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Abstract

This paper addresses strategies for the stable roommaibgepr, assuming that a stable matching is chosen
at random. We investigate how a cheating man should permsiteréference list so that he has a higher-ranking
roommate probabilistically.

In the first part of the paper, we identify a necessary cooulifibor creating a new stable roommate for the cheating
man. This condition precludes any possibility of his gettinrnew roommate ranking higher than all his stable room-
mates when everyone is truthful. Generalizing to the caserttultiple men collude, we derive another impossibility
result: given any stable matching in which a subset of mentggt best possible roommates, they cannot cheat to
create a new stable matching in which they all get strictlgdseoommates than in the given matching.

Our impossibility result, considered in the context of th&bée marriage problem, easily re-establishes the cel-
ebrated Dubins-Freedman-Roth Theorem. The more gensdallmange-Gale-Sotomayor Theorem states that a
coalition of men and women cannot cheat to create a stablehimgtin which everyone of them gets a strictly better
partner than in the Gale-Shapley algorithm (with men propgs We give a sharper result: a coalition of men and
women cannot cheat together so that, in a newly-createdestaditching, every man in the coalition gets a strictly
better partner than in the Gale-Shapley algorithm whileenoithe women in the coalition is worse off.

In the second part of the paper, we present two cheatingegtest that guarantee that the cheating man’s new
probability distribution over stable roommates majoritles original one. These two strategies do not require the
knowledge of the probability distribution of the cheatingum This is important because the problem of counting
stable matchings is #P-complete. Our strategies only reduniowing the set of stable roommates that the cheating
man has and can be formulated in polynomial time. Our sectedting strategy has an interesting corollary in
the context of stable marriage with the Gale-Shapley algari Any woman-optimal strategy will ensure that every
woman, cheating or otherwise, ends up with a partner at &sagbod as when everyone is truthful.

1 Introduction

In the stable roommates problem [4h Beople are to be assignednaooms, each of which accommodates two of
them. Each mam € R (following convention, we assume that all participant§dirare male) has a strictly-ordered
preference list in which he ranks all other merfRn— {m}. Given any matching, two men preferring each other to
their assigned roommates comprisklacking pair A matching without blocking pairs istable For a mamm € R,
manm’ is called his stable roommate if there exists any stable miragccontaining the couplgm, m'}; otherwisem’

is an unstable roommate for him.

The stable roommates problem is more general than the stabigéage problem [4]. The following well-known
technique can reduce an instance of the stable marriagéepndb the roommate one: Each person attaches the other
members of the same sex to the end of his or her list. Howewméikeustable marriage, whose strategic aspects have
been investigated extensively [2, 5, 6, 8, 9, 14, 17], thatihg strategies for the stable roommates problem have not
received much attention.

In contrast to stable marriage, the stable roommates probitees not always allow stable matchings. In this work,
we assume that in the given problem instance, stable magliio exist and that one is chosen at random. Supposing



that a participant has complete knowledge of all othersfggemces, we study what can be done to his preference list
so that he gets a better roommate probabilistically.

Major Results of This Work

The first part of our paper identifies a necessary conditioriife cheating mam to make an unstable roommat#
who ranks higher than his lowest-ranking stable roommateine a stable one. This condition demands that, in the
falsified list,m’ has to rank higher than at least oneng§ stable roommates, saiy’, andm” originally ranks higher
thanm’ in the truthful list ofm. Hence, this condition rules out any chance of the cheatiag obtaining a roommate
ranking higher than all his stable roommates.

We then generalize to the case of multiple men forming a toali Given any stable matching in which a subset
of men all get their best possible roommates, we prove thegt tnnot cheat together to create a stable matching in
which they all get strictly better roommates than in the giveatching. In the context of the stable marriage problem
with the Gale-Shapley algorithm, our impossibility resedisily re-establishes the celebrated Dubins-Freedm#m-Ro
Theorem [2, 13]: A coalition of men cannot cheat together alhdet better partners. The more general Demange-
Gale-Sotomayor Theorem [1] states that a coalition of meh/gmen cannot cheat together and all get better partners
than in the Gale-Shapley algorithm. In fact, we have a shiagmuilt: a coalition of men and women cannot cheat
together so that in a newly-created stable matching, evaryimthe coalition gets a strictly better partner than in the
Gale-Shapley stable matching, while no woman involved endbalition is worse off.

In the second part of the paper, assuming that a stable mgtechchoseruniformly at random, we exhibit two
strategies that ensure the cheating man to have a new plibbdlstribution over stable roommates which majorizes
the original one. Here we define the term “probability majation” as follows. LetR (m) and P/(m) be the prob-
abilities of m's getting hisi-th ranking roommate in a uniformly random stable matchingen he is truthful and
otherwise.P’ majorizesP if for 1 <t < n, Zitzl P/(m) > Zitzl P, (m). The first strategy guarantees that in all the
newly-created stable matchings, he gets the best possalfilie soommate; moreover, it can be formulated in constant
time. The second strategy is an optimal strategy for thetaigeanan to destroy low-ranking stable roommates. We
use the term “optimal” in the sense that if our second stsategnot eliminate someone, say, as a stable roommate
of m, then there does not exist any other strategy to achieveniiti®ut causing someone else ranking lower than
mg to become a new (and unwanted) roommate. In the context lolestaarriage with the Gale-Shapley algorithm,
our second strategy has the auxiliary consequence thatgimgad cheating strategy for a sole cheating woman (Teo,
Sethuraman and Tan suggested how to formulate such a stiat§t7]) will ensure her to get one of her original
stable partners and every other woman to get a partner rguktileast as high as when everyone is truthful. This fact
was also independently discovered by Sethuraman and T¢oQii6 second strategy cos®(n?) time.

Our two strategies do not need to know the probability distibn over stable roommates of the cheating man. The
only knowledge required is the set of roommates he has; hisbe obtained it©(n?) time [3]. We think strategies
not involving the knowledge of the exact probability distriion are important, because to obtain the exact prolyabili
distribution can be computationally expensive. For onaghif we want to enumerate the set of stable matchings,
Knuth [12] points out the number of stable matchings can ipmeential; for the other, supposing we know the set
of possible stable roommates of the cheating man, it is valikely we can count the number of stable matchings
for each of his stable roommate in polynomial time, otheewia polynomial time, we can count the total number of
stable matchings, which has been proved by Irving and Leftfi¢to be a #P-complete problem.

Related Work

The stable roommates problem, along with the stable marpagblem, was first formulated by Gale and Shapley [4].
They proved that stable matchings always exist for therldite not necessarily for the former. Knuth [12] posed the
open problem of finding an algorithm for the stable roommateblem; this problem was solved by Irving [10]. The
book of Gusfield and Irving [7] is probably the best referefarealgorithmic issues on the stable roommates problem.
The concept of random stable matching was first introduceBdth and Vate [15]. Some group cheating strategies
for the random stable matching in the marriage case are lo [8]. For strategic behavior in the stable matching
problem, Roth and Sotomayor have a rather detailed treatimgtd].



Structure of the Paper

Section 2 presents a necessary condition for a cheating onget ta new stable roommate. In Section 3, we discuss
the more general case of multiple men colluding, and we éxhibumber of impossibility results. In Sections 4 and
5, we present the two cheating strategies for a cheating hetmiake his new probability distribution majorize the
original one. In Section 6, we discuss some implicationswfsecond strategy on women’s cheating strategies in
stable marriage. Finally, in Section 7, we draw the condiusind discuss some open questions.

Notation and Terminology

Throughout this paper, we refer to the cheating mamaklis preference list is decomposed as

(Uog(m), mg, U (m), my, - - -, Ug_1(m), my, Ug(m)), wherem;, 1 < i < Kis his set of stable roommates adg(m), 0 <
j < k constitute his (ordered) subset of unstable roommates. nWékerring to the roommate of a particular
personm' in the matchingM, we write M(m'). As a shorthand for the preference list wf we often write
(PL,m(m), M(m), Pr.m(mM)), whereM is any matching, stable or otherwise_ y (m) is the sub-list containing all
the men ranking higher thal (m); and similarly for Pr m (m). Colloquially, we often say the elements Bf n (m)
(Pr,m (m)) are the men on the left (respectively, right) fim). Given an ordered lisA, z; (A) is any permutation
of A; supposeA andB are ordered lists] ], (A, B) is an arbitrary combination of and B such that the elements of
A and of B retain their original order in the combined list. When wetei(A N B)a, we create another ordered list
which contains the common membersAandB and these members are arranged based on their orderSappose
the common members @& and A are extracted from the ordered skbut those left still keep the original order, we
write A — B.

In m’s preference list, ifn” ranks strictly higher tham”, we writem’ >, m”. If m’ =y, m”, then eithem’ >, m”,
orm’ = m”. If mfalsifies his list such that' ranks higher tham”, we writem’ >r; m”. When everyone is truthful,
we refer to the collection of their preference lists as “rlists. When any one of them lies, the resulting lists are
referred to as “falsified.” Given two matchindd and M’, if a subset of merG C R all preferM to M’ or are
indifferent, we writeM =g M’; if all of them strictly preferM to M’, we writeM =g M’.

As we will switch back and forth between stable roommate &abls marriage, we also introduce notation for the
latter problem. The collection of men and women Areand)V. The men-optimal/women-pessimal matching (found
by the Gale-Shapley men-proposing algorithmMs,(; analogously, the women-optimal/men-pessimal matctsng i
Myy. Throughout this work, when we refer to the Gale-Shapley#igm, we implicitly assume the men-proposing
version.

2 In Search of a New Roommate

In this section, we study how to create a new stable roomnoatihé cheating man.

Targeting a Roommate Ranking Higher than all Stable Roommags

To motivate our cheating strategy, assume that the cheatargm hopes to get a new roommat® € Ug(m) who
ranks higher than all of his stable roommates. However, ¢leéirfg is not reciprocal andh ranks lower than all of
mg’s stable roommates (otherwis@n, mg} would block some stable matching). Is there a strategyrfts makemg
his new stable roommate? Unfortunately for him, we will aesim the negative in the following discussion.

The following two propositions are straightforward consences of the definition of stable matchings. They will
be used frequently throughout this paper.

Proposition 1 Let M be any stable matching. If m submits a preference ligteform
(zr (PL, M (M) — X), M(m), 7y (Pr,M (M) U X)), where XC P m(m), the matching M remains stable with regard to
the falsified lists.

This proposition states that mamcan shift some men from the left to the right lf(m) without worrying about
losing M (m) as a stable roommate. The next proposition identifies aeglyathich isnot effective for creating a new
stable roommate.



Proposition 2 Suppose M is an unstable matching with regard to the true lists. Mogspm falsifies his list so that
M¢? becomes stable. Then it is impossible that the falsifiedist is of the form:
(r (P o (M) U X), M?(m), 7 (P s (M) — X)), where XC Pg o (M).

A straightforward application of this propaosition is th&nig is on top ofm’s preference list, there is no cheating
strategy form to become his roommate. To mak® < Ug(m) a new roommate, Proposition 2 eliminates all but
one possible strategy: the cheating nmashifts some subset of men ranking higher thanto the right ofmg in his
falsified list. This might create the chance of making an apist matchingVl? o {m, mg} become stable. This is
possible if inM?, with regard to the true lists, all blocking pairs involwe

We introduce another little proposition which helps to slifyour analysis.

Proposition 3 Let M be a stable matching and’Mn unstable one. Suppofec R is the set of men getting worse
roommates in Mthan in M. All the blocking pair$my, m,} in M’ are of the following form:

.muer,

[ ] M(mu) tmu mv Pmu M/(mu).

Proof: We decompos® = Y UT UA, whereY is the collection of men getting better roommatéshe collection
of men getting worse ones, ar the collection of men getting the same onesMh. Supposegms, m;} blocks
M’, wheremg,m; € ¥ U A. Then{ms, m;} blocks M too. The remaining case {gn,, m,}, wherem, € T and
my >=m, M’(My), My =m, M’(M,). It can be easily verified that no matter whetheyis a member off or I or A,
either{my, m,} blocksM too, or the second condition of the proposition holds. [

Given any stable matching, suppose a subset of men exchegedommates. By this proposition, to verify
whether after the exchange the matching remains stable,nlyeneed to check those men who are getting worse
roommates. In particular, we only need to check whether twegpose blocking pairs with their former roommates
and with those men ranking strictly between their former #mer current roommates. We now present our first
primary result.

Lemma 4 Let M be a stable matching andNim) be an unstable roommate of m with regard to the true lists pSs@
M?(m) = M(m) and all blocking pairs for M’ involve m. Then at least one of the blocking p4irs my} is a stable
pair and mx >=m M?(m).

Proof:  We first remark that ifn wishes to makevi? (m) a stable roommate, by Proposition 2, he has to submit
a falsified list of the form(P_ ¢ (m) — X, M?(m), [1; (Pr,me¢ (M), X)), where X C P \¢(m). Moreover, by
Proposition 1M remains stable with regard to the falsified lists.

Our proof plan is as follows: with regard to the falsifieddistve introduce an algorithm that transforms the stable
matchingM into another stable matchirg® such thatM®(m) =, M(m) andM’(m) € X. Finally, we prove tham’
is also stable with regard to the true lists, thereby argwabthe conclusion.

We need the following claim.

Claim 5 The graph G= (R, M @ M?) consists of disjoint cycles of even length. The men prefgri to M?
alternate with those preferring Kito M in these cycles.

Proof:  The first part of the claim follows from the observation the¢ey man inG = (R, M @ M¢?) has degree 0
or 2. Similarly, an odd length cycle would mean in eitiiéror M?, a man has two roommates.

For the second part, first choose a nmj who prefersM to M? in cycle C1. SinceM(mg) =m, M¢(mﬁ), for
{M(mg), mg} not to blockM?, M(ms) must be matched to someone ranking higher timgrin M?. Let mgyq =
M?(M(my)) be his roommate iM?. By the same reasomyg 1 =wmm,) Mg, if {M(mg), Mg 1} does not block
M, M(Mg11) >=my,, M?(Mpi1) = M(mg). Consider agaiM?: For {ms1, M(mg1)} not to blockM?, since

10r choose a man preferring? to M. The argument is similar.



M(mg1) has to get a higher-ranking mamng,, = M¢(M(m/;+1)) who ranks higher thamg, 1 in his list. By
repeating the above argument, we can discover, along &cecircular list

(Mg, M(Mg), Mp1, M(Mgi1), - -+, Mpyici/2—1, M(Mgyc)/2—1)), indices taken modulfC|/2, in which eachmg.
prefersM and eachM (mg.) prefersM?. ]

By the above characterization, we obtain a decomposititantiose men having better roommate$dft as group
A, and those having better oneshhas groupB.
We claim the following.

e Formy € B, {M(my), M?(my)} C A. Similarly, form, € A, {M?(m,), M(m,)} C B.
o Formy e B, supposeM (Mg) =m, M =m, M?(mp),
— If mt ¢ AU B, M(m") = M?(m®) =+ mg. (Fact 1)
If m" e B, M(m") =+ M®(m") =+ mg. (Fact2)
—Ifm#mf,mhe A M?(m") -+ mg. (Fact 3
—Ifm=m'e A eitherM?(m") =+ mgs or M?(m") >;T mg. (Fact 4).

e Foreachmg e XN B, M(mg) =m, m. (Fact5).

The first part is simply the restatement of grah= (R, M @ M?). The second and third parts are necessary if
both M andM¢ are stable with regard to the falsified lists. The specia¢that needs more attentionfiact 4: The
cheatemis in A. If some marmyg in B puts him between hisl-roommate and his1?-roommate, it is possible that,
for m, eithermy “really” ranks lower tharm’s M¢?-roommate, omy is one of the men ixX being shifted bym to the
right of M?(m). For both casesng ¢ P_ e (m) — X (Fact 6). This fact is not only helpful in the following proof,
but also a hint of a necessary condition for creating newistalmmmates, as will be explained later.

For eachmy € B, we trim his preference list as follows. Suppddémg) m, m' =mp M¢(m,g),

e m' ¢ A removem'.
e m' e A removem' only if M#(m") ==+ M(m®) =+ mg. (Fact 7)

After these trimmings, for eacmy e B, the men ranking betweekl (mg) and M¢(m/;) are those in group
A; moreover, these men, excapt rank mg between theitM?-roommates andvi-roommates Fact 8). The only
exception igm, who ranksmg at least as high as hid-roommate Eact 9). (It is possible thain ranksmg even higher
than hisM?-roommate; the stability of¢ is kept with regards to the falsified lists becansshifts mg to the right
of M?(m), asFact 4 indicates.)

After the men inB have trimmed their lists, we can use AlgorittBneak-up in Figure 1 to create another stable
matchingM” from M; in M?, m will be matched to some man ranking higher thanMisoommate.

break upim, M(m)};
While there exist unengaged men
Choose an unengaged map € B;
mg proposes to the next man, € A to whom he has not proposed yet in his trimmed list;
If m, is engaged
If he prefersmg to his current roommat&hen m, dumps his current roommate and accepjs
Elsem, rejectsmg;
Else if m, is single /*m, = m
m, acceptsng;
10: Terminate the algorithm and output the resulting mamglhilb.
Figure 1: Algorithm Break-up: a stable matching/lb can be created frorM in whichm gets a higher-ranking roommate .

oM R

By the trimmed lists of men iB, it can be seen that the execution of AlgoritiBreak-up consists of men irB
proposing to men irA, until the point thamn, the cheater, receives a proposal.



To establish the correctness of the algorithm, we first shmat it terminates. We claim that no man Bwill
ever be rejected by hiM?-roommate. Without loss of generality, Iet; € B be the first man being rejected by
his M?-roommate. (Note iﬂw¢(mﬁ) = m, the termination is trivially true.) This rejection takelape because
M¢(m/;) € A—{mj} has received a proposal from another maBiranking higher thamy, but this would contradict
Fact 3.

Since the truncated lists of men Biare of finite length, the algorithm is bound to stop. Moregaedrmen inB
are to be matched to some menAwho rank at least as high as thé?-roommates. Similarly, all men iA, except
m, are matched to some men hranking between thei?- and M-roommates (because Bact 8). The exception
is m, who will end up with either hisvi?-roommate, or someone else ranking higher tharhisnommate (because
of Fact 9).

Finally, we observe that the men not belongingto B are getting the same roommatesviri as inM, moreover,
a subset ofA and a subset dB (of equal size) get better and worse roommates, respegtinell” (Fact 10).

Our next goal is to prove thatl® is stable with regard to the falsified lists. Due to Proposit8 and the fact
that M remains stable with regard to the falsified lists, we onlychieconsider the men iB who are getting worse
roommates inM”. In particular, for such a mam; € B, we only have to verify those pairgng, m'} such that
M(Mg) =m; M' =, M°(mp):

e Supposen' is not present in the truncated list wiz. There are three sub-cases:

— If m" ¢ AU B, then{mg, m'} does not blockV” because oFact 1 andFact 10,

— If m' € A, thenm' is removed only becausa' prefers hisM-partner tomg (as shown irFact 7). Since
m' ends up with someone ranking at least as high adhimommate myg, m'} still does not blockM®.

— If m' e B, since men inB are getting roommates ranking at least as high as téiroommates, this
combined withFact 2implies that{m', mg} is not a blocking pair i@,

e Supposean' is present in the truncated list aiz, by Fact 8and9, m' € A. By the algorithmmgz must have
proposed to and been rejectedmy. This rejection must be caused by some other mn\gne B, who ranks

higher thanmg in m''s list, proposing tom'. Hencem' ends up with eithemQ; or with someone with even
higher rank. For both casefsng, m'} does not blockvi”.

By the above argument, the stability BP with regard to the falsified lists is established. We now arthatM”
is also stable with regard to the true lists; moreover, wewis the different consequences based on the identity of
M”(m).

e SupposeV?(m) = M?(m). If we can show thaM” is also stable with regard to true lists, we get the contradic
tion thatM¢?(m) is not a stable roommate .

Suppose we restore the preference lishofo the truthful one andv® becomes unstable. Let a newly-formed
blocking pair be{m, m*}. If m¥ € R — (B U {m}), then the paifm, m*} blocks M too, a contradiction. If
m* e B, by Fact 5, m* prefersM (m) overm. The only possibility thatm, m*} blocks M” is thatM (m*) >+

m =t M”(m¥). However, byFact 7, m will not be trimmed fromm*'s list, hencem* would not have avoided
proposing tan'. Another contradiction.

e By Fact 6, m cannot end up with someone i \»(m) — X. So we only have two more sub-cases to consider:

— If M”(m) e X, after restoringn’s preference back into the truthful oma,is getting a better partner, thus,
M’ will be stable. AndM”(m) is one of the stable roommates ranking higher thi(m), as stated in the
lemma.

— If M’(m) ¢ X, then in the truthful list oim, M?(m) =n M’(m) =n M(m). The stability ofM” can be
argued in the same way as we have done in the casétha) = M?(m).

SupposeM” is stable and we know that is getting a higher ranking partner M” than inM. We repeat
the whole argument so far in the proof, applying it to the mrethe disjoint cycles o6 = (R, M* @ M?).
After we apply AlgorithmBreak-up, eitherm gets a stable roommate from the $€t or we get the
contradictory conclusion thafl? (m) is in fact a stable roommate of. ]



Specializing Lemma 4 to the case that the cheating mas getting his highest-ranking stable roommateMn
we get the conclusion that a new stable matchfy in which M?(m) = mgp =m M(m) = m; cannot be realized by
shifting some men ranking higher tham to the right ofmg in the falsified list.

Theorem 6 Given any stable roommates instance in which stable majsterist, a sole cheating man cannot create
a new stable roommate ranking higher than all his stable noates by any strategy.

We remark that Theorem 6 does not preclude the possibilityesiting a new stable roommate ranking betay
An interesting corollary follows from Lemma 4 and Propamitil.

Corollary 7 Suppose the cheating man m submits a preference list ofrttne fo
(e (Ug(m)), my, mr (U1(mM)), My, - -+, mk_1, 7y (Uk—1(M)), mk, Ux(m)). Then the set of stable matchings remain
identical to the case when everyone is truthful.

We remark that this corollaRdoes not consider permutitdy (m). In fact, it is possible that by permutifig,(m)
alone a new stable roommate is formed. But obviousiias no interest in creating a new roommate of such low
rank.

A Necessary Condition for Creating a New Stable Roommate

Our attempt at makingip € Ug(m) a new stable roommate has been thwarted. Suppasaw realizes the difficulty
of gettingmo; he compromises his ideal and considers creating anothiglestoommate ranking between andmy.
How can he achieve this?

It is insightful to look again at the proof of Lemma 4. Aftempesatedly applying AlgorithnBreak-up, in the
final matchingM”, the cheatem either ends up wittM#(m), a contradiction thaM?(m) is not one of his stable
roommates, or some mang € BN X (Fact4 in Lemma 4). In the falsified list af, X is the set of men being
shifted to the right oM?(m). Hence, to maké1?(m) a new stable roommatat least onestable roommate has to be
included inX to be shifted to the right o1 (m).

Theorem 8 Let m,. € U;(m), wherel < i < k — 1, be an unstable roommate of the cheating man m. A necessary
(but not sufficient) condition of makingjm a new stable roommate is that least oneoriginal stable roommate
ranking higher than m,. has to become lower-ranked thanmin the falsified list of m.

By Theorem 8, a possible strategy can be formed as follows.chieating mam shifts a highly-ranked man, say
M1+ € U1(m), to the top of his list and observes whethmer, . becomes a new stable roommate. In some cases,
this strategy does help to boost the expected rank of his muaten However, this strategy does not result in a new
probability distribution over roommates which majorizég toriginal one. The reason is that the chancendfeing
matched to his best possible roommang, is “diluted” by the newly created stable matchings.

3 Multiple Men Cheat Together

In this section, we generalize to the case of multiple chieatropositions 1 and 2 can be adapted straightforwardly
and will be used in the proofs.

Theorem 9 Let M be a stable matching. Suppos¢ M an unstable matching such thatM-g M where GC R,
moreover, there exists a non-empty subse€Gs such that men in Gget their highest-ranking roommates in M and
M? g M. If there do not exist strategies for men in-GG’ to make M a stable matching, then there does not exist
any strategy for men in G collectively to make’ Mecome stable.

2|n the context of stable marriage, this corollary can haveoaendlirect proof without the aid of Lemma 4. For the part ity permuting
Ug(m), a proof can be found in Lemma 2 of [8]. For the part involvirggrputingU, (m), - - - , Ux_1(m), one can observe Theorem 2.5.5 and the
definition ofrotationsin the book of Gusfield and Irving [7].



Proof: By the generalized version of Proposition 2, the only pdesstrategy for mam, € G — G’ to makeM?
stable is to falsify his list in the forntz; (P_ e (M, ) — X), M‘ﬁ(my), mr (Pr Mo (My), X)), whereX C P s (m,).
If after all men inG — G’ have falsified their lists in this wayM? becomes stable, the theorem is trivially true.
Therefore, we assumd? remains unstable after all men@— G’ falsify their lists. Now choose any mzmy e G.

By Theorem 6, there does not exist any strategy for nrm\f;trto makeM‘?(m/y) a new stable roommate. So however

m’y permutes his listM? remains unstable. The same argument applies to the rest ofi¢h inG’ and so we have
the theorem. [

Theorem 9 leads to several interesting corollaries.

Corollary 10 Let M be any stable matching in which a non-empty subset® of men are matched to their highest-
ranking stable roommates. There does not exist any strétediie men in G to create a new stable matching M
which every man in G gets a better roommate than in M.

In the context of the stable marriage problem, the celetrBighins-Freedman-Roth Theorem [2, 13] also gives a
restricted version of this theorem) can be easily re-eistaddl by Corollary 10.

Corollary 11 (Dubins-Freedman-Roth Theorem): In the stable marriage problem, a coalition of men canndgifg
their preference lists so that everyone of them gets a thetter partner than in the men-optimal matching.

Proof: Choose any subset of m&C M. Apply Corollary 10 toG and the men-optimal matchirg . ]

A stronger theorem by Demange, Gale and Sotomayor [1] stlaé¢s coalition of men and women cannot cheat
together so thagveryone of themgets a strictly better partner than in the men-optimal matgiM . We give a
sharper result.

Corollary 12 In the stable marriage problem, a coalition of men and womemeot falsify their preference lists to
create a stable matching in which every man in the coalitiets@ strictly better partner than in the original men-
optimal matching, while none of the women involved in thdittoa is worse off.

Proof: LetG c M U W be a coalition of men and women. Since in the men-optimal IniradidM 1, men already
have their best possible partners, by Theorem 9, a new statlehingM’ thatM’ =g M4 andM’ ~graq Mag Can

only be created by the falsified lists of womenGm W. So we suppose all women & N W falsify their lists and
M’ becomes a new stable matching.

To makeM’ stable, by the generalized version of Proposition 2, thg effective strategy for each womanm e
G N W is that she submits a falsified list of the foi@a, (P w/(w) — X), M'(w), 7y (Pr m (w) U X)), whereX C
PL.w (w). Let the falsified list ofw be P,,. We create another falsified li§t,, which only differs fromP,, in that
all members inPr v/ (w) are restored to their original order in the truthful listof By the generalized version of
Proposition 1, if we replac®,, with P/, the matchingVl’ remains stable. The reason for this pre-processing will be
clear shortly.

We make the following two observations. (1) In the Gale-$&aplgorithm, women only receive proposals from
men rankingower than theirM »-partners. Givenwo € G N W, sinceM’(w) =, M (w), in her falsified list, how
she moves about men ranking higher tHdf(w) does not affect the execution of the Gale-Shapley algoritf@h
Givenw € G N W, in P,, men inPg ' (w) have the same relative order as in womais truthful list. Therefore,
women, whether ifs or not, will make entirely the same decision about rejecéind accepting men as when everyone
is truthful. Combining the two observations, we concludat thpplying the Gale-Shapley algorithm to the falsified
lists will lead to the original matchinil .

Finally, if M’ can become stable by the falsified lists of womerGim W, then the men irG N M get better
partners inM’ than inM 4. The men-optimality of the latter (since it is produced bg tale-Shapley algorithm) is
then violated. This finishes the proof. ]

This result again manifests the difficulty of men cheatirig. ¢oalition of men try to lobby some women to falsify
their lists also (on the premise that none of the women ireahvill be worse off), there still does not exist any chance
of forming a successful strategy for them. The only way fooalition of men to get better partners in a new stable
matching is that they ask for the collaboration of otherdelimen, as has been shown in [8].



4 Strategy A

We return to the theme of the strategies for a sole cheatingrmeSupposing a stable matching is chosen uniformly
at random, in this section and the next, we present two girgtdor him so that his probability distribution over stabl
roommates majorizes the original one.

By Theorem 6, there is nothing more the cheating mmecan do to get any member Wy(m). Nonetheless, these
unapproachable men still serve a purpose. If we move all @htien masse to the immediate rightrof, there is
a chance that more stable matchings contaifiingm;} are thus created (since menlilp(m) constitute potential
blocking pairs to unstable matchings contain{ng m;}). However, if these men are moved to the rightgfi > 1,
other new stable matchings containifrg, mx}, {m, ms}, - - - {m, m;} may crop up, which is not as a good outcome as
we simply “squeezelg(m) betweerm; andU1(m). From the above discussion, the following strategy is imiated

Theorem 13 (Strategy A): Suppose the cheating man m submits a falsified list of the for

(my, zr (Uo(m)), U1(m), mp, Py, r(M)) where MD {m, my}. For m, the new probability distribution over roommates
majorizes the original one when everyone is truthful. Magaeyally, such a list will majorize the probability distri-
bution induced by any list of m in the following fortdo(m) — X, my, [ ], (X, Pr m/(M))), where XC Up(m) and
M’ D {m, my}.

5 StrategyB

We introduce another strategy which destroys low-rankiagple roommates of the cheating m@an In this section,
when we say welestroya stable roommatm;, we mean the cheating mammanipulates his preference list so that
all stable matchings containirign, m;} become unstable. We catl; destructibleif m can destroym; without other
stable roommates ranking lower tham being formed.

To build up some intuition, assume that our preliminary ge#éb destroy all stable matchings containimg, my}.
By Proposition 1, this can only be achieved by shifting sone@ fnomUy (m) to the left ofmy. But this move involves
some risk: some of these shifted merlp(m) may become new stable roommateswfwhich is a worse outcome
for him.

We define three categories for the membendjim):

Definition 14 Uy (m) is decomposed into (interleaving) ordered subsets B\U C. For a man mi € Ux(m), let man
m submit a falsified list of the forfto(m), mz, U1(m), my, - - - , Uk_1(m), m', mg, Ux(m) — m'), then:

e m' e A, if m is no longer a stable roommate and moes not become a new stable roommate of m.
e m' e B, if m¢ remains a stable roommate buf moes not become a new stable roommate of m.

e m' e C, if m" becomes a new stable roommate of m, whilgemains/is no longer a stable roommate of m.

The following algorithm suggests a procedure to systeraliyicnake all stable matchings containifrg, my} become
unstable without creating any new unwanted stable roommaig(m).

We outline the general idea of the algoritipestroy-Bad before proving its mathematical properties. The first
part of the algorithm is concerned with identifying whiclogp, as defined in Definition 14, the memberdJig(m)
fall into. The identification of a single member, costi®gn?) time by Feder’s algorithm [3], is done by observing the
set of stable roommates of given his falsified list. Note the fact that we shiff to the “immediate” left ofmy. This
artifice preserves the maximum likelihood of preventingfrom becoming a new stable roommatenaf If in spite of
this, m' still becomes a new roommate wf(making itself a member of), because of Proposition 1, there is nothing
more we can do concerning men ranking higher timarto change the status of.

If group Ais not empty, we achieve our goal trivially. B is not empty, we shift all of its members to the immediate
left of my. The idea is that, even though separately, each of them IHeit@destroymy, their combined presence on
the left of my might succeed. There might be a concern that, when beingaravenasse, some of the menBrmmay
become new stable roommatesnaf We will prove shortly that this is not the case.



0: Algorithm Destroy-Bad Input (Ug(m), my, - - -, Ux_1(m), mk, Ux(m))

1:  ForAll m" e Ux(m)
2: Shiftm' to the immediate left ofn,. Observe whethen' isin A, B, orinC.
/* At this point, Ug(m) = AU BUC. Moreoveh ANB=BNC=CNA=4.
3: If A @ Then /* In this casemy is destructible.
4: Output the lis{Ug(m), mq, - - - , Ug_1(mM), mg, Mg, Ux(m) — mg), wheremg € A.
5 If B#£@Then
6: If P’ = (Ug(m), my, -, Ux_1(m), zy (B), mk, Ux(m) — B) destroysmg Then OutputP’
7: Else
8: For Al m" e Ux(m) — B
9 If P” = (Ug(m), my, -+, Ug_1(m), 7y (B), m', m, Ux(m) — B — m") destroysm, Then OutputP”
10: OutputP’
11: If C = Ug(m) Then Output the input preference ligg(m), mq, - - - , Ug_1(m), mg, Uy (m))

/* In this casem is indestructible.

Figure 2: Algorithm Destroy-Bad Given a preference list, this algorithm returns a new pmgfee list which: (1) ifmg is
destructible, destroymy without causing any man ranking lower tham_4 to become a new stable roommate; (2)rif is
indestructible, ensuras has a new probability distribution over his roommates whi@jorizes the original one.

Supposing the combined efforts Bfon the left ofmy cannot destroyng, we still need to check one more time
the status of the remaining memberdUp(m). Some of them, sagne, can be transformed from a member®fto
a member ofA (but notB, as we will prove later on). The reason is that more membei® b&ing on the left of
me might serve as more potential blocking pairs to matchinggaioing{m, m¢}. Given that, there is still one more
caveat here. One might imagine that after we shift “more threg! members ity (m) — B to the left ofmg, we might
have more chance of destroying while still avoiding any member ikl (m) — B being shifted from becoming new
(and unwanted) stable roommates. We shall also discusshigigtnot the case below.

Finally, suppose the algorithm finds that= ¢ and B # @, and unfortunately, shiftin@® to the left of my still
cannot destroynk. The cheating mam still should adopt the new preference list suggested by vtlym Destroy-
Bad. The reason is that the more members that we shift to thefl@fikpthe more likely we are able to destroy stable
matchings containingm, my} (but not all of them). Destroying stable matchings contairfim, mx} helps for our
probability majorization purpose.

Optimality of Strategy B

We prove the correctness of AlgorithBestroy-Bad and a number of mathematical properties of the members of
Uk(m). We first show that men iB being moved together will not cause any of them to become astable
roommate ofm.

Lemma 15 Let Uc(m) be decomposed into interleaving ordered subset8AC as defined in Definition 14. Suppose
|B| > 1 and let m submit a list of the forigJo(m), m, - - - , Uxk—1(m), z; (B), my, Ux(m) — B). Then there are no
new stable matchings containifg, mp} where ny € B. Moreover, suppose A ¢ and in the new preference list,
all members of B are shifted to the immediate left @fbmt m¢ remains a stable roommate of m. All members in
Ux(m) — B can only belong to group A or group C.

Proof:  For the first part, the case pB| = 1 is trivial. As to the case ofB| > 1, we prove by contradiction. Sort
men in B in arbitrary order(mpz, My, - - - , Mpy). We shiftmp; to the immediate left ofny, and then shifmy; to
the immediate left ofmp; and so forth. By Proposition 2, if afteny; is moved, he does not become a new stable
roommate, the subsequent shifts involving 1), Mxi+2), - - - Will not change the status ofi,;. Thus, we only need
to worry about the man iB who is being shifted at this point.

Let mp; be the first man becoming a new stable roommate @f the process. We refer to the preference list at
this point asP;. We then create another Iiﬁ’ which differs from B, in thatmpz, My, - - - My —1) are shifted back
to their original positions itJx(m). By the definition of groud, {m, my;} is not part of a stable matching give.
However, based o, {m, my;} is part of a stable matching. Combining the two facts, weat®Proposition 1.
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For the second part, if there is any memb&r € Ux(m) — B belonging to groupB, i.e., in the preference list
Pr = (Uo(m), my, - - -, Ux—1(m), zr (B), m", my, Ux(m) — B — m™"), m" is not a stable roommate b still is. We
create another preference list by shifting all member8 dfack to their original places. Them' becomes a stable
roommate ofn but originally in P;,, all members oB are unstable roommates. Thus we violate Theorem 8. m

As alluded to previously, there might be a concern that thenbess inC, being shifted in a group, instead of
individually, betweenB and my, might succeed in destroyingy without causing any of themselves to become a
stable roommate ah. The following lemma dissipates this concern.

Lemma 16 Let Uc(m) be decomposed into interleaving ordered subsets B U C as defined in Definition 14.
Suppose C= Uyx(m). Given any subset CC C, let the cheating man m submit a preference list of the form
(Uo(m), my, - - - , Uk—1(m), 7 (C’), mx, C — C’), then there exists at least one man ihwho becomes a new sta-
ble roommate of m.

Proof: We prove by contradiction. We choose thenimal setC’ C C such that a falsified list of the stated
form violates this lemma (no new stable roommate€irare formed). Sorting the members@i in arbitrary order
(M1, Me2, - - -, Mex), We shiftmg; to the immediate left ofnk, and thermc, to the immediately left o and so
forth. We claim that after each roumaf this operation, k< i < x, atleast one man ifme1, mep, - - - , M} is a stable
roommate oin (otherwise, the minimality o€’ is violated). Only in the last rounx, shiftingmex to the immediate
left of mex—1), all men inC’ are not stable roommates oif. Let the preference list at this point B%&. We create
another preference it in which all men inC’, excepimcy, are shifted back to their original positionslig(m). By
the definition of groupC, given P}, mgy is a stable roommate of. But in Py, he is not. Combining these two facts,
we violate Proposition 2. ]

We now show that AlgorithnDestroy-Badis an optimal strategy in the sense that if the combined mesrdfeB
cannot destroynk, my must be indestructible.

Theorem 17 (Strategy B): Algorithm Destroy-Bad is an optimal strategy for the cheater m to destroy. idoreover,
the preference list output by AlgorithBestroy-Bad will not cause any stable matching containifrg, m; }, where
1<i < k—1,tobecome unstable.

Proof:  Suppose that Algorithnbestroy-Bad cannot destroynk. Obviously,Ux(m) = AU B UC, andA = 4.
Moreover, in the new preference liBy = (P m (M), 7y (B), mk, C) whereM > {m, mx} output by the algorithm,
mg is still a stable roommate.

For a contradiction, suppose thai is in fact destructible and there exists a stratﬁ/ to achieve it. By
Proposition 1, this can only be achieved by shifting some mddy(m) to the left of mg. Without loss of gener-
ality, we can assume that these members are shifted to thediate left ofmc3. To be precise, we assume that
P$ = (PL,m(m), X, Mg, Y), where the union oK andY comprise all members idy(m).

In order to show thaP$ cannot have the stated property, we transfdminto P$ by the following steps. (1)
Separate those membersifvhich overlap withX from those which do not; moreover, arrange the common mesnber
of B andX in the order ofX. In other words, creatB;, = (P_ m(m), B—X, (XNB)x, mk, C). By Corollary 7, inPy,,
Mk remains a stable roommateraf (2) Shift the common members 6fand X to the immediate left afng and arrange
them based on the order ¥f. In other words, creatB;, = (PL m(m), B—X, (XNB)x, (CNX)x, Mk, (CNY)c). By
Lemma 16, inPy, atleast one member (€N X)U{my} is a stable roommate ofi. (3) Interleave the members ¥iNB
into C N X so thatX appears as a whole on the leftro. To be precisePy = (P m(m), B — X, X, m, (CNY)c).
By Proposition 1, iR/, at least one member {€ N X) U {m} is a stable roommate. (4) Finally, transfof{’ into
Pr‘ﬁ by moving the members d@ — X to the right ofmy and arranging all the members@fn Y andB — X into the
order ofY. By Proposition 1, at least one membei(@ N X) U {my} is still a stable roommate ofh. Hence, we have
a contradiction thaP$ can destroymy.

The last part of the theorem is a direct consequence of Pitapo§. ]

3|f these members are shifted further to the left, we can mbeetback to the immediate left ofi. By Theorem 8, this will not cause any of
them to become a new stable roommate.
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6 Some Implications of StrategyB

It is obvious that AlgorithnDestroy-Bad can be repeatedly applied; moreover, every time a stablamwtem; is
destroyedm;_1 becomes the new lowest-ranking stable roommate.ofVe will use this property to prove that (1)
any optimal cheating strategy for any sole woman will landih@ne of her original stable partners; (2) such a strategy
will cause every other woman to get a partner ranking at lasstigh as when everyone is truthful.

The Consequence of Optimal Cheating Strategies for a Sole Wwan

We show below that if a roommate, sank, is indestructible, then however a cheating man permugeisj he cannot
expect that the lowest-ranking stable roommate in hisffatslist ranks higher thamy.

Lemma 18 Suppose mis indestructible. However the cheating man permutes tagepence list, his lowest-ranking
stable roommate in the falsified list ranks at most as high gérhis truthful list.

Proof:  We will first need to introduce another technical lemma.

Lemma 19 Let m; and m be two stable roommates of man m, angd s, m;. Suppose m falsifies his list so that

my >r]; ms, all the original stable matchings containing the coufiie ms} become unstable with regard to the falsified
lists.

Proof: We need the following observation [7, Lemma 4.3.9].

Observation 20 Let {m, m’} be roommates in a stable matching M. If one of them prefers Mntather stable
matching M, the other prefers Kito M.

LetM D {m,msg} andM’ O {m, m¢}. SinceM(m) >=n M’(m) = m, by Observation 20m = M’(m) =m,
M (m;). This, combined with the fact that; >r]; ms implies that{m, m;} blocksM. [

Having the above lemma, we can now prove Lemma 18. Smds indestructible, by Theorem 17, we can assume
that the preference list output by AlgorithBestroy-Badis Py = (PL ,m(m), B, mk, C), whereM > {m, m} and
mg remains a stable roommatermf Suppose any preference IBﬁ violates the corollary. We will transforrRy, into
P$ and derive a contradictory conclusion.

Based orPy,, we first create another preference R by permuting the members @U {m} such that their order

is the same as they are F?;ﬁ Letm? be the lowest ranking stable roommate with regar@}p By Corollary 16,m?
ranks at most as high as with regard to the truthful list of.
From P},, we now create another preference It by shifting those members, who rank higher timgin Py,

but lower tharmmy in P,ﬁ, to the right ofmy. Moreover, these moved members are interleaved into theb@enwho
rank lower tharmy in Pf, in such a way that all members now ranking lower thanhave the same order as they are
in Prﬁ.

We claim that with regard t®%, m? is still the lowest ranking stable roommateRy.. We only need to concern
about any mam' who is being shifted to the right @h? when we transforn®;, to Py;.

e If m'is not a stable roommate, whem' being shifted to the right of? still cannot makem' a new stable
roommate, as Proposition 2 implies.

e If m' is a stable roommate, when' being shifted to the right af?, m™ will no longer be a stable roommate
of min P}, because of Lemma 19.

Finally, we transformP;; into Pr{’i by permuting the members ranking higher thapin Py, into the same order as
they have inPﬁ. By Proposition 1m? remains a stable roommate with regard%& moreover, it is still the lowest
ranking stable roommate iﬁrﬁ. So we have the lemma. ]
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Corollary 21 Given a stable roommates problem instance in which stabkehirays exist, for a sole cheating man,
the best possible lowest-ranking stable roommate withraegehis falsified list is one of his original stable roomnste
when everyone is truthful.

Proof: We prove by contradiction. Suppose tmathas a strategy which makes.. € U;j (m) the lowest ranking
stable roommate among his stable roommates in the falsiied\\Ve claim thatm; 1, mj2,--- , Mg must be all
destructible. Supposaj,i + 1 < j < k, is not destructible, then by Lemma 18, no matter owermutes his list,
the lowest ranking stable roommate in his falsified listksaat most as high amj. This would contradict the fact that
m; ¢ is the best possible lowest ranking stable roommata.of

Sincem; 11, M4, - - - , Mg are all destructible, by Theorem 17, Algoritibestroy-Badcan be applied repeatedly
to destroy them. Whem; 1 is destroyedm; must be the lowest-rank stable roommatemfwhich contradicts that
m; 1« is the best possible lowest ranking stable roommate. ]

Corollary 21, cast into the stable marriage problem, ingptieat in the Gale-Shapley algorith ¢ (in which
women are getting the worst possible partners), any optitnailegy for a sole cheating woman (Teo, Sethuraman, and
Tan suggested how to frame such an optimal strategy in [lifl[tause her to get one of her original stable partners.

The Consequence of the Woman’s Optimal Cheating Strategy fddther Truthful Women

Corollary 22 In the stable marriage problem with the Gale-Shapley algpon, a woman-optimal strategy will cause
every woman, cheating or otherwise, to get a partner rankinigast as high as when everyone is truthful.

Proof: We first prove that the preference list output®tyategy B will have the stated property. We then show that
whatever other optimal strategies will not deviate fronsttwrollary. In fact, if the cheating woman adoftsategy B
the statement of the corollary can be rephrased as follows.

Claim 23 Inthe Gale-Shapley algorithm, if a sole cheating woman &sl8rategy B, the resultant men-optimal/women-
pessimal matching must be one of the original stable madgshifherefore, every woman, cheating or otherwise, will
get one of her stable partners when everyone is truthful.

Proof: We treat the cheating woman as if she were the cheating mamin our stable roommate problem, her
ordered set of stable partners beifrgi, my, - - - , mx). By Corollary 21, a woman-optimal strategy will cause the
cheating woman'’s lowest ranking partner torhg one of her stable partners. By Theorem 17, AlgoritBestroy-
Bad can destroymy, mg_1, - - - , M ;1 repeatedly so than; is the lowest ranking stable roommaternf Whenmy is
destroyed, all stable matchings contain{ng my} become unstable. Recall that in the men-optimal/womesipet
matchingM ¢, (in the roommate context, it is one of the stable matchirgggaining{m, my}), women are getting
their worst possible partners among all stable matchind®e destruction ofny means thatM ,, become unstable
too. By the second part of Theorem 17, the new men-optima@oepessimal matching (which contains the pair
{m, mg_1}) is one of the stable matchings, in which women are eithdirgethe same or better partners tharMin,;.
Repeating the above argument, Algoritirastroy-Badensures that the new men-optimal/women-pessimal matching
MM D {m, m; } will be one of the original stable matchings, in which all mae either worse off or getting the same
partners, while all women are either better off or getting $ame partners. ]

We now show that other woman-optimal cheating strategitfiare the same property stated in this corollary. Let
Pm be the final preference list after we repeatedly apply AldponiDestroy-Bad Moreover, letQ be the collection
of stable matchings based &y, and other truthful lists. Suppodﬁﬁ is another preference list constructed by other
woman-optimal strategies such that in the resulting new-omimal/women-pessimal matchimg}’w some truthful
women are doing worse than when everyone is truthful.

Our plan as before is to transforRy, into P$ and show that the above situation cannot happen. The tramsfion
consists of (1) Transforr®y, into P;, by shifting some men on the left afi to the right inPy,; (2) TransformPy, into
P$ by shifting some men from the right to the leftwf in P,

We consider the consequences of the two operations.
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e For the first part, because of Lemma 19, some stable matchingsare destroyed. Moreover, because of
Proposition 2, some new stable matchings are created. Véetihetact that when we apply the Gale-Shapley
stable matching algorithm tB,;, and all other truthful lists, men ranking higher tham will not propose tam
(the cheating woman). Hence, how we move around the membettsedeft ofm; in Py, does not influence
the outcome of the Gale-Shapley algorithm. Thds,, remains stable and is the men-optimal/women-pessimal
stable matching. The pessimality &f, , implies that in any newly-created stable matching, womergatting
partners ranking at least as high as those they gkt)j;.

By the above discussion, in the new set of stable matchiXigaone of the women is getting a partner ranking
lower than theiM 5 ¢-partner. We refer to this dsact Z;.

e For the second part, because of Proposition 2, none of théestaatching containingm, m;} is created. We
refer this asFact Z,. By the optimality ofPﬁ’ﬁ, the Gale-Shapley algorithm will still cause (the cheating
woman) to getn;. Such a matching, if it is stiIMjW we prove the corollary easily. If it is not and, instead,
is replaced byM’ .. Because ofact Z,, My, must be one of the stable matchingst By Fact Zy, in
M’{(, every woman is getting a partner ranking at least as hightesveveryone is truthful. Hence we have
corollary. ]

By Corollary 22, women have common interest in cheating. iMa@&oman cheats to get herself a better partner,
she is also doing all other women a favor (and all men a disfavo

The Complexity of Strategy B

Algorithm Destroy-Badcan be applied repeatedly to destroy as many low-rankirgdestaommates as possible. The
first part of AlgorithmDestroy-Bad (identifying which group the members Wy (m) fall into) has to linearly check at
mostO(n) people. For each member, this checking can be done in@«m&é) by Feder’s algorithm [3]. Since there
are at mosOD(n) stable roommates, Algorithestroy-Badneeds to be applied at most the same amount of rounds.
Summing up, Strategp takesO(n?) time.

7 Conclusion

In this paper, we identified a necessary condition for a shkating man to get a new stable roommate. We also
presented a number of impossibility results for a coalitiddrcheating men in the context of both stable roommates
and stable marriage. When a stable matching is chosen miyf@t random, we exhibited two strategies that induce
a new probability distribution majorizing the original ane

There is an interesting algorithmic issue closely relatedur basic assumption. To our knowledge, so far there
does not exist an efficient algorithm for finding a nearlyfamnly random stable matching. Indeed, even for the
simpler stable marriage, no such algorithm appears to bavkndt is well known that the stable matchings for an
instance of stable marriage constitute a distributivedatfpossibly of exponential size) [7]. Since every disttite
lattice is the lattice of ideals of some partially orderet] 8ee can ask the following more general question: given a
posetP, is there a randomized polynomial-time algorithm for saingphan ideal ofP from a nearly uniform probability
distribution?
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