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Abstract

This paper addresses strategies for the stable roommates problem, assuming that a stable matching is chosen
at random. We investigate how a cheating man should permute his preference list so that he has a higher-ranking
roommate probabilistically.

In the first part of the paper, we identify a necessary condition for creating a new stable roommate for the cheating
man. This condition precludes any possibility of his getting a new roommate ranking higher than all his stable room-
mates when everyone is truthful. Generalizing to the case that multiple men collude, we derive another impossibility
result: given any stable matching in which a subset of men gettheir best possible roommates, they cannot cheat to
create a new stable matching in which they all get strictly better roommates than in the given matching.

Our impossibility result, considered in the context of the stable marriage problem, easily re-establishes the cel-
ebrated Dubins-Freedman-Roth Theorem. The more generalized Demange-Gale-Sotomayor Theorem states that a
coalition of men and women cannot cheat to create a stable matching in which everyone of them gets a strictly better
partner than in the Gale-Shapley algorithm (with men proposing). We give a sharper result: a coalition of men and
women cannot cheat together so that, in a newly-created stable matching, every man in the coalition gets a strictly
better partner than in the Gale-Shapley algorithm while none of the women in the coalition is worse off.

In the second part of the paper, we present two cheating strategies that guarantee that the cheating man’s new
probability distribution over stable roommates majorizesthe original one. These two strategies do not require the
knowledge of the probability distribution of the cheating man. This is important because the problem of counting
stable matchings is #P-complete. Our strategies only require knowing the set of stable roommates that the cheating
man has and can be formulated in polynomial time. Our second cheating strategy has an interesting corollary in
the context of stable marriage with the Gale-Shapley algorithm. Any woman-optimal strategy will ensure that every
woman, cheating or otherwise, ends up with a partner at leastas good as when everyone is truthful.

1 Introduction

In the stable roommates problem [4], 2n people are to be assigned ton rooms, each of which accommodates two of
them. Each manm ∈ R (following convention, we assume that all participants inR are male) has a strictly-ordered
preference list in which he ranks all other men inR − {m}. Given any matching, two men preferring each other to
their assigned roommates comprise ablocking pair. A matching without blocking pairs isstable. For a manm ∈ R,
manm′ is called his stable roommate if there exists any stable matching containing the couple{m, m′}; otherwise,m′

is an unstable roommate for him.
The stable roommates problem is more general than the stablemarriage problem [4]. The following well-known

technique can reduce an instance of the stable marriage problem to the roommate one: Each person attaches the other
members of the same sex to the end of his or her list. However, unlike stable marriage, whose strategic aspects have
been investigated extensively [2, 5, 6, 8, 9, 14, 17], the cheating strategies for the stable roommates problem have not
received much attention.

In contrast to stable marriage, the stable roommates problem does not always allow stable matchings. In this work,
we assume that in the given problem instance, stable matchings do exist and that one is chosen at random. Supposing
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that a participant has complete knowledge of all others’ preferences, we study what can be done to his preference list
so that he gets a better roommate probabilistically.

Major Results of This Work

The first part of our paper identifies a necessary condition for the cheating manm to make an unstable roommatem′

who ranks higher than his lowest-ranking stable roommate become a stable one. This condition demands that, in the
falsified list,m′ has to rank higher than at least one ofm’s stable roommates, saym′′, andm′′ originally ranks higher
thanm′ in the truthful list ofm. Hence, this condition rules out any chance of the cheating man obtaining a roommate
ranking higher than all his stable roommates.

We then generalize to the case of multiple men forming a coalition. Given any stable matching in which a subset
of men all get their best possible roommates, we prove that they cannot cheat together to create a stable matching in
which they all get strictly better roommates than in the given matching. In the context of the stable marriage problem
with the Gale-Shapley algorithm, our impossibility resulteasily re-establishes the celebrated Dubins-Freedman-Roth
Theorem [2, 13]: A coalition of men cannot cheat together andall get better partners. The more general Demange-
Gale-Sotomayor Theorem [1] states that a coalition of men and women cannot cheat together and all get better partners
than in the Gale-Shapley algorithm. In fact, we have a sharper result: a coalition of men and women cannot cheat
together so that in a newly-created stable matching, every man in the coalition gets a strictly better partner than in the
Gale-Shapley stable matching, while no woman involved in the coalition is worse off.

In the second part of the paper, assuming that a stable matching is chosenuniformly at random, we exhibit two
strategies that ensure the cheating man to have a new probability distribution over stable roommates which majorizes
the original one. Here we define the term “probability majorization” as follows. LetPi (m) and P′

i (m) be the prob-
abilities of m’s getting hisi -th ranking roommate in a uniformly random stable matching,when he is truthful and
otherwise.P′ majorizesP if for 1 ≤ t ≤ n,

∑t
i=1 P′

i (m) ≥
∑t

i =1 Pi (m). The first strategy guarantees that in all the
newly-created stable matchings, he gets the best possible stable roommate; moreover, it can be formulated in constant
time. The second strategy is an optimal strategy for the cheating man to destroy low-ranking stable roommates. We
use the term “optimal” in the sense that if our second strategy cannot eliminate someone, saymk, as a stable roommate
of m, then there does not exist any other strategy to achieve thiswithout causing someone else ranking lower than
mk to become a new (and unwanted) roommate. In the context of stable marriage with the Gale-Shapley algorithm,
our second strategy has the auxiliary consequence that any optimal cheating strategy for a sole cheating woman (Teo,
Sethuraman and Tan suggested how to formulate such a strategy in [17]) will ensure her to get one of her original
stable partners and every other woman to get a partner ranking at least as high as when everyone is truthful. This fact
was also independently discovered by Sethuraman and Teo [16]. Our second strategy costsO(n4) time.

Our two strategies do not need to know the probability distribution over stable roommates of the cheating man. The
only knowledge required is the set of roommates he has; this can be obtained inO(n2) time [3]. We think strategies
not involving the knowledge of the exact probability distribution are important, because to obtain the exact probability
distribution can be computationally expensive. For one thing, if we want to enumerate the set of stable matchings,
Knuth [12] points out the number of stable matchings can be exponential; for the other, supposing we know the set
of possible stable roommates of the cheating man, it is very unlikely we can count the number of stable matchings
for each of his stable roommate in polynomial time, otherwise, in polynomial time, we can count the total number of
stable matchings, which has been proved by Irving and Leather [11] to be a #P-complete problem.

Related Work

The stable roommates problem, along with the stable marriage problem, was first formulated by Gale and Shapley [4].
They proved that stable matchings always exist for the latter, but not necessarily for the former. Knuth [12] posed the
open problem of finding an algorithm for the stable roommatesproblem; this problem was solved by Irving [10]. The
book of Gusfield and Irving [7] is probably the best referencefor algorithmic issues on the stable roommates problem.
The concept of random stable matching was first introduced byRoth and Vate [15]. Some group cheating strategies
for the random stable matching in the marriage case are explored in [8]. For strategic behavior in the stable matching
problem, Roth and Sotomayor have a rather detailed treatment in [14].
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Structure of the Paper

Section 2 presents a necessary condition for a cheating man to get a new stable roommate. In Section 3, we discuss
the more general case of multiple men colluding, and we exhibit a number of impossibility results. In Sections 4 and
5, we present the two cheating strategies for a cheating man that make his new probability distribution majorize the
original one. In Section 6, we discuss some implications of our second strategy on women’s cheating strategies in
stable marriage. Finally, in Section 7, we draw the conclusion and discuss some open questions.

Notation and Terminology

Throughout this paper, we refer to the cheating man asm. His preference list is decomposed as
(U0(m), m1,U1(m), m2, · · · ,Uk−1(m), mk,Uk(m)), wheremi , 1 ≤ i ≤ k is his set of stable roommates andU j (m), 0 ≤

j ≤ k constitute his (ordered) subset of unstable roommates. When referring to the roommate of a particular
personm† in the matchingM, we write M(m†). As a shorthand for the preference list ofm, we often write
(PL ,M (m), M(m), PR,M (m)), whereM is any matching, stable or otherwise.PL ,M (m) is the sub-list containing all
the men ranking higher thanM(m); and similarly forPR,M (m). Colloquially, we often say the elements ofPL ,M (m)
(PR,M (m)) are the men on the left (respectively, right) ofM(m). Given an ordered listA, πr (A) is any permutation
of A; supposeA andB are ordered lists,

∏
r (A, B) is an arbitrary combination ofA andB such that the elements of

A and ofB retain their original order in the combined list. When we write (A ∩ B)A, we create another ordered list
which contains the common members ofA andB and these members are arranged based on their order inA. Suppose
the common members ofB and A are extracted from the ordered setA but those left still keep the original order, we
write A − B.

In m’s preference list, ifm′ ranks strictly higher thanm′′, we writem′ ≻m m′′. If m′ �m m′′, then eitherm′ ≻m m′′,
or m′ = m′′. If m falsifies his list such thatm′ ranks higher thanm′′, we writem′ ≻

f
m m′′. When everyone is truthful,

we refer to the collection of their preference lists as “true” lists. When any one of them lies, the resulting lists are
referred to as “falsified.” Given two matchingsM and M ′, if a subset of menG ⊆ R all prefer M to M ′ or are
indifferent, we writeM �G M ′; if all of them strictly preferM to M ′, we writeM ≻G M ′.

As we will switch back and forth between stable roommate and stable marriage, we also introduce notation for the
latter problem. The collection of men and women areM andW . The men-optimal/women-pessimal matching (found
by the Gale-Shapley men-proposing algorithm) isMM; analogously, the women-optimal/men-pessimal matching is
MW . Throughout this work, when we refer to the Gale-Shapley algorithm, we implicitly assume the men-proposing
version.

2 In Search of a New Roommate

In this section, we study how to create a new stable roommate for the cheating man.

Targeting a Roommate Ranking Higher than all Stable Roommates

To motivate our cheating strategy, assume that the cheatingmanm hopes to get a new roommatem0 ∈ U0(m) who
ranks higher than all of his stable roommates. However, the feeling is not reciprocal andm ranks lower than all of
m0’s stable roommates (otherwise,{m, m0} would block some stable matching). Is there a strategy form to makem0
his new stable roommate? Unfortunately for him, we will answer in the negative in the following discussion.

The following two propositions are straightforward consequences of the definition of stable matchings. They will
be used frequently throughout this paper.

Proposition 1 Let M be any stable matching. If m submits a preference list ofthe form
(πr (PL ,M (m) − X), M(m), πr (PR,M (m) ∪ X)), where X⊆ PL,M (m), the matching M remains stable with regard to
the falsified lists.

This proposition states that manm can shift some men from the left to the right ofM(m) without worrying about
losing M(m) as a stable roommate. The next proposition identifies a strategy which isnoteffective for creating a new
stable roommate.
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Proposition 2 Suppose Mφ is an unstable matching with regard to the true lists. Moreover, m falsifies his list so that
Mφ becomes stable. Then it is impossible that the falsified listof m is of the form:
(πr (PL ,Mφ (m) ∪ X), Mφ(m), πr (PR,Mφ (m) − X)), where X⊆ PR,Mφ (m).

A straightforward application of this proposition is that if m0 is on top ofm’s preference list, there is no cheating
strategy form to become his roommate. To makem0 ∈ U0(m) a new roommate, Proposition 2 eliminates all but
one possible strategy: the cheating manm shifts some subset of men ranking higher thanm0 to the right ofm0 in his
falsified list. This might create the chance of making an unstable matchingMφ ⊃ {m, m0} become stable. This is
possible if inMφ, with regard to the true lists, all blocking pairs involvem.

We introduce another little proposition which helps to simplify our analysis.

Proposition 3 Let M be a stable matching and M′ an unstable one. SupposeŴ ⊂ R is the set of men getting worse
roommates in M′ than in M. All the blocking pairs{mu, mv } in M ′ are of the following form:

• mu ∈ Ŵ,

• M(mu) �mu mv ≻mu M ′(mu).

Proof: We decomposeR = 9 ∪Ŵ ∪1, where9 is the collection of men getting better roommates,Ŵ the collection
of men getting worse ones, and9 the collection of men getting the same ones inM ′. Suppose{ms, mt } blocks
M ′, wherems, mt ∈ 9 ∪ 1. Then{ms, mt } blocks M too. The remaining case is{mu, mv}, wheremu ∈ Ŵ and
mv ≻mu M ′(mu), mu ≻mv M ′(mv ). It can be easily verified that no matter whethermv is a member of9 or Ŵ or 1,
either{mu, mv} blocksM too, or the second condition of the proposition holds.

Given any stable matching, suppose a subset of men exchange their roommates. By this proposition, to verify
whether after the exchange the matching remains stable, we only need to check those men who are getting worse
roommates. In particular, we only need to check whether theycompose blocking pairs with their former roommates
and with those men ranking strictly between their former andtheir current roommates. We now present our first
primary result.

Lemma 4 Let M be a stable matching and Mφ(m) be an unstable roommate of m with regard to the true lists. Suppose
Mφ(m) ≻m M(m) and all blocking pairs for Mφ involve m. Then at least one of the blocking pairs{m, mx} is a stable
pair and mx ≻m Mφ(m).

Proof: We first remark that ifm wishes to makeMφ(m) a stable roommate, by Proposition 2, he has to submit
a falsified list of the form(PL ,Mφ (m) − X, Mφ(m),

∏
r (PR,Mφ (m), X)), where X ⊆ PL,Mφ (m). Moreover, by

Proposition 1,M remains stable with regard to the falsified lists.
Our proof plan is as follows: with regard to the falsified lists, we introduce an algorithm that transforms the stable

matchingM into another stable matchingM♭ such thatM♭(m) ≻m M(m) andM♭(m) ∈ X. Finally, we prove thatM♭

is also stable with regard to the true lists, thereby arriving at the conclusion.
We need the following claim.

Claim 5 The graph G= (R, M
⊕

Mφ) consists of disjoint cycles of even length. The men preferring M to Mφ

alternate with those preferring Mφ to M in these cycles.

Proof: The first part of the claim follows from the observation that every man inG = (R, M
⊕

Mφ) has degree 0
or 2. Similarly, an odd length cycle would mean in eitherM or Mφ , a man has two roommates.

For the second part, first choose a manmβ who prefersM to Mφ in cycleC1. SinceM(mβ) ≻mβ Mφ(mβ), for
{M(mβ), mβ} not to blockMφ , M(mβ) must be matched to someone ranking higher thanmβ in Mφ . Let mβ+1 =

Mφ(M(mβ)) be his roommate inMφ . By the same reason,mβ+1 ≻M(mβ ) mβ , if {M(mβ), mβ+1} does not block
M , M(mβ+1) ≻mβ+1 Mφ(mβ+1) = M(mβ). Consider againMφ: For {mβ+1, M(mβ+1)} not to blockMφ , since

1Or choose a man preferringMφ to M . The argument is similar.
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M(mβ+1) has to get a higher-ranking manmβ+2 = Mφ(M(mβ+1)) who ranks higher thanmβ+1 in his list. By
repeating the above argument, we can discover, along cycleC, a circular list
(mβ , M(mβ), mβ+1, M(mβ+1), · · · , mβ+|C|/2−1, M(mβ+|C|/2−1)), indices taken modulo|C|/2, in which eachmβ+i

prefersM and eachM(mβ+i ) prefersMφ .

By the above characterization, we obtain a decomposition into those men having better roommates inMφ as group
A, and those having better ones inM as groupB.

We claim the following.

• Formβ ∈ B, {M(mβ), Mφ(mβ)} ⊂ A. Similarly, for mα ∈ A, {Mφ(mα), M(mα)} ⊂ B.

• Formβ ∈ B, supposeM(mβ) ≻mβ m† ≻mβ Mφ(mβ),

– If m† 6∈ A ∪ B, M(m†) = Mφ(m†) ≻m† mβ . (Fact 1)

– If m† ∈ B, M(m†) ≻m† Mφ(m†) ≻m† mβ . (Fact 2)

– If m 6= m†, m† ∈ A, Mφ(m†) ≻m† mβ . (Fact 3)

– If m = m† ∈ A, eitherMφ(m†) ≻m† mβ or Mφ(m†) ≻
f
m† mβ . (Fact 4).

• For eachmβ ∈ X ∩ B, M(mβ) ≻mβ m. (Fact 5).

The first part is simply the restatement of graphG = (R, M
⊕

Mφ). The second and third parts are necessary if
both M andMφ are stable with regard to the falsified lists. The special case that needs more attention isFact 4 : The
cheaterm is in A. If some manmβ in B puts him between hisM-roommate and hisMφ-roommate, it is possible that,
for m, eithermβ “really” ranks lower thanm’s Mφ-roommate, ormβ is one of the men inX being shifted bym to the
right of Mφ(m). For both cases,mβ 6∈ PL ,Mφ (m) − X (Fact 6). This fact is not only helpful in the following proof,
but also a hint of a necessary condition for creating new stable roommates, as will be explained later.

For eachmβ ∈ B, we trim his preference list as follows. SupposeM(mβ) ≻mβ m† ≻mβ Mφ(mβ),

• m† 6∈ A, removem†.

• m† ∈ A, removem† only if Mφ(m†) ≻m† M(m†) ≻m† mβ . (Fact 7)

After these trimmings, for eachmβ ∈ B, the men ranking betweenM(mβ) and Mφ(mβ) are those in group
A; moreover, these men, exceptm, rank mβ between theirMφ-roommates andM-roommates (Fact 8). The only
exception ism, who ranksmβ at least as high as hisM-roommate (Fact 9). (It is possible thatm ranksmβ even higher
than hisMφ-roommate; the stability ofMφ is kept with regards to the falsified lists becausem shiftsmβ to the right
of Mφ(m), asFact 4 indicates.)

After the men inB have trimmed their lists, we can use AlgorithmBreak-up in Figure 1 to create another stable
matchingM ♭ from M; in M ♭, m will be matched to some man ranking higher than hisM-roommate.

1: break up{m, M(m)};
2: While there exist unengaged men
3: Choose an unengaged manmβ ∈ B;
4: mβ proposes to the next manmα ∈ A to whom he has not proposed yet in his trimmed list;
5: If mα is engaged
6: If he prefersmβ to his current roommateThen mα dumps his current roommate and acceptsmβ ;
7: Elsemα rejectsmβ ;
8: Else if mα is single /*mα = m
9: mα acceptsmβ ;
10: Terminate the algorithm and output the resulting matching M♭ .

Figure 1: Algorithm Break-up: a stable matchingM♭ can be created fromM in whichm gets a higher-ranking roommate inM♭ .

By the trimmed lists of men inB, it can be seen that the execution of AlgorithmBreak-up consists of men inB
proposing to men inA, until the point thatm, the cheater, receives a proposal.
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To establish the correctness of the algorithm, we first show that it terminates. We claim that no man inB will
ever be rejected by hisMφ-roommate. Without loss of generality, letmβ ∈ B be the first man being rejected by
his Mφ-roommate. (Note ifMφ(mβ) = m, the termination is trivially true.) This rejection takes place because
Mφ(mβ) ∈ A− {m} has received a proposal from another man inB ranking higher thanmβ , but this would contradict
Fact 3.

Since the truncated lists of men inB are of finite length, the algorithm is bound to stop. Moreover, all men inB
are to be matched to some men inA who rank at least as high as theirMφ-roommates. Similarly, all men inA, except
m, are matched to some men inB ranking between theirMφ- andM-roommates (because ofFact 8). The exception
is m, who will end up with either hisMφ-roommate, or someone else ranking higher than hisM-roommate (because
of Fact 9).

Finally, we observe that the men not belonging toA∪ B are getting the same roommates inM♭ as inM, moreover,
a subset ofA and a subset ofB (of equal size) get better and worse roommates, respectively, in M ♭ (Fact 10).

Our next goal is to prove thatM♭ is stable with regard to the falsified lists. Due to Proposition 3 and the fact
that M remains stable with regard to the falsified lists, we only need to consider the men inB who are getting worse
roommates inM ♭. In particular, for such a manmβ ∈ B, we only have to verify those pairs{mβ , m†} such that
M(mβ) �mβ m† ≻mβ M ♭(mβ):

• Supposem† is not present in the truncated list ofmβ . There are three sub-cases:

– If m† 6∈ A ∪ B, then{mβ , m†} does not blockM♭ because ofFact 1andFact 10.

– If m† ∈ A, thenm† is removed only becausem† prefers hisM-partner tomβ (as shown inFact 7). Since
m† ends up with someone ranking at least as high as hisM-roommate,{mβ , m†} still does not blockM♭.

– If m† ∈ B, since men inB are getting roommates ranking at least as high as theirMφ-roommates, this
combined withFact 2 implies that{m†, mβ} is not a blocking pair inMφ .

• Supposem† is present in the truncated list ofmβ , by Fact 8 and9, m† ∈ A. By the algorithm,mβ must have
proposed to and been rejected bym†. This rejection must be caused by some other manm′

β ∈ B, who ranks

higher thanmβ in m†’s list, proposing tom†. Hencem† ends up with eitherm′
β or with someone with even

higher rank. For both cases,{mβ , m†} does not blockM♭.

By the above argument, the stability ofM♭ with regard to the falsified lists is established. We now argue thatM♭

is also stable with regard to the true lists; moreover, we discuss the different consequences based on the identity of
M ♭(m).

• SupposeMφ(m) = M♭(m). If we can show thatM♭ is also stable with regard to true lists, we get the contradic-
tion thatMφ(m) is not a stable roommate ofm.

Suppose we restore the preference list ofm to the truthful one andM♭ becomes unstable. Let a newly-formed
blocking pair be{m, m‡}. If m‡ ∈ R − (B ∪ {m}), then the pair{m, m‡} blocks M too, a contradiction. If
m‡ ∈ B, by Fact 5, m‡ prefersM(m) overm. The only possibility that{m, m‡} blocksM♭ is thatM(m‡) ≻m‡

m ≻m‡ M♭(m‡). However, byFact 7, m will not be trimmed fromm‡’s list, hencem‡ would not have avoided
proposing tom†. Another contradiction.

• By Fact 6, m cannot end up with someone inPL ,Mφ (m) − X. So we only have two more sub-cases to consider:

– If M ♭(m) ∈ X, after restoringm’s preference back into the truthful one,m is getting a better partner, thus,
M♭ will be stable. AndM♭(m) is one of the stable roommates ranking higher thanMφ(m), as stated in the
lemma.

– If M♭(m) 6∈ X, then in the truthful list ofm, Mφ(m) ≻m M♭(m) ≻m M(m). The stability ofM♭ can be
argued in the same way as we have done in the case thatM♭(m) = Mφ(m).
SupposeM ♭ is stable and we know thatm is getting a higher ranking partner inM♭ than inM . We repeat
the whole argument so far in the proof, applying it to the men in the disjoint cycles ofG = (R, M♭

⊕
Mφ).

After we apply AlgorithmBreak-up, eitherm gets a stable roommate from the setX, or we get the
contradictory conclusion thatMφ(m) is in fact a stable roommate ofm.
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Specializing Lemma 4 to the case that the cheating manm is getting his highest-ranking stable roommate inM,
we get the conclusion that a new stable matchingMφ , in which Mφ(m) = m0 ≻m M(m) = m1 cannot be realized by
shifting some men ranking higher thanm0 to the right ofm0 in the falsified list.

Theorem 6 Given any stable roommates instance in which stable matchings exist, a sole cheating man cannot create
a new stable roommate ranking higher than all his stable roommates by any strategy.

We remark that Theorem 6 does not preclude the possibility ofcreating a new stable roommate ranking belowm1.
An interesting corollary follows from Lemma 4 and Proposition 1.

Corollary 7 Suppose the cheating man m submits a preference list of the form
(πr (U0(m)), m1, πr (U1(m)), m2, · · · , mk−1, πr (Uk−1(m)), mk,Uk(m)). Then the set of stable matchings remain
identical to the case when everyone is truthful.

We remark that this corollary2 does not consider permutingUk(m). In fact, it is possible that by permutingUk(m)
alone a new stable roommate is formed. But obviously,m has no interest in creating a new roommate of such low
rank.

A Necessary Condition for Creating a New Stable Roommate

Our attempt at makingm0 ∈ U0(m) a new stable roommate has been thwarted. Supposem now realizes the difficulty
of gettingm0; he compromises his ideal and considers creating another stable roommate ranking betweenm1 andmk.
How can he achieve this?

It is insightful to look again at the proof of Lemma 4. After repeatedly applying AlgorithmBreak-up, in the
final matchingM ♭, the cheaterm either ends up withMφ(m), a contradiction thatMφ(m) is not one of his stable
roommates, or some manmβ ∈ B ∩ X (Fact 4 in Lemma 4). In the falsified list ofm, X is the set of men being
shifted to the right ofMφ(m). Hence, to makeMφ(m) a new stable roommate,at least onestable roommate has to be
included inX to be shifted to the right ofMφ(m).

Theorem 8 Let mi+ǫ ∈ Ui (m), where1 ≤ i ≤ k − 1, be an unstable roommate of the cheating man m. A necessary
(but not sufficient) condition of making mi +ǫ a new stable roommate is thatat least oneoriginal stable roommate
ranking higher than mi +ǫ has to become lower-ranked than mi+ǫ in the falsified list of m.

By Theorem 8, a possible strategy can be formed as follows. The cheating manm shifts a highly-ranked man, say
m1+ǫ ∈ U1(m), to the top of his list and observes whetherm1+ǫ becomes a new stable roommate. In some cases,
this strategy does help to boost the expected rank of his roommate. However, this strategy does not result in a new
probability distribution over roommates which majorizes the original one. The reason is that the chance ofm being
matched to his best possible roommate,m1, is “diluted” by the newly created stable matchings.

3 Multiple Men Cheat Together

In this section, we generalize to the case of multiple cheaters. Propositions 1 and 2 can be adapted straightforwardly
and will be used in the proofs.

Theorem 9 Let M be a stable matching. Suppose Mφ is an unstable matching such that Mφ �G M where G⊆ R,
moreover, there exists a non-empty subset G′ ⊆ G such that men in G′ get their highest-ranking roommates in M and
Mφ ≻G′ M. If there do not exist strategies for men in G− G′ to make Mφ a stable matching, then there does not exist
any strategy for men in G collectively to make Mφ become stable.

2In the context of stable marriage, this corollary can have a more direct proof without the aid of Lemma 4. For the part involving permuting
U0(m), a proof can be found in Lemma 2 of [8]. For the part involving permutingU1(m), · · · ,Uk−1(m), one can observe Theorem 2.5.5 and the
definition ofrotationsin the book of Gusfield and Irving [7].
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Proof: By the generalized version of Proposition 2, the only possible strategy for manmγ ∈ G − G′ to makeMφ

stable is to falsify his list in the form(πr (PL ,Mφ (mγ ) − X), Mφ(mγ ), πr (PR,Mφ (mγ ), X)), whereX ⊆ PL ,Mφ (mγ ).
If after all men inG − G′ have falsified their lists in this way,Mφ becomes stable, the theorem is trivially true.
Therefore, we assumeMφ remains unstable after all men inG − G′ falsify their lists. Now choose any manm′

γ ∈ G′.
By Theorem 6, there does not exist any strategy for manm′

γ to makeMφ(m′
γ ) a new stable roommate. So however

m′
γ permutes his list,Mφ remains unstable. The same argument applies to the rest of the men inG′ and so we have

the theorem.

Theorem 9 leads to several interesting corollaries.

Corollary 10 Let M be any stable matching in which a non-empty subset G⊆ R of men are matched to their highest-
ranking stable roommates. There does not exist any strategyfor the men in G to create a new stable matching Mφ in
which every man in G gets a better roommate than in M.

In the context of the stable marriage problem, the celebrated Dubins-Freedman-Roth Theorem [2, 13] also gives a
restricted version of this theorem) can be easily re-established by Corollary 10.

Corollary 11 (Dubins-Freedman-Roth Theorem): In the stable marriage problem, a coalition of men cannot falsify
their preference lists so that everyone of them gets a strictly better partner than in the men-optimal matching.

Proof: Choose any subset of menG ⊆ M. Apply Corollary 10 toG and the men-optimal matchingMM.

A stronger theorem by Demange, Gale and Sotomayor [1] statesthat a coalition of men and women cannot cheat
together so thateveryone of themgets a strictly better partner than in the men-optimal matching MM. We give a
sharper result.

Corollary 12 In the stable marriage problem, a coalition of men and women cannot falsify their preference lists to
create a stable matching in which every man in the coalition gets a strictly better partner than in the original men-
optimal matching, while none of the women involved in the coalition is worse off.

Proof: Let G ⊂ M ∪ W be a coalition of men and women. Since in the men-optimal matching MM, men already
have their best possible partners, by Theorem 9, a new stablematchingM ′ thatM ′ �G MM andM ′ ≻G∩M MM can
only be created by the falsified lists of women inG ∩ W. So we suppose all women inG ∩ W falsify their lists and
M ′ becomes a new stable matching.

To makeM ′ stable, by the generalized version of Proposition 2, the only effective strategy for each womanw ∈

G ∩ W is that she submits a falsified list of the form(πr (PL ,M ′(w) − X), M ′(w), πr (PR,M ′(w) ∪ X)), whereX ⊆

PL ,M ′(w). Let the falsified list ofw be Pw. We create another falsified listP′
w, which only differs fromPw in that

all members inPR,M ′(w) are restored to their original order in the truthful list ofw. By the generalized version of
Proposition 1, if we replacePw with P′

w, the matchingM ′ remains stable. The reason for this pre-processing will be
clear shortly.

We make the following two observations. (1) In the Gale-Shapley algorithm, women only receive proposals from
men rankinglower than theirMM-partners. Givenw ∈ G ∩ W , sinceM ′(w) �w MM(w), in her falsified list, how
she moves about men ranking higher thanM ′(w) does not affect the execution of the Gale-Shapley algorithm. (2)
Givenw ∈ G ∩ W , in P′

w, men in PR,M ′(w) have the same relative order as in womanw’s truthful list. Therefore,
women, whether inG or not, will make entirely the same decision about rejectingand accepting men as when everyone
is truthful. Combining the two observations, we conclude that applying the Gale-Shapley algorithm to the falsified
lists will lead to the original matchingMM.

Finally, if M ′ can become stable by the falsified lists of women inG ∩ W, then the men inG ∩ M get better
partners inM ′ than inMM. The men-optimality of the latter (since it is produced by the Gale-Shapley algorithm) is
then violated. This finishes the proof.

This result again manifests the difficulty of men cheating. If a coalition of men try to lobby some women to falsify
their lists also (on the premise that none of the women involved will be worse off), there still does not exist any chance
of forming a successful strategy for them. The only way for a coalition of men to get better partners in a new stable
matching is that they ask for the collaboration of other fellow men, as has been shown in [8].
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4 Strategy A

We return to the theme of the strategies for a sole cheating man m. Supposing a stable matching is chosen uniformly
at random, in this section and the next, we present two strategies for him so that his probability distribution over stable
roommates majorizes the original one.

By Theorem 6, there is nothing more the cheating manm can do to get any member inU0(m). Nonetheless, these
unapproachable men still serve a purpose. If we move all of them en masse to the immediate right ofm1, there is
a chance that more stable matchings containing{m, m1} are thus created (since men inU0(m) constitute potential
blocking pairs to unstable matchings containing{m, m1}). However, if these men are moved to the right ofmi , i > 1,
other new stable matchings containing{m, m2}, {m, m3}, · · · {m, mi } may crop up, which is not as a good outcome as
we simply “squeeze”U0(m) betweenm1 andU1(m). From the above discussion, the following strategy is immediate:

Theorem 13 (Strategy A): Suppose the cheating man m submits a falsified list of the form
(m1, πr (U0(m)),U1(m), m2, PM,R(m)) where M⊃ {m, m2}. For m, the new probability distribution over roommates
majorizes the original one when everyone is truthful. More generally, such a list will majorize the probability distri-
bution induced by any list of m in the following form(U0(m) − X, m1,

∏
r (X, PR,M ′(m))), where X⊆ U0(m) and

M ′ ⊃ {m, m1}.

5 Strategy B

We introduce another strategy which destroys low-ranking stable roommates of the cheating manm. In this section,
when we say wedestroya stable roommatemi , we mean the cheating manm manipulates his preference list so that
all stable matchings containing{m, mi } become unstable. We callmi destructibleif m can destroymi without other
stable roommates ranking lower thanmi being formed.

To build up some intuition, assume that our preliminary goalis to destroy all stable matchings containing{m, mk}.
By Proposition 1, this can only be achieved by shifting some men fromUk(m) to the left ofmk. But this move involves
some risk: some of these shifted men inUk(m) may become new stable roommates ofm, which is a worse outcome
for him.

We define three categories for the members inUk(m):

Definition 14 Uk(m) is decomposed into (interleaving) ordered subsets A∪ B ∪ C. For a man m† ∈ Uk(m), let man
m submit a falsified list of the form(U0(m), m1,U1(m), m2, · · · ,Uk−1(m), m†, mk,Uk(m) − m†), then:

• m† ∈ A, if mk is no longer a stable roommate and m† does not become a new stable roommate of m.

• m† ∈ B, if mk remains a stable roommate but m† does not become a new stable roommate of m.

• m† ∈ C, if m† becomes a new stable roommate of m, while mk remains/is no longer a stable roommate of m.

The following algorithm suggests a procedure to systematically make all stable matchings containing{m, mk} become
unstable without creating any new unwanted stable roommatein Uk(m).

We outline the general idea of the algorithmDestroy-Bad before proving its mathematical properties. The first
part of the algorithm is concerned with identifying which group, as defined in Definition 14, the members inUk(m)
fall into. The identification of a single member, costingO(n2) time by Feder’s algorithm [3], is done by observing the
set of stable roommates ofm given his falsified list. Note the fact that we shiftm† to the “immediate” left ofmk. This
artifice preserves the maximum likelihood of preventingm† from becoming a new stable roommate ofm. If in spite of
this,m† still becomes a new roommate ofm (making itself a member ofC), because of Proposition 1, there is nothing
more we can do concerning men ranking higher thanmk to change the status ofm†.

If group A is not empty, we achieve our goal trivially. IfB is not empty, we shift all of its members to the immediate
left of mk. The idea is that, even though separately, each of them is unable to destroymk, their combined presence on
the left ofmk might succeed. There might be a concern that, when being moved en masse, some of the men inB may
become new stable roommates ofm. We will prove shortly that this is not the case.
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0: Algorithm Destroy-Bad: Input (U0(m), m1, · · · ,Uk−1(m), mk,Uk(m))

1: For All m† ∈ Uk(m)

2: Shiftm† to the immediate left ofmk. Observe whetherm† is in A, B, or in C.
/* At this point, Uk(m) = A ∪ B ∪ C. Moreover,A ∩ B = B ∩ C = C ∩ A = ∅.

3: If A 6= ∅ Then /* In this case,mk is destructible.
4: Output the list(U0(m), m1, · · · ,Uk−1(m), ma, mk,Uk(m) − ma), wherema ∈ A.
5: If B 6= ∅ Then
6: If P′ = (U0(m), m1, · · · ,Uk−1(m), πr (B), mk,Uk(m) − B) destroysmk Then OutputP′

7: Else
8: For All m† ∈ Uk(m) − B
9: If P′′ = (U0(m), m1, · · · ,Uk−1(m), πr (B), m†, mk,Uk(m) − B − m†) destroysmk Then OutputP′′

10: OutputP′

11: If C = Uk(m) Then Output the input preference list(U0(m), m1, · · · ,Uk−1(m), mk,Uk(m))

/* In this case,mk is indestructible.

Figure 2: Algorithm Destroy-Bad: Given a preference list, this algorithm returns a new preference list which: (1) ifmk is
destructible, destroysmk without causing any man ranking lower thanmk−1 to become a new stable roommate; (2) ifmk is
indestructible, ensuresm has a new probability distribution over his roommates whichmajorizes the original one.

Supposing the combined efforts ofB on the left ofmk cannot destroymk, we still need to check one more time
the status of the remaining members inUk(m). Some of them, saymc, can be transformed from a member ofC to
a member ofA (but not B, as we will prove later on). The reason is that more members ofB being on the left of
mc might serve as more potential blocking pairs to matchings containing{m, mc}. Given that, there is still one more
caveat here. One might imagine that after we shift “more thanone“ members inUk(m)− B to the left ofmk, we might
have more chance of destroyingmk while still avoiding any member inUk(m) − B being shifted from becoming new
(and unwanted) stable roommates. We shall also discuss why this is not the case below.

Finally, suppose the algorithm finds thatA = ∅ and B 6= ∅, and unfortunately, shiftingB to the left ofmk still
cannot destroymk. The cheating manm still should adopt the new preference list suggested by Algorithm Destroy-
Bad. The reason is that the more members that we shift to the left of mk, the more likely we are able to destroy stable
matchings containing{m, mk} (but not all of them). Destroying stable matchings containing {m, mk} helps for our
probability majorization purpose.

Optimality of Strategy B

We prove the correctness of AlgorithmDestroy-Bad and a number of mathematical properties of the members of
Uk(m). We first show that men inB being moved together will not cause any of them to become a newstable
roommate ofm.

Lemma 15 Let Uk(m) be decomposed into interleaving ordered subsets A∪B∪C as defined in Definition 14. Suppose
|B| ≥ 1 and let m submit a list of the form(U0(m), m1, · · · ,Uk−1(m), πr (B), mk,Uk(m) − B). Then there are no
new stable matchings containing{m, mb} where mb ∈ B. Moreover, suppose A= ∅ and in the new preference list,
all members of B are shifted to the immediate left of mk but mk remains a stable roommate of m. All members in
Uk(m) − B can only belong to group A or group C.

Proof: For the first part, the case of|B| = 1 is trivial. As to the case of|B| > 1, we prove by contradiction. Sort
men in B in arbitrary order(mb1, mb2, · · · , mbx). We shiftmb1 to the immediate left ofmk, and then shiftmb2 to
the immediate left ofmb1 and so forth. By Proposition 2, if aftermbi is moved, he does not become a new stable
roommate, the subsequent shifts involvingmb(i+1), mb(i +2), · · · will not change the status ofmbi . Thus, we only need
to worry about the man inB who is being shifted at this point.

Let mbi be the first man becoming a new stable roommate ofm in the process. We refer to the preference list at
this point asPi . We then create another listP′

i which differs from Pi in that mb1, mb2, · · · mb(i −1) are shifted back
to their original positions inUk(m). By the definition of groupB, {m, mbi } is not part of a stable matching givenP′

i .
However, based onPi , {m, mbi } is part of a stable matching. Combining the two facts, we violate Proposition 1.
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For the second part, if there is any memberm† ∈ Uk(m) − B belonging to groupB, i.e., in the preference list
P′

m = (U0(m), m1, · · · ,Uk−1(m), πr (B), m†, mk,Uk(m) − B − m†), m† is not a stable roommate butmk still is. We
create another preference list by shifting all members ofB back to their original places. Then,m† becomes a stable
roommate ofm but originally in P′

m, all members ofB are unstable roommates. Thus we violate Theorem 8.

As alluded to previously, there might be a concern that the members inC, being shifted in a group, instead of
individually, betweenB andmk, might succeed in destroyingmk without causing any of themselves to become a
stable roommate ofm. The following lemma dissipates this concern.

Lemma 16 Let Uk(m) be decomposed into interleaving ordered subsets A∪ B ∪ C as defined in Definition 14.
Suppose C= Uk(m). Given any subset C′ ⊆ C, let the cheating man m submit a preference list of the form
(U0(m), m1, · · · ,Uk−1(m), πr (C′), mk, C − C′), then there exists at least one man in C′ who becomes a new sta-
ble roommate of m.

Proof: We prove by contradiction. We choose theminimal set C′ ⊆ C such that a falsified list of the stated
form violates this lemma (no new stable roommates inC′ are formed). Sorting the members inC′ in arbitrary order
(mc1, mc2, · · · , mcx), we shiftmc1 to the immediate left ofmk, and thenmc2 to the immediately left ofmc1 and so
forth. We claim that after each roundi of this operation, 1≤ i < x, at least one man in{mc1, mc2, · · · , mci } is a stable
roommate ofm (otherwise, the minimality ofC′ is violated). Only in the last roundx, shiftingmcx to the immediate
left of mc(x−1), all men inC′ are not stable roommates ofm. Let the preference list at this point bePx. We create
another preference listP′

x in which all men inC′, exceptmcx, are shifted back to their original positions inUk(m). By
the definition of groupC, given P′

x, mcx is a stable roommate ofm. But in Px, he is not. Combining these two facts,
we violate Proposition 2.

We now show that AlgorithmDestroy-Bad is an optimal strategy in the sense that if the combined members of B
cannot destroymk, mk must be indestructible.

Theorem 17 (Strategy B): AlgorithmDestroy-Bad is an optimal strategy for the cheater m to destroy mk. Moreover,
the preference list output by AlgorithmDestroy-Bad will not cause any stable matching containing{m, mi }, where
1 ≤ i ≤ k − 1, to become unstable.

Proof: Suppose that AlgorithmDestroy-Bad cannot destroymk. Obviously,Uk(m) = A ∪ B ∪ C, and A = ∅.
Moreover, in the new preference listPm = (PL,M (m), πr (B), mk, C) whereM ⊃ {m, mk} output by the algorithm,
mk is still a stable roommate.

For a contradiction, suppose thatmk is in fact destructible and there exists a strategyPφ
m to achieve it. By

Proposition 1, this can only be achieved by shifting some menin Uk(m) to the left ofmk. Without loss of gener-
ality, we can assume that these members are shifted to the immediate left ofmk

3. To be precise, we assume that
Pφ

m = (PL ,M (m), X, mk, Y), where the union ofX andY comprise all members inUk(m).
In order to show thatPφ

m cannot have the stated property, we transformPm into Pφ
m by the following steps. (1)

Separate those members ofB which overlap withX from those which do not; moreover, arrange the common members
of B andX in the order ofX. In other words, createP′

m = (PL,M (m), B−X, (X∩B)X, mk, C). By Corollary 7, inP′
m,

mk remains a stable roommate ofm. (2) Shift the common members ofC andX to the immediate left ofmk and arrange
them based on the order ofX. In other words, createP′′

m = (PL ,M (m), B−X, (X∩B)X, (C∩X)X, mk, (C∩Y)C). By
Lemma 16, inP′′

m, at least one member in(C∩X)∪{mk} is a stable roommate ofm. (3) Interleave the members ofX∩B
into C ∩ X so thatX appears as a whole on the left ofmk. To be precise,P′′′

m = (PL ,M (m), B − X, X, mk, (C ∩ Y)C).
By Proposition 1, inP′′′

m , at least one member in(C ∩ X) ∪ {mk} is a stable roommate. (4) Finally, transformP′′′
m into

Pφ
m by moving the members ofB − X to the right ofmk and arranging all the members ofC ∩ Y andB − X into the

order ofY. By Proposition 1, at least one member in(C ∩ X) ∪ {mk} is still a stable roommate ofm. Hence, we have
a contradiction thatPφ

m can destroymk.
The last part of the theorem is a direct consequence of Proposition 1.

3If these members are shifted further to the left, we can move them back to the immediate left ofmk. By Theorem 8, this will not cause any of
them to become a new stable roommate.
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6 Some Implications of StrategyB

It is obvious that AlgorithmDestroy-Bad can be repeatedly applied; moreover, every time a stable roommatemi is
destroyed,mi −1 becomes the new lowest-ranking stable roommate ofm. We will use this property to prove that (1)
any optimal cheating strategy for any sole woman will land her in one of her original stable partners; (2) such a strategy
will cause every other woman to get a partner ranking at leastas high as when everyone is truthful.

The Consequence of Optimal Cheating Strategies for a Sole Woman

We show below that if a roommate, saymk, is indestructible, then however a cheating man permutes his list, he cannot
expect that the lowest-ranking stable roommate in his falsified list ranks higher thanmk.

Lemma 18 Suppose mk is indestructible. However the cheating man permutes his preference list, his lowest-ranking
stable roommate in the falsified list ranks at most as high as mk in his truthful list.

Proof: We will first need to introduce another technical lemma.

Lemma 19 Let ms and mt be two stable roommates of man m, and ms ≻m mt . Suppose m falsifies his list so that
mt ≻

f
m ms, all the original stable matchings containing the couple{m, ms} become unstable with regard to the falsified

lists.

Proof: We need the following observation [7, Lemma 4.3.9].

Observation 20 Let {m, m′} be roommates in a stable matching M. If one of them prefers M toanother stable
matching M′, the other prefers M′ to M.

Let M ⊃ {m, ms} and M ′ ⊃ {m, mt }. SinceM(m) ≻m M ′(m) = mt , by Observation 20,m = M ′(mt ) ≻mt

M(mt ). This, combined with the fact thatmt ≻
f
m ms implies that{m, mt } blocksM .

Having the above lemma, we can now prove Lemma 18. Sincemk is indestructible, by Theorem 17, we can assume
that the preference list output by AlgorithmDestroy-Bad is Pm = (PL ,M (m), B, mk, C), whereM ⊃ {m, mk} and
mk remains a stable roommate ofm. Suppose any preference listPφ

m violates the corollary. We will transformPm into
Pφ

m and derive a contradictory conclusion.
Based onPm, we first create another preference listP′

m by permuting the members inC∪{mk} such that their order

is the same as they are inPφ
m. Let mφ be the lowest ranking stable roommate with regard toP′

m. By Corollary 16,mφ

ranks at most as high asmk with regard to the truthful list ofm.
From P′

m, we now create another preference listP′′
m by shifting those members, who rank higher thanmk in P′

m

but lower thanmk in Pφ
m, to the right ofmk. Moreover, these moved members are interleaved into the members who

rank lower thanmk in P′
m in such a way that all members now ranking lower thanmk have the same order as they are

in Pφ
m.
We claim that with regard toP′′

m, mφ is still the lowest ranking stable roommate inP′′
m. We only need to concern

about any manm† who is being shifted to the right ofmφ when we transformP′
m to P′′

m.

• If m† is not a stable roommate, whenm† being shifted to the right ofmφ still cannot makem† a new stable
roommate, as Proposition 2 implies.

• If m† is a stable roommate, whenm† being shifted to the right ofmφ , m† will no longer be a stable roommate
of m in P′′

m, because of Lemma 19.

Finally, we transformP′′
m into Pφ

m by permuting the members ranking higher thanmk in P′′
m into the same order as

they have inPφ
m. By Proposition 1,mφ remains a stable roommate with regard toPφ

m, moreover, it is still the lowest
ranking stable roommate inPφ

m. So we have the lemma.
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Corollary 21 Given a stable roommates problem instance in which stable matchings exist, for a sole cheating man,
the best possible lowest-ranking stable roommate with regard to his falsified list is one of his original stable roommates
when everyone is truthful.

Proof: We prove by contradiction. Suppose thatm has a strategy which makesmi +ǫ ∈ Ui (m) the lowest ranking
stable roommate among his stable roommates in the falsified list. We claim thatmi +1, mi +2, · · · , mk must be all
destructible. Supposem j , i + 1 ≤ j ≤ k, is not destructible, then by Lemma 18, no matter howm permutes his list,
the lowest ranking stable roommate in his falsified list, ranks at most as high asm j . This would contradict the fact that
mi +ǫ is the best possible lowest ranking stable roommate ofm.

Sincemi +1, mi +2, · · · , mk are all destructible, by Theorem 17, AlgorithmDestroy-Badcan be applied repeatedly
to destroy them. Whenmi +1 is destroyed,mi must be the lowest-rank stable roommate ofm, which contradicts that
mi +ǫ is the best possible lowest ranking stable roommate.

Corollary 21, cast into the stable marriage problem, implies that in the Gale-Shapley algorithmMM (in which
women are getting the worst possible partners), any optimalstrategy for a sole cheating woman (Teo, Sethuraman, and
Tan suggested how to frame such an optimal strategy in [17]) will cause her to get one of her original stable partners.

The Consequence of the Woman’s Optimal Cheating Strategy for Other Truthful Women

Corollary 22 In the stable marriage problem with the Gale-Shapley algorithm, a woman-optimal strategy will cause
every woman, cheating or otherwise, to get a partner rankingat least as high as when everyone is truthful.

Proof: We first prove that the preference list output byStrategy B will have the stated property. We then show that
whatever other optimal strategies will not deviate from this corollary. In fact, if the cheating woman adoptsStrategy B
the statement of the corollary can be rephrased as follows.

Claim 23 In the Gale-Shapley algorithm, if a sole cheating woman adopts Strategy B, the resultant men-optimal/women-
pessimal matching must be one of the original stable matchings. Therefore, every woman, cheating or otherwise, will
get one of her stable partners when everyone is truthful.

Proof: We treat the cheating womanw as if she were the cheating manm in our stable roommate problem, her
ordered set of stable partners being(m1, m2, · · · , mk). By Corollary 21, a woman-optimal strategy will cause the
cheating woman’s lowest ranking partner to bemi , one of her stable partners. By Theorem 17, AlgorithmDestroy-
Bad can destroymk, mk−1, · · · , mi+1 repeatedly so thatmi is the lowest ranking stable roommate ofm. Whenmk is
destroyed, all stable matchings containing{m, mk} become unstable. Recall that in the men-optimal/women-pessimal
matchingMM, (in the roommate context, it is one of the stable matchings containing{m, mk}), women are getting
their worst possible partners among all stable matchings. The destruction ofmk means thatMM become unstable
too. By the second part of Theorem 17, the new men-optimal/women-pessimal matching (which contains the pair
{m, mk−1}) is one of the stable matchings, in which women are either getting the same or better partners than inMM.
Repeating the above argument, AlgorithmDestroy-Badensures that the new men-optimal/women-pessimal matching
M ′

M
⊃ {m, mi } will be one of the original stable matchings, in which all menare either worse off or getting the same

partners, while all women are either better off or getting the same partners.

We now show that other woman-optimal cheating strategies will have the same property stated in this corollary. Let
Pm be the final preference list after we repeatedly apply Algorithm Destroy-Bad. Moreover, let� be the collection
of stable matchings based onPm and other truthful lists. SupposePφ

m is another preference list constructed by other
woman-optimal strategies such that in the resulting new men-optimal/women-pessimal matchingM

′′

M
, some truthful

women are doing worse than when everyone is truthful.
Our plan as before is to transformPm into Pφ

m and show that the above situation cannot happen. The transformation
consists of (1) TransformPm into P′

m by shifting some men on the left ofmi to the right inP′
m; (2) TransformP′

m into

Pφ
m by shifting some men from the right to the left ofmi in P′

m.
We consider the consequences of the two operations.
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• For the first part, because of Lemma 19, some stable matchingsin � are destroyed. Moreover, because of
Proposition 2, some new stable matchings are created. We note the fact that when we apply the Gale-Shapley
stable matching algorithm toPm and all other truthful lists, men ranking higher thanmi will not propose tom
(the cheating woman). Hence, how we move around the members on the left ofmi in Pm does not influence
the outcome of the Gale-Shapley algorithm. Thus,M ′

M
remains stable and is the men-optimal/women-pessimal

stable matching. The pessimality ofM ′
M

implies that in any newly-created stable matching, women are getting
partners ranking at least as high as those they get inM ′

M
.

By the above discussion, in the new set of stable matchings�′, none of the women is getting a partner ranking
lower than theirMM-partner. We refer to this asFact Z1.

• For the second part, because of Proposition 2, none of the stable matching containing{m, mi } is created. We
refer this asFact Z2. By the optimality ofPφ

m, the Gale-Shapley algorithm will still causem (the cheating
woman) to getmi . Such a matching, if it is stillM ′

M
, we prove the corollary easily. If it is not and, instead,

is replaced byM ′′
M

. Because ofFact Z2, M ′′
M

must be one of the stable matchings in�′. By Fact Z1, in
M ′′

M
, every woman is getting a partner ranking at least as high as when everyone is truthful. Hence we have

corollary.

By Corollary 22, women have common interest in cheating. When a woman cheats to get herself a better partner,
she is also doing all other women a favor (and all men a disfavor).

The Complexity of Strategy B

Algorithm Destroy-Badcan be applied repeatedly to destroy as many low-ranking stable roommates as possible. The
first part of AlgorithmDestroy-Bad(identifying which group the members inUk(m) fall into) has to linearly check at
mostO(n) people. For each member, this checking can be done in timeO(n2) by Feder’s algorithm [3]. Since there
are at mostO(n) stable roommates, AlgorithmDestroy-Badneeds to be applied at most the same amount of rounds.
Summing up, StrategyB takesO(n4) time.

7 Conclusion

In this paper, we identified a necessary condition for a sole cheating man to get a new stable roommate. We also
presented a number of impossibility results for a coalitionof cheating men in the context of both stable roommates
and stable marriage. When a stable matching is chosen uniformly at random, we exhibited two strategies that induce
a new probability distribution majorizing the original one.

There is an interesting algorithmic issue closely related to our basic assumption. To our knowledge, so far there
does not exist an efficient algorithm for finding a nearly-uniformly random stable matching. Indeed, even for the
simpler stable marriage, no such algorithm appears to be known. It is well known that the stable matchings for an
instance of stable marriage constitute a distributive lattice (possibly of exponential size) [7]. Since every distributive
lattice is the lattice of ideals of some partially ordered set, we can ask the following more general question: given a
posetP, is there a randomized polynomial-time algorithm for sampling an ideal ofP from a nearly uniform probability
distribution?
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