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Abstract. We study the quality of equilibrium in atomic splittable routing games. We show
that in single-source single-sink games on series-parallel graphs, the price of collusion —
the ratio of the total delay of atomic Nash equilibrium to the Wardrop equilibrium — is at
most 1. This proves that the existing bounds on the price of anarchy for Wardrop equilibria
carry over to atomic splittable routing games in this setting.

1 Introduction

In a routing game, players have a fixed amount of flow which they route in a network [15, 17, 23].
The flow on any edge in the network faces a delay, and the delay on an edge is a function of the
total flow on that edge. We look at routing games in which each player routes flow to minimize
his own delay, where a player’s delay is the sum over edges of the product of his flow on the edge
and the delay of the edge. This objective measures the average delay of his flow and is commonly
used in traffic planning [10] and network routing [15].

Routing games are used to model traffic congestion on roads, overlay routing on the Internet,
transportation of freight, and scheduling tasks on machines. Players in these games can be of two
types, depending on the amount of flow they control. Nonatomic players control only a negligible
amount of flow, while atomic players control a larger, non-negligible amount of flow. Further,
atomic players may or may not be able to split their flow along different paths. Depending on the
players, three types of routing games are: games with (i) nonatomic players, (ii) atomic players
who pick a single path to route their flow, and (iii) atomic players who can split their flow along
several paths. These are nonatomic [20, 21, 23], atomic unsplittable [3, 9] and atomic splittable [7,
15, 18] routing games respectively. We study atomic splittable routing games in this work. These
games are less well-understood than either nonatomic or atomic unsplittable routing games. One
significant challenge here is that, unlike most other routing games, each player has an infinite
strategy space. Further, unlike nonatomic routing games, the players are asymmetric since each
player has different flow value.

An equilibrium flow in a routing game is a flow where no single player can change his flow
pattern and reduce his delay. Equilibria are of interest since they are a stable outcome of games.
In both atomic splittable and nonatomic routing games, equilibria exist under mild assumptions
on the delay functions [4, 16]. We refer to equilibria in atomic splittable games as Nash equilibria
and in nonatomic games as Wardrop equilibria [23]. While the Wardrop equilibrium is known to
be essentially unique [23], atomic splittable games can have multiple equilibria [5].

One measure of the quality of a flow is the total delay of the flow: the sum over all edges of the
product of the flow on the edge and the induced delay on the edge. For routing games, one conern
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is the degradation in the quality of equilibrium flow caused by lack of central coordination. This
is measured by the price of anarchy of a routing game, defined as the ratio of the total delay of
worst-case equilibrium in a routing game to the total delay of the flow that minimizes the total
delay. Tight bounds on the price of anarchy are known for nonatomic routing games [19], and are
extensively studied in various settings [7, 8, 19, 20, 18, 21, 22]. In [12], Hayrapetyan et al. consider
the total delay of nonatomic routing games when nonatomic players form cost-sharing coalitions.
These coalitions behave as atomic splittable players. Hayrapetyan et al. introduce the notion of
price of collusion as a measure of the price of forming coalitions. For an atomic splittable routing
game the price of collusion is defined as the ratio of the total delay of the worst Nash equilibrium
to the Wardrop equilibrium. Together, a bound α on the price of anarchy for nonatomic routing
games and a bound β on the price of collusion for an atomic splittable routing game, imply the
price of anarchy for the atomic splittable routing game is bounded by αβ.

For atomic splittable routing games, bounds on the price of anarchy are obtained in [7, 11].
These bounds do not match the best known lower bounds. Bounds on the price of collusion in
general also remains an open problem. Previously, the price of collusion has been shown to be 1
only in the following special cases: in the graph consisting of parallel links [12]; when the players
are symmetric, i.e. each player has the same flow value and the same source and sink [7]; and when
all delay functions are monomials of a fixed degree [2]. Conversely, if there are multiple sources
and sinks, the total delay of Nash equilibrium can be worse than the Wardrop equilibrium of equal
flow value, i.e., the price of collusion can exceed 1, even with linear delays [6, 7].

Our Contribution. Let C denote the class of differentiable nondecreasing convex functions. We
prove the following theorem for atomic splittable routing games.

Theorem 1. In single source-destination routing games on series-parallel graphs with delay func-
tions drawn from the class C, the price of collusion is 1.

We first consider the case when all delays are affine. We show that in the case of affine delays
in the setting described above, the total delay at equilibrium is largest when the players are
symmetric, i.e. all players have the same flow value (Section 3). To do this, we first show that the
equilibrium flow for a player i remains unchanged if we modify the game by changing slightly the
value of flow of any player with larger flow value than player i. Then starting from a game with
symmetric players, we show that if one moves flow from a player i evenly to all players with higher
flow value the cost of the corresponding equilibrium flow never increases. Since it is known that
the price of collusion is 1 if the players are symmetric [7], this shows that the bound extends to
arbitrary players with affine delays.

In Section 4, we extend the result for general convex delays, by showing that the worst case
price of collusion is obtained when the delays are affine.

In contrast to Theorem 1 which presents a bound on the price of collusion, we also present a
new bound on the price of anarchy of atomic splittable routing games in series-parallel graphs.

Theorem 2. In single source-destination routing games on series-parallel graphs, the price of
anarchy is bounded by k, the number of players.

This bound was proven earlier for parallel links in [11]. For nonatomic routing games bounds
on the price of anarchy depend on the delay functions in the graph and, in the case of polynomial
delays, the price of anarchy is bounded by O(d/ log d). These bounds are known to be tight even
on simple graphs consisting of 2 parallel links [19]. Theorem 2 improves on the bounds obtained
by Theorem 1 when k ≤ d/ log d. All missing proofs are contained in the appendix.



2 Preliminaries

Let G = (V, E) be a directed graph, with two special vertices s and t called the source and sink.
The vector f , indexed by edges e ∈ E, is defined as a flow of value v if the following conditions
are satisfied.

∑

w

fuw −
∑

w

fwu = 0, ∀u ∈ V − {s, t} (1)

∑

w

fsw −
∑

w

fws = v (2)

fe ≥ 0, ∀e ∈ E .

Here fuw represents the flow on arc (u, w). If there are several flows f1, f2, · · · , fk, we define
f := (f1,f2, · · · , fk) and f−i is the vector of the flows except f i. In this case the flow on an edge

fe =
∑k

i=1 f i
e.

Let C be the class of differentiable nondecreasing convex functions. Each edge e is associated
with a delay function le : R+ → R drawn from C. Note that we allow delay functions to be
negative. For a given flow f , the induced delay on edge e is le(fe). We define the total delay on
an edge e as the product of the flow on the edge and the induced delay Ce(fe) := fele(fe). The
marginal delay on an edge e is the rate of change of the total delay: Le(fe) := fel

′
e(fe) + le(fe).

The total delay of a flow f is C(f) =
∑

e∈E fele(fe).
An atomic splittable routing game is a tuple (G,v,l,s,t) where l is a vector of delay functions

for edges in G and v = (v1,v2,· · · ,vk) is a tuple indicating the flow value of the players from
1 to k. We always assume that the players are indexed by the order of decreasing flow value,
hence v1 ≥ v2 · · · ≥ vk. All players have source s and destination t. Player i has a strategy space
consisting of all possible s-t flows of volume vi. Let (f1, f2, · · · ,fk) be a strategy vector. Player
i incurs a delay Ci

e(f
i
e, fe) := f i

ele(fe) on each edge e, and his objective is to minimize his delay
Ci(f) :=

∑

e∈E Ci
e(f

i
e, fe). A set of players are symmetric if each player has the same flow value.

A flow is a Nash equilibrium if no player can unilaterally alter his flow and reduce his delay.
Formally,

Definition 3 (Nash Equilibrium). In an atomic splittable routing game, flow f is a Nash
equilibrium if and only if for every player i and every s-t flow g of volume vi, Ci(f i, f−i) ≤
Ci(g, f−i).

For player i, the marginal delay on edge e is defined as the rate of change of his delay on the
edge Li

e(f
i
e, fe) := le(fe) + f i

el
′
e(fe). For any s-t path p, the marginal delay on path p is defined

as the rate of change of total delay of player i when he adds flow along the edges of the path:
Li

p(f) :=
∑

e∈p Li
e(f

i
e, fe). The following lemma follows from Karush-Kuhn-Tucker optimality

conditions for convex programs [14] applied to player i’s minimization problem.

Lemma 4. Flow f is a Nash equilibrium flow if and only if for any player i and any two directed
paths p and q between the same pair of vertices such that on all edges e ∈ p, f i

e > 0, then
Li

p(f) ≤ Li
q(f).

By Lemma 4, at equilibrium the marginal delay of a player is the same on any s-t path on
every edge of which he has positive flow. For a player i, the marginal delay is Li(f) := Li

p(f),
where p is any s-t path on which player i has positive flow on every edge.



For a given flow f and for every player i, we let Ei(f) = {e|f i
e > 0}. P i is the set of all directed

s-t paths p on which for every e ∈ p, f i
e > 0. We will use e ∈ P i to mean that the edge e is in

some path p ∈ P i; then e ∈ P i ⇔ e ∈ Ei. Let p be a directed simple s-t path. A path flow on
path p is a directed flow on p of value fp. A cycle flow along cycle C is a directed flow along C
of value fC . Any flow f can be decomposed into a set of directed path flows and directed cycle
flows {fp}p∈P ∪{fc}c∈C , [1]. This is a flow decomposition of f . Directed cycle flows cannot exist in
atomic splittable or nonatomic games (this follows easily from Lemma 4). Thus, f i in these games
can be expressed as a set of path flows {f i

p}p∈Pi such that f i
e =

∑

p∈Pi:e∈p f i
p. This is a path flow

decomposition of the given flow. A generalized path flow decomposition is a flow decomposition
along paths where we allow the path flows to be negative.

Series-Parallel Graphs. Given graphs G1 = (V1, E1) and G2 = (V2, E2) and vertices v1 ∈ V1,
v2 ∈ V2, the operation merge(v1, v2) creates a new graph G′ = (V ′ = V1 ∪ V2, E

′ = E1 ∪ E2),
replaces v1 and v2 in V ′ with a single vertex v and replaces each edge e = (u, w) ∈ E′ incident to
v1 or v2 by an edge incident to v, directed in the same way as the original edge.

Definition 5. A tuple (G, s, t) is series-parallel if G is a single edge e = (s, t), or is obtained by
a series or parallel composition of two series-parallel graphs (G1, s1, t1) and (G2, s2, t2). Nodes s
and t are terminals of G.
(i) Parallel Composition: s = merge(s1, s2), t = merge(t1, t2),
(ii) Series Composition: s := s1, t := t2, v = merge(s2, t1).

In directed series-parallel graphs, all edges are directed from the source to the destination and
the graph is acyclic in the directed edges. This is without loss of generality, since any edge not
on an s-t path is not used in an equilibrium flow, and no flow is sent along a directed cycle. The
following lemma describes a basic property of flows in a directed series-parallel graph.

Lemma 6. Let G = (V, E) be a directed series-parallel graph with terminals s and t. Let h be an
s-t flow of value |h|, and c is a function defined on the edges of the graph G. (i) If

∑

e∈p c(e) ≥ κ
on every s-t path p, then

∑

e∈E c(e)he ≥ κ|h|. (ii) If
∑

e∈p c(e) = κ on every s-t paths p then
∑

e∈E c(e)he = κ|h| .

Vectors and matrices in the paper, except for flow vectors, will be referred to using boldface.
1 and 0 refer to the column vectors consisting of all ones and all zeros respectively. When the size
of the vector or matrix is not clear from context, we use a subscript to denote it, e.g. 1n.

Uniqueness of Equilibrium Flow. The equilibria in atomic splittable and nonatomic routing
games are known to be unique for affine delays, up to induced delays on the edges (this is true
for a larger class of delays [4], [16], but here we only need affine delays). Although there may be
multiple equilibrium flows, in each of these flows the delay on an edge remains unchanged. If the
delay functions are strictly increasing, then the flow on each edge is uniquely determined. However
with constant delays, for two parallel links between s and t with the same constant delay on each
edge, any valid flow is an equilibrium flow. In this paper, we assume only that the delay functions
are differentiable, nondecreasing and convex, hence we allow edges to have constant delays. We
instead assume that in the graph, between any pair of vertices, there is at most one path on which
all edges have constant delay. This does not affect the generality of our results. In graphs without
this restriction there are Nash and Wardrop equilibrium flows in which for every pair of vertices,
there is at most one constant delay path which has flow in either equilibrium. To see this, consider



any equilibrium flow in a general graph. For every pair of vertices with more than one constant
delay path between them, only the minimum delay path will be used at equilibrium. If there are
multiple minimum constant delay paths, we can shift all the flow onto a single path; this does not
affect the marginal delay of any player on any path, and hence the flow is still an equilibrium flow.

Lemma 7. For atomic splittable and nonatomic routing games on series-parallel networks with
affine delays and at most one path between any pair of vertices with constant delays on all edges,
the equilibrium flow is unique.

For technical reasons, for proving Theorem 1 we also require that every s-t path in the graph
have at least one edge with strictly increasing delay. We modify the graph in the following way:
we add a single edge e in series with graph G, with delay function le(x) = x. It is easy to see that
for any flow, this increases the total delay by exactly v2 where v is the value of the flow, and does
not change the value of flow on any edge at equilibrium. In addition, if the price of collusion in
the modified graph is less than one, then the price of collusion in the original graph is also less
than one. The proof of Theorem 2 does not use this assumption.

3 Equilibria with Affine Delays

In this section we prove Theorem 1 where all delays are affine functions of the form le(x) = aex+be.
Our main result in this section is:

Theorem 8. In a series-parallel graph with affine delay functions, the total delay of a Nash equi-
librium is bounded by that of a Wardrop equilibrium of the same total flow value.

We first present the high-level ideas of our proof. Given a series-parallel graph G, terminals s
and t, and edge delay functions l, let f(·) : R

k
+ → R

m×k
+ denote the function mapping a vector

of flow values to the equilibrium flow in the atomic splittable routing game. By Lemma 7, the
equilibrium flow is unique and hence the function f(·) is well-defined. Let (G, u, l, s, t) be an atomic
splittable routing game. Our proof consists of the following three steps:

Step 1. Start with vi =
∑k

j=1 uj/k for each player i, i.e. the players are symmetric.
Step 2. Gradually adjust the flow values v of the k players so that the total delay of the equilib-

rium flow f(v) is monotonically nonincreasing.
Step 3. Stop the flow redistribution process when for each i, vi = ui.

In step 1, we make use of a result of Cominetti et al. [7].

Lemma 9. [7] Let (G, v, l, s, t) denote an atomic splittable routing game with k symmetric players.

Let g be a Wardrop equilibrium of the same flow value
∑k

i=1 vi. Then C(f(v)) ≤ C(g).

Step 2 is the heart of our proof. The flow redistribution works as follows. Let vi denote the
current flow value of player i. Initially, each player i has vi =

∑k

j=1 uj/k. Consider each player in
turn from k to 1. We decrease the flow of the kth player and give it evenly to the first k−1 players
until vk = uk. Similarly, when we consider the rth player, for any r < k, we decrease vr and give
the flow evenly to the first r − 1 players until vr = ur. Throughout the following discussion and
proofs, player r refers specifically to the player whose flow value is currently being decreased in
our flow redistribution process.

Our flow redistribution strategy traces out a curve S in R
k
+, where points in the curve corre-

spond to flow value vectors v.



Lemma 10. For all e ∈ E, i ∈ [k], the function f(v) is continuous and piece-wise linear along
the curve S, with breakpoints occurring where the set of edges used by any player changes.

In what follows, we consider expressions of the form ∂J(f(v))
∂vi , where J is some differentiable

function defined on a flow (e.g., the total delay, or the marginal delay along a path). The expression
∂J(f(v))

∂vi considers the change in the function J(·) evaluated at the equilibrium flow, as the flow
value of player i changes by an infinitesimal amount, keeping the flow values of the other players
constant. Though f(v) is not differentiable at all points in S, S is continous. Therefore, it suffices
to look at the intervals between these breakpoints of S. In the rest of the paper, we confine our
attention to these intervals.

We show that when the flow values are adjusted as described, the total delay is monotonically
nonincreasing.

Lemma 11. In a series-parallel graph, suppose that v1 = v2 = · · · = vr−1 ≥ vr ≥ · · · ≥ vk. If

i < r, then ∂C(f(v))
∂vi ≤ ∂C(f(v))

∂vr .

Proof of Theorem 8. By Lemma 9, the equilibrium flow in Step 1 has total delay at most the
delay of the Wardrop equilibrium. We show below that during step 2, C(f(v)) does not increase.
Since the total volume of flow remains fixed, the Wardrop equilibrium is unchanged throughout.
Thus, the price of collusion does not increase above 1, and hence the final equilibrium flow when
v = u also has this property.

Let v be the current flow values of the players. Since C(f(v)) is a continuous function of v

(Lemma 10), it is sufficient to show that the C(f(v)) does not increase between breakpoints.
Define x as follows: x

r = −1; x
i = 0, if i > r; and x

i = 1
r−1 , if 1 ≤ i < r. The vector x is the

rate of change of v when we decrease the flow of player r in Step 2. Thus, using Lemma 11, the
change in total delay between two breakpoints in S satisfies

lim
δ→0

C(f(v + δx)) − C(f(v))

δ
= − ∂C(f(v))

∂vr
+

r−1
∑

i=1

∂C(f(v))

∂vi

1

r − 1
≤ 0 .

⊓⊔
The proof of Lemma 11 is described in Section 3.2. Here we highlight the main ideas. To

simplify notation, when the vector of flow values is clear from the context, we use f instead of
f(v) to denote the equilibrium flow.

By chain rule, we have that C(f)
∂vi =

∑

e∈E
∂Le(fe)

∂fe

∂fe

∂vi . The exact expressions of ∂C(f)
∂vi , for

1 ≤ i ≤ r, are given in Lemmas 18 and 19 in Section 3.2. Our derivations use the fact that it is
possible to simplify the expression ∂fe

∂vi using the following “nesting property” of a series-parallel
graph.

Definition 12. A graph G with delay functions l, source s, and destination t satisfies the nesting
property if all atomic splittable routing games on G satisfy the following condition: for any players
i and j with flow values vi and vj , vi > vj if and only if on every edge e ∈ E, for the equilibrium
flow f , either f i

e = f j
e = 0 or f i

e > f j
e .

Lemma 13 ([5]). A series-parallel graph satisfies the nesting property for any choice of non-
decreasing, convex delay functions.

If a graph satisfies the nesting property, symmetric players have identical flows at equilibrium.
When the flow value of player r is decreased in Step 2, the first r − 1 players are symmetric.



Thus, by Lemma 13, these players have identical flows at equilibrium. Hence, for any player i < r,
f i

e = f1
e and Li

e(f
i
e, fe) = L1

e(f
1
e , fe) for any edge e. With affine delays, the nesting property has

the following implication.

Lemma 14 (Frozen Lemma). Let f be an equilibrium flow in an atomic splittable routing game
(G,v,l,s,t) with affine delays on the edges, and assume that the nesting property holds for (G,l,s,t).

Then for all players j, j 6= i with Ej(f) ⊆ Ei(f) and all edges e,
∂f j

e

∂vi
= 0.

The frozen lemma has two important implications for our proof. Firstly, in Step 2, players
r + 1, · · · , k will not change their flow at equilibrium. Secondly, this implies a simple expression
for ∂fe

∂vi , 1 ≤ i ≤ r,

∂fe

∂vr
=

k
∑

i=1

∂f i
e

∂vr
= (r − 1)

∂f1
e

∂vr
+

∂f r
e

∂vr
. (3)

∂fe

∂vi
=

k
∑

i=1

∂f i
e

∂vi
=

∂f i
e

∂vi
, ∀i < r . (4)

3.1 Proof of Lemma 14 (Frozen Lemma)

By Lemma 10, we can assume that f is between the breakpoints of S and is thus differentiable.

Lemma 15. If player h has positive flow on every edge of two directed paths p and q between the

same pair of vertices, then
∂Lh

p(f)

∂vi =
∂Lh

q (f)

∂vi .

Proof. Since f is an equilibrium, Lemma 4 implies that Lh
p(f) = Lh

q (f). Differentiation of the two
quantities are the same since f is maintained as an equilibrium. ⊓⊔

Lemma 16. Let G be a directed acyclic graph. For an atomic splittable routing game (G, v, l, s, t)

with equilibrium flow f , let c and κ be defined as in Lemma 6. Then
∑

e∈E c(e)
∂fi

e(v)
∂vj = κ if i = j,

and is zero otherwise.

Proof. Define x as follows: x
j = 1 and x

i = 0 for j 6= i. Then

∑

e∈E

c(e)
∂f i

e(v)

∂vj
=
∑

e∈E

c(e)

(

lim
δ→0

f i
e(v + δx) − f i

e(v)

δ

)

= lim
δ→0

∑

e∈E c(e)(f i
e(v + δx) − f i

e(v))

δ
,

where the second equality is due to the fact that f i
e(·) is differentiable.

For any two s-t flows f i, gi, it follows from Lemma 6 that
∑

e∈E c(e)(f i
e − gi

e) = κ(|f i| − |gi|).
If i 6= j then |f i(v + δx)| = |f i(v)|, hence

∑

e∈E c(e)(f i
e(v + δx) − f i

e(v)) = 0. If i = j, then
|f i(v + δx)| − |f i(v)| = δ, implying that

∑

e∈E c(e)(f i
e(v + δx) − f i

e(v)) = κδ. The proof follows.
⊓⊔

Proof of Lemma 14. We prove by induction on the decreasing order of the index of j. We make
use of the folllowing claim.



Claim 17 Let Sj = {h : Eh(f) ⊇ Ej(f)}. For player j and an s-t path p on which j has positive
flow,

|Sj|
∂Lj

p(f)

∂vi
−

∑

h∈Sj\{j}

∂Lh
p(f)

∂vi
= (|Sj | + 1)

∑

e∈p ae
∂fj

e

∂vi

+
∑

e∈p ae

∂
P

h:Eh(f)⊂Ej (f)
fh

e

∂vi .

Proof. Given players i and h,

∂Lh
p(f)

∂vi
=
∑

e∈p

ae

∂(fe + fh
e )

∂vi
. (5)

Summing (5) over all players h in Sj\{j} and subtract it from |Sj | times (5) for player j gives
the proof. ⊓⊔

Let Gj = (V, Ej). By definition, all players h ∈ Sj have flow on every s-t path in this graph.

Lemma 15 implies that for any s-t paths p, q in Gj and any player h ∈ Sj,
∂Lh

p(f)

∂vi =
∂Lh

q (f)

∂vi . The
expression on the left hand side of Claim 17 is thus equal for any path p ∈ Pj , and therefore so is
the expression on the right.

For the base case j = k, the set {h : Eh(f) ⊂ Ej(f)} is empty. Hence, the second term on the

right of Claim 17 is zero, and by the previous discussion, the quantity
∑

e∈p ae
∂fk

e

∂vi is equal for any

path p ∈ Pk. Define c(e) = ae
∂fk

e

∂vi for each e ∈ Ek and κ =
∑

e∈p ae
∂fk

e

∂vi for any s-t path p in Gk.

By Lemma 16,
∑

e∈Ej(f) c(e)
∂fk

e

∂vi =
∑

e∈Ej(f) ae

(

∂fk
e

∂vi

)2

= 0. Hence,
∂fk

e

∂vi = 0, ∀e ∈ E.

For the induction step j < k, due to the inductive hypothesis,
∂fh

e

∂vi = 0 for h > j. Since by the
nesting property if Eh(f) ⊂ Ej(f) then h > j, the second term on the right of Claim 17 is again

zero. By the same argument as in the base case,
∂fj

e

∂vi = 0, for each e ∈ E, proving the lemma. ⊓⊔

3.2 Proof of Lemma 11

An unstated assumption for all lemmas in this section is that the nesting property holds. For the
proof of Lemma 11, our first step is to express the rate of change of total delay in terms of the
rate of change of marginal delay of the players, as the flow value of player r is being decreased.
The next lemma gives this expression for the first r − 1 players.

Lemma 18. For f = f(v), and for each i < r, ∂C(f)
∂vi = Li(f) + ∂Li(f)

∂vi

P

k
j=2 vj

2 .

Proof. For any player j, the set of edges used by player j is a subset of the edges used by player
i < r, since player i has the largest flow value and we assume that the nesting property holds.
Hence, the total delay at equilibrium C(f) =

∑

e∈Ei(f) Ce(fe).

∂C(f)

∂vi
=

∑

e∈Ei(f)

∂Ce(fe)

∂fe

∂fe

∂vi
=

∑

e∈Ei(f)

(2aefe + be)
∂fe

∂vi

=
∑

e∈Ei(f)

∂fe

∂vi



Li
e(f

i
e, fe) + ae

∑

j 6=i

f j
e



 . (6)



By Lemma 16 with c(e) = Li
e(f

i
e, fe) and κ = Li(f),

∑

e∈Ei Li
e(f

i
e, fe)

∂fe

∂vi = Li(f). Thus,
∂C(f)

∂vi

= Li(f) +
∑

j 6=i

∑

e∈Ei

aef
j
e

∂fe

∂vi
.

By (4), we have that ae
∂fe

∂vi = 1
2ae

∂(fe+fi
e)

∂vi = 1
2

∂Li
e(fi

e,fe)
∂vi . It follows that

∂C(f)

∂vi
= Li(f) +

1

2

∑

j 6=i

∑

e∈Ei

f j
e

∂Li
e(f

i
e, fe)

∂vi

= Li(f) +
1

2

∑

j 6=i

∑

e∈Ei

∑

q∈Pi:e∈q

f j
q

∂Li
e(f

i
e, fe)

∂vi
,

where the last equality is because for any player j, f j
e =

∑

q∈Pj :e∈q f j
q =

∑

q∈Pi:e∈q f j
q , and the

nesting property. Reversing the order of summation and observing that
∑

e∈p:p∈Pi

∂Li
e(f

i
e,fe)

∂vi =
∂Li(f)

∂vi and vi = v1, we have the required expression. ⊓⊔

We obtain a similar expression for ∂C(f)
∂vr .

Lemma 19. Let f = f(v). For player r whose flow value decreases in Step 2,

∂C(f)

∂vr
= L1(f) +

r − 1

r + 1

(

∂L1(f)

∂vr

k
∑

i=r

vi

)

+
1

r + 1

(

∂Lr(f)

∂vr

k
∑

i=r

vi

)

+ (r − 2)

(

∑

e∈E1

aef
1
e

∂fe

∂vr

)

. (7)

Let P denote the set of all s-t paths in G, and for equilibrium flow f , let {f i
p}p∈P,i∈[k] denote

a path flow decomposition of f . For players i, j ∈ [r] with player r defined as in the flow redistri-
bution, we will be interested in the rate of change of marginal delay of player i along an s-t path
p as the value of flow controlled by player j changes. Given a decomposition {f i

p}p∈P,i∈[k] along
paths of the equilibrium flow, this rate of change can be expressed as

∂Li
p(f)

∂vj
=

∑

e∈p

ae

∂(fe + f i
e)

∂vj
=
∑

e∈p

ae

∑

q∈P:e∈q

∂(fq + f i
q)

∂vj

=
∑

q∈P

∂(fq + f i
q)

∂vj

∑

e∈q∩p

ae . (8)

Let upq =
∑

e∈p∩q ae for any paths p, q ∈ P and the matrix U is defined as the matrix of size
|P| × |P| with entries [upq]p,q∈P .

Lemma 20. For an equilibrium flow f , there exists a generalized path flow decomposition {f i
p}p∈P

i
,i∈[k]

so that Pi ⊆ P i for all i ∈ [k] and P1 ⊇ P2 ⊇ · · ·Pk
. Moreover, each of the submatrices

Ui = [upq]p,q∈P
i of U is invertible, ∀i ∈ [k].



Since P i ⊆ Pi−1
, we can arrange the rows and columns of U so that Ui is a leading principal

submatrix of U for every player i.
Since matrix Ui is invertible, we define Wi = U−1. For a matrix A ∈ R

m×n, we use Ap to
refer to the pth row vector and apq to refer to the entry in the pth row and qth column. We define

‖A‖ =
∑

i∈[m],j∈[n]

aij .

Lemma 21. For equilibrium flow f and sets P i ⊆ P as described in Lemma 20, for all players
i ∈ [k], ‖Wi‖ ≥ ‖Wi+1‖ and ‖Wk‖ > 0.

The next lemma gives the rate of change of marginal delay at equilibrium.

Lemma 22. For player r defined as in the flow redistribution process and any player i < r, for
f = f(v),

(i)
∂Li(f(v))

∂vi
=

2

‖Wi‖
,

(ii)
∂Li(f)

∂vr
=

1

‖Wi‖
,

(iii)
∂Lr(f)

∂vr
=

r + 1

r

1

‖Wr‖ +
r − 1

r

1

‖W1‖
.

If we have just two players, it follows by substituting i = 1 and r = 2 and the expressions

from Lemma 22 into Lemma 18 and Lemma 19 that ∂C(f)
∂v2 − ∂C(f)

∂v1 = 1
2v2

(

1

‖W2
‖
− 1

‖W1
‖

)

. By

Lemma 21, ‖W1‖ ≥ ‖W2‖, and hence ∂C(f)
∂v2 − ∂C(f)

∂v1 ≥ 0, proving Lemma 11 for the case of two
players. However, if we have more than two players, when r 6= 2 the fourth term on the right hand
side of (7) has nonzero contribution. Calculating this term is complicated. However, we show the
following inequality for this expression.

Lemma 23. For f = f(v) and the player r as defined in the flow redistribution process,
∑

e∈E1

aef
1
e

∂fe

∂vr
≥

v1

‖W1‖
− vr

r

(

1

‖W1‖
− 1

‖Wr‖

)

.

Proof of Lemma 11. For any player i < r, substituting the expression for ∂Li(f)
∂vi from Lemma 22

into Lemma 18, and observing that Li(f) = L1(f) and ‖Wi‖ = ‖W1‖ since the flow of the first
r − 1 players is identical,

∂C(f)

∂vi
= L1(f) +

∑k

j=2 vj

‖W1‖ . (9)

Similarly, substituting from Lemmas 22 and 23 into Lemma 19 and simplifying,

∂C(f)

∂vr
≥ L1(f) +

∑k

i=2 vi

‖W1‖
+

1

r

(

1

‖Wr‖ − 1

‖W1‖

)

(

k
∑

i=2

vi − (r − 2)(v1 − vr)

)

. (10)



We subtract (9) from (10) to obtain, for any player i < r,

∂C(f)

∂vr
− ∂C(f)

∂vi
≥ 1

r

(

1

‖Wr‖ − 1

‖W1‖

)

(

k
∑

i=2

vi − (r − 2)(v1 − vr)

)

. (11)

From Lemma 21 we know that ‖W1‖ ≥ ‖Wr‖. Also,
∑k

i=2 vi = (r − 2)v1 +
∑k

i=r vi ≥
(r − 2)(v1 − vr). Hence, the expression on the right of (11) is nonnegative, completing the proof.

⊓⊔

4 Convex delays on series-parallel graphs

Let C denote the class of continuous, differentiable, nondecreasing and convex functions. In this
section we prove the following result.

Theorem 24. The price of collusion on a series-parallel graph with delay functions taken from
the set C is at most the price of collusion with linear delay functions.

This theorem combined with Theorem 8, suffices to prove Theorem 1. The following lemma is
proved by Milchtaich.3

Lemma 25 ([13]). Let (G,v,l,s,t) and (G,ṽ,̃l,s,t) be nonatomic routing games on a directed
series-parallel graph with terminals s and t, where v ≥ ṽ, and ∀x ∈ R

+ and e ∈ E, le(x) ≥ l̃e(x).
Let f and f̃ be equilibrium flows for the games with delays l and l̃ respectively. Then C(f) ≥ C̃(f̃).

We now use Lemma 25 to prove Theorem 24.

Proof of Theorem 24. Given a series-parallel graph G with delay functions l taken from C, let g
denote the atomic equilibrium flow and f denote the nonatomic equilibrium. We define a set of

linear delay functions l̃ as follows. For an edge, l̃e(x) = aex + be, where ae = ∂le(fe)
∂fe

∣

∣

∣

fe=ge

and

be = le(ge)− aege. Hence, the delay function l̃e is the tangent to the original delay function at the
atomic equilibrium flow. Note that a convex continuous differentiable function lies above all of its
tangents.

Let g̃ and f̃ denote the atomic and nonatomic equilibrium flows respectively with delay func-
tions l̃. Then by the definition of l̃, g̃ = g and l̃(g̃) = l(g). Hence, C̃(g̃) = C(g). Further, by

Lemma 25, C(f) ≥ C̃(f̃). Since C(g)
C(f) ≤ C̃(g̃)

C̃(f̃)
, the proof follows.

5 Total Delay without the Nesting Property

If the nesting property does not hold, the total delay can increase as we decrease the flow of a
smaller player and increase the flow of a larger player, thus causing our flow redistribution strategy
presented in Section 3.2 to break down. An example of this is given in the appendix.

3 Milchtaich in fact shows the same result for undirected series-parallel graphs. In our context, every
simple s-t path in the underlying undirected graph is also an s-t path in the directed graph G.
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A Appendix

A.1 Proof of Lemma 6

Proof. Let P denote the set of simple directed s-t path in G; since we are considering only series-
parallel graphs, there are no directed cycles. Consider a path flow decomposition {hp}p∈P for h.
For any edge e on an s-t path, he =

∑

p∈P :e∈p hp. Thus,



∑

e∈E

c(e)he =
∑

e∈E

c(e)
∑

p∈P:e∈p

hp =
∑

p∈P

hp

∑

e∈p

c(e) .

The proof for both (i) and (ii) follows immediately. ⊓⊔

A.2 Proof of Lemma 7

Claim 26 Let (G, s, t) be an undirected series-parallel graph. If f is a circulation or an s-t flow,
then any directed cycle C of f must be contained in a series-parallel subgraph (G′, s′, t′) of G and
must pass through s′ and t′.

Proof. We prove by induction on the size of the graph G. In the base case G is a single edge
and the claim is obviously true. For the induction step, first suppose G is a series-composition of
G1 and G2. As f restricted to G1 or G2 is also a flow or a circulation, we can apply induction
hypothesis. Suppose that G is a parallel-composition of G1 and G2. A directed cycle C of f either
uses edges in both G1 and G2, or only those in either one of them. In the former case, C must use
both s and t. For the latter, observe that f restricted to G1 or G2 is also a circulation or a s-t
flow (or a t-s flow). Thus induction hypothesis gives the proof. ⊓⊔

Proof of Lemma 7. We prove by contradiction. Suppose that there are two equilibrium flows
f 6= g. Then f − g is a circulation in the underlying undirected graph G. Moreover, fe − ge 6= 0
only if ae 6= 0, since equilibrium flows are unique up to induced delay on the edges. By Claim 26,
any directed cycle C in f − g must be contained in a series-parallel subgraph (G′, s′, t′) of G and
C passes through s′ and t′. Since C uses only edges with constant delays, there are two disjoint
directed paths from s′ to t′ with constant delays, a contradiction. ⊓⊔

A.3 Proof of Lemma 10

As before, function f(·) : R
k
+ → R

m×k
+ is the function from the vector of flow values v ∈ R

k
+ to

the unique equilibrium flow for v. Functions f i(·) and f i
e(·) are the projections of f(·) for player

i, and for player i on edge e respectively.
Our flow redistribution strategy traces out a curve S in R

k
+, where coordinate i corresponds

to the flow value of player i. S is then piecewise linear, and for each fixed value of r, when flow
is being redistributed from player r to players 1, . . . , r − 1, the curve S is linear. Define a linear
interval of S to be the set of points in S when a fixed player r is decreasing in flow value. Then
the following claim shows that in a linear interval of S, where the set of paths any player uses also
does not change, the function f(·) is linear.

Claim 27 Let u, w be points in a linear interval of S such that for every player i the set of edges
on which player i has strictly positive flow is the same in both f(u) and f(w). Assume ur < wr.
Then for any v = λu + (1 − λ)w where λ ∈ [0, 1], f(v) = λf(u) + (1 − λ)f(w).

Proof. Let g = λf(u) + (1− λ)f(w). For any edge e and any player i, Li
e(g) = ae(ge + gi

e) + be =
ae(λ(f i

e(u)+fe(u))+(1−λ)(f i
e(w)+fe(w)))+be = λ(ae(f

i
e(u)+fe(u))+be)+(1−λ)(ae(f

i
e(w)+

fe(w)) + be) = λLi
e(f(u)) + (1 − λ)(Li

e(f(w))). Thus for any s-t path p, Li
p(g) = λLi

p(f(u)) +

(1 − λ)Li
p(f(w)).



To show that g is an equilibrium flow, we need to show that for every player i and any s-t
paths p, q so that gi

e > 0 for every edge e ∈ p, Li
p(g) ≤ Li

q(g). Given player i, and s-t paths p, q, if

gi
e > 0 then both f i

e(u) and f i
e(w) are > 0, since we are assuming that the set of edges on which

player i has strictly positive flow is the same in both f(u) and f(w). Hence for both u and w,
the marginal delay along path p is at most that along path q; then this must be true for a linear
combination as well, and hence g must be an equilibrium flow. ⊓⊔

We define the set R = 2[k]×E as follows: the set R contains all possible sets of pairs (i, e),
where i is a player and e is an edge. Hence, R contains all possible ways in which the players can
put their flow on the edges. In particular, any flow f = {f i}i∈[k] can be mapped to an element of
R by considering all pairs (i, e) such that player i has strictly positive flow on edge e in f , and
mapping f to the set containing all such pairs; this set is by definition an element of R.

Define the function γ : Rk
+ → R as the mapping just described from the equilibrium flow given

by the input vector of flow values to an element of R.

Corollary 28. The set of points in a linear interval of S where the function γ is discontinuous,
is finite.

Proof. For a given linear interval of S, let T denote the set of points where the function γ is
discontinuous, i.e., where the set of edges used by any player in f(·) changes. We show that the
size of the set T is bounded by 2|R|. Assume the set T contains three points v1, v2, v3 which
map to the same point in T , i.e., γ(v1) = γ(v2) = γ(v3). But since we are considering a linear
interval, one of these points must lie between the others, and by Claim 27 the set of edges used
by any player at the point in between cannot change. Hence the point in the middle cannot be
in set T . It follows that at most two points in T can be mapped to same point in R, and hence
|T | ≤ 2|R|. ⊓⊔

Proof of Lemma 10. It follows from Claim 27 that if there are discontinuities in function f(·),
then they occur where the set of edges used by any player changes and that in between these
points, the function f(·) is linear. We show that f(·) is also continuous.

Let u be a point of discontinuity for function f(·). In order to use Claim 27, we assume x+ and
x− to be vectors in the direction of S at u, so that u+ ǫx+ and u− ǫx− are points in S, for small
enough ǫ. We show the left-continuity of f(·); right-continuity follows from the same arguments.

By Corollary 28, in a small neighbourhood of u, the number of points where any player changes
the set of edges it uses is finite. Let w

′ be the closest point to u where this happens, then
picking w slightly closer to u, the set of edges used by any player does not change in the interval
[w, u). Then by Claim 27, the limit of the sequence limǫ→0 f(w + ǫx+) is well-defined. Let fu =
limǫ→0 f(u+ ǫx+). Since the set of flows is a closed set, fu is a flow. We will show that fu = f(u),
by showing that fu is an equilibrium flow; then by Lemma 7, fu = f(u).

If fu is not an equilibrium flow, then there exist s-t paths p, q and player i such that f i
u

is
strictly positive on every edge of p and Li

p(fu) > Li
q(fu). But then by continuity, these inequalities

should hold even if we shift from u slightly; i.e. there exists ǫ > 0 s.t. f i(u + ǫx+) has strictly
positive flow on every edge of p and Li

p(f(u + ǫx+)) > Li
q(f(u + ǫx+)). By definition of f(·) and

characterization of an equilibrium flow, this cannot be. Hence fu must be an equilibrium flow.
Since we know the equilibrium flow is unique by Lemma 7, fu = f(u), completing the proof. ⊓⊔

A.4 Proof of Lemma 19

Proof of Lemma 19. Proceeding as in the proof of Lemma 18, the rate of change of cost as the
value of flow of player r changes can be written as



∂C(f)

∂vr
= L1(f) +

∑

i>1

∑

e∈E1

aef
i
e

∂fe

∂vr
.

Since f i
e = f1

e , for all players i < r,

∂C(f)

∂vr
= L1(f) + (r − 2)

∑

e∈E1

aef
1
e

∂fe

∂vr
+

k
∑

i=r

∑

e∈E1

aef
i
e

∂fe

∂vr
. (12)

We now concentrate on the third term on the right hand side of (12), i.e. the expression
∑k

i=r

∑

e∈E1 aef
i
e

∂fe

∂vr . Since the players i ≥ r do not have flow on edges e /∈ Er, we can sum

over edges e ∈ Er instead of E1. Also, by Lemma 14, ∂fe

∂vr =
∑r

j=1
∂fj

e

∂vr , and hence (r + 1) ∂fe

∂vr =
∑r

j=1
∂(fe+fj

e )
∂vr . Now

k
∑

i=r

∑

e∈E1

aef
i
e

∂fe

∂vr
=

1

r + 1

k
∑

i=r

∑

e∈Er

aef
i
e

r
∑

j=1

∂(fe + f j
e )

∂vr
.

For player i, let {f i
p}p∈Pi be an arbitrary path flow decomposition of the equilibrium flow.

Since ae
∂(fe+fj

e )
∂vr =

∂Lj
e(f)

∂vr , and for any player i ≥ r, f i
e =

∑

p∈Pr:e∈p f i
p:

k
∑

i=r

∑

e∈E1

aef
i
e

∂fe

∂vr
=

1

r + 1

k
∑

i=r

r
∑

j=1

∑

e∈Er

∂Lj
e(f)

∂vr

∑

p∈Pr :e∈p

f i
p =

1

r + 1

k
∑

i=r

r
∑

j=1

∑

p∈Pr

f i
p

∂Lj
p(f)

∂vr
,

where the last equality is obtained by simply reversing the order of summation and observing that
∑

e∈p

∂Lj
e(f)

∂vr =
∂Lj

p(f)

∂vr .
For any player j ≤ r, the rate of change of marginal delay on any path p ∈ Pr is the same,

and hence
∂Lj

p(f)

∂vr = ∂Lj(f)
∂vr . Then

k
∑

i=r

∑

e∈E1

aef
i
e

∂fe

∂vr
=

1

r + 1





r−1
∑

j=1

∂Lj(f)

∂vr

k
∑

i=r

∑

p∈Pr

f i
p +

∂Lr(f)

∂vr

k
∑

i=r

∑

p∈Pr

f i
p





=
1

r + 1





r−1
∑

j=1

∂Lj(f)

∂vr

k
∑

i=r

vi +
∂Lr((f)

∂vr

k
∑

i=r

vi



 .

Since all players j < r have the same flow at equilibrium,

k
∑

i=r

∑

e∈E1

aef
i
e

∂fe

∂vr
=

1

r + 1

(

(r − 1)
∂L1(f)

∂vr

k
∑

i=r

vi +
∂Lr(f)

∂vr

k
∑

i=r

vi

)

.

Substituting into (12),

∂C(f)

∂vr
= L1(f) + (r − 2)

∑

e∈E1

aef
1
e

∂fe

∂vr
+

1

r + 1

(

(r − 1)
∂L1(f)

∂vr

k
∑

i=r

vi +
∂Lr(f)

∂vr

k
∑

i=r

vi

)

,

completing the proof. ⊓⊔



A.5 Proof of Lemma 20 and Lemma 21

As earlier, the players are ordered according to decreasing flow value so that player 1 has the
largest flow value and player k has the smallest. By Lemma 13, Ek ⊆ Ek−1 ⊆ · · · ⊆ E1 and hence
Pk ⊆ Pk−1 ⊆ · · · ⊆ P1.

Given a set of s-t paths P ′, we define an edge-path incidence matrix Y′ as the matrix with
rows corresponding to edges e ∈ E and columns corresponding to paths p ∈ P ′. Entry ye,p =

√
ae

if edge e is in path p, and is 0 otherwise.

Claim 29 Let Y′ be the edge-path incidence matrix for a given set of s-t paths P ′. Any column
vector λ = [λp]p∈P′ in the null space of Y′ is a generalized path flow decomposition of a flow of
value 0, with λe =

∑

p∈P′:e∈p λp = 0 ∀e ∈ E.

Proof. Since Y′λ = 0, for all edges e ∈ E,
∑

p∈P′ λpye,p =
√

ae

∑

p∈P′:e∈p λp =
√

aeλe = 0. Hence
on every edge, either ae = 0 or λe = 0. Recall that we modified our graph by adding an initial
edge e′ in series with the graph, with delay function x. Since all paths must use edge e′, and
ae′ > 0, 0 = λe′ =

∑

p∈P′ λp. If on any edge e ∈ E, λe 6= 0, then there is another flow h of value
0, h : he = 0 ∀e ∈ E. Then there is a cycle C on every edge of which λe 6= he. Since every cycle in
the graph has an edge with ae > 0, there is an edge e ∈ E such that λe 6= 0 and ae 6= 0. This is a
contradiction, and hence λ = h. ⊓⊔

Proof of Lemma 20. Each s-t path p corresponds to a vector zp of size |E| and with entries

zp
e =

√
ae if e ∈ p, and 0 otherwise. The paths Pi

and the generalized path flow decomposition

{f i
p}p∈P

i are constructed by induction as follows. Let Pk+1 = Pk+1
= ∅, then in the base case,

the set of vectors zp corresponding to paths in Pk+1
are a basis for the set {zp : p ∈ Pk+1}. Given

a basis {zp : p ∈ Pi+1} for the set {zp : p ∈ P i+1}, we can extend the basis to a larger basis

for the set {zp : p ∈ P i}. We define P i
is the set of paths in this extended basis. By definition,

P i ⊇ Pi+1
.

The generalized path flow decomposition {f i
p}p∈P

i is obtained as follows. Let {gi
p}p∈Pi be an

arbitrary flow decomposition, and initially let f i
p = gi

p for paths p ∈ P i
. For each path q ∈ P i \Pi

,

since {zp : p ∈ Pi} is a basis for the set {zp : p ∈ P i}, there exist multipliers λ such that
∑

p∈P
i
∪{q}

λpz
p = 0 and λq = 1. Note that λ is a vector in the nullspace of the matrix with

columns {zp : p ∈ P i ∪ {q}}. Modify the generalized path flow decomposition in the following

way: for each path p ∈ P i
, f i

p = f i
p − λpg

i
q. By Claim 29, λe =

∑

p∈P
i
∪{q}

λp = 0 on any

edge e, hence it is easy to check that by modifying f i
p, the flow on any edge remains unchanged.

Carrying out this modification for every path p ∈ P i \ P i
gives us the required generalized path

decomposition. Further, since the set of vectors {zp : p ∈ P1} forms a basis and is hence linearly
independent, the matrix Yi with columns corresponding to this set of vectors has full rank, and

hence the matrix U i = YiTYi is invertible. ⊓⊔
For any player i, let Yi be the edge-path incidence matrix for the edge set E and path set Pi

.

Then Ui = YiT Yi.

Proof of Lemma 21. Since Ui = YiTYi and Yi has full rank, Ui is symmetric and positive
definite. Thus its inverse Wi is as well, and ‖Wk‖ = 1TWk1 > 0.



Now we prove that ‖Wi−1‖ ≥ ‖Wi‖ for any player i. We assume for the proof that P i−1
=

P i ∪ {q}, i.e., there is a single path q in Pi−1
, 6∈ Pi

. The proof easily extends to the more general
case. Let Yi−1 = [Yi zi]. Thus

Ui−1 =

[

YiTYi YiT zi

ziTYi ziT zi .

]

The following expression for Wi−1 is easily checked.

Wi−1 =

[

Wi 0
0 0

]

+
1

(ziT zi − ziTYiWiYiT zi)

[

WiYiT ziziTYiWi − WiYiT zi

−ziTYiWi 1

]

=

[

Wi 0
0 0

]

+
1

(ziT zi − ziT Yi+1WiYiT zi)

[

−WiYiT zi

1

]

[

−ziTYi+1Wi 1
]

Let s denote the row vector [−ziT YiWi 1]. Then

‖Wi−1‖ = ‖Wi‖ +
1

(ziT zi − ziTYiWiYiT zi)
‖sT s‖

Since ‖sT s‖ = (‖s‖)2 ≥ 0 for any vector s, we show that (ziT zi − ziTYiWiYiT zi) ≥ 0, and

this completes the proof. Let x = WiYiT zi; then since (zi − Yix)T (zi − Yix) ≥ 0, we have

ziT (zi − Yix) ≥ xT YiT (zi − Yix) = 0. ⊓⊔

A.6 Proof of Lemma 22

Proof of Lemma 22. For equilibrium flow f , let {f i
p}p∈P

i be the generalized path flow de-

composition given by Lemma 20. For any path p ∈ P i
, it follows from (8) and the definition

of upq that ∂Li(f)
∂vi =

∂Li
p(f)

∂vi =
∑

q∈P upq
∂(fq+fi

q)

∂vi . By (4),
∂(fq+fi

q)

∂vi = 2
∂fi

q

∂vi . It follows that

∂Li(f)

∂vi
= 2

∑

q∈P

upq

∂f i
q

∂vi
= 2

∑

q∈P
i

upq

∂f i
q

∂vi
since f i

q = 0 for paths q 6∈ P i
. We write this as a

matrix equation, where each row corresponds to a path in P i
.

∂Li(f)

∂vi
1
|P

i
|

= 2Ui

[

∂f i
q

∂vi

]

q∈P
i

.

By Lemma 20, the matrix Ui is invertible, with Wi = (Ui)−1. Multiplying both sides by 1TWi

yields ∂Li(f)
∂vi ‖Wi‖ = 2∂vi

∂vi = 2, proving (i).

By Lemma 15, for player i < r on any path p ∈ Pi
,

∂Li
p(f)

∂vr = ∂Li(f)
∂vr . Further,



∂Li(f)

∂vr
=
∑

e∈p ae
∂(fe+fi

e)
∂vr =

∑

q∈P
i

upq

∂(fq + f i
q)

∂vr

since f i
e =

∑

q∈Pi:e∈q f i
q, and by reversing the order of summation. This is true for all paths

p ∈ P i
, giving us |Pi| equalities for ∂Li(f)

∂vr , which we can solve to obtain its value. Formally, write
the equalities in matrix form as

∂Li(f)

∂vr
1
|P

i
|

= Ui
[

∂(fq+fi
q)

∂vr

]

q∈Pi
. (13)

Left-multiplying both sides by 1T Wi,

∂Li(f)

∂vr
‖Wi‖ =

∑

q∈P
i

∂(fq + f i
q)

∂vr
= 1,

since Pj ⊆ P i
for any player j by construction, and the rate of change of total flow value is 1.

This proves (ii).

For the third part consider paths p ∈ Pr
. By Lemma 15, for player r,

∂Lr
p(f)

∂vr = ∂Lr(f)
∂vr . As

above, the rate of change is

∂Lr(f)

∂vr
=
∑

q∈P
i

upq

∂(fq + f r
q )

∂vr
. (14)

Our first step is to show a relation between ∂Lr(f)
∂vr and ∂L1(f)

∂vr . Using Lemma 14 and the fact

that and all players i < r have the same flow at equilibrium, for any path q ∈ P1
,

∂(fq + f r
q )

∂vr
= (r − 1)

∂f1
q

∂vr
+ 2

∂f r
q

∂vr

=
r − 1

r

(

∂(rf1
q + f r

q )

∂vr

)

+
r + 1

r

∂f r
q

∂vr
.

For the same reasons,
∂(fq+f1

q )

∂vr =
∂(rf1

q +fr
q )

∂vr . Using this in the above equation and substituting into
(14) yields

∂Lr(f)

∂vr
=

r − 1

r

∑

q∈P
1

upq

∂(fq + f1
q )

∂vr
+

r + 1

r

∑

q∈P
r

upq

∂f r
q

∂vr

=
r − 1

r

∂L1(f)

∂vr
+

r + 1

r

∑

q∈P
i

upq

∂f r
q

∂vr
,



where the second inequality uses (13) for i = 1. Since
∂fr

q

∂vr = 0 on any path q /∈ Pr
, the summation

in the second term needs to be done only over paths q ∈ Pr
. For all p ∈ Pr

we have the system
of equations

∂Lr(f)

∂vr
1|P

r
| =

r − 1

r

∂L1(f)

∂vr
1|Pr| +

r + 1

r
Ur

[

∂f r
q

∂vr

]

|Pr|

. (15)

Left-multiplying both sides by 1T Wr yields

∂Lr(f)

∂vr
‖Wr‖ =

r − 1

r

∂L1(f)

∂vr
‖Wr‖ +

r + 1

r

∑

q∈P
r

∂f r
q

∂vr
.

Dividing by ‖Wr‖ and using ∂L1(f)
∂vr = 1

‖W1
‖

from (i) gives us the desired expression. ⊓⊔

A.7 Proof of Lemma 23

Before we prove Lemma 23, we show the following two claims. We assume for this subsection that
for equilibrium flow f , {f i

p}p∈P
i is the generalized path flow decomposition given by Lemma 20.

Claim 30 (i) For any path p ∈ Pr
,

∂fp

∂vr
=

r − 1

r

‖W1
p‖

‖W1‖
+

1

r

‖Wr
p‖

‖Wr‖ . (ii) For any path p 6∈ Pr
,

∂fp

∂vr
=

r − 1

r

‖W1
p‖

‖W1‖
.

Proof. Left-multiply both sides of (15) by Wr to obtain, for each path p ∈ Pr
,

∂Lr(f)

∂vr
‖Wr

p‖ =
r − 1

r

∂L1(f)

∂vr
‖Wr

p‖ +
r + 1

r

∂f r
p

∂vr
.

Substituting the values of ∂Lr(f)
∂vr and ∂L1(f)

∂vr from Lemma 22 and simplifying,

∂f r
p

∂vr
=

‖Wr
p‖

‖Wr‖ . (16)

By Lemma 14,
∂fp

∂vr =
∑r

i=1

∂fi
p

∂vr = (r − 1)
∂f1

p

∂vr +
∂fr

p

∂vr . Left-multiplying both sides of (13) for

i = 1 by W1 yields for each path p ∈ P1
,

∂L1(f)

∂vr
‖W1

p‖ =
∂(fp + f1

p )

∂vr
= r

∂f1
p

∂vr
+

∂f r
p

∂vr
. (17)

since as just discussed
∂(fp+f1

p )

∂vr = r
∂f1

p

∂vr +
∂fr

p

∂vr . For paths p /∈ Pr
,

∂fr
p

∂vr = 0. Substituting in the

value of ∂L1(f)
∂vr from Lemma 22 into 17) yields

∂f1
p

∂vr
=

1

r

‖W1
p‖

‖W1‖
. (18)



Thus for p ∈ P1 \ Pr
,

∂fp

∂vr = (r − 1)
∂f1

p

∂vr = r−1
r

‖W1

p‖

‖W1
‖
. For a path p ∈ Pr

, we add r−1
r

times (17)

to 1
r

times (16) to obtain

∂fp

∂vr
= (r − 1)

∂f1
p

∂vr
+

∂f r
p

∂vr
=

r − 1

r

‖W1
p‖

‖W1‖
+

1

r

‖Wr
p‖

‖Wr‖ ,

where the first equality follows from Lemma 14. ⊓⊔

Claim 31 At equilibrium,
v1 − vr

‖W1‖ ≤ L1(f) − Lr(f).

Proof. For each path p ∈ P1
, L1

p(f) − Lr
p(f) =

∑

e∈p ae(f
1
e − f r

e ) =
∑

q∈P
1 upq(f

1
q − f r

q ). Hence,

(L1(f) − Lr(f)) + (Lr(f) − Lr
p(f)) =

∑

e∈p

ae(f
1
e − f r

e )

=
∑

q∈P
1

upq(f
1
q − f r

q ) . (19)

The system of equations for all p ∈ P1
is

1
|P

1
|
(L1(f) − Lr(f)) −

[

Lr
p(f) − Lr(f)

]

p∈P
1 = U1

[

f1
p − f r

q

]

p∈P1 . (20)

Left multiplying both sides of (20) by 1TW1 yields

‖W1‖(L1(f) − Lr(f)) −
∑

p∈P
1

(Lr
p(f) − Lr(f))‖W1

p‖ = v1 − vr. (21)

We show that the second term on the left is nonnegative, which finishes the proof. Left-multiply

both sides of (20) by the row vector
[

Lr
p(f) − Lr(f)

]T

p∈P
1 W1 to obtain

[

Lr
p(f) − Lr(f)

]T

p∈P
1 W11

|P
1
|
(L1(f) − Lr(f)) −

[

Lr
p(f) − Lr(f)

]T

p∈P
1 W1

[

Lr
p(f) − Lr(f)

]

p∈P
1

=
[

Lr
p(f) − Lr(f)

]T

p∈P
1

[

f1
p − f r

p

]

p∈P
1 .

Since W1 is positive definite, this implies

(L1(f) − Lr(f))
∑

p∈P
1

(Lr
p(f) − Lr(f))‖W1

p‖ ≥
∑

p∈P
1

(Lr
p(f) − Lr(f))(f1

p − f r
p )

=
∑

p∈P
1

(f1
p − f r

p )
∑

e∈p

Lr
e(f) + Lr(f)

∑

p∈P
1

(f1
p − f r

p )

=
∑

e∈P
1

Lr
e(f)

∑

p∈P
1
:e∈p

(f1
p − f r

p ) + Lr(f)(v1 − vr)

=
∑

e∈P
1

Lr
e(f)(f1

e − f r
e ) + Lr(f)(v1 − vr)

≥ 0 .



where the last inequality follows from Lemma 6 and observing that e ∈ P1 ⇔ e ∈ E1. Since
L1(f) ≥ Lr(f), this shows

∑

p∈P
1(Lr

p(f) − Lr(f))‖W1
p‖ ≥ 0. ⊓⊔

Proof of Lemma 23. We first put the expression in terms of path flows:

∑

e∈E1

aef
1
e

∂fe

∂vr
=

∑

e∈E1

aef
1
e

∑

p∈P
1
:e∈p

∂fp

∂vr
=

∑

p∈P
1

∂fp

∂vr

∑

e∈p

aef
1
e

=
∑

p∈P
1

∂fp

∂vr

∑

e∈p

∑

q∈P
1
:e∈q

aef
1
q =

∑

p∈P
1

∂fp

∂vr

∑

q∈P
1

∑

e∈p∩q

aef
1
q

=
∑

p∈P
1

∑

q∈P
1

∂fp

∂vr
upqf

1
q .

Substituting the value of
∂fp

∂vr from Claim 30,

∑

e∈E1

aef
1
e

∂fe

∂vr
=

∑

p∈P
r

∑

q∈P
1

upqf
1
q

(

r − 1

r

‖W1
p‖

‖W1‖
+

1

r

‖Wr
p‖

‖Wr‖

)

+
∑

p∈P
1
\P

r

∑

q∈P1

upqf
1
q

r − 1

r

‖W1
p‖

‖W1‖

=
∑

p∈P
r

∑

q∈P
1

upqf
1
q

1

r

‖Wr
p‖

‖Wr‖ +
∑

p∈P
1

∑

q∈P
1

upqf
1
q

r − 1

r

‖W1
p‖

‖W1‖
.

Since U1W1 = I, for all paths q ∈ P1
,
∑

p∈P
1 upq‖W1

p‖ = 1. Hence,

∑

e∈E1

aef
1
e

∂fe

∂vr
=

∑

p∈P
r

∑

q∈P
1

upqf
1
q

1

r

‖Wr
p‖

‖Wr‖ +
r − 1

r

∑

q∈P
1

f1
q

1

‖W1‖

=
∑

p∈P
r

∑

q∈P
1

upqf
1
q

1

r

‖Wr
p‖

‖Wr‖ +
r − 1

r

v1

‖W1‖
(22)

We will now show that
∑

p∈P
r

∑

q∈P
1 upqf

1
q ‖Wr

p‖ = vr + ‖Wr‖(L1(f)−Lr(f)). For any path

p ∈ Pr
, L1(f) − Lr(f) =

∑

e∈p ae(f
1
e − f r

e ). Since f1
e =

∑

q∈P
1
:e∈q

f1
q and f r

e =
∑

q∈P
r
:e∈q f r

q , we

can rewrite this in terms of paths as

L1(f) − Lr(f) =
∑

q∈P
1

upqf
1
q −

∑

q∈P
r

upqf
r
q ∀p ∈ Pr

.

Since this is true for all paths p ∈ Pr
, we can rewrite this as the following matrix equation. Let

Ur,1 be the submatrix of U1 with rows corresponding to paths in Pr
and columns corresponding

to paths in P1
.

1|P
r
|(L

1(f) − Lr(f)) = Ur,1
[

f1
q

]

q∈P1 − Ur
[

f r
q

]

q∈P
r . (23)



Left-multiplying both sides of (23) by 1TWr,

‖Wr‖(L1(f) − Lr(f)) =
∑

p∈P
r

‖Wr
p‖
∑

q∈P
1

upqf
1
q − vr . (24)

Combining (22) and (24) and Claim 31 yields

∑

e∈E1

aef
1
e

∂fe

∂vr
≥ 1

r

(

v1 − vr

‖W1‖ +
vr

‖Wr‖

)

+
r − 1

r

v1

‖W1‖

=
v1

‖W1‖
− vr

r

(

1

‖W1‖
− 1

‖Wr‖

)

.

⊓⊔

A.8 An Example When the Nesting Property Fails

We give a simple example (Figure 2) of two players with linear delays in a Braess graph to show
this. In the example, the total delay at Nash equilibrium when the players have unequal flow values
exceeds the total delay when the flow value of the players is equal, therefore at some point during
flow redistribution the cost must increase.

s t

e1

e2

e3

e4

e5

Fig. 1. The Braess Graph

v1 = 0.5, v2 = 0.5 v1 = 0.8, v2 = 0.2

Edge Delay function f1

e
f2

e
f1

e
f2

e

1 7x 0.2576 0.2576 0.4 0.1455
2 2x + 6 0.2424 0.2424 0.4 0.0545
3 x + 2 0.0152 0.0152 0 0.0909
4 2x + 6 0.2424 0.2424 0.4 0.0545
5 7x 0.2576 0.2576 0.4 0.1455

Total delay 10.5354 10.6364

Fig. 2. An example where the flow redistribution strategy does
not work

A.9 Proof of Theorem 2

Our proof relies on the following lemma.

Lemma 32. In a series-parallel graph with s-t flows f and g, if |f | > |g| then there exists another
s-t flow h of value |f | − |g|, so that on every edge e ∈ E with he > 0,

ge + he ≤ fe. (25)



Proof of Theorem 2: Let f be the equilibrium flow of k players and o be the optimal flow of the
same value. By Lemma 32, for player i, there exists a different strategy f̃ i so that f̃ i

e + f−i
e ≤ oe,

if f̃ i
e > 0. Since f is a Nash equilibrium, player i cannot change his strategy from f i to f̃ i to

decrease his delay. Therefore,

Ci(f) = Ci(f i, f−i) ≤ Ci(f̃ i, f−i) =
∑

e∈G

f̃ele(f̃
i
e + f−i

e ) ≤
∑

e∈G

oele(oe) = C(o).

Summing the above inequality over all k players gives us the bound on the price of anarchy
claimed. ⊓⊔

Proof of Lemma 32: We prove by induction on the size of the series-parallel graph G. In the
base case G is a single edge and the lemma is trivial. For the induction step, assume that G is
constructed from two subgraphs (G1, s1, t1) and (G2, s2, t2).

Suppose that G is a series-composition of G1 and G2 by merging t1 and s2. By induction
hypothesis, there exists a flow h1 from s1 to t1 and a flow h2 from s2 to t2, both of which are of
values |f |− |g|, so that for all edges e ∈ G1 ∪G2, (25) holds. The concatenation of h1 and h2 gives
another flow of value |f | − |g|, and still satisfies (25).

Next suppose that G is a parallel composition of G1 and G2 by merging s1 and s2 and by
merging t1 and t2. We denote the sub-flow of f going through Gi as f|Gi

. If v(f |G1) ≥ v(g|G1) and
v(f |G2) ≥ v(g|G2), then by induction hypothesis, there exists a flow h1 of value v(f |G1) − v(g|G1)
in G1 and another flow h2 of value v(f |G2) ≥ v(g|G2) in G2 so that (25) holds. It is easy to see
that h1 + h2 is the flow we want.

We are left with the case that v(f |G1) ≤ v(g|G1) and v(f |G2) > v(f |G2). By induction hypoth-
esis, there exists a flow h2 of value v(f |G2) − v(g|G2) and it satisfies (25) in G2. We now create
another flow h from h2 by scaling:

h =
|f | − |g|

v(f |G2) − v(g|G2)
h2.

(Note that |f | − |g| ≤ v(f |G2) − v(g|G2).) It is clear that h is also a flow and its value is |f | − |g|.
Furthermore, for e ∈ G1, he = 0 and (25) holds trivially, and for e ∈ G2, if he > 0, we have
ge ≥ fe + h2

e ≥ fe + he, still satisfying (25). ⊓⊔


