv: 1312.6713v2.
[32] Lovász L, Plummer M (2009) Matching Theory (AMS, Providence, RI).
[33] Mucha M, Sankowski P (2004) Maximum matchings via Gaussian elimination. Prod. 45th Sympos. Foundations Comput. Sci., FOCS

’04 (IEEE Computer Society, Washington, DC), 248–255.
[34] Orlin J (1988) A faster strongly polynomial minimum cost flow algorithm. Simon J, ed. Proc. 20th Sympos. Theory Comput., STOC

’88 (ACM, New York), 377–387.
[35] Orlin J (1993) Parallel algorithms for the assignment and minimum-cost flow problems. Oper. Res. 41(2):338–350.
[36] Orlin J (2013) Max flows in O4nm5 time, or better. Proc. 45th Sympos. Theory Comput., STOC ’13 (ACM, New York), Vol. 41,

765–774.
[37] Petersen J (1891) Die Theorie der regulären Graphs. Acta Mathematica 15:193–220.
[38] Pettie S (2012) A simple reduction from maximum weight matching to maximum cardinality matching. Inform. Processing Lett.

112(23):893–898.
[39] Schrijver A (1983) Short proofs on the matching polyhedron. J. Combinatorial Theory B 34(1):104–108.
[40] Schrijver A (1998) Theory of Linear and Integer Programming (John Wiley & Sons, Chichester, UK).
[41] Schrijver A (2003) Combinatorial Optimization—Polyhedra and Efficiency (Springer, Berlin).
[42] Tutte W (1947) The factorization of linear graphs. J. London Math. Soc. 22:107–111.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

19
9.

97
.1

53
] 

on
 0

5 
D

ec
em

be
r 

20
16

, a
t 0

5:
25

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 


	Introduction.
	Maximum weight matching in general graphs.
	The algorithm.
	Consequences of the above algorithm: A decomposition theorem.

	Maximum weight bipartite capacitated $b$-matching.
	Conclusions and open problems.

