
Priority Mutual Exclusion: Specification
and Algorithm

Chien-Chung Huang1 and Prasad Jayanti2(B)

1 Chalmers University of Technology, Gothenburg, Sweden
villars@gmail.com

2 Dartmouth College, Hanover, USA
prasad@cs.dartmouth.edu

Abstract. Mutual exclusion is a fundamental problem in distributed
computing. In one well known variant of this problem, which we call
priority mutual exclusion, processes have priorities and the requirement
is that, whenever the critical section becomes vacant, the next occupant
should be the process that has the highest priority among the waiting
processes. Instead of first capturing this vague, but intuitively appealing
requirement by a rigorously specified condition, earlier research rushed
into proposing algorithms. Consequently, as we explain in the paper, none
of the existing algorithms meet the reasonable expectations we would
have of an algorithm that claims to respect process priorities. This paper
fixes this situation by rigorously specifying the priority mutual exclusion
problem and designing an efficient algorithm for it. Our algorithm sup-
ports an arbitrary number of processes and, when configured to support
m priority levels (m can be any natural number), the algorithm has O(m)
RMR complexity on both DSM and CC machines.

1 Introduction

Mutual Exclusion [5] is a fundamental problem in distributed computing. This
problem and its variants—such as readers-writers exclusion [3], group mutual
exclusion [8], and abortable mutual exclusion [12]—are extensively researched.
One such well-known variant, known as priority mutual exclusion, is the subject
of this paper.

In the priority mutual exclusion problem, each process, as it moves from the
Remainder section to the Try section, picks a number, called its priority. Infor-
mally, the requirement is that processes enter the CS by the priority order: when
selecting which process enters the CS next, the algorithm must pick the process
whose priority is the highest among the waiting processes. This statement has
an intuitive appeal, but its meaning is vague. Unfortunately, instead of first
capturing this intuitive requirement of “enter by priority” by a rigorously spec-
ified condition, prior works on priority mutual exclusion that we are aware of
[4,6,7,10] rushed to propose algorithms.

In this paper, we make two contributions. First, we give a rigorous spec-
ification for the priority mutual exclusion problem and explain how existing
c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 385–398, 2016.
DOI: 10.1007/978-3-662-53426-7 28

386 C.-C. Huang and P. Jayanti

algorithms do not meet this specification; thus, they do not meet some reason-
able expectations we would have for an algorithm that claims to respect priority.
Our second contribution is a novel algorithm that fills this gap. The algorithm
supports a finite number m of priority levels, but can handle an arbitrary and
unknown number of processes. It has O(m) RMR complexity on both CC and
DSM machines. The algorithm uses the swap operation, where swap(X, v) writes
the value v in the shared variable X and returns X’s previous value.

2 Specification of Priority Mutual Exclusion

We consider a system that consists of asynchronous processes that communicate
by applying atomic operations on shared variables. The program of each process
is a loop that consists of two sections of code—Try section and Exit section. We
say a process is in the Remainder section if its program counter points to the
first statement of the Try section; and that it is in the Critical section (CS) if
its program counter points to the first statement of the Exit section. The Try
section, in turn, consists of two code fragments—a doorway, followed by a waiting
room—with the requirement that the doorway is a bounded “straight line” code
[9]. Intuitively, a process “registers” its request for the CS by executing the
doorway, and then busywaits in the waiting room until it has the “permission”
to enter the CS. Initially, all processes are in their Remainder section. Each time
a process p executes the first step of the Try section, it selects a number, which
is p’s priority until it returns to the Remainder section.

A run is a (finite or infinite) sequence of steps, where each step is executed
by some process at some time. An attempt in a run is (p, [t, t′]), where p is a
process, t is a time when p enters the Try section, and t′ is the earliest time after
t when p returns to the Remainder section. Notice that a process may have many
attempts in a run. If α = (p, [t, t′]) and β = (q, [τ, τ ′]) are any two attempts in a
run, we say:

– α is an attempt by p.
– priority(α) is p’s priority during the attempt α.
– α is active at time s if t ≤ s ≤ t′.
– α is in the Waiting Room (respectively, Try, CS, or Exit) at time s if p is in

the Waiting Room (respectively, Try, CS, or Exit) at s and t ≤ s ≤ t′.
– α doorway precedes β if the time when p completes the doorway during the

attempt α is before the time when q enters the doorway during the attempt β.

The Priority Mutual Exclusion Problem is to design the code for the Try and
Exit sections so that five properties—the three stated below and the two defined
in Sects. 2.1 and 2.2—hold in all runs.

– Mutual Exclusion: At most one process is in the CS at any time.
– Bounded Exit: There is an integer b such that every process completes the

Exit section in at most b of its steps.

Priority Mutual Exclusion: Specification and Algorithm 387

– Livelock Freedom: On the assumption that no process permanently stops tak-
ing steps in the Try and Exit sections and no process stays in the CS forever,
if a process is in the Try section at a point in time, then some process is in
the CS at a later point in time.

The remaining two properties capture priorities. Since these properties are
new, we have motivated and carefully defined them in the next two subsections.

2.1 Priority Entry

Intuitively, the purpose of the bounded doorway is to make it possible for a
process to “register” its priority and its interest in the CS, without being hin-
dered by other processes. Accordingly, if a high priority process p completes the
doorway before a lower priority process q even enters the doorway, it makes sense
to require that q does not enter the CS before p.

What else must we ensure? Consider a scenario where, while p is in the CS
and q is in the waiting room, a process r of higher priority than q enters the
Try section, completes the doorway, and enters the waiting room. Later, when p
leaves the CS, we would want r, and not q, to enter the CS, even though q has
been waiting much longer than r.

To capture the above expectations, we define a “dominates” binary relation,
denoted �, on the set of attempts in a run as follows:

Definition 1. For any two attempts α and α′ in a run, we say α dominates α′,
written α � α′, if

priority(α) > priority(α′) and α doorway precedes α′, or
priority(α) > priority(α′) and there is a time when some process is in the CS,
α is in the waiting room, and α′ is in the Try section.

The next property states what it really means for processes to enter the CS by
priority order.

– Priority Entry: If α and α′ are any two attempts in a run such that α � α′,
then α′ does not enter the CS before α.

2.2 Wait-Free Progress for Dominator

The Priority Entry property stated above only ensures that a low priority process
does not race ahead of a higher priority process into the CS, but it makes no
guarantee that the higher priority process is not obstructed by a lower priority
process. This observation motivates the need to formulate a property that guar-
antees that, under suitable conditions, a high priority process’ progress to the
CS is not hindered by a lower priority process.

To understand what this property should be fleshed out, consider a scenario
where a process q is in the CS, a process p is in the waiting room, and a set S of
additional processes are in the Try section. Assume that p has a higher priority

388 C.-C. Huang and P. Jayanti

than every process in the set S. Then, p dominates every process in S. Suppose
now that q leaves the CS, completes the Exit section, and goes back to the
remainder section. Assuming that no new processes will enter the Try section
with a priority higher than p’s, process p finds itself in a favorable situation
where no process is in the CS or the Exit section, and p dominates every other
process in the Try section forever. Under these circumstances, it makes sense
to require that p be able to enter the CS in a finite number of its own steps,
regardless of whether other processes are slow, fast, or have crashed. Thus, we
are led to the following property: If no process is in the CS or the Exit section
and a process p in the waiting room dominates forever every other process in
the Try section, then p enters the CS in a finite number of its own steps. More
precisely:

– Wait-free Progress for Dominator: If an attempt α by a process p is in the
waiting room at time τ , no process is in the CS or the Exit section at τ , and,
for all τ ′ ≥ τ , α dominates every attempt that is active at τ ′, then p enters the
CS during the attempt α in a finite number of its steps, regardless of whether
other processes take any steps or crash.

3 Stronger Version of Priority Mutual Exclusion

So far we have been silent on the order in which processes of the same priority
may enter the CS, and on whether a process can obstruct another process of the
same priority. In particular, the properties stated above allow a process p to be
stuck in the waiting room while another process q of equal priority repeatedly
enters and leaves the CS. We could prevent such a scenario by requiring that
processes of equal priority enter the CS in the FCFS order: if p and q have the
same priority and p doorway-precedes q, then q does not enter the CS before p.

Similarly, if p and q have the same priority and p doorway-precedes q, we
might wish to strengthen the “Wait-free Progress for Dominator” property by
requiring that q does not obstruct p’s entry into the CS.

To capture these ideas, it is convenient to weaken the earlier defined “dom-
inates” relation slightly by replacing “>” with “≥” in the first condition, as
follows:

Definition 2. For any two attempts α and α′ in a run, we say α weakly domi-
nates α′, written α �w α′, if

priority(α) ≥ priority(α′) and α doorway precedes α′, or
priority(α) > priority(α′) and there is a time when some process is in the CS,
α is in the waiting room, and α′ is in the Try section.

Notice that, for any two attempts α and α′, α � α′ implies α �w α′. Now, we
can capture both Priority Entry and FCFS (among processes of equal priority)
together as follows:

Priority Mutual Exclusion: Specification and Algorithm 389

– Priority Entry + FCFS: If α and α′ are any two attempts in a run such that
α �w α′, then α′ does not enter the CS before α.

And we can strengthen the “Wait-free Progress for Dominator” property by
replacing “�” with the weaker “�w” in its definition:

– Strong Wait-free Progress for Dominator: If an attempt α by a process p is in
the waiting room at time τ , no process is in the CS or the Exit section at τ ,
and, for all τ ′ ≥ τ , α weakly dominates every attempt that is active at τ ′,
then p enters the CS during the attempt α in a finite number of its steps,
regardless of whether other processes take any steps or crash.

Finally, we define the Strong Priority Mutual Exclusion Problem as designing
the code for the Try and Exit sections so that the following five properties hold
in all runs: Mutual Exclusion, Livelock Freedom, Bounded Exit, Priority Entry
+ FCFS, and Strong Wait-free Progress for Dominator.

4 Discussion of Previous Research

The idea of dividing the Try section into a bounded doorway and waiting room is
due to Lamport [9], who introduced this structure to capture FCFS—a fairness
condition for Mutual Exclusion. Our specification of the Priority Mutual Exclu-
sion Problem is inspired by Bhatt and Jayanti’s formulations of the Readers-
Writers Exclusion Problem [1]. To the best of our knowledge, there are four
papers that proposed algorithms of bounded RMR complexity for the priority
mutual exclusion problem [4,6,7,10], but no prior work has attempted a rigorous
specification of the problem. Below, we briefly describe why the algorithms in
[4,6,7,10] do not meet our specification.

4.1 Algorithms of Markatos [10] and Craig [4]

Markatos’ and Craig’s algorithms, which are adaptations of Mellor-Crummey
and Scott’s queue-based mutual exclusion algorithm [11], do not satisfy Priority
Entry because they admit the following scenario:

– While a process p is in the CS, three processes q, r, and s enter the Try section
and queue themselves up in that order (q, followed by r, followed by s). Assume
that s has a higher priority than both q and r.

– q and s complete their doorways, but r stops in the doorway before setting the
link at q to point to r.

– p leaves the CS and makes the “best effort” to traverse the queue of waiting
processes to locate the highest priority process. It sees q, but will not be able
to see the next element r in the queue (since r has not yet installed a link at q
to point to r). Because p can’t see r, it can’t see s either. Thus, q is the only
waiting process that p is aware of. So, p lets q into the CS.

In the above scenario, s � q, yet q enters the CS before s, thereby violating
Priority Entry.

390 C.-C. Huang and P. Jayanti

4.2 A Second Algorithm of Markatos [10]

Another algorithm in Markatos’ paper adapts Burns’ algorithm [2] for standard
mutual exclusion. In Markatos’ algorithm, when a process p leaves the CS, it
scans all n processes to find out which ones are waiting and lets into the CS
the highest priority process among them. To implement this strategy, p reads
want[1], want[2], . . . , want[n] in that order, where want[i] is a shared flag that
process i sets to request the CS. This algorithm violates Priority Entry because
it admits the following scenario:

– Process p is in the CS while all others are in the remainder section. Then, p
leaves the CS and reads false in want[1] (because process 1 is in the remainder
section).

– Process 1 enters the Try section with a high priority, completes the doorway,
and proceeds to busywait in the waiting room. (During the doorway, process
1 sets want[1], but p does not notice it because it has already gone past 1.)

– Process 2 enters the Try section with a low priority, completes the doorway
(setting want[2] along the way), and proceeds to busywait in the waiting room.

– p reads true in want[2] and false in want[3], want[4], . . . , want[n]. Believing
that process 2 is the only waiting process, p lets process 2 into the CS.

In the above scenario, process 1 dominates process 2 because it has a higher
priority and doorway-precedes process 2. Therefore, process 2 entering the CS
before process 1 is a violation of Priority Entry.

4.3 Johnson and Harathi’s Algorithm [7]

Johnson and Harathi’s algorithm maintains a list of waiting processes, ordered
by their priority. For example, if the list is p, q, r, it means that three processes
are waiting, p has the highest priority, q has the second highest priority, and r
has the least priority. When a process enters the Try section, it traverses this list
and attempts to insert itself at the appropriate position (so as to preserve the
priority order of the list). When a process leaves the CS, if the list is not empty,
it removes the first process in the list and lets it into the CS. The algorithm uses
CAS to manipulate the queue.

Consider a scenario involving four processes a, b, c, x, where a, b, c have the
same priority and x has a higher priority. Suppose that a is in the CS; the list
has b, c; and x is in the Try section, trying to insert itself at the front of the
list. Suppose that a then leaves the CS and acts on the list (to remove the front
element) concurrently with x, which also acts on the list to insert itself at the
front. Suppose that a succeeds and x fails (because a’s CAS succeeds and x’s
CAS fails). Then, the situation is that b is in the CS, a is back in the remainder
section, and x has still not inserted itself in the list. Suppose that a then comes
back and inserts itself in the list (to make the list c, a). As b leaves the CS, as
before suppose that b and x act on the list concurrently, b’s CAS succeeds and
x’s CAS once again fails. We can repeat the above actions forever to ensure that

Priority Mutual Exclusion: Specification and Algorithm 391

x will never be able to insert itself into the list, even though x never ceases to
take steps.

The above scenario is damning: even though x has higher priority than all
others and takes steps repeatedly forever, it is stuck in the Try section without
being able to even get into the wait-queue! In particular, the algorithm violates
Priority Entry.

4.4 Jayanti’s Algorithm [6]

Jayanti’s algorithm satisfies Priority Entry, but violates “Wait-free Progress for
Dominator” by admitting the following scenario. While a process p is in the CS, a
high priority process q inserts its name into the wait-queue, which is maintained
as a priority queue (using LL/SC). Then, p leaves the CS, depositing a token in
a central location (to indicate that the CS is vacant) and proceeding to inspect
the priority queue. A low priority process r then enters the Try section, inserts
its name in the priority queue, grabs the token from the central location, and
goes back to the priority queue to hand the token to the highest priority waiting
process. However, before r finds out that q is the highest priority waiting process,
process p completes the Exit section and goes back to the remainder section,
which is possible with that algorithm. At this point, there is no process in the
CS or the Exit section, and q dominates r. Yet, q cannot enter the CS until r
hands it the token, violating “Wait-free Progress for Dominator.”

5 The Auxiliary Lock object

Our priority mutual exclusion algorithm, described in the next section, is
designed using auxiliary objects that we call lock objects. In this section, we
specify this object and state how it can be efficiently implemented.

5.1 Specification of a Lock Object

A lock object L is an abstraction that helps solve FCFS mutual exclusion, and
is specified in Fig. 1. Its state is represented by (i) L.waitqueue, the sequence
of processes waiting for the lock, and (ii) L.open, which is true if and only if
the lock is available. A process p requests the lock by executing L.requestp(),
which appends p to the wait queue. When the lock is not open, p can open it by
executing L.releasep(). After p requests the lock, it can execute L.isGrantedp()
to attempt to own the lock. If the lock is open and p is at the front of the wait
queue, the attempt succeeds—i.e., the lock is granted to p, p is removed from
the queue, and the lock is no longer open. Finally, p can find out if one or more
processes are waiting for the lock by executing L.areProcsWaiting(). We named
this object a lock object because it is trivial to solve FCFS mutual exclusion
using this object, as follows:

392 C.-C. Huang and P. Jayanti

State
L.waitqueue: Sequence of processes, initially empty
L.open: Boolean, initially true if we want the lock to be open initially,

and false otherwise

Operations
Precondition: p L.waitqueue
L.requestp()

append p to L.waitqueue

Precondition: L.open is false
L.releasep()

L.open = true

Precondition: p ∈ L.waitqueue
L.isGrantedp()

if (L.open == true) ∧ (p is at the front of L.waitqueue)
remove p from L.waitqueue
L.open = false
return true

else return false

L.areProcsWaitingp()
return (L.waitqueue == empty)

Fig. 1. Specification of a lock object L

L.requestp()
repeat till L.isGrantedp() returns true
critical section
L.releasep()

5.2 Implementing the Lock Object

Mellor-Crummey and Scott [11] and Craig [4] designed constant RMR algo-
rithms for FCFS mutual exclusion using shared variables that support the swap
operation. With a straightforward adaptation of their algorithm, we get an imple-
mentation of the lock object, which we omit due to space constraints. The result
that we achieve is summarized as follows:

Theorem 1. There is an algorithm that correctly implements a lock object L
(using read, write, and swap operations) under the assumption that L.open =
false in every interval during which a process p executes L.areProcsWaitingp().
On both DSM and CC machines, executing any of L.requestp(), L.releasep(),
or L.areProcsWaitingp(), or repeatedly executing L.isGrantedp() until it returns
true incurs only O(1) RMRs.

Priority Mutual Exclusion: Specification and Algorithm 393

6 The Algorithm

In this section, we present a novel priority mutual exclusion algorithm that
supports priorities from a set {1, 2, . . . ,m}, can handle an arbitrary and unknown
number of processes, and has O(m) RMR complexity on both DSM and CC
machines.

The algorithm employs m lock objects lock[1 · ·m]. When a process p enters
the Try section with a priority π ∈ {1, 2, . . . ,m}, it inserts itself in the wait-
queue of lock[π], the lock associated with priority π. When p leaves the CS, it
checks if processes are waiting in any of the wait-queues. If there are, it releases
the highest priority lock whose wait-queue is nonempty. On the other hand, if no
processes are waiting, p leaves a token in a “depository” dep so that a process
q that enters the Try section in the future can grab the token and enter the CS.
These ideas lead to our first attempt towards an algorithm, which we present in
Fig. 2. Two lines (2 and 7) are currently left blank, which we will fill later. The
code is described informally as follows.

Process p picks a priority π (Line 0) and inserts itself in the wait-queue of
lock[π], the lock associated with its priority (Line 1). Since it is possible that the
depository contains the token, p attempts to grab the token from the depository
(Line 3). If the depository contains the token, p grabs it and simultaneously
erases the token from the depository by swapping the integer π (its priority).
If p gets the token, it opens lock[π] (Line 4) so that the process at the front
of its wait-queue is granted the lock, enabling that process to proceed to the
CS (note that p knows that lock[π]’s wait-queue is nonempty because p itself
is in that wait-queue). The process p then busywaits until it is granted the
lock and then enters the CS (Line 5). When p leaves the CS, it goes through
all locks, from 1 to m, to identify the highest priority nonempty wait-queue, if
there is any (Lines 8 to 10). If k �= 0 when the for-loop on Line 9 terminates, it
means that some processes are waiting at lock[k] and p found the wait-queues
associated with locks k+1, k+2, . . . , n to be empty. In this case, p skips Line 11
and releases lock[k] (Line 12), which enables the earliest process waiting on
that lock to enter the CS. On the other hand, if k = 0 when the for-loop on
Line 9 terminates, it means that p found all wait-queues to be empty. In this
case, p puts a token in the depository dep (Line 11) so that a process q that
enters the Try section in the future can grab the token and proceed to the CS.
The swap operation at Line 11 enables p to both deposit the token in dep and
simultaneously read into k what was in dep. If k = ⊥, p infers that since the
time that p had cleared the depository at Line 6 no process executed Line 3;
in this case, p skips Line 12 and exits to the remainder section, aware that the
token it left behind in dep will be picked up by a process that enters the Try
section in the future. On the other hand, if the swap operation at Line 11 swaps
into k a positive integer, p infers that since the time it had cleared dep at Line 6,
some process q of priority k executed the swap operation at Line 3. The value
that this swap operation returned to q could not have been “token” since p had
not deposited the token in dep by that time. So, q must have skipped Line 4 and
be busywaiting at Line 5 for grant of access to lock[k]. If p takes no action and

394 C.-C. Huang and P. Jayanti

Shared variables
dep ∈ {token, ⊥, 1, 2, . . . , m}, initialized to token; supports swap operation
lock[1 . . . m]: array of m lock objects; initially all are closed,

i.e., ∀i, lock[i].open = false

0. select a priority π ∈ {1, 2, . . . , m}
1. lock[π].requestp()
2.
3. if swap(dep, π) == token
4. lock[π].releasep()
5. repeat till lock[π].isGrantedp() returns true

Critical Section
6. dep = ⊥
7.
8. k = 0
9. for i = 1 to m
10. if lock[i].areProcsWaitingp () then k = i
11. if k = 0 then k = swap(dep, token)
12. if k ∈ {1, 2, . . . , m} then lock[k].releasep()

Fig. 2. First attempt towards a priority mutual exclusion algorithm: code shown is for
process p

moves on to the remainder section, q will busywait forever at Line 5, leading to
livelock. To prevent this situation, p releases lock[k] (Line 12), which enables
the process r at the front of that lock’s wait-queue (which is possibly, but not
necessarily, q) to enter the CS. There is however a nasty race condition here:
the depository dep currently contains the token, which means that a process s
that might now enter the Try section with a new priority π executes Lines 0
through 3, grabs the token at Line 3, releases its lock at Line 4, so finds the lock
granted at Line 5, and enters the CS that already contains r, violating mutual
exclusion! We prevent this scenario by placing a “gate” to regulate access to the
depository. Specifically, our final algorithm, presented in Fig. 3, is obtained by
making the following three small additions to the code described so far:

– A new shared variable gate, which can take on two values—open or closed.
Initially, the gate is open, i.e., gate = open.

– Line 2, which ensures that a process p attempts to grab the token at Line 3
only if it finds the gate open. The swap operation at Line 2 lets p close the
gate and simultaneously learn if the gate was open just before the operation.

– Line 7, where an exiting process opens the gate.

With these changes, the algorithm prevents violation of mutual exclusion
because, as we now explain, an exiting process either wakes up a waiting process or
leaves the token behind for later pick up, but never does both. Consider a process
p as it leaves the CS. When p’s for-loop at Lines 9 and 10 terminates, either k = 0

Priority Mutual Exclusion: Specification and Algorithm 395

Shared variables
gate ∈ {open, closed}, initialized to open; supports swap operation
dep ∈ {token, ⊥, 1, 2, . . . , m}, initialized to token; supports swap operation
lock[1 . . . m]: array of m lock objects; initially all are closed, i.e.,

∀i, lock[i].open = false

0. select a priority π ∈ {1, 2, . . . , m}
1. lock[π].requestp()
2. if swap(gate, closed) == open
3. if swap(dep, π) == token
4. lock[π].releasep()
5. repeat till lock[π].isGrantedp() returns true

Critical Section
6. dep = ⊥
7. gate = open
8. k = 0
9. for i = 1 to m
10. if lock[i].areProcsWaitingp () then k = i
11. if k = 0 then k = swap(dep, token)
12. if k ∈ {1, 2, . . . , m} then lock[k].releasep()

Fig. 3. Priority mutual exclusion algorithm: code shown is for process p. Supports lim-
ited priorities from {1, 2, . . . ,m}, but an arbitrary and unknown number of processes.

or k ∈ {1, 2, . . . ,m}. If k > 0, p skips Line 11 and executes Line 12; thus, p opens a
lock but does not leave the token in the depository, thereby giving no scope for any
violation of mutual exclusion. For the remaining case, suppose that k = 0, which
implies that p found every wait-queue to be empty when it executed the for-loop
on Lines 9 and 10. It follows that all wait-queues were empty at the point when p
had executed Line 6. Therefore, during the interval I spanning from when p had
executed Line 6 to when p executes Line 11, at most one process could have gone
past the gate at Line 2 and onto Line 3 (because the first process to execute Line 2
closes the gate). If no process executed Line 3 during the interval I, when p executes
Line 11 to put the token in the depository, the swap operation returns ⊥ (because
p had put ⊥ in dep at Line 6), so p skips Line 12 and goes back to the remainder
section without waking anyone from a wait-queue (so there is no scope for violating
mutual exclusion). On the other hand, if exactly one process q of priority π executes
Line 3 during the interval I, q would read ⊥ from dep at Line 3 (because p had put
⊥ in dep at Line 6) and busywait at Line 5. And when p executes Line 11 to put the
token in the depository, the swap operation returns π ∈ {1, 2, . . . ,m} (that q put
into dep). In this case, p executes Line 12 to open lock[π], while still leaving the
token in the depository. However, there is no danger of some other process picking
up this token because the gate is closed at this point, so no process will be able to
get to Line 3 to grab the token! Hence, mutual exclusion won’t be violated. This is
just the intuition, and the next section provides a rigorous proof of all properties.

396 C.-C. Huang and P. Jayanti

6.1 Proof of Mutual Exclusion and Livelock Freedom

We present a rigorous proof of correctness, which we found to be as challenging
as the algorithm. The crux lies in identifying the invariant, presented in Fig. 4.
The proof that the algorithm satisfies the invariant is by induction, which is
omitted due to space constraints.

Lemma 1 (Mutual Exclusion). The algorithm satisfies Mutual Exclusion.

Proof. Immediate from Part (4) of the invariant. �

Lemma 2 (Bounded Exit). The algorithm satisfies Bounded Exit.

Proof. Obvious since the exit section involves no waiting and consists of at most
m + 4 steps. �

Lemma 3 (Livelock Freedom). The algorithm satisfies Livelock Freedom.

Proof. Let C be any configuration in which no process is in the CS or the exit
section (i.e., ∀p : PCp �∈ {7, 8, 9, 10, 11, 12}) and at least one process is in the
Try section (i.e., PCp ∈ {2, 3, 4, 5} for some p). To prove the lemma, we argue
below that some process is guaranteed to eventually enter the CS. We begin by
noting that Part (7a) of the invariant is false in C. Then, it follows from (7) that
exactly one of (7b) or (7c) is true.

Case 1: Assume that (7c) is true and (7b) is false. Then, there are three subcases:
(i) dep = token and gate = open, or (ii) dep = token and PCp = 3 for some
p, or (iii) PCp = 4 for some p.

In Subcase (i), it follows from Part (6) of the invariant that all processes in
the Try section are at Lines 2. Whichever process executes Line 2 first, it finds
that gate = open and moves to Line 3, thereby bringing the configuration to
Subcase (ii).

In Subcase (ii), it follows from Part (5) of the invariant that gate = closed
and no process other than p is at Lines 3 or 4. Thus, we have the gate closed, p at
Line 3, all other processes at Lines 0, 1, 2, or 5, and none of the locks in an open
state (since (7b) is false in the case under consideration). So, no process can go
past Line 5 or enter Line 3 until p executes a step. When p executes Line 3, it
finds the token in dep and moves to Line 4, thereby bringing the configuration
to Subcase (iii).

In Subcase (iii), p is at Line 4 and, by Part (1) of the invariant, the wait-queue
of lock[πp] is nonempty. When p executes Line 4, it opens this lock, thereby
bringing the configuration to Case (2), which we deal with below.

Case 2: Assume that (7b) is true, i.e., some lock � is open. Then, by Part (2),
the wait-queue associated with this lock is nonempty. Let q be the process at the
front of this queue. By (1), q is at one of Lines 2, 3, 4, or 5. When q moves to
Line 5 and executes the first iteration of the repeat-until loop at Line 5, q finds
the lock granted to it (because lock � is open), so moves to Line 6 (i.e., enters
the CS).

We conclude from the above that livelock is not possible. �

Priority Mutual Exclusion: Specification and Algorithm 397

Fig. 4. Invariant satisfied by the algorithm

Due to space limitation, we omit the proof of the Priority Entry + FCFS
and Strong Wait-free Progress for Dominator properties, and proceed to state
the main result of this work.

398 C.-C. Huang and P. Jayanti

Theorem 2. The algorithm in Fig. 3 correctly solves the Strong Priority Mutual
Exclusion Problem for an arbitrary and unknown number of processes, when pri-
orities are drawn from {1, 2, . . . ,m}. The algorithm has O(m) RMR complexity
on both DSM and CC machines.

References

1. Bhatt, V., Jayanti, P.: Constant RMR solutions to reader writer synchronization.
In: PODC 2010: Proceedings of the Twenty-Ninth Annual Symposium on Princi-
ples of Distributed Computing, pp. 468–477 (2010)

2. Burns, J.E.: Mutual exclusion with linear waiting using binary shared variables.
SIGACT News 10(2), 42–47 (1978)

3. Courtois, P.J., Heymans, F., Parnas, D.L.: Concurrent control with “readers” and
“writers”. Commun. ACM 14(10), 667–668 (1971)

4. Craig, T.: Queuing spin lock algorithms to support timing predictability. In: Pro-
ceedings of the 14th IEEE Real-time Systems Symposium, pp. 148–156. IEEE
(1993)

5. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
mun. ACM 8(9), 569 (1965)

6. Jayanti, P.: Adaptive and efficient abortable mutual exclusion. In: PODC 2003:
Proceedings of the Twenty-Second Annual Symposium on Principles of Distributed
Computing, pp. 295–304. ACM, New York (2003)

7. Johnson, T., Harathi, K.: A prioritized multiprocessor spin lock. IEEE Trans. Par-
allel Distrib. Syst. 8, 926–933 (1997)

8. Joung, Y.J.: Asynchronous group mutual exclusion (extended abstract). In: PODC
1998: Proceedings of the Seventeenth Annual ACM Symposium on Principles of
Distributed Computing, pp. 51–60. ACM, New York (1998)

9. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-
mun. ACM 17(8), 453–455 (1974)

10. Markatos, E.: Multiprocessor synchronization primitives with priorities. In: Pro-
ceedings of the 1991 IFAC Workshop on Real-Time Programming, pp. 1–7 (1991)

11. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991)

12. Scott, M., Scherer III., W.: Scalable queue-based spin locks with timeout. In: Pro-
ceedings of the Eight Symposium on Principles and Practice of Parallel Program-
ming, June 2001

	Priority Mutual Exclusion: Specification and Algorithm
	1 Introduction
	2 Specification of Priority Mutual Exclusion
	2.1 Priority Entry
	2.2 Wait-Free Progress for Dominator

	3 Stronger Version of Priority Mutual Exclusion
	4 Discussion of Previous Research
	4.1 Algorithms of Markatos and Craig
	4.2 A Second Algorithm of Markatos
	4.3 Johnson and Harathi's Algorithm
	4.4 Jayanti's Algorithm

	5 The Auxiliary Lock object
	5.1 Specification of a Lock Object
	5.2 Implementing the Lock Object

	6 The Algorithm
	6.1 Proof of Mutual Exclusion and Livelock Freedom

	References

