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Abstract We consider the problem of computing a large stable matching in a bipar-
tite graph G = (A ∪ B,E) where each vertex u ∈ A ∪ B ranks its neighbors in an
order of preference, perhaps involving ties. A matchingM is said to be stable if there
is no edge (a, b) such that a is unmatched or prefers b to M(a) and similarly, b is un-
matched or prefers a to M(b). While a stable matching in G can be easily computed
in linear time by the Gale-Shapley algorithm, it is known that computing a maximum
size stable matching is APX-hard.

In this paper we consider the case when the preference lists of vertices in A are
strict while the preference lists of vertices in B may include ties. This case is also
APX-hard and the current best approximation ratio known here is 25/17 ≈ 1.4706
which relies on solving an LP. We improve this ratio to 22/15 ≈ 1.4667 by a simple
linear time algorithm.

We first compute a half-integral stable matching in {0, 0.5, 1}|E| and round it
to an integral stable matching M . The ratio |OPT|/|M | is bounded via a payment
scheme that charges other components in OPT ⊕M to cover the costs of length-5
augmenting paths. There will be no length-3 augmenting paths here.

We also consider the following special case of two-sided ties, where every tie
length is 2. This case is known to be UGC-hard to approximate to within 4/3. We
show a 10/7 ≈ 1.4286 approximation algorithm here that runs in linear time.
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1 Introduction

The stable marriage problem is a classical and well-studied matching problem in
bipartite graphs. The input here is a bipartite graph G = (A ∪ B,E) where every
u ∈ A ∪ B ranks its neighbors in an order of preference and ties are permitted in
preference lists. It is customary to refer to the vertices inA andB as men and women,
respectively. Preference lists may be incomplete: that is, a vertex need not be adjacent
to all the vertices on the other side.

A matching is a set of edges, no two of which share an endpoint. An edge (a, b)
is said to be a blocking edge for a matching M if either a is unmatched or prefers b to
its partner in M , i.e., M(a), and similarly, b is unmatched or prefers a to its partner
M(b). A matching that admits no blocking edges is said to be stable. The problem of
computing a stable matching in G is the stable marriage problem. A stable matching
always exists and can be computed in linear time by the well-known Gale-Shapley
algorithm [2].

Several real-world assignment problems can be modeled as the stable marriage
problem, for instance, the problems of assigning residents to hospitals [4] or stu-
dents to schools [19]. The input instance could admit many stable matchings and the
desired stable matching in most real-world applications is a maximum cardinality
stable matching. When preference lists are strict (no ties permitted), it is known that
all stable matchings in G have the same size and the set of vertices matched in every
stable matching is the same [3]. However when preference lists involve ties, stable
matchings can vary in size.

Consider the following simple example, where A = {a1, a2} and B = {b1, b2}
and let the preference lists be as follows:

a1 : b1; a2 : b1, b2; b1 : {a1, a2}; and b2 : a2.

The preference list of a1 consists of just b1 while the preference list of a2 consists
of b1 followed by b2. The preference list of b1 consists of a1 and a2 tied as the
top choice while the preference list of b2 consists of the single vertex a2. There are
2 stable matchings here: {(a2, b1)} and {(a1, b1), (a2, b2)}. Thus the sizes of stable
matchings inG could differ by a factor of 2 and it is easy to see that they cannot differ
by a factor more than 2 since every stable matching has to be a maximal matching. As
stated earlier, the desired matching here is a maximum size stable matching. However
it is known that computing such a matching is NP-hard [8,15].

Iwama et al. [9] showed a 15/8 = 1.875-approximation algorithm for this prob-
lem using a local search technique. The next breakthrough was due to Király [11],
who introduced the simple and effective technique of “promotion” to break ties in a
modification of the Gale-Shapley algorithm. He improved the approximation ratio to
5/3 for the general case and to 1.5 for one-sided ties, i.e., the preference lists of ver-
tices in A have to be strict while ties are permitted in the preference lists of vertices
inB. McDermid [16] then improved the approximation ratio for the general case also
to 1.5. For the case of one-sided ties, Iwama et al. [10] showed a 25/17 ≈ 1.4706-
approximation.
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On the inapproximability side, the strongest hardness results are due to Yanag-
isama [21] and Iwama et al. [9]. In [21], the general problem was shown to be NP-
hard to approximate to within 33/29 and UGC-hard to approximate to within 4/3; the
case of one-sided ties was considered in [9] and shown to be NP-hard to approximate
to within 21/19 and UGC-hard to approximate to within 5/4.

In this paper we focus mostly on the case of one-sided ties. The case of one-sided
ties occurs frequently in several real-world problems, for instance, in the Scottish
Foundation Allocation Scheme (SFAS), the preference lists of applicants have to be
strictly ordered while the preference lists of positions can admit ties [7]. Let OPT be
a maximum size stable marriage in the given instance. We show the following result
here.

Theorem 1 Let G = (A ∪ B,E) be a stable marriage instance where vertices in A
have strict preference lists while vertices in B are allowed to have ties in preference
lists. A stable matching M in G such that |OPT|/|M | ≤ 22/15 ≈ 1.4667 can be
computed in linear time.

Techniques. Our algorithm constructs a half-integral stable matchings using a modi-
fied Gale-Shapley algorithm: each man can make two proposals and each woman can
accept two proposals. How the proposals are made by men and how women accept
these proposals forms the core part of our algorithms. In our algorithms, after the
proposing phase is over, we have a half-integral vector x, where xab = 1 (similarly,
1/2 or 0) if b accepts 2 (respectively, 1 or 0) proposals from a. We then build a sub-
graph G′ of G by retaining an edge e only if xe > 0. Our solution is a maximum
cardinality matching in G′ where every degree 2 vertex gets matched.

In the original Gale-Shapley algorithm, when two proposals are made to a woman
from men that are tied on her list, she is forced to make a blind choice since she has
no way of knowing which is a better proposal (i.e., it leads to a larger matching)
to accept. Our approach to deal with this issue is to let her accept both proposals.
Since neither proposer is fully accepted, each of them has to propose down his list
further and get another proposal accepted. Essentially, our strategy of letting men
make multiple proposals and letting women accept multiple proposals is a way of
coping with their lack of knowledge about the best decision at any point in time.
Note that we limit the number of proposals a man makes/a woman accepts to be 2
because we want to keep the graph G′ simple. In our algorithms, every vertex in G′

has degree at most 2 and this allows us to bound our approximation guarantees.
We first show that there are no length-3 augmenting paths in M ⊕OPT using the

idea of promotion introduced by Király [11] to break ties in favor of those vertices
rejected once by all their neighbors. This idea was also used by McDermid [16] and
Iwama et al. [10]. This idea essentially guarantees an approximation factor of 1.5 by
eliminating all length-3 augmenting paths inM⊕OPT. In order to obtain an approx-
imation ratio < 1.5, we use a new combinatorial technique that makes components
other than augmenting paths of length-5 in M ⊕ OPT pay for augmenting paths of
length-5.

Let R denote the set of augmenting paths of length-5 in M ⊕ OPT and let Q =
(M ⊕ OPT) \ R. Suppose q ∈ Q is an augmenting path on 2` + 3 ≥ 7 edges or
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an alternating cycle/path on 2` edges or an alternating path on 2` − 1 edges (with `
edges of M ). In our algorithm for one-sided ties, q will be charged for≤ 3` elements
in R and this will imply that |OPT|/|M | ≤ 22/15.

For the case of one-sided ties, to obtain an approximation guarantee < 1.5, the
algorithm by Iwama et al. [10] formulates the maximum cardinality stable matching
problem as an integer program and solves its LP relaxation. This optimal LP-solution
guides women in accepting proposals and leads to a 25/17-approximation.

It was also shown in [10] that for two-sided ties, the integrality gap of a natural
LP for this problem (first used in [20]) is 1.5 − Θ(1/n). As mentioned earlier, Mc-
Dermid [16] gave a 1.5-approximation algorithm here; Király [12] and Paluch [17]
have shown linear time algorithms for this ratio. A variation of the general problem
was recently studied by Askalidis et al. [1].

Since no approximation guarantee better than 1.5 is known for the general case
of two-sided ties while better approximation algorithms are known for the one-sided
ties case, as a first step we consider the following variant of two-sided ties where each
tie length is 2. This is a natural variant as there are several application domains where
ties are permitted but their length has to be small. We show the following result here.

Theorem 2 Let G = (A ∪ B,E) be a stable marriage instance where vertices in
A ∪ B are allowed to have ties in preference lists, however each tie has length 2. A
stable matching M ′ in G such that |OPT|/|M ′| ≤ 10/7 ≈ 1.4286 can be computed
in linear time.

Currently, this is the only case with approximation ratio better than 1.5 for any
special case of the stable marriage problem where ties can occur on both sides of
G. Interestingly, in the hardness results shown in [21] and [9], it is assumed that each
vertex has at most one tie in its preference list, and such a tie is of length 2. Thus if the
general case really has higher inapproximability, say 1.5 as previously conjectured by
Király [11], then the reduction in the hardness proof needs to use longer ties.

We also note that the ratio of 10/7 we achieve in this special case coincides
with the ratio attained by Halldórsson et al. [5] for the case that ties only appear on
women’s side and each tie is of length 2.

The stable marriage problem is an extensively studied subject on which several
monographs [4,13,14,18] are available. The generalization of allowing ties in the
preference lists was first introduced by Irving [6]. There are several ways of defining
stability when ties are allowed in preference lists. The definition, as used in this paper,
is Irving’s “weak-stability.”

We present our algorithm for one-sided ties in Section 2 its analysis in Section 2.1.
Section 3 has our algorithm for instances with two-sided ties, where each tie has
length 2.

2 Algorithm for one-sided ties

Our algorithm produces a fractional matching x = (xe, e ∈ E) where each xe ∈
{0, 1/2, 1}. The algorithm is a modification of the Gale-Shapley algorithm in G =
(A∪B,E). We first explain how men propose to women and then how women decide
(see Fig. 1).
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How men propose. Every man a has two proposals p1a and p2a, where each proposal
pia (for i = 1, 2) goes to the women on a’s preference list in a round-robin manner.
Initially, the target of both proposals p1a and p2a is the first woman on a’s list. For any
i, at any point, if pia is rejected by the woman who is ranked k-th on a’s list (for any
k), then pia goes to the woman ranked (k + 1)-st on a’s list; in case the k-th woman
is already the last woman on a’s list, then the proposal pia is again made to the first
woman on a’s list.

A man has three possible levels in status: basic, 1-promoted, or 2-promoted. Every
man a starts out basic with rejection history ra = ∅. LetN(a) be the set of all women
on a’s list. When ra = N(a), then a becomes 1-promoted. Once he becomes 1-
promoted, ra is reset to the empty set. If ra = N(a) after a becomes 1-promoted,
then a becomes 2-promoted and ra is reset once again to the empty set. After a
becomes 2-promoted, if ra = N(a), then a gives up.

To illustrate promotions, consider the following example: man a has only two
women b1 and b2 on his list. He starts as a basic man and makes his proposals p1a and
p2a to b1. Suppose b1 rejects both. Then a makes both these proposals to b2. Suppose
b2 accepts p1a but rejects p2a. Then a becomes 1-promoted since ra = {b1, b2} now
and ra is reset to ∅. Note that for a to become 2-promoted, we need ra to become
{b1, b2} once again. Similarly, a 2-promoted man a gives up only when his rejection
history ra becomes {b1, b2} after he becomes 2-promoted.

– For every a ∈ A, t1a := t2a := 1; ra := ∅.
{ra is the rejection history of man a; tia is the rank of the next woman targeted by the proposal pia.}
while some a ∈ A has his proposal pia (i is 1 or 2) not accepted by any woman and he has not given up
do

– a makes his proposal pia to the tia-th woman b on his list.
if b has at most two proposals now (incl. pia) then

– b accepts pia
else

– b rejects any of her “least desirable” (see Definition 1) proposals pj
a′

if tj
a′ = number of women on the list of a′ then
tj
a′ := 1 {the round-robin nature of proposing}

else
tj
a′ := tj

a′ + 1
end if
– ra′ := ra′ ∪ {b}
if ra′ = the entire set of neighbors of a′ then

if a′ is basic then
a′ becomes 1-promoted and ra′ := ∅

else if a′ is 1-promoted then
a′ becomes 2-promoted and ra′ := ∅

else if a′ is 2-promoted then
a′ gives up

end if
end if

end if
end while

Fig. 1 A description of proposals/disposals in our algorithm with one-sided ties
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Our algorithm terminates when each a ∈ A satisfies one of the following condi-
tions: (1) both his proposals p1a and p2a are accepted, (2) he gives up. Note that when
(2) happens, the man a must be 2-promoted.

How women decide: A woman can accept up to two proposals. The two proposals
can be from the same man. When she currently has less than two proposals, she
unconditionally accepts the new proposal. If she has already accepted two proposals
and is faced with a third one, then she rejects one of her “least desirable” proposals
(see Definition 1 below).

Definition 1 For a woman b, proposal pia is superior to pi
′

a′ if on b’s list:

(1) a ranks better than a′.
(2) a and a′ are tied; a is currently 2-promoted while a′ is currently 1-promoted or

basic.
(3) a and a′ are tied; a is currently 1-promoted while a′ is currently basic.
(4) a and a′ are tied and both are currently basic; moreover, woman b has already

rejected one proposal of a while so far she has not rejected any of the proposals
of a′.

Let pia be among the three proposals that a woman has and suppose it is not superior
to either of the other two proposals. Then pia is a least desirable proposal.

The reasoning behind the rules of a woman’s decision can be summarized as
follows.

– Proposals from higher-ranking men should be preferred, as in the Gale-Shapley
algorithm.

– When a woman receives proposals from men who are tied in her list, she prefers
the man who has been promoted: a 1-promoted (similarly, 2-promoted) man hav-
ing been rejected by the entire set of women on his list once (resp. twice) should
be preferred, since he is more desperate and deserves to be given a chance.

– When two basic men of the same rank propose to a woman, she prefers the
one who has been rejected by her before. The intuition again is that he is more
desperate—though he has not been rejected by all women on his list yet (other-
wise he would have been 1-promoted).

It is easy to see that the algorithm in Fig. 1 runs in linear time. When it terminates,
for each edge (a, b) ∈ E, we set xab = 1 or 0.5 or 0 if the number of proposals that
woman b accepts from man a is 2 or 1 or 0, respectively. Let G′ = (A ∪ B,E′) be
the subgraph where an edge e ∈ E′ if and only if xe > 0. It is easy to see that in G′,
the maximum degree of any vertex is 2.

There is a maximum cardinality matching in G′ where all degree 2 vertices are
matched; moreover, such a matching can be computed in linear time. LetM be such a
matching. In the following, we show thatM is stable and it is a 22/15 approximation,
thereby proving Theorem 1.
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2.1 Analysis of the above algorithm

Propositions 1 and 2 follow easily from our algorithm and lead to the stability of M .

Proposition 1 Let woman b reject proposal pia from man a. Then from this point till
the end of the algorithm, b has two proposals pi

′

a′ and pi
′′

a′′ from men a′ and a′′ (it is
possible that a′ = a′′) who rank at least as high as man a on b’s list. In particular, if
a′ (similarly, a′′) is tied with man a on the list of b, then at the time a proposed to b:

1. if a is `-promoted (` is either 1 or 2), then man a′ (resp. a′′) has to be ≥ `-
promoted.

2. if a is basic and his other proposal is already rejected by b, then it has to be
the case that either a′ (resp. a′′) is not basic or b has already rejected his other
proposal.

Proposition 2 The following facts hold:

1. If a man (similarly, a woman) is unmatched in M , then he has at most one pro-
posal accepted by a woman (resp., she receives at most one proposal) during the
entire algorithm.

2. At the end of the algorithm, every man with less than two proposals accepted is
2-promoted. Furthermore, he must have been rejected by all women on his list as
a 2-promoted man.

3. If woman b on the list of the man a is unmatched inM , then man a has to be basic
and he does not prefer b to the women who accepted his proposals.

Lemma 1 The matching M is stable in G = (A ∪B,E).

Proof Let (a, b) ∈ E \M . Suppose a is unmatched in M . Then by (1)-(2) of Propo-
sition 2, a has to be 2-promoted and all women on his list rejected at least one of his
proposals. As this includes b, we know from Proposition 1 that b has two proposals
from men ranking at least as high as a on her list and she is matched in M with one
such man. So (a, b) does not block M .

Now suppose a is matched in M . Let (a, b′) ∈ M . It follows from our algorithm
that man a must have been rejected by all women that rank higher than b′ on his list.
Let b be such a woman. By Proposition 1, till the end of the algorithm, b has two
proposals from men that rank at least as high as a on her list and b is matched in M
with one such man. So (a, b) does not block M . ut

In the rest of the discussion, unless we specifically state the time point, when we
say a man is basic/1-promoted/2-promoted, we mean his status when the algorithm
terminates.

Bounding the size of M . Let OPT be an optimal stable matching. We now need to
bound |OPT|/|M |. Whenever we refer to an augmenting path inM⊕OPT, we mean
the path is augmenting with respect to M . Lemma 2 will be crucial in our analysis.
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Lemma 2 Suppose (a, b) and (a′, b′) are in OPT where man a′ is not 2-promoted
and a′ prefers b to b′. If a is unmatched in M , then (a′, b) cannot be in G′.

Proof We prove this lemma by contradiction. Suppose (a′, b) ∈ G′. If b prefers a′ to
a, then (a′, b) blocks OPT. On the other hand, if b prefers a to a′, then this contradicts
the fact that b rejected at least one proposal from a (by Proposition 2.1) while b has
a proposal from a′, who is ranked worse on b’s list, at the end of the algorithm since
(a′, b) ∈ G′.

So the only option possible is that a′ and a are tied on b’s list. Since a is un-
matched in M , it follows from (1)-(2) of Proposition 2 that a has been rejected by
b as a 2-promoted man. Since (a′, b) ∈ G′, Proposition 1 implies that a′ has to be
2-promoted. This however contradicts the lemma statement that a′ is not 2-promoted.

ut

Corollary 1 There is no length-3 augmenting path M ⊕ OPT.

Proof If such a path a− b− a′ − b′ exists (see Fig. 2), then (a′, b) ∈ G′ since it is in
M . As b′ is unmatched in M , a′ is basic and prefers b to b′ (by Proposition 2.3). This
contradicts Lemma 2. ut
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Fig. 2 On the left we have a length-3 augmenting path and on the right we have the length-5 augmenting
path ρi with respect to M in M ⊕ OPT.

Let R = {ρ1, . . . , ρt} denote the set of length-5 augmenting paths in M ⊕OPT.
Lemma 3 lists properties of vertices in a length-5 augmenting path ρi (see Fig. 2).

Lemma 3 If ρi = ai0 − bi0 − ai1 − bi1 − ai2 − bi2 is a length-5 augmenting path in
M ⊕ OPT, then

1. ai0 is 2-promoted and has been rejected by bi0 as a 2-promoted man.
2. ai1 is not 2-promoted and he prefers bi1 to bi0.
3. ai2 is basic and he prefers bi1 to bi2.
4. bi1 is indifferent between ai1 and ai2.
5. In G′, bi0 has degree 1 if and only if ai1 has degree 1.
6. In G′, bi1 has degree 1 if and only if ai2 has degree 1.

Proof It is easy to see that (1) and (3) follow from Proposition 2.
We now show (2). Suppose ai1 is 2-promoted. To become 2-promoted, ai1 must

have been rejected by bi1 as a 1-promoted man. By Proposition 1, as (ai2, b
i
1) ∈ G′,

either bi1 prefers ai2 to ai1, or they are tied in her preference list and ai2 is also at least
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1-promoted. In the former case, (ai2, b
i
1) blocks OPT while in the latter case, (3) is

contradicted. This proves the first part of (2). For the second part of (2), suppose ai1
prefers bi0 to bi1. Then bi0 is indifferent between ai0 and ai1, otherwise either (ai0, b

i
0)

blocks M or (ai1, b
i
0) blocks OPT. Since ai0 is unmatched in M , by Proposition 2.2,

ai0 must have been rejected by bi0 as a 2-promoted man. Then Proposition 1 implies
that ai1 is also 2-promoted, which contradicts the first part of (2). This completes the
proof of (2).

To show (4), observe that if bi1 is not indifferent between ai1 and ai2, then either
(ai1, b

i
1) blocks M or (ai2, b

i
1) blocks OPT.

We now show (5). Since ai1 is not 2-promoted, by (1)-(2) of Proposition 2, both
of his proposals get accepted in the algorithm. As ai0 has been rejected by bi0 as a
2-promoted man, Proposition 1 states that bi0 has two proposals till the end of the
algorithm. So either both proposals made by ai1 get accepted by bi0 (then both ai1 and
bi0 have degree 1 inG′) or exactly one proposal of ai1 is accepted by bi0, in which case,
ai1’s other proposal is accepted by some other woman and bi0 has received a proposal
from some other man (so both ai1 and bi0 have degree 2 in G′).

We now show (6). Since ai2 is not 2-promoted, by (1)-(2) of Proposition 2, both
of his proposals get accepted in the algorithm. Note that by (2), ai1 must have been
rejected by bi1, so bi1 has at least two proposals till the end of the algorithm. So either
both proposals made by ai2 get accepted by bi1 (then both ai2 and bi1 have degree 1 in
G′) or exactly one proposal of ai2 is accepted by bi1, in which case, ai2’s other proposal
is accepted by some other woman and bi1 has received a proposal from some other
man (so both ai2 and bi1 have degree 2 in G′). ut

Recall that G′ is a subgraph of G and every vertex has degree at most 2 in G′.
We form a directed graph H from G′ as follows: first orient all edges in the graph
G′ from A to B; then contract each edge of M ∩ ρi for i = 1, . . . , t. That is, if
ρi = ai0 − bi0 − ai1 − bi1 − ai2 − bi2, then in H , the edge (ai1, b

i
0) gets contracted into

a single node (call it xi) and similarly the edge (ai2, b
i
1) gets contracted into a single

node (call it yi) and this happens for all i = 1, . . . , t.
Note that (5)-(6) of Lemma 3 imply that degH(xi),degH(yi) ∈ {0, 2} for 1 ≤

i ≤ t, where degH(v) = 2 means in H in-degree(v) = out-degree(v) = 1. The
following lemma rules out the possibility of certain arcs in H .

Lemma 4 For any 1 ≤ i, j ≤ t, there is no arc from yi to xj in H .

Proof Suppose there is an arc in H from yi to xj for some 1 ≤ i, j,≤ t. That is, G′

contains the edge (ai2, b
j
0). Since the woman bi2 is unmatched, we use Proposition 2.3

to conclude that ai2 is basic and he prefers bj0 to bi2. This contradicts Lemma 2, by
substituting a = aj0, b = bj0, a′ = ai2, and b′ = bi2. ut

We now define a “good path” in H . In H , let us refer to the x-nodes and y-nodes
as red and let the other vertices be called blue.

Definition 2 A directed path in H is good if its end vertices are blue while all its
intermediate vertices are red. Also, we assume there is at least one intermediate vertex
in such a path.
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Lemma 4 implies that every good path looks as follows: a blue man, followed by
some x-nodes (possibly none), followed by some y-nodes (possibly none), and a blue
woman.

For any y-node yi, if degH(yi) 6= 0, using Lemma 4 we can conclude that yi
is either in a cycle of y-nodes or in a good path. In other words, there are only 3
possibilities in H for each yi: (1) yi is an isolated node, (2) yi is in a cycle of y-
nodes, (3) yi is in a good path.

We next define a critical arc in H . We will use critical arcs to show that H has
enough good paths. Since the endpoints of a good path are vertices outside R, this
bounds |OPT|/|M |.

Definition 3 Call an arc (xi, z) in H critical if either ai1 prefers z to bi1 or z = bi1.

In case z is a red node, let w be the woman in z – in Definition 3, we mean either
w = bi1 or ai1 prefers w to bi1. We show (via Lemmas 5 and 6) that every critical
arc is in a distinct good path. It follows from Lemma 5 that every good path has at
most one critical arc. Lemma 7 is the main technical lemma here. It shows there are
enough critical arcs in H .

Lemma 5 For any i, if (xi, z) is critical, then z is not an x-node, i.e., z 6= xj for any
j.

Proof For any 1 ≤ i, j ≤ t, if a proposal of ai1 is accepted by a woman w that ai1
prefers to bi1, then we need to show that w cannot be bj0. Suppose w = bj0, for some j.
In the first place, j 6= i since we know ai1 prefers bi1 to bi0 (by Lemma 3.2). We know
ai1 is not 2-promoted by Lemma 3.2. We now contradict Lemma 2, by substituting
a = aj0, b = bj0, a′ = ai1, and b′ = bi1. ut

Lemma 6 Every critical arc is in some good path and every pair of good paths is
vertex-disjoint.

Proof Let (xi, z) be a critical arc in H . We know from Lemma 5 that z is either
a blue woman w or a y-node yj . Suppose z is a blue woman w. Then w becomes
one endpoint of a good path containing (xi, z). Since degH(xi) 6= 0, it has to be 2.
So there is an arc (u0, xi) in H and we know from Lemma 4 that u0 cannot be a
y-node. Hence u0 is either a blue man m (in which case we have the desired good
path) or u0 = xi′ for some i′ – then there is an arc (u1, xi′) in H and thus chasing
these arcs backwards, we have to finally reach a blue man m. This yields a good path
m− · · · − xi′ − xi − w that contains (xi, w).

Suppose z = yj for some j. Now we also chase arcs forwards, starting from yj .
Following these arcs, we have to reach a blue woman w since there is no arc from a
y-node to a x-node (by Lemma 4). So we get a good path m− · · · − xi′ − xi − yj −
yj′ − · · · − w containing (xi, yj).

We now show that any pair of good paths has to be vertex-disjoint. As every
vertex in G′ has degree at most 2, the intermediate vertices in any two good paths are
disjoint. Suppose vertex u is an endpoint of two different good paths. By definition
of good paths, u is then incident on two edges of G′, neither of which is in M . This
contradicts the assumption that all degree 2 vertices of G′ are matched in M . ut
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Lemma 7 In the graph H , the following statements hold:

(1) If yi is an isolated node, then there exists a critical arc (xi, z) in H .
(2) If (yi, yj) is an arc, then there exists a critical arc (xi, z) or a critical arc (xj , z′)

(or both).

Proof We first show part (1) of this lemma. Suppose yi is an isolated node in H .
By parts (2) and (6) of Lemma 3, the woman bi1 accepts both proposals from ai2 and
she rejects ai1 at least once. Suppose bi1 rejects ai1 exactly once. This means that one
proposal of ai1 (other than the one accepted by bi0) has been accepted by a woman w
that ai1 prefers to bi1. That is, there is a critical arc (xi, z) in H .

So suppose bi1 rejects ai1 more than once. Then either ai1 has both of his proposals
rejected by bi1 while he was basic, or he was rejected by bi1 as a 1-promoted man.
In both cases we have a contradiction to Proposition 1 since bi1 has accepted both
proposals from ai2, who is basic and is tied with ai1.

We now show part (2) of this lemma. Suppose ai1 prefers bi1 to the women ac-
cepting his proposals and aj1 prefers bj1 to the women accepting his proposals. Note
that this includes the possibility that both of ai1’s proposals are accepted by bi0 and
the possibility that both of aj1’s proposals are accepted by bj0. The first observation is
that aj1 could not have proposed to bj1 as a 1-promoted man, as it would contradict
Proposition 1 otherwise (recall aj2 is basic and aj1, a

j
2 are tied on the list of bj1). For

the same reason, ai1 never proposed to bi1 as a 1-promoted man.
Since we assumed that aj1 prefers bj1 to the women accepting his proposals and

he never proposed to bj1 as a 1-promoted man, it must be the case that both of his
proposals were rejected by bj1 when he was still basic. The edge (ai2, b

j
1) ∈ G′ since

(yi, yj) is in H . We now claim this implies ai2 is tied with aj1 on the list of bj1. If bj1
prefers ai2 to aj1, then (ai2, b

j
1) blocks OPT, since Proposition 2.3 states that ai2 prefers

bj1 to bi2. Now suppose bj1 prefers aj1 to ai2. Since aj1 prefers bj1 to bj0 (by Lemma 3.2),
he must have been rejected by bj1 before he proposed to bj0, implying a contradiction
to Proposition 1.

We also know that aj1 is tied with aj2 on the list of bj1 (by Lemma 3.4) and that
ai2 is basic. Since we know that both of aj1’s proposals were rejected by bj1, it has to
be the case that while bj1 accepted one proposal of ai2, she rejected his other proposal
(by Proposition 1.2). This other proposal of ai2 was at some point accepted by bi1. So
it follows that bj1 ranks higher than bi1 on the list of ai2, furthermore, bi1 never rejects
a proposal from ai2.

Since we assumed that ai1 prefers bi1 to the women accepting his proposals and he
never proposed to bi1 as a 1-promoted man, it follows that both of his proposals were
rejected by bi1 when he was basic. This, combined with the fact that bi1 never rejects
a proposal from ai2, contradicts Proposition 1.2. Thus either one proposal of ai1 has
been accepted by a woman w that is bi1 or better than bi1 in ai1’s list or one proposal
of aj1 has been accepted by a woman w′ that aj1 prefers to bj1. Hence there is a critical
arc (xi, z) or a critical arc (xj , z

′) in H . ut

We define a function f : [t] → P , where P is the set of all good paths in H and
[t] = {1, . . . , t}. For any i ∈ [t], f(i) is defined as follows:
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(1) Suppose yi is isolated. Then let f(i) = p, where p ∈ P contains the critical arc
(xi, z). We know there is such an arc in H by Lemma 7.1.

(2) Suppose yi belongs to a cycle C of y-nodes, so there is an arc (yi, yj) in C. We
know H has a critical arc (xi, z) or (xj , z′) (by Lemma 7.2). Then let f(i) = p,
where p ∈ P contains such a critical arc.

(3) Suppose yi belongs to a good path p′. If yi is the last y-node in p′, then let f(i) =
p′. Otherwise there is an arc (yi, yj) in p′ and we knowH has a critical arc (xi, z)
or (xj , z′) (by Lemma 7.2). Then let f(yi) = p, where p ∈ P contains such a
critical arc.

For any p ∈ P , let cost(p) = the number of pre-images of p under f . We now
show a charging scheme that distributes cost(p), for each p ∈ P , among the vertices
in G so that the following properties hold. Let Q = (M ⊕ OPT) \R.

(I) Each v ∈ A ∪ B is assigned a charge of at most 1.5 and the sum of all vertex
charges is t.

(II) Every vertex that is assigned a positive charge must be matched in M and is in
some q ∈ Q. Moreover, if q ∈ Q is an augmenting path on 2`q + 3 ≥ 7 edges,
then at most 2`q vertices in q will be assigned a positive charge.

Note that a vertex not assigned a positive charge has charge 0 by default. We will
show later that such a charging scheme exists. For now, we show why this implies
|OPT|/|M | is at most 22/15. Let q ∈ Q be an alternating cycle/path on 2`q edges or
an alternating path on 2`q − 1 edges (with `q edges from M ) or an augmenting path
on 2`q + 3 ≥ 7 edges. It follows from (I) and (II) that the total charge assigned to
vertices in q is at most 1.5(2`q) = 3`q , i.e., if the vertices in q are being charged for
cq augmenting paths of length-5 in M ⊕ OPT, then cq ≤ 3`q .

Since
∑
q∈Q cq = t, all the paths in R are paid for in this manner. So we have:

|OPT| =
∑
q∈Q

(|OPT ∩ q|+ 3cq) and |M | =
∑
q∈Q

(|M ∩ q|+ 2cq),

because there are 3cq edges of OPT in the cq augmenting paths of length-5 covered
by q and 2cq edges of M in the cq augmenting paths of length-5 covered by q. Thus
we have:

|OPT|
|M |

≤ max
q∈Q

|OPT ∩ q|+ 3cq
|M ∩ q|+ 2cq

≤ max
lq≥2

10`q + 2

7`q + 1
≤ 22

15
.

We use (
∑
i si)/(

∑
i ti) ≤ maxi si/ti in the first inequality. The above ratio gets

maximized for any q ∈ Q by setting cq to its largest value of 3`q and letting q be an
augmenting path so that |OPT ∩ q| > |M ∩ q|.

This yields (`q + 2 + 3 · 3`q)/(`q + 1 + 2 · 3`q), where |q| = 2`q + 3 ≥ 7. Note
that since augmenting paths in Q have length ≥ 7, this forces `q ≥ 2 in this ratio.
Setting `q = 2 maximizes the ratio (10`q + 2)/(7`q + 1). Thus our upper bound is
22/15 and this proves Theorem 1.
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Ensuring properties (I) and (II). We now show a charging scheme that defines a
function charge : A ∪ B → [0, 1.5] such that

∑
u charge(u) =

∑
p∈P cost(p) = t,

where the sum is over all u ∈ A∪B. We start with charge(u) = 0 for all u ∈ A∪B.
Our task now is to reset charge values for some vertices so that properties (I) and (II)
are satisfied.

Each p ∈ P is one of the following three types: (1) type-1 path: this has no x-
nodes, (2) type-2 path: this has no y-nodes, and (3) type-3 path: this has both x-nodes
and y-nodes. The following lemma will be useful later in our analysis.

Lemma 8 For any p ∈ P and k = 1, 2, 3, if p is a type-k path, then cost(p) ≤ k.

Proof Let p ∈ P be a type-1 path. So p has the form m− yj − · · · − yj′ −w, where
m and w are blue vertices. There is only one element in [t] whose f -image is p and
that is the index j′, where yj′ is the last y-node in p. Since p has no x-nodes, there
is no critical arc in p. So p cannot be the f -image of any other index in [t]. Hence in
this case, we have cost(p) = 1.

Let p ∈ P be a type-2 path. So p has the form m− xi − · · · − xi′ −w, where m
and w are blue vertices. The arc (xi′ , w) could be a critical arc and no other arc can
be critical (by Lemma 5). If (xi′ , w) is not critical, then p cannot be the f -image of
any element in [t] and cost(p) = 0.

If (xi′ , w) is critical, then p can be the f -image of at most 2 elements in [t]. These
are the index i′ and possibly another index i′′ if there exists an arc (yi′′ , yi′) in a good
path or a cycle of y-nodes. No other index in [t] can be mapped to p. Thus we have
cost(p) ≤ 2 here.

Let p ∈ P be a type-3 path. So p has the formm−xi−· · ·−xi′−yj−· · ·−yj′−w,
where m and w are blue vertices. It follows from the discussion in the earlier cases
that there are at most 3 elements in [t] that can get mapped to p. These are j′ (the index
of the last y-node), i′ (if (xi′ , yj)) is critical), and index i′′ (if (xi′ , yj) is critical
and there is an arc (yi′′ , yi′) in a good path or a cycle of y-nodes). Thus we have
cost(p) ≤ 3 here. ut

Consider any p ∈ P . Though pwas defined as a good path inH , we now consider
p as a path in the graph G′. Since each intermediate node of p is an edge of M , p is
an alternating path in G′. Let ap (man) and bp (woman) be the endpoints of the path
p.

If both ap and bp are unmatched in M , then the path p becomes an augmenting
path in G′. Since M is a maximum cardinality matching in G′, there cannot be an
augmenting path with respect to M in G′; hence at least one of ap, bp has to be
matched in M .

Case 1. Suppose both ap and bp are matched. If p is a type-1 path, then reset charge(bp)
= cost(p), i.e., the entire cost associated with p is assigned to the woman who is
an endpoint of p. If p is a type-k path for k = 2 or 3, then reset charge(ap) =
charge(bp) = cost(p)/2.

Case 2. Suppose exactly one of ap, bp is matched: call the matched vertex sp and the
unmatched vertex up. Construct the alternating path with respect to M in G′ with
up as the starting vertex. The vertex up has degree 1 since is unmatched, also the
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maximum degree of any vertex in G′ is 2. So there is only one such alternating path
in G′. This path continues till it encounters a degree 1 vertex, call it rp.

Note that rp has to be matched, otherwise there is an augmenting path in G′

between up and rp. Since rp is reached via a matched edge on this path, either both
up and rp are in A or they both are in B. In other words, exactly one of rp, sp is a
woman (recall sp = {ap, bp} \ {up}).

– If p is a type-1 path, then we reset charge(w) = cost(p), where w is the woman
in {rp, sp}.

– If p is a type-k path, where k = 2 or 3, then we reset charge(sp) = charge(rp) =
cost(p)/2.

This concludes the description of our charging scheme.

Lemma 9 The function charge(·) satisfies properties (I) and (II) stated earlier.

Proof It is immediate from Lemma 8 that charge(u) ≤ 1.5 for all u ∈ A ∪ B.
Consider any p ∈ P and let its endpoints be ap and bp. It follows from Lemma 6
that every path in P has its own distinct endpoints. When both ap and bp are matched
in M , then no other vertex gets charged for p. When only one of them is matched,
then another vertex rp could also get charged – this is the degree 1 endpoint of the
alternating path Lp from the unmatched vertex in {ap, bp}. Observe that rp cannot be
the endpoint of any p′ ∈ P since each of ap′ and bp′ need to have an unmatched edge
incident on them, which is not true for rp.

Also, rp 6= rp′ for any other p′ ∈ P: if Lp and Lp′ are the alternating paths
corresponding to distinct paths p, p′ ∈ P , since the endpoints of Lp and Lp′ are
degree 1 vertices while every intermediate vertex has degree 2 in Lp and in Lp′ , the
paths Lp and Lp′ have to be vertex-disjoint since the maximum degree in G′ is 2.
Thus any vertex gets charged for at most one p ∈ P . Hence

∑
u∈A∪B charge(u) =∑

p∈P cost(p) = t. Thus property (I) holds.
We next show property (II). It is also straightforward from our method of resetting

charge values that it is only vertices that are matched in M that get assigned positive
charge. Also each such vertex is outside R since the edges of M ∩ R are contracted
to red nodes in H while the vertices that get assigned positive charge here are ap, bp
which are blue vertices and rp which is a degree 1 vertex inG′ that is reachable by an
alternating path from an unmatched vertex – hence rp cannot be any of bi0, a

i
1, b

i
1, a

i
2

by parts (5) and (6) of Lemma 3. Summarizing, each vertex with positive charge is a
vertex matched in M that belongs to some q ∈ Q.

What is left to show is that if q ∈ Q is an augmenting path on 2` + 3 ≥ 7
edges, then at most 2` vertices of q get assigned a positive charge. Let q be the path
α0 − β0 − α1 − · · · − β` − α`+1 − β`+1 where the edges (αi, βi−1) ∈ M for
i = 1, . . . , ` + 1. As our charging scheme assigns positive charge only to matched
vertices, both α0 and βl+1 have charge 0. We will now show that neither β0 nor α`+1

can be assigned positive charge. We first show that neither β0 nor α`+1 can be the
vertex rp for any p ∈ P . We claim that if β0 has degree 1 in G′, then M(β0) = α1

also has degree 1; similarly, if α`+1 has degree 1 in G′, then M(α`+1) = β` also has
degree 1. Assuming this claim, it is easy to see that neither β0 nor α`+1 can be the
degree 1 vertex which is the matched endpoint of an alternating path starting from an
unmatched vertex.
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We now prove the above claim. We know that β0 must have rejected at least one
proposal from the unmatched man α0, so β0 must have 2 proposals at the end of the
algorithm. We know that β0 has at least one proposal from α1 since (α1, β0) is in
G′. So if β0 has degree 1 in G′, then both her proposals must be from α1, in other
words, α1 also has degree 1 in G′. Similarly, α`+1 has an unmatched woman β`+1

on his preference list – so he must have both of his proposals accepted at the end
of the algorithm. We know that β` has accepted at least one of these proposals since
(α`+1, β`) is in G′. So if α`+1 has degree 1 in G′, then both of his proposals have
been accepted by β`, in other words, β` also has degree 1 in G′.

We now show that if β0 = bp for some p ∈ P , then cost(p) = 0. If β0 = bp,
then we cannot have the arc (yi, β0) in H for any y-node yi since such an arc in H
implies the edge (ai2, β0) is inG′ and we contradict Lemma 2 by substituting a = α0,
b = β0, a′ = ai2, and b′ = bi2. So if β0 = bp for some p ∈ P , then p has no y-nodes
(it is a type-2 path) and hence has the structure: ap − xi − · · · − xj − β0. We now
argue that there cannot be a critical arc in p. The only candidate for a critical arc here
is (xj , β0) and for this to be critical, we need aj1 to prefer β0 to bj1. However this
contradicts Lemma 2 by substituting a = α0, b = β0, a′ = aj1, and b′ = bj1. Thus p
cannot the f -image of any element in [t]. Hence we have charge(β0) = 0.

We now show that if α`+1 = ap for some p ∈ P , then charge(ap) = 0. If
α`+1 = ap, then we cannot have the arc (α`+1, xi) in H for any x-node xi since
such an arc in H implies the edge (α`+1, b

i
0) is in G′ and we contradict Lemma 2 by

substituting a = ai0, b = bi0, a′ = α`+1, and b′ = β`+1. So if α`+1 = ap for some
p ∈ P , then p has no x-nodes, i.e., it is a type-1 path. Recall that for a type-1 path p,
the entire cost of p was assigned completely to the woman associated with p, i.e., to
bp if this is a matched vertex, else to rp. Thus charge(α`+1) = 0. This finishes the
proof of Lemma 9. ut

3 Algorithm for two-sided ties of length 2

We now move to the domain of two-sided ties, i.e., both men and women in G may
have ties in their preference lists; however each tie has length 2. We now present our
algorithm to compute a stable matching M ′ in G such that |OPT|/|M ′| ≤ 10/7,
where OPT is a maximum cardinality stable matching in G.

This algorithm bears similarity to our previous algorithm, however there are some
important differences as well. We inherit the notions of basic/1-promoted/2-promoted
levels in status for men from our previous algorithm (see the early part of Section 2).
Our algorithm describing how men propose and women decide is given in Fig. 3.
How men propose. As before, every a ∈ A has two proposals p1a and p2a and a makes
each of these proposals to the women on his preference list in a round-robin manner.
We again use a rejection history ra to record the women in a’s list who have rejected
his proposals in his current status. We now describe how proposals are made to the
two women of the same rank in a’s list.

Let tia be the rank of the next target woman for proposal pia. If there is exactly
one woman of rank tia who is not in the rejection history ra, then proposal pia is
made to this woman. If there are two women b and b′ of rank tia and neither is in the
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rejection history ra, then one of them, say b, is chosen arbitrarily. In our algorithm,
it is possible that b bounces or forwards a’s proposal to b′ without actually rejecting
him. This step is described in detail below.

How women decide. A woman accepts a new proposal unconditionally if she cur-
rently has less than two proposals. Suppose a woman b receives a third proposal pia
when she already has two proposals, call these pi

′

a′ and pi
′′

a′′ . Recall that in the al-
gorithm in Fig. 1, b rejected the least desirable among these three proposals. In our
current algorithm, b does not do this step right away. She first runs the bounce step
and if this is not successful, then she runs the forward step.

– The bounce step: this works for α ∈ {a, a′, a′′} if there is a woman b′ tied with
b in α’s preference list such that b′ has less than two proposals. The woman b
checks if the bounce step works for any of a, a′, a′′ (in no particular order). If so,
then b bounces that man’s proposal to b′ and the bounce step is successful.

– The forward step: for this to work, it is necessary that among the 3 proposals that
b currently has, two of them are from the same man α. If there is a woman b′ tied
with b in α’s preference list such that b′ /∈ rα, then the forward step is successful,
i.e., b forwards the proposal p1α to b′ and the algorithm continues by letting man
α make proposal p1α to b′.

It is important to note that in both the bounce step and the forward step, woman
b does not actually reject α, i.e., b is not added to the rejection history of rα. If
neither the bounce step nor the forward step works for any of a, a′, a′′, then b rejects
any of the least desirable proposals among pia, p

i′

a′ , p
i′′

a′′ . Here the definition of “least
desirable” is the same as in Definition 1, except that part (4) of this definition does
not apply here.

In the special case when a, a′, a′′ are tied in b’s preference list, then it has to be
the case that two of these 3 men are the same, i.e., a = a′ or a′ = a′′ or a = a′′,
since each tie has length 2; in this case we let b reject one of the two proposals from
the same man.

We now describe what it means for a proposal to be rejected. Say the proposal pjα
is rejected by woman b. Then the following steps are run:

– b is added to the rejection history rα of α.
– In case rα = N(α) (the entire neighborhood of α in G)

– if α is basic then he becomes 1-promoted; rα = ∅
– if α is 1-promoted then he becomes 2-promoted; rα = ∅
– if α is 2-promoted then he gives up.

This finishes the description of our algorithm. Since a bounce step causes a woman
who currently has less than two proposals to receive a new proposal, it is easy to see
that the number of bounce steps is at most 2|B|. The number of reject steps is also
linear. Lemma 10 bounds the total number of forward steps in the algorithm.

Lemma 10 The total number of forward steps in the entire algorithm is O(|E|).

Proof A forward step implies a man α has to transfer his proposal p1α from woman b
to woman b′ (who already has 2 proposals). Currently both p1α and p2α are made to b.
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For all men a ∈ A, t1a := t2a := 1; ra := ∅.
{ra is the rejection history of man a; tia is the rank of the next woman targeted by proposal pia.}
while some man a ∈ A has his proposal pia not accepted by a woman and he has not given up do

if there is a woman b of rank tia on a’s list and b /∈ ra then
– propose(pia,b)

else
– if tia is the worst rank on a’s list, then set tia = 1; else set tia = tia + 1

end if
end while

Procedure propose(pia, b)
– a makes his proposal pia to b
if b has at most two proposals now (incl. pia) then

– b accepts pia
else

– let these three proposals with b be pia, pi
′
a′ and pi

′′
a′′

if the bounce step works for some α ∈ {a, a′, a′′} then
– propose(pjα, b′)
{∃b′ tied with b on α’s list with less than 2 proposals – now b′ receives pjα ∈ {pia, pi

′
a′ , p

i′′
a′′}}

else if two of a, a′, a′′ are the same man (call him α) and ∃b′ tied with b on α’s list and b′ /∈ rα
then

– propose(p1α, b
′)

{this is the “forward” step: b′ receives the proposal p1α}
else

if all 3 proposals are “least desirable” then
– reject p1α where {p1α, p2α} ⊂ {pia, pi

′
a′ , p

i′′
a′′}

{two of these 3 equally least desirable proposals have to be from the same man α and p1α is
rejected}

else
– reject any of the least desirable proposals

end if
end if

end if

Fig. 3 A description of proposals/disposals in our algorithm when ties have length 2

Once p1α is transferred to b′, it will not be possible for b to run the forward step on α
again unless α’s status changes. Since b will continue to have 2 proposals henceforth,
it is not possible for b′ to bounce p1α to b. For b′ to forward p1α back to b, it is necessary
for b′ to have both p1α and p2α. Since b cannot bounce p2α to b′, it means that b should
have rejected p2α at some point earlier, which means b ∈ rα and so p1α cannot be
forwarded to b while a’s status remains the same.

It is possible that b′ rejects p1α and this proposal is again made to b – however b
cannot forward p1α to b′ now since b′ ∈ rα. Thus for every (α, b) ∈ E, there are at
most 3 forward steps (corresponding to basic/1-promoted/2-promoted levels in α’s
status). ut

Let the vector x = (xe, e ∈ E) ∈ {0, 0.5, 1}|E| be defined as before, i.e., xab = 1
or 0.5 or 0 if the number of proposals that b accepts from a is 2 or 1 or 0, respectively.
Let G′ be the subgraph of G containing all those edges e such that xe > 0. The
maximum degree in G′ is 2.

Let M ′ be a maximum cardinality matching in G′ that matches all degree 2 ver-
tices. It is easy to see that given G′, the matching M ′ can be computed in linear time.
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Thus it follows that our entire algorithm to compute M ′ in G runs in linear time.
In the following, we show that M ′ is stable and it is a 10/7 approximation, thereby
proving Theorem 2.

3.1 Analysis of the above algorithm

Propositions 3 and 4 follow from our algorithm. The stability of M ′ (shown in
Lemma 11) follows from these propositions.

Proposition 3 If woman b rejects proposal pia at some point in the algorithm, then
from this point till the end of the algorithm, b has two proposals pi

′

a′ and pi
′′

a′′ from
men a′ and a′′ (it is possible that a′ = a′′) that rank at least as high as man a in b’s
list. In particular,

1. when pia is made to b, if man a is `-promoted (` is either 1 or 2) and a′ (similarly,
a′′) is tied with man a in b’s list, then a′ (resp. a′′) is ≥ `-promoted at that point.

2. if a′ (similarly, a′′) has a woman b′ tied with b on the list of a′ (resp. a′′), then b′

currently has two proposals.
3. if a′ = a′′ and a′ has a woman b′ tied with b on the list of a′, then b′ is currently

in the rejection history ra′ .

Proposition 4 The following facts hold.

1. If a man (similarly, a woman) is unmatched in M ′, then he has at most one pro-
posal accepted by a woman (resp. she receives at most one proposal) during the
entire algorithm.

2. At the end of the algorithm, if a man has less than two proposals accepted, then
he is 2-promoted. Also, he must have been rejected by all women on his list as a
2-promoted man.

3. If a woman b on the list of the man a is unmatched in M ′, then a is basic and he
does not prefer b to the women accepting his proposals.

Lemma 11 The matching M ′ is stable in G = (A ∪B,E).

Proof Let (a, b) ∈M ′ \E. Suppose man a is unmatched inM ′. By (1)-(2) of Propo-
sition 4, a is 2-promoted and every woman on his list rejected at least one of his
proposals. As this includes b, we know from Proposition 3 that b has two proposals
from men ranking at least as high as a on her list and b is matched in M ′ with one of
them. So (a, b) does not block M ′.

Suppose a is matched in M ′ and let (a, b′) ∈ M ′. It follows from our algorithm
that a must have been rejected by all women b ranking higher than b′ on his list. By
Proposition 3.1, b has two proposals from men ranking at least as high as a and she
is matched in M ′ with one of them. So (a, b) does not block M ′. ut
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Bounding the size of M ′

Let OPT be a maximum cardinality stable matching in G. Our method to bound |M |
in terms of |OPT| is similar to the method used in Section 2.1. We can however
strengthen several of the lemmas to obtain an improved approximation ratio here.

We start with Lemma 12. Observe that this lemma immediately implies that there
is no length-3 augmenting path in M ′ ⊕ OPT.

Lemma 12 Suppose (a, b) and (a′, b′) are in OPT, where a is unmatched in M ′ and
a′ is not 2-promoted. If b′ is unmatched in M ′ or a′ prefers b to b′, then (a′, b) cannot
be in G′.

Proof We prove this lemma by contradiction. Suppose (a′, b) ∈ G′. By (1)-(2) of
Proposition 4, a has been rejected by b as a 2-promoted man. Then from the presence
of (a′, b) in G′, Proposition 3, and the fact that a′ is not 2-promoted, it follows that b
prefers a′ to a. If a′ prefers b to b′, then (a′, b) blocks OPT, a contradiction.

So suppose b′ is unmatched inM ′ and b′ ranks at least as high as b on the list of a′.
Using Proposition 4.3 and the presence of (a′, b) inG′, it follows that a′ is indifferent
between b and b′. Since a is unmatched inM ′, we know that b has rejected a proposal
from a. Using Proposition 3.2, if b′ and b are tied on the list of a′, then b′ has two
proposals till the end of the algorithm. Then Proposition 4.1 implies that b′ is matched
in M ′, a contradiction. ut

Let R = {ρ1, . . . , ρt} be the set of all the length-5 augmenting paths in M ′ ⊕
OPT, where ρi is ai0−bi0−ai1−bi1−ai2−bi2, for 1 ≤ i ≤ t. Lemma 13 lists properties
of vertices in ρi, for any i.

Lemma 13 If ρi = ai0 − bi0 − ai1 − bi1 − ai2 − bi2 is a length-5 augmenting path in
M ′ ⊕ OPT, then

1. ai0 is 2-promoted and has been rejected by bi0 as a 2-promoted man.
2. ai1 is not 2-promoted and he ranks bi1 at least as high as bi0.
3. ai2 is basic and he ranks bi1 at least as high as bi2.
4. In G′, bi0 has degree 1 if and only if ai1 has degree 1.
5. In G′, bi1 has degree 1 if and only if ai2 has degree 1.

Proof Parts (1) and (3) follow from Proposition 4.
To show the first part of (2), suppose ai1 is 2-promoted. To become 2-promoted, ai1

must have been rejected by bi1 as a 1-promoted man. We know bi2 has received at most
one proposal (by Proposition 4.1). It follows from Proposition 3.2 that ai2 prefers bi1
to bi2 (otherwise a bounce step would have happened). It follows from Proposition 3
that either bi1 prefers ai2 to ai1 or they are tied and ai2 is also at least 1-promoted. In
the former case, (ai2, b

i
1) blocks OPT; in the latter case, ai2 is not basic, contradicting

part (3). This establishes the first part of (2).
For the second part of (2), suppose ai1 prefers bi0 to bi1. Then bi0 is indifferent

between ai0 and ai1, otherwise either (ai0, b
i
0) blocks M ′ or (ai1, b

i
0) blocks OPT. As

ai0 has been rejected by bi0 as a 2-promoted man, Proposition 3.1 implies that ai1 is
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also 2-promoted, a contradiction to the first part of (2). This completes the proof of
(2).

For (4) and (5), it is enough to argue that each of ai1, ai2, bi0 and bi1 either has
two proposals accepted or accept two proposals. Since bi0 rejected a proposal from
ai0 (by part (1)), it follows from Proposition 3 that bi0 receives two proposals. Next
observe that bi0 receives a proposal from ai1 and the latter ranks bi1 at least as high
as bi0. If ai1 prefers bi1 to bi0, then bi1 must have rejected a proposal from ai1. Then
by Proposition 4, bi1 must have two proposals. If bi1 and bi0 are tied on the list of ai1,
the fact that bi0 rejects ai0 while ending up with a proposal from ai1 implies that bi1
has two proposals as well (Proposition 3.2). Finally, we know that neither ai1 nor ai2
is 2-promoted. It now follows from Proposition 4.2 that both ai1 and ai2 have two
proposals each accepted. ut

As done in Section 2.1, we form the directed graph H from G′ by first direct-
ing all edges from A to B and then contracting each (ai1, b

i
0) into a single node xi

and each (ai2, b
i
1) into a single node yi. Parts (4) and (5) of Lemma 13 imply that

degH(xi),degH(yi) are in {0, 2} for all i.
It is easy to see that Lemma 4 from Section 2.1 holds here as well, i.e., H has no

(yi, xj) arc for any y-node yi and x-node xj , by substituting a = aj0, b = bj0, a′ = ai2,
and b′ = bi2 in Lemma 12.

We use the notion of critical arc that we used in Section 2.1. Our definition now
is a little stricter than Definition 3.

Definition 4 Call an arc (xi, z) in H critical if ai1 prefers z to bi1 (in case z is an
x-node/y-node, we mean ai1 prefers the woman in z to bi1).

Lemma 5 in Section 2.1 holds here as well: if (xi, z) is critical inH , then z cannot
be an x-node.

Proof of Lemma 5 here. For any 1 ≤ i, j ≤ t, if a proposal of ai1 is accepted by a
woman w that ai1 prefers to bi1, then we need to show that w cannot be bj0. Suppose
otherwise. It follows from the construction of H that j 6= i. We now contradict
Lemma 12, by substituting a = aj0, b = bj0, a′ = ai1, and b′ = bi1. Note that we know
ai1 is not 2-promoted by Lemma 13.2. ut

Lemma 14 In the graph H , the following statements hold:

(1) If yi is an isolated node, then there exists a critical arc (xi, z).
(2) If (yj , yi) is an arc, then there exists a critical arc (xi, z).
(3) If (xj , yi) is a critical arc, then there exists a critical arc (xi, z).

Proof Let yi be an isolated vertex in H . This means that bi1 receives two proposals
from ai2. We first claim that bi1 never rejects ai1. Suppose otherwise. We know from
Proposition 3 and the fact that bi1 did not bounce ai2’s proposal to bi2 that ai2 prefers bi1
to bi2. So bi1 is indifferent between ai1 and ai2, otherwise either (ai2, b

i
1) blocks OPT,

or Proposition 3 is contradicted (since bi1 rejected ai1).
At the point when bi1 rejected ai1, it could not be the case that bi1’s other two

proposals were from ai2, since our algorithm ensures that a proposal from ai2 gets
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rejected in such a case. As ties are of length 2, bi1 at that point has a proposal from
man a′ who is ranked higher than ai1 and ai2 on her list. By Proposition 3.2, if a′ has
another woman b′ tied on his list with bi1, then b′ has two proposals since bi1 did not
bounce a′’s proposal to b′. For the forward step to apply, it has to be the case both
of a′’s proposals are with bi1. In any case, a proposal of a′ must have been rejected
by bi1 at some point, since she later accepts two proposals from ai2. This contradicts
Proposition 3 as a′ ranks higher than ai2 on bi1’s list.

Thus we have shown that bi1 never rejects ai1. Since at least one proposal of ai1 is
accepted by bi0 and bi1 ranks at least as high as bi0 on the list of ai1 (Lemma 13.3), it
must be the case that bi1 and bi0 are tied on ai1’s list (otherwise ai1 has to get rejected
by bi1 before proposing to bi0). Suppose both of ai1’s proposals are accepted by bi0. We
know that ai0 has been rejected by bi0. By Proposition 3.3, bi1 has to be in the rejection
history of ai1 at the point when ai0 is rejected by bi0, contradicting that bi1 never rejects
ai1. So exactly one of the proposals of ai1 is accepted by bi0. Since ties are of length
2, there has to be a woman w who ranks higher than bi1 on ai1’s list, who accepts a
proposal of ai1. Thus there is a critical arc (xj , z) in H . This completes the proof of
(1).

To prove (2), we again claim that ai1 is never rejected by bi1. Suppose otherwise.
We know that bj2 and bi2 receive less than two proposals each at the end of the algo-
rithm since they are left unmatched inM ′. Hence it follows from Proposition 3.2 that
aj2 prefers bi1 to bj2 and ai2 prefers bi1 to bi2. Furthermore, ai2 and aj2 rank at least as high
as ai1 on the list of bi1 (by Proposition 3). As ties are of length 2 on the women’s side,
either ai2 or aj2 ranks higher than ai1 on the list of bi1. Then one of (ai2, b

i
1), (a

j
2, b

i
1)

blocks OPT, a contradiction. Thus bi1 never rejects ai1 and the rest of the proof is
identical to the proof of part (1) above.

For (3), note that j 6= i since (xj , yi) is a critical arc. The proof of (3) is similar
to (2), so we only sketch the outline: bi1 never rejects ai1, otherwise one of (aj1, b

i
1),

(ai2, b
i
1) blocks OPT. So bi1 and bi0 are tied on the list of ai1. It cannot happen that both

proposals of ai1 are accepted by bi0, since ai0 is rejected by bi0. This implies (3). ut

We use the notion of good path from Section 2.1 (see Definition 2). It is easy to
see that Lemma 6 still holds here: that is, every critical arc belongs to some good path
and no two good paths intersect. Let P be the set of all good paths in H . Recall that
there are only 3 possibilities in H for each yi ∈ {y1, . . . , yt}: (1) yi is isolated, (2) yi
is in a cycle of y-nodes, (3) yi is in a good path.

We now define f : [t]→ P as follows. For any i ∈ [t]:

– If yi is either isolated or in a cycle of y-nodes, then set f(i) = p, where p ∈ P
contains the critical arc (xi, z). We know in both these cases (isolated/cycle of
y-nodes), there is a critical arc (xi, z) in H by parts (1) and (2) of Lemma 14,
respectively.

– Otherwise yi is in a good path p′. If H contains a critical arc (xi, z), then set
f(i) = p, where p ∈ P contains (xi, z). Otherwise we set f(i) = p′.

[note that if there is no critical arc (xi, z) in H , then parts (2)-(3) of Lemma 14
imply that either no x-node/y-node precedes yi in p′ or the path p′ has an arc
(xj , yi) that is not critical – in either case p′ has no critical arc]
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Lemma 15 The function f is one-to-one.

Proof Consider any p ∈ P . By Lemma 5, p can contain at most one critical arc
(xi, z) where z is either a y-node or a blue woman. If p contains a critical arc (xi, z),
then f(i) = p and no other index is mapped to p.

Suppose p contains no critical arc. Additionally, if p has no y-nodes, then p has
no pre-image, else let yj be the first y-node in p. The only index that can get mapped
to p is j; recall that we have f(j) = p if there is no critical (xj , z) in H . ut

LetQ = (M ′⊕OPT)\R. The above lemma allows us to show a charging scheme
where for any q ∈ Q, if q is an alternating cycle/path on 2`q edges or an alternating
path on 2`q−1 edges (with `q edges fromM ′) or an augmenting path on 2`q+3 ≥ 7
edges, then q pays for cq ≤ `q paths in R.

We will show later such a charging scheme exists. For now, we show why this
implies that |OPT|/|M ′| ≤ 10/7. Note that all the paths in R have been paid for in
our charging scheme. So we have:

|OPT|
|M ′|

=

∑
q∈Q(|OPT ∩ q|+ 3cq)∑
q∈Q(|M ′ ∩ q|+ 2cq)

≤ max
q∈Q

|OPT ∩ q|+ 3cq
|M ′ ∩ q|+ 2cq

≤ max
`q≥2

4`q + 2

3`q + 1
≤ 10

7
.

As done in Section 2.1, we get the maximum value of the above ratio for any
q ∈ Q by setting cq to its largest value of `q and letting q be an augmenting path of
length 2`q +3 ≥ 7 so that |OPT∩ q| = `q +2 and |M ′ ∩ q| = `q +1. Then the ratio
becomes (`q +2+3`q)/(`q +1+2`q), which is maximized by setting `q = 2. Thus
we get 10/7 as an upper bound for |OPT|/|M ′| and Theorem 2 is proved.

Our charging scheme

For any p ∈ P , let cost(p) = 1 if there is some i ∈ [t] such that f(i) = p, else let
cost(p) = 0. We define a function charge : A∪B → {0, 1/2} now. Set charge(u) =
0 for all u ∈ A ∪ B and reset charge values for some vertices as follows. For each
p ∈ P with cost(p) = 1, do the following:

Let ap and bp be the endpoints of p. SinceM ′ is a maximum cardinality matching
in G′, at least one of ap, bp has to be matched in M ′. If both are matched in M ′, then
assign charge(ap) = charge(bp) = 1/2. Otherwise form the alternating pathLp inG′

with the unmatched vertex in {ap, bp} as one endpoint. Let rp be the other endpoint
of Lp; we know that rp has to be matched in M ′. Assign charge(rp) = charge(sp) =
1/2 where sp is the matched vertex in {ap, bp}.

Since paths in P are vertex-disjoint, every p ∈ P has its own distinct endpoints.
Also rp 6= rp′ for any distinct p, p′ ∈ P (the same argument as in Lemma 9). Hence
any vertex gets charged for at most one path in P and we have

∑
u∈A∪B charge(u) =

t. It is also clear that only vertices matched in M ′ get assigned positive charge.
Recall that R is the set of length-5 augmenting paths in M ′⊕OPT. Our charging

scheme implies that for any q ∈ Q, whereQ = (M ′⊕OPT)\R, if q is an alternating
cycle/path on 2`q edges or an alternating path on 2`q − 1 edges (with `q edges from
M ′), then q pays for cq ≤ 2`q/2 = `q paths in R. We will now show that if q =
α0− β0−α1− · · · − β`−α`+1− β`+1 is an augmenting path on 2`+3 ≥ 7 edges,
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then charge(β0) = 0 and charge(α`+1) = 0. Thus our charging scheme ensures that
such a q also pays for cq ≤ 2`q/2 = `q paths in R.

We first show that neither β0 nor α`+1 can be the vertex rp for any p ∈ P . As
done in the proof of Lemma 9, the following claim holds: if β0 has degree 1 in G′,
then M ′(β0) = α1 also has degree 1; similarly, if α`+1 has degree 1 in G′, then
M ′(α`+1) = β` also has degree 1. This claim immediately implies that neither β0
nor α`+1 can be the degree 1 vertex which is the matched endpoint of an alternating
path starting from an unmatched vertex.

Suppose β0 = bp for some p ∈ P . We will show that cost(p) = 0 then. For any y-
node yj ,H cannot have the arc (yj , β0). To admit such an arc inH , we need the edge
(aj2, β0) in G′. This means that aj2 ranks β0 at least as high as bj2 (by Proposition 4.3).
This contradicts Lemma 12 by substituting a = α0, b = β0, a′ = aj2 and b′ = bj2. So
if β0 = bp for some p ∈ P , then p’s structure has to be ap − xi − · · · − xj − β0, i.e.,
it has no y-nodes. For such a p to have positive cost, there needs to be critical arc in
p. So the arc (xj , β0) has to be critical, in other words, aj1 prefers β0 to bj1. We again
contradict Lemma 12 by substituting a = α0, b = β0, a′ = aj1 and b′ = bj1. Hence
charge(β0) = cost(p) = 0.

Suppose α`+1 = ap for some p ∈ P . For any x-node xj , H cannot have the arc
(α`+1, xj) as that means (α`+1, b

j
0) is in G′. This contradicts Lemma 12 by substi-

tuting a = aj0, b = bj0, a′ = α`+1 and b′ = β`+1. So if α`+1 = ap for some p ∈ P ,
then p has no x-nodes; so p’s structure is α`+1 − yj − · · · − bp. For such a path p to
have positive cost, it has to be the case that there is no critical arc (xj , z) in H . We
will show such an arc, in fact, exists, hence cost(p) = 0.

The edge (α`+1, b
j
1) has to be in G′ since (α`+1, yj) is in H . If bj1 ever rejects aj1,

then both aj2 and α`+1 rank at least as high as aj1 on bj1’s list (by Proposition 3). As
ties are of length 2, bj1 prefers at least one of them to aj1. Note that both β`+1 and bi2
have less than two proposals as they are unmatched in M ′. Then Proposition 3 and
Proposition 4.3 imply that α`+1 prefers bj1 to β`+1 and aj2 prefers bj1 to bj2. So one of
(α`+1, b

j
1), (a

j
2, b

j
1) blocks OPT, a contradiction.

So bj1 never rejects aj1. The rest of the proof is similar to the argument seen in
the proof of Lemma 14.1: so bj1 and bj0 are tied on the list of aj1, it cannot happen
that both proposals of aj1 are accepted by bj0, since aj0 is rejected by bj0. Hence there
is a woman w ranked better than bj1 who accepts a proposal of aj1. Thus there is a
critical arc (xj , z) in H , so charge(α`+1) = cost(p) = 0. This completes the proof
of correctness of our charging scheme.
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