
Parameterized Two-Player Nash Equilibrium

Danny Hermelin, Chien-Chung Huang, Stefan Kratsch, and Magnus Wahlström

Max-Planck-Institute for Informatics, Saarbrücken, Germany
{hermelin,villars,skratsch,wahl}@mpi-inf.mpg.de

Abstract. We study the problem of computing Nash equilibria in a
two-player normal form game from the perspective of parameterized com-
plexity. Recent results proved hardness for a number of variants, when
parameterized by the support size. We complement those results, by
identifying three cases in which the problem becomes fixed-parameter
tractable. These cases occur in the previously studied settings of sparse
games and unbalanced games as well as in the newly considered case of
locally bounded treewidth games that generalizes both these two cases.

1 Introduction

Algorithmic game theory is a quite recent yet rapidly developing discipline that
lies at the intersection of computer science and game theory. The emergence of
the internet has given rise to numerous applications in this area such as online
auctions, online advertising, and search engine page ranking, where humans and
computers interact with each other as selfish agents negotiating to maximize
their own payoff utilities. The amount of research spent in attempting to devise
computational models and algorithms for studying these types of interactions has
been overwhelming in recent years; unsurprisingly perhaps, when one considers
the economical rewards available in this venture.

The central problem in algorithmic game theory is that of computing a Nash
equilibrium, a set of strategies for each player in a given game, where no player
can gain by changing his strategy when all other players strategies remain fixed.
This problem is so important because Nash equilibria provide a good way to pre-
dict the outcomes of many of the scenarios described above, and other scenarios
as well. Furthermore, Nash’s Theorem states that for any finite game a mixed
Nash equilibrium always exists. However, for this concept to be meaningful for
predicting behaviors of rational agents which are in many cases computers, a
natural prerequisite is for it to be computable. This led researchers such as Pa-
padimitriou to dub the problem of computing Nash equilibria as one of the most
important complexity problems of our time [27].

The initial breakthrough in determining the complexity of computing Nash
equilibria was made by Daskalakis, Goldberg, and Papadimitriou [12, 23]. These
two papers introduced a reduction technique which was used by the authors for
showing that computing a Nash equilibrium in a four player game is PPAD-
complete. Shortly afterwards, this hardness result was simultaneously extended
to three player games by Daskalakis and Papadimitriou [16], and by Chen and

2

Deng [6]. The case of two player (bimatrix) games was finally cracked a year
later by Chen and Deng [7], who proved it to be PPAD-complete. This implied
that the existence of a polynomial-time algorithm for the core case of bimatrix
games is unlikely.

Since the result of Chen and Deng [7], the focus on computing Nash equilibria
in bimatrix games was directed either towards finding approximate Nash equilib-
ria [4, 8–10, 13, 14, 25], or towards finding special cases where exact equilibria can
be computed in polynomial time [2, 9, 11, 24, 25]. Nevertheless, for general bima-
trix games the best known algorithm for computing either approximate or exact
equilibria essentially tries all possibilities for the support of both players (the set
of strategies played with non-zero probability).Once the support of both players
is known, one can compute a Nash equilibrium by solving a linear-program.

Theorem 1 ([26]). A Nash equilibrium in a bimatrix game, where the support
sizes are bounded by k, can be computed in nO(k) time.

Due to the central role that the algorithm of Theorem 1 plays in comput-
ing exact and approximate Nash equilibria, it is natural to ask whether one
can improve on its running-time substantially. In particular, can we remove the
dependency on the support size from the exponent? The standard framework
for answering such questions is that of parameterized complexity theory [17, 20].
Estivill-Castro and Parsa initiated the study of computing Nash equilibria in this
context [19] . They showed that when the support size is taken as a parameter,
the problem is W[2]-hard even in certain restricted settings. The implication of
their result is a negative answer to the above question. In particular, combin-
ing their reduction with the results of Chen et al. [5] gives a sharp contrast to
Theorem 1 above.

Theorem 2 ([19]). Unless FPT=W[1], there is no no(k) time algorithm for
computing a Nash equilibrium with support size at most k in a bimatrix game.

The consequence of Theorem 2 above is devastating in the sense that for
large enough games that have equilibriums with reasonably small supports, the
task of computing equilibria already becomes infeasible. The main motivation
of this paper is to find scenarios where one can circumvent this. Our goal is
thus to identify natural parameters which govern the complexity of computing
Nash equilibria, and which can help in devising feasible algorithms. We believe
that this direction can prove to be fruitful in the quest for understanding the
computational limitations of this fundamental problem. Indeed, prior to our
work, Kalyanaraman and Umans [24] provided a fixed-parameter algorithm for
finding equilibrium in bimatrix games whose matrices have small rank (and some
additional constraints).

Our techniques are based on considering a natural graph-theoretic represen-
tation of bimatrix games. This is done by taking the union of the underlying
boolean matrix of the two given payoff matrices, and considering this matrix
as the biadjacency matrix of a bipartite graph. A similar approach was taken
by [11], and in particular by [2] who considered games that have an underlying

3

planar graph structure. Our work complements both these results as will be ex-
plained further on, and further exemplifies the strength of a graph-theoretical
approach when computing Nash equilibria in bimatrix games.

A natural class of games that has a convenient interpretation in the graph-
theoretic context is the class of `-sparse games [9, 11, 15]. Here each column and
row in both payoff matrices of the game have at most ` non-zero entries. An
initial tempting approach in these types of games would be to try to devise a
parameterized algorithm with ` taken as a single parameter. However, Chen,
Deng, and Teng [9] showed that unless PPAD = P, there is no algorithm for
computing an ε-approximate equilibrium for a 10-sparse game in time polynomial
both in ε and n. Thus, such an FPT algorithm cannot exist unless PPAD is in P.
We complement this result by showing that if ` is taken as a parameter, and the
size of the supports is taken as an additional parameter, then computing Nash
equilibrium is fixed-parameter tractable.

Theorem 3. A Nash equilibrium in a `-sparse bimatrix game, where the support
sizes is bounded by k, can be computed in `O(k`) · nO(1) time.

Note that the above result also complements the polynomial time algorithms
given in [9, 11] for 2-sparse games. While in these algorithms there was no as-
sumption made on the size of support of the equilibrium to be found, both
algorithms could handle only win-lose games [1, 10], games with boolean payoff
matrices. Theorem 3, on the other hand, holds for arbitrary payoffs.

Our second result is concerned with k-unbalanced games, games where the
row player has a small set of k strategies [24, 25]. Lipton, Markakis, and Mehta [25]
observed that in such games there is always an equilibrium where the row player
plays a strategy with support size at most k + 1. Thus, by applying Theorem 1
one can find a Nash equilibrium in nO(k) time for these types of games. Can
this result be improved to an algorithm running in f(k) · nO(1) time? We give
a partial answer to this question, by showing that if the number ` of different
payoffs of the row player is taken as an additional parameter, the problem indeed
becomes fixed-parameter tractable.

Theorem 4. A Nash equilibrium in a k-unbalanced bimatrix game, where the
row player has ` different payoff values, can be computed in `O(k2) · nO(1) time.

In our last result, examining the borderline of FPT cases, we consider a
structural property that simultaneously extends both the previous cases (albeit
only in the case of a bounded number of different payoffs). We show that for
bimatrix games whose corresponding graph has locally bounded treewidth, and
where the payoff matrices have at most ` different values, we can compute a Nash
equilibrium of support size at most k in time f(k, `) · nO(1). In addition to the
above cases of sparse and unbalanced games, this also includes many other cases
including games where the underlying graph structure is planar, as considered
by [2]. However, as this class is quite general, the running-time dependency on
both parameters is worse.

4

Theorem 5. A Nash equilibrium in a locally bounded treewidth game, where the
support sizes are bounded by k, and the payoff matrices have at most ` different
values, can be computed computed in f(k, `) · nO(1) time for some computable
function f().

The paper is organized as follows: We begin with some preliminaries in Sec-
tion 2. In Section 3 we consider `-sparse games and prove Theorem 3. Section 4
addresses locally bounded treewidth games and proves Theorem 5. Finally, in
Section 5 we prove Theorem 4 regarding k-unbalanced games.

2 Preliminaries

Let G := (A, B) be a bimatrix game, where A,B ∈ Qn×n are the payoff matrices
of the row and the column players respectively. The row (column) player has a
strategy space consisting of the rows (columns) [n] := {1, . . . , n}. (For ease of
notation, except in unbalanced games, we assume that both players have the
same number of strategies; different numbers of strategies do not affect any of
our results.) The row (column) player chooses a strategy profile x (resp. y),
which is a probability distribution over his strategy space. That is, xi, yj ≥ 0
for all i, j ∈ [n], and furthermore

∑n
i=1 xi = 1 and

∑n
j=1 yj = 1. The expected

outcomes of the game for the row and the column players are xT Ay and xT By
respectively.

The players are rational, always aiming for maximizing their expected payoffs.
They have reached a Nash equilibrium if the current strategies x and y are
such that neither player has a deviating strategy x̂ or ŷ such that x̂T Ay >
xT Ay or xT Bŷ > xT By. In other words, if neither of them can improve his
payoff independently of the other. The following proposition gives an equivalent
condition for a pair of strategies to be an equilibrium.

Lemma 1. ([26, Chapter 3]) The pair of strategy vectors (x, y) is a Nash equi-
librium for the bimatrix game (A,B) if and only if

(i) xs > 0 ⇒ (Ay)s ≥ (Ay)j for all j 6= s;
(ii) ys > 0 ⇒ (xT B)s ≥ (xT B)j for all j 6= s.

The support of a strategy vector x is defined as the set S(x) = {i : xi > 0}.
Note that the above proposition implies that if (x, y) is a Nash equilibrium,
in the column vector Ay, the entries in S(x) are equivalent and no less than
all other entries not in S(x); symmetrically, in the row vector xT B, the entries
in S(y) are equivalent and no less than other entries not in S(y). It is known
that, given possible supports I, J ⊆ [n] it can be efficiently decided whether
there is a matching Nash equilibrium, and the corresponding strategy vectors
can be computed via linear programming.

The following graph associated with a bimatrix game is useful for presenting
our algorithms in Sections 3 and 4.

5

Definition 1. Let G = (A,B) be a bimatrix game with A, B ∈ Qn×n. The undi-
rected bipartite graph G := G(G) associated with G is defined to be the bipartite
graph with vertex classes Vr := {r1, . . . , rn} and Vc := {c1, . . . , cn}, referred to
as row resp. column vertices, where ri ∈ Vr and cj ∈ Vc are adjacent in G
iff Ai,j 6= 0 or Bi,j 6= 0.

As a last bit of notation: For I, J ⊆ [n], and any n×n matrix A, we use AI,J

to denote the submatrix composed of rows in I and columns in J . We also
use AI,∗ as a shorthand for AI,[n]. Thus, Ai,∗ means the i’th row of A.

3 Sparse Games

In this section we present the proof for Theorem 3. Throughout the section we let
G := (A, B) denote our given bimatrix game, where A and B are rational value
matrices with at most ` non-zero entries per row or column. We will present
an algorithm for finding an Nash equilibrium where the support sizes of both
players are at most k (and k is taken as a parameter). The high-level strategy is
to show that it suffices to search for equilibria that induce one or two connected
components in the associated graph G = G(G). This permits us to find candidate
support sets by enumerating subgraphs of G (on one or two components). Central
to this strategy is the notion of minimal equilibria:

Definition 2. A Nash equilibrium (x, y) is minimal if for any Nash equilib-
rium (x′, y′) with S(x′) ⊆ S(x) and S(y′) ⊆ S(y), we have S(x′) = S(x)
and S(y′) = S(y).

Our algorithm iterates through all possible support sizes k1, k2 ≤ k in increas-
ing order to determine whether there exists an equilibrium (x, y) with |S(x)| = k1

and S(y) = k2. To avoid cumbersome notation, we will assume that k1 = k2 = k
(extending this to general case will be immediate). Thus at a given iteration, the
algorithm can assume that no equilibrium exists with smaller supports, which
means it can restrict its search to minimal equilibriums. This fact will prove cru-
cial later on. Furthermore, observe that we can assume n > `k since otherwise
obtaining the running time required by Theorem 3 is trivial using Theorem 1.
Therefore, since our game is `-sparse, our algorithm only needs to search for
equilibriums where both players receive non-negative payoffs.

Lemma 2. If G = (A,B) is an `-sparse game, where A, B ∈ Qn×n and n > `k,
then in any Nash equilibrium with support at most k × k, both players receive
non-negative payoffs.

Proof. Suppose (x, y) is an equilibrium with |S(x)| ≤ k and |S(y)| ≤ k, where the
row player has a negative payoff. Since the A is `-sparse, and n > `k, there exists
an all zero row i0 ∈ [n] in A∗,S(y). Thus, letting the row player choose the strategy
vector x̂ with x̂i0 = 1 and x̂i = 0 for all i 6= i0, we get that x̂T Ay = 0 > xT Ay,
contracting the fact that (x, y) is an equilibrium. The argument for the column
player is symmetric. ut

6

For an equilibrium (x, y), let the extended support of x be the rows S(x) ∪
N(S(y)), and similarly for y, where the neighborhood N(I) is taken over the
graph G := G(G) of the game. Note that any row not in the extended support
of x would have payoff constantly zero given the current strategy of y, and thus
is not important for the existence of an equilibrium. We will show that for a
minimal equilibrium (x, y), the extended supports of x and y induce a subgraph
of G which has at most two connected components. This will be done in two
steps: The first is the special case where AS(x),S(y) = BS(x),S(y) = 0, while the
second corresponds to the remaining cases.

Lemma 3. If (x, y) is a minimal Nash equilibrium for a game (A,B) with
AS(x),S(y) = BS(x),S(y) = 0, then the subgraphs induced by N [S(x)] and N [S(y)]
in the graph associated with the game are both connected.

Proof. Let H := G[N [S(x)]] be the subgraph of G induced by N [S(x)], and
aiming towards a contradiction, suppose that H is disconnected. Let C be a
connected component in H, and write p :=

∑
i∈Vr(C) xi to denote the probability

that a row strategy in C is played according to x. Now define a new row strategy
by setting x̂i = xi/p if i ∈ Vr(C), and x̂i = 0 otherwise. We argue that (x̂, y) is
a Nash equilibrium, contradicting the fact that (x, y) is minimal.

Obviously, the expected payoff in (x̂, y) is zero for both players, as AS(x̂),S(y)

= BS(x̂),S(y) = 0. Furthermore, there is no row i such that (Ay)i > 0, since the
strategy y is unchanged and the original strategy pair (x, y) is an equilibrium.
Now assume that there is a column j such that (x̂T B)j > 0. Then Bi,j 6= 0
for some i ∈ S(x̂), and by the connectivity assumption we must have Bi,j = 0
for all i ∈ S(x) \ S(x̂), but then (xT B)j = p(x̂T B)j > 0, which contradicts the
assumption that (x, y) is a Nash equilibrium. By Lemma 1, it follows that (x̂, y)
is a Nash equilibrium. ut
Lemma 4. If (x, y) is a minimal Nash equilibrium for a game (A,B) with either
AS(x),S(y) 6= 0 or BS(x),S(y) 6= 0, and with a non-negative payoff for both players,
then the subgraph induced by N [S(x) ∪ S(y)] is connected.

Proof. Let H be the subgraph induced by N [S(x) ∪ S(y)] and suppose that H
is disconnected. We will derive a contradiction by showing that (x, y) is not
minimal.

Let C be a connected component in H intersecting both S(x) and S(y), and
let Vx̂ := Vr(C)∩S(x) and Vŷ := Vc(C)∩S(y) denote the set of row and column
strategies in C, respectively. We define a new pair of strategy profiles (x̂, ŷ) where
S(x̂) = Vx̂ and S(ŷ) = Vŷ, by normalizing (x, y) onto Vx̂ and Vŷ. That is, we let
p :=

∑
i∈Vx̂

xi, and set x̂i = xi/p if i ∈ Vx̂, and x̂i = 0 otherwise. Similarly, we
let q :=

∑
j∈Vŷ

yi, and set ŷ accordingly. As either S(x̂) ⊂ S(x) or S(ŷ) ⊂ S(y),
to prove the lemma it suffices to argue that (x̂, ŷ) is an equilibrium.

Consider a row strategy i ∈ [n]. We claim that

(Aŷ)i =

{
(Ay)i/q if Ai,Vŷ

6= 0,
0 otherwise.

(1)

7

The second case is clear. For the first case, assume that Ai,Vŷ
6= 0. Now,

if Ai,j 6= 0 for j ∈ S(y) \ Vŷ, then there would be an edge in H from the
vertex corresponding to row i, which is in C, to the vertex corresponding to
column j, which is not in C, contradicting that C is a connected component.
Thus

(Ay)i =
∑

j∈S(y)

Ai,jyj =
∑

j∈Vŷ

Ai,j(qŷj) +
∑

j∈S(y)\Vŷ

Ai,jyj = q(Aŷ)i + 0

and the claim follows.
Now let s ∈ S(x̂), and consider some arbitrary row strategy i ∈ [n]. As-

sume by way of contradiction that (Aŷ)s < (Aŷ)i. It is clear that Ai,Vŷ
6= 0,

thus (Aŷ)i = (Ay)i/q; we consider the cases for row s. If As,Vŷ
6= 0, then by (1),

we have (Aŷ)s = (Ay)s/q, implying (Ay)s < (Ay)i. On the other hand, if As,Vŷ
=

0 but As,S(y) 6= 0, then C would not be a connected component of H (since a
neighbor of s would be missing). Thus As,S(y) = 0 and (Ay)s = (Aŷ)s = 0,
and (Ay)i = q(Aŷ)i > 0. In both cases we contradict that (x, y) is an equilib-
rium. Thus we fulfill condition (i) of Lemma 1, and by symmetry we also fulfill
condition (ii). We have shown that (x̂, ŷ) is an equilibrium, contradicting the
minimality of (x, y). ut

As an immediate corollary of Lemma 3 and 4, we get that the subgraph in
G(G) induced by the extended support of a minimal equilibrium has at most two
connected components. In the following lemma we show that in graphs of small
maximum degree, we can find all such subgraphs quite efficiently. This will allow
us to find a small, minimal equilibrium by checking all sets of rows and columns
that would be candidates for being the extended supports of one.

Lemma 5. Let G be a graph on n vertices and with maximum degree ∆ = ∆(G).
In time (∆ + 1)2t · nc+O(1) one can enumerate all subgraphs on t vertices that
consist of c connected components.

Proof. We first show how to enumerate all connected subgraphs on t vertices in
time (∆ + 1)2t · nO(1) by a branching algorithm. At any point selected vertices
will be active or passive. When a vertex is selected it will first be active and later
be set to passive. Selecting a vertex and making it active respectively setting a
vertex to passive is called an event.

First, we branch on the choice of one out of n starting vertices in G and set
it active. Then until we have selected t vertices we do the following: We consider
the least recently added active vertex and branch on one of at most ∆ + 1
events, namely selecting one of its at most ∆ neighbors (and making it active) or
setting the vertex itself to passive. We terminate when we have selected t vertices
(and output the corresponding subgraph) or when there are no more active
vertices. Clearly, on each branch of this algorithm there are at most 2t events.
Thus the branching tree has at most (∆ + 1)2t leaves, implying a total runtime
of (∆+1)2t ·nO(1). Observe that for every connected subgraph on t vertices there
is a sequence of events such that the graph occurs in the enumeration.

8

The generalization to c components is straightforward: When there are no
more active vertices but we have not yet selected c components, then we select
one of the less than n remaining vertices of G as a new active vertex, starting
a new component. Selecting new starting vertices adds a factor of nc to our
runtime. ut

We are now in position to describe our entire algorithm. It first iterates
through all possible sizes of extended support in increasing order. In each itera-
tion, it enumerates all subgraphs that might correspond to the extended support
of a minimal equilibrium. It then checks all ways of selecting a support from the
given subgraph, and for each such selection it uses the algorithm behind Theo-
rem 1 to check whether there is an equilibrium on the support. If no equilibrium
is found throughout the whole process, the algorithm reports that there exists
no equilibrium with support size at most k in G. The running time is bounded
by `O(k`)nO(1) from Lemma 5, times

(
k`+k

k

)2
= 2O(k`) ways of selecting the sup-

port, times nO(1) for checking for an equilibrium. In total, we get a running time
of `O(k`)nO(1).

Finally, completeness comes from the exhaustiveness of Lemma 5 and the
structure given by Lemmas 3 and 4.

3.1 Non-negative payoffs

In the case that the payoffs of our games are non-negative, i.e., A,B ∈ Qn×n
≥0 ,

we can reduce our running time to be polynomial in `, for `-sparse games. We
begin with a strengthening of Lemmas 3 and 4.

Lemma 6. Let G = (A,B) be a bimatrix game with A,B ∈ Qn×n
≥0 , and G be

the graph associated with G. If (x, y) is a minimal Nash equilibrium for G, then
either |S(x)| = |S(y)| = 1, or G[S(x) ∪ S(y)] is connected.

Proof. Let GS := G[S(x) ∪ S(y)]; assume that GS is not connected. If the ex-
pected outcome is zero, then (since the entries are non-negative) every entry
in AS(x),∗ and B∗,S(y) is zero, and we get an equilibrium by selecting any single
row i ∈ S(x) and column j ∈ S(y). Otherwise, every row of AS(x),S(y) and every
column of BS(x),S(y) contains some positive entry. Let C be a connected com-
ponent of GS on row vertices Vx̂ and column vertices Vŷ, and define a new pair
of strategy profiles (x̂, ŷ) where S(x̂) = Vx̂ and S(ŷ) = Vŷ, by normalizing (x, y)
onto Vx̂ and Vŷ as in Lemma 4. We will argue that (x̂, ŷ) is an equilibrium.

Let s ∈ Vx̂, and assume by way of contradiction that for some row i ∈ [n], we
have (Aŷ)i > (Aŷ)s. Let (Aŷ)s = c0; by non-connectivity of GS , (Ay)s = qc0.
Further let (Aŷ)i = c1 and (Ay)i = qc1 + (1 − q)c2. Now (Ay)s = qc0 < qc1 ≤
qc1 + (1 − q)c2 = (Ay)i, contradicting our assumptions; the last inequality is
because the entries are non-negative. Repeating the argument symmetrically, we
find that (x̂, ŷ) is a Nash equilibrium. ut

Thus, to find an equilibrium in G = (A,B), it suffices to search for occurrences
of the support, rather than the extended support. Invoking Lemma 5 directly
with a bound of 2k vertices gives a running time of `O(k)nO(1).

9

3.2 No polynomial kernels

We next show another interesting application of the connectivity lemmas de-
scribed in the section above. In particular, we will use Lemma 6 to rule out the
possibility of a polynomial kernel for the problem of determining whether a Nash
equilibrium with support sizes at most k exists in an `-sparse bimatrix game (see
e.g. [3] for a discussion on the important concept of polynomial-kernelization).

In our setting, a polynomial kernel is an algorithm that receives as input an
`-sparse game G and an integer k, and outputs in polynomial-time an `′-sparse
game G′ and an integer k′, with |G′| + k + ` ≤ p(`′, k′) for some polynomial p,
such that G has an equilibrium with support sizes bounds by k iff G′ has an
equilibrium with support sizes bounds by k′. A framework for providing evi-
dence that polynomial kernels do not exist for a given problem was given in [3].
There, the concept of composition algorithms play a central role. A composition
algorithm for a parameterized problem Π is an algorithm that receives as input
a sequence of instances (x1, k), . . . , (xt, k) of Π, all sharing the same parame-
ter, and output in time polynomial in

∑
i |xi| an instance (y, k′) of Π such that

(y, k′) ∈ Π ⇐⇒ ∃i : (xi, k) ∈ Π and k′ ≤ p(k) for some polynomial p. A pa-
rameterized problem admitting a composition algorithm is called compositional.
The following connection between compositional problems and polynomial ker-
nels was proven in [3] and [21]:

Theorem 6 ([3, 21]). Unless co-NP ⊆ NP/poly, no compositional parameter-
ized problem whose unparameterized variant is NP-complete has a polynomial
kernel.

Observe that the unparameterized decision variant of our problem is the
problem of determining whether there exists an equilibrium in a given bimatrix
game with support sizes bounded by k (since ` is part of the input, the sparseness
does not come into affect here). This problem was shown to be NP-complete
by [22]. Thus, in order to show the non-existence of a polynomial kernel in our
setting, we need to show that our problem is compositional. We will restrict
ourselves to instances with non-negative payoffs. Given a sequence of `-sparse
games (A1, B1), . . . , (At, Bt) with non-negative payoffs, and a parameter k, our
algorithm outputs the game G := (A,B) defined by

A :=

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 · · · 0 At

 and B :=

B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 · · · 0 Bt

 .

It is clear that our algorithm runs in polynomial-time, and that G is `-sparse.
Furthermore, it is not difficult to see that due to Lemma 6, we know that G has
an equilibrium with support sizes bounded by k iff (Ai, Bi) has an equilibrium
with support sizes bounded by k, for some i ∈ {1, . . . , t}. It follows that the
above algorithm is a composition algorithm, and so according to Theorem 6, we
can rule out the likelihood of polynomial kernels for our problem.

10

4 Locally Bounded Treewidth Games

Let G = (A,B) be a given game with A,B ∈ Pn×n, with P ⊂ Q, |P | ≤ `, and
let G = G(G) the graph associated with G. In this section we will present an
algorithm that finds an equilibrium with support sizes at most k when G comes
from a graph class with locally bounded treewidth. Note that this is a partial
extension of the results of the previous section, as graphs of bounded degree have
locally bounded treewidth, while on the other hand we assume that there is a
bounded set P of only ` different payoff values which can occur in the games.
(The case P = {0, 1} would correspond to win-lose games.)

Definition 3 ([18]). A graph class has locally bounded treewidth if there is
a function f : N → N such that for every graph G := (V,E) of the class, any
vertex v ∈ V , and any d ∈ N, the subgraph of G induced by all vertices within
distance at most d from v has treewidth at most f(d).

We refer readers to [20] for more details on the notion of treewidth and locally
bounded treewidth. The crucial property of locally bounded treewidth graphs
in our context is that first-order queries can be answered in FPT time on such
graphs when the parameter is the size of first-order formula [20, Chapter 12.2].

For ease of presentation we show how to find an equilibrium where both
players have support size k (the algorithm can be easily adapted to support
sizes k1, k2 ≤ k). Let I and J be two subsets of k elements in [n]. We say that two
matrices A∗, B∗ ∈ Qk×k occur in G at (I, J) if A∗ = AI,J and B∗ = BI,J . The
pair (A∗, B∗) forms an equilibrium pattern if there exists an equilibrium (x, y)
where (A∗, B∗) occur in G at (S(x), S(y)). Our algorithm will try all possible `2k2

pairs of matrices (A∗, B∗), and for each such pair it will determine whether it is
an equilibrium pattern.

When does a pair of matrices (A∗, B∗) form an equilibrium pattern? The first
obvious condition is that it occurs in G at some pair of position sets (I, J). Fur-
thermore, by definition of a Nash equilibrium, there is a pair of strategies (x, y)
with S(x) = I and S(y) = J , such that neither player has a better alternative.
The difficulty here lies in the fact that, even given the support S(y) of the col-
umn player, there may be too many possible strategies for the row player that
have supports different from I. To circumvent this, we define equivalence of rows
with respect to supports S(y), and of columns with respect to supports S(x).

Definition 4. Let I, J ⊆ [n]. Two rows i1, i2 ∈ [n] are J-equivalent if Ai1,J =
Ai2,J . Similarly, two columns j1, j2 ∈ [n] are I-equivalent if BI,j1 = BI,j2 .

Lemma 7. Let J be the support of the column player. For any row strategy x
there is a row strategy x̂ such that:

(i) the support S(x̂) contains at most one row from each J-equivalence class
(ii) and for any column strategy y with support J we have x̂T Ay = xT Ay.

The same is true for column strategies, given a support I of the row player.

11

Proof. We prove the lemma row strategies given a support J of the column
player. The proof for column strategies is similar. Let x be a row strategy which
includes two strategies i1 and i2 that are J-equivalent. It suffices to show that
there is a row strategy x̂ with S(x̂) = S(x) \ i2 and x̂T Ay = xT Ay for any
column strategy y with support J . For this, take x̂ to be the strategy defined
by x̂i1 := xi1 + xi2 , x̂i2 := 0, and x̂i = xi for all i ∈ {1, . . . , n} \ {i1, i2}.
Let y be any column strategy with S(y) = J . By definition of J-equivalence, we
have (Ay)i1 = (Ay)i2 . Thus, we get that

(x̂T Ay)i1 + (x̂T Ay)i2 = (xT Ay)i1 + (xT Ay)i2 .

Furthermore, since x̂ and x equal on all entries i ∈ [n] \ {i1, i2}, we know that
∑

i 6=i1,i2

(x̂T Ay)i =
∑

i 6=i1,i2

(xT Ay)i,

and thus

(x̂T Ay) =
∑

i6=i1,i2

(x̂T Ay)i + (x̂T Ay)i1 + (x̂T Ay)i2

=
∑

i6=i1,i2

(xT Ay)i + (xT Ay)i1 + (xT Ay)i2 = (xT Ay).

Therefore x̂T Ay = xT Ay for all column strategies y with S(y) = J . ut
For each possible equilibrium pattern (A∗, B∗) we do the following. For

each choice of rows A† ⊆ P 1×k that do not occur in A∗ and each choice of
columns B† ⊆ P k×1 that do not occur in B∗, we create two matrices

C =
(

A∗ 0
A† 0

)
and D =

(
B∗ B†

0 0

)
.

We then check if there is an equilibrium (x, y) in the game (C,D) with S(x) =
S(y) = [k] using linear programming. If there is such an equilibrium, then we
proceed as follows to find an occurrence of (A∗, B∗) that avoids the rows and
columns which were not chosen. For this let F1 be the rows which occur neither
in A∗ nor in A† and let F2 be the columns which occur neither in B∗ nor in B†.
We say that F1 and F2 are forbidden for (A∗, B∗). We note that given (A∗, B∗),
a set of rows F1 ⊆ P 1×k, and a set of columns F2 ⊆ P k×1, one can write a first-
order formula of size bounded by some function in k and |P | = ` to determine
whether (A∗, B∗) has an occurrence which avoids F1 and F2.

Example 1. Consider a win-lose game (A,B) encoded into relations A and B
such that A(r, c) is true iff Ar,c = 1, and likewise for B. Then a 2×2 equilibrium
where the pattern is two identity matrices, and the all one vector is a forbidden
row and column, can be found with the formula

∃r1, r2, c1, c2A(r1, c1) ∧ ¬A(r1, c2) ∧ ¬A(r2, c1) ∧A(r2, c2)∧
B(r1, c1) ∧ ¬B(r1, c2) ∧ ¬B(r2, c1) ∧B(r2, c2)∧
∀r′(¬A(r′, c1) ∨ ¬A(r′, c2)) ∧ ∀c′(¬B(r1, c

′) ∨ ¬B(r2, c
′)).

12

In general, with ` different values, there would be ` − 1 relations Ai and Bi

encoding the game, where Ai(r, c) is true if Ar,c = zi, for every zi ∈ P except
the zero value.

Since the number of possible choices for F1 and F2 is bounded by some function
in k and `, and for each such choice we can determine whether F1 and F2 is a
forbidden pair for (A∗, B∗) in polynomial-time, the total time for determining
whether (A∗, B∗) is an equilibrium pattern is FPT in k and `. Since the number
of pairs (A∗, B∗) is also bounded by a function in k, the total running time of
our entire algorithm is also FPT in k and `.

To complete the proof of Theorem 5, let us briefly argue completeness. As-
sume that there is any equilibrium with support sizes equal to k, let I and J be
the supports, and let A∗ and B∗ be corresponding sub-matrices. Observe that
we may set all entries in columns outside J of A to zero without harm, ditto for
rows outside I in B. According to Lemma 7 it suffices to keep one copy of each
row outside A∗ in A (also discard the corresponding zero-row in B to keep the
size the same). The same is of course true for columns outside B∗ in B. Except
for a permutation this is equal to one of the games (C, D) that we considered.
Therefore our algorithm will find such an equilibrium if one exists.

5 Unbalanced Games

In this section we briefly consider k-unbalanced bimatrix games. A bimatrix
game (A,B) is k-unbalanced if A,B ∈ Qk×n

≥0 for some k << n [24, 25] (i.e.,
the row player has a significantly smaller number of strategies than the column
player). We will show that a Nash equilibrium can be computed in FPT-time
with respect to k and `, where ` denotes the number of different payoffs that the
row player has, i.e., ` := |{Ai,j : 1 ≤ i ≤ k, 1 ≤ j ≤ n}|.

Similar to Definition 4 we define two column strategies i, j ∈ [n] to be equiv-
alent if A∗,i = A∗,j . (However, notice that unlike Definition 4, here equivalence
of column strategies is defined with respect to the row player payoff.)

Lemma 8. For each equilibrium there is an equilibrium where the column player
plays at most one column from each equivalence class.

Proof. Let (x, y) be an equilibrium, and suppose that S(y) includes two equiv-
alent strategies i and j. To prove the lemma it suffices to show that the there
exists an equilibrium (x, ŷ) with S(ŷ) = S(y) \ {j}. For this, let us take ŷ to
be the strategy vector defined by ŷi := yi + yj , ŷj := 0, and ŷx = yx for
all x ∈ {1, . . . , n} \ {i, j}. Clearly S(ŷ) = S(y) \ {j}. Thus, for each s ∈ S(ŷ) we
have

(xT B)s ≥ (xT B)j , ∀j 6= s,

since this condition holds for all s ∈ S(y) ⊇ S(ŷ) by Lemma 1. Furthermore, due
to the definition of equivalence, a simple calculation shows that (Ay)s = (Aŷ)s

for all s ∈ {1, . . . , k}. Therefore, for each s ∈ S(x), we get again using Lemma 1
that

(Aŷ)s = (Ay)s ≥ (Ay)j , ∀j 6= s.

13

It follows that (x, ŷ) satisfies both conditions of Lemma 1, and so it is indeed an
equilibrium. ut

Using Lemma 8 we can easily devise an FPT algorithm for computing a
Nash equilibrium in our setting. The algorithm simply guesses the support of
the row player and column player, and then uses the method of Theorem 1 to
determine whether there exists a Nash equilibrium corresponding to these sets of
supports. Observe that there are at most `k column-strategy equivalence classes.
Furthermore, according to Lipton, Markakis, and Mehta [25], in a k-unbalanced
game there always exists an equilibrium where the column player has support
size at most k + 1. Thus the number of guesses the algorithm makes is bounded
by 2k · (`k

k+1

)
= `O(k2), and for each such guess, the amount of time required is

polynomial. This completes the proof of Theorem 4.

6 Conclusions

This paper is among the first attempts at applying parameterized complexity
techniques in algorithmic game theory. This seems surprising when considering
the potential benefit both fields can enjoy from each other. Our paper focused
on the fundamental game-theoretical problem of computing a Nash equilibrium
in bimatrix game. Three parameterized algorithms were presented, each cor-
responding to a different parameterization of the problem. In two cases, our
algorithms utilized the graph-theoretical structure inherited in bimatrix games,
and we believe this perspective will be useful in other settings as well.

Our work is only the first step towards completely understanding the multi-
variate complexity of computing Nash equilibria in bimatrix games. There are
still several parameters of the problems which were left unexplored, and we con-
sider the problem of identifying new parameterizations to be the central open
problem of this paper. Below we list several other questions which would be
interesting to explore:

– Can the running-time of Theorem 3 be substantially improved?
– Is there a polynomial-time algorithm for computing Nash equilibria in games

whose bipartite graph representation has bounded treewidth?
– Can one remove the number of different values parameterizations from The-

orem 4 and Theorem 5?
– If the answer to the previous question regarding Theorem 4 is no, how would

negative evidence for this question look like? Note that the concept of PPAD-
completeness does not immediately apply.

References

1. T.G. Abbott, D.M. Kane, and P. Valiant. On the complexity of two-player win-lose
games. In Proc. of the 46th annual IEEE symposium on Foundations Of Computer
Science (FOCS), pages 113–122, 2005.

14

2. L. Addario-Berry, N. Olver, and A. Vetta. A polynomial time algorithm for find-
ing Nash equilibria in planar win-lose games. Journal of Graph Algorithms and
Applications, 11(1):309–319, 2007.

3. H.L. Bodlaender, R.G. Downey, M.R. Fellows, and D. Hermelin. On problems
without polynomial kernels. Journal of Computer and System Sciences, 75(8):423–
434, 2009.

4. H. Bosse, J. Byrka, and E. Markakis. New algorithms for approximate nash equi-
libria in bimatrix games. Theoretical Computer Science, 411(1):164–173, 2010.

5. J. Chen, B. Chor, M.R. Fellows, X. Huang, D.W. Juedes, I.A. Kanj, and G. Xia.
Tight lower bounds for certain parameterized NP-hard problems. Information and
Computation, 201(2):216–231, 2005.

6. X. Chen and X. Deng. 3-NASH is PPAD-complete. Electronic Colloquium on
Computational Complexity, (134), 2005.

7. X. Chen and X. Deng. Settling the complexity of two-player nash equilibrium. In
Proc. of the 47th annual IEEE symposium on Foundations Of Computer Science
(FOCS), pages 261–272, 2006.

8. X. Chen, X. Deng, and S.-H. Teng. Computing nash equilibria: Approximation and
smoothed complexity. In Proc. of the 47th annual IEEE symposium on Foundations
Of Computer Science (FOCS), pages 603–612, 2006.

9. X. Chen, X. Deng, and S.-H. Teng. Sparse games are hard. In Proc. of the 2nd
international Workshop on Internet and Network Economics (WINE), pages 262–
273, 2006.

10. X. Chen, S.-H. Teng, and P. Valiant. The approximation complexity of win-lose
games. In Proc. of the 18th annual ACM-SIAM Symposium On Discrete Algorithms
(SODA), pages 159–168, 2007.

11. B. Codenotti, M. Leoncini, and G. Resta. Efficient computation of nash equilibria
for very sparse win-lose bimatrix games. In Proc. of the 14th Annual European
Symposium on Algorithms (ESA), pages 232–243, 2006.

12. C. Daskalakis, P.W. Goldberg, and C.H. Papadimitriou. The complexity of com-
puting a nash equilibrium. In Proc. of the 38th annual ACM Symposium on Theory
Of Computing (STOC), pages 71–78, 2006.

13. C. Daskalakis, A. Mehta, and C.H. Papadimitriou. Progress in approximate nash
equilibria. In Proc. of the 8th ACM Conference on Electronic Commerce (EC),
pages 355–358, 2007.

14. C. Daskalakis, A. Mehta, and C.H. Papadimitriou. A note on approximate nash
equilibria. Theoretical Computer Science, 410(17):1581–1588, 2009.

15. C. Daskalakis and C.H. Papadimitriou. On oblivious ptas’s for nash equilibrium.
In Proc. of the 41st annual ACM Symposium on Theory Of Computing (STOC),
pages 75–84, 2009.

16. K. Daskalakis and C.H. Papadimitriou. Three-player games are hard. Electronic
Colloquium on Computational Complexity, (139), 2005.

17. R. Downey and M. Fellows. Parameterized Complexity. Springer-Verlag, 1999.

18. D. Eppstein. Subgraph isomorphism in planar graphs and related problems. Jour-
nal of Graph Algorithms and Applications, 3(3), 1999.

19. V. Estivill-Castro and M. Parsa. Computing nash equilibria gets harder: New
results show hardness even for parameterized complexity. In Proc. of the 15th
Computing: the Australasian Theory Symposium (CATS), volume 94, pages 81–87,
2009.

20. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.

15

21. L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct
PCPs for NP. In Proc. of the 40th Annual ACM Symposium on Theory of Com-
puting (STOC), pages 133–142, 2008.

22. I. Gilboa and E. Zemel. Nash and correlated equillbrla: Some complexity consid-
erations. Games and Economic Behavior, 1989.

23. P.W. Goldberg and C.H. Papadimitriou. Reducibility among equilibrium problems.
In Proc. of the 38th annual ACM Symposium on Theory Of Computing (STOC),
pages 61–70, 2006.

24. S. Kalyanaraman and C. Umans. Algorithms for playing games with limited ran-
domness. pages 323–334, 2007.

25. R.J. Lipton, E. Markakis, and A. Mehta. Playing large games using simple strate-
gies. In Proc. of the 4th ACM Conference on Electronic Commerce (EC), pages
36–41, 2003.

26. N. Nisan, T. Roughgarden, É. Tardos, and V.V. Vazirani. Algorithmic Game
Theory. Cambridge University Press, 2007.

27. C.H. Papadimitriou. Algorithms, games, and the internet. In Proc. of the 33rd
Annual ACM Symposium on Theory of Computing (STOC), pages 749–753, 2001.

