
Coordinating Oligopolistic Players in Unrelated
Machine Scheduling

Fidaa Abed and Chien-Chung Huang

Max-Planck-Institut für Informatik, Saarbrücken, Germany.
{fabed,villars}@mpi-inf.mpg.de

Abstract. We consider the following machine scheduling game. Jobs,
controlled by selfish players, are to be assigned to unrelated machines. A
player cares only about the finishing time of his job(s), while disregarding
the welfare of other players. The outcome of such games is measured by
the makespan. Our goal is to design coordination mechanisms to schedule
the jobs so as to minimize the price of anarchy.
We introduce oligopolistic players. Each such player controls a set of
jobs, with the aim of minimizing the sum of the completion times of his
jobs. Our model of oligopolistic players is a natural generalization of the
conventional model, where each player controls only a single job.
In our setting, previous mechanisms designed for players with single jobs
are inadequate, e.g., having large price of anarchy, or not guaranteeing
pure Nash equilibria. To meet this challenge, we design three mecha-
nisms that are adapted/generalized from Caragiannis’ ACOORD. All
our mechanisms induce pure Nash equilibria while guaranteeing rela-
tively small price of anarchy.

Keywords: Unrelated Machine Scheduling, Coordination Mechanisms, Price
of Anarchy.

1 Introduction

We consider the game-theoretic version of the following machine scheduling prob-
lem. A set I of jobs and a set M of machines are given. A job i ∈ I has size
pij on machine j ∈ M. Jobs are to be assigned to machines and the goal is
to minimize the makespan. This is the classical unrelated machine scheduling
problem with the makespan objective [21].

A natural question from the angle of game theory is what happens if the
jobs are controlled by selfish players. The strategy space of a player is the set
of machines. A player cares only about the finishing time of his job while disre-
garding the welfare of other players. In such games, researchers especially focus
on the Nash equilibrium [22], a stable situation where no player can unilaterally
change his strategy to strictly improve the finishing time of his job. In case that
all players use pure strategies only, the Nash equilibrium resulted is called the
pure Nash equilibrium (PNE). In this paper, we consider only pure strategies
and PNEs.

A central question in algorithm game theory is the quality of equilibria. In
particular, people analyze the price of anarchy (PoA) [20], which in our context
is defined as the worst ratio between the makespan of a PNE against that of the
optimal solution.

The PoA is obviously determined by the rules of the game. Here the “rules”
mean the scheduling policies of the machines. In the literature, the rules are
formally called the coordination mechanisms [8]. Ideally, we would like to have
good coordination mechanisms so as to minimize the PoA.

The design space of coordination mechanism depends on a number of pa-
rameters, e.g., whether preemption is allowed, whether jobs have unique IDs
and so on. However, the following two conditions on coordination mechanisms
are (implicitly) assumed by all previous works (and the current one).

1. Physical Feasibility. Suppose that a set of jobs I ′ ⊆ I are assigned to
machine j. At any point of time t, if a subset of jobs I ′′ ⊆ I ′ are finished by
machine j, then

∑
i∈I′′ pij ≤ t.

2. Locality of Scheduling Decision. A machine decides its schedule based
only on the information of the incoming jobs, while, where the other jobs go
to, and how the other machines schedule them is irrelevant.

The first condition is self-evident; the second condition is motivated by the
fact that in a fluid environment, such as the Internet, a machine may not be
able to coordinate with other machines in a timely manner. Azar, Jain, and
Mirrokni [5] differentiate two classes of mechanisms: a mechanism is local if a
machine schedules its job based only on the information of the incoming jobs
(but notice that a machine is allowed to look at the sizes of its jobs on other
machines); a mechanism is strongly local if a machine schedules its jobs only
based on the sizes of the incoming job on it. It is known that the PoAs of
strongly local mechanisms and of local mechanisms can be significantly different
when preemption is disallowed [5, 15].

2

Oligopolistic Players. All previous works assume that a player controls
a single job. A natural and more realistic extension is to assume a player can
control multiple jobs and we refer to such players as oligopolistic players. A
question that arises in our model is: what would be the local objective of an
oligopolistic player? This is a non-issue when a player controls a single job.
However, when he has multiple jobs, several objectives are possible. For instance,
it could be his makespan (the latest finishing time of his jobs), or it could be the
sum of completion times of his jobs.

In this work, we assume that each player aims to minimize the sum of the
completion times of his jobs. This assumption is motivated by the observation
that a player would care about the collective welfare of his jobs. If moving a job
from one machine to another machine decreases the finishing time of that job,
the controlling player would have incentive to do so—even if the latest finishing
time of his jobs is not really decreased.

To evaluate the overall system performance, there can be two natural candi-
dates: makespan (the latest finishing time of a job), or the weighted completion
times of the jobs (jobs are given weights and the cost is computed as the weighted
sum of their completion times.) In a companion paper of this work [1], we use
the weighted completion times of the jobs to measure the system performance.
In this work, we instead consider the makespan.

In general, in terms of PoA, it is harder to design mechanisms when the
global objective is the makespan than when it is the weighted sum of completion
times of all jobs. In the original model where each player controls a single job,
with weighted sum global objective, Cole et al. [11] show several mechanisms
achieving constant PoA; on the other hand, when the global objective is the
makespan, it is known [2, 5, 15] that constant PoA is impossible. As our model is
a generalization of the single-job player model, we also cannot hope to achieve
constant PoA.

We observe that previous mechanisms designed for players with single jobs
are inadequate in our model of oligopolistic players. In some cases
(ACOORD/BCOORD/CCOORD), the PoA becomes significantly worse; in some
cases, they no longer guarantee PNEs (ShortestFirst/AJM-2/CCOORD/BALANCE).
See Table 1 for a summary of the properties of the known mechanisms in our
new model. Our challenge here is to design coordination mechanisms that simul-
taneously guarantee the existence of PNEs and still maintain small PoA.

1.1 Our Contribution

We propose three mechanisms,A1-COORD,A2-COORD, andA3-COORD, which
are presented in Sections 4-6. These mechanisms make use of preemption and
assume that players and jobs are not anonymous, namely, each player and each
job has a unique ID. When a job is assigned to a machine, the machine can make
schedule decisions based on this job’s ID and the ID of its owner.

Our mechanisms are adapted/generalized from Caragiannis’ ACOORD (hence
the naming). See Table 2 for a summary of their properties. All of them induce
PNEs. Under A1-COORD and A2-COORD, such PNEs can be computed in

3

Mechanisms PoA PNE
C = 1 C > 1 C = 1 C > 1

ShortestFirst [19] Θ(m) Ω(m) Yes No?

LongestFirst [19] Unbounded Unbounded No No

Makespan [19] Unbounded Unbounded Yes No?

RANDOM [19] Θ(m) Ω(m) No No

EQUI [9] Θ(m) Ω(m) Yes Yes

AJM-1 [5] Θ(logm) Ω(logm) No No

AJM-2 [5] Θ(log2m) Ω(log2m) Yes No?

BALANCE [10] Θ(logm) Ω(logm) Yes No?

ACOORD [7] O(p ·m1/p) Ω(C(1−ε)(p+1)m/p2)? Yes Yes

BCOORD [7] O(p ·m1/p/ log p) Ω(C(1−ε)(p+1)m/p2)? No No?

CCOORD [7] O(p2 ·m1/p) Ω(C(1−ε)(p+1)m/p2) when p = 1? Yes No?

Table 1. Summary of the properties of known mechanisms in our model. m = |M| is
the number of machines, and C is the largest number of jobs controlled by a player. The
results marked by ? are proved in the appendix. For the last three mechanisms, p ≥ 1,
and ε is some small constant where ε > 0. If p = Θ(logm) and C = 1, then the PoAs
for ACOORD, BCOORD, and CCOORD are Θ(logm), Θ(logm

log logm
), and O(log2m)

respectively.

polynomial time; furthermore, each player can compute his own optimal strat-
egy in polynomial time.

Mechanisms PoA PNE Note

A1-COORD O(Cq+1m
1
q+1) for any q > 0 Yes Local

A2-COORD O(C
2q
q+1m

1
q+1) for any 0 < q ≤ 1, 1/q ∈ Z Yes Local

A3-COORD O(min{W
√
m,minγ∈Z≥1

{m
γ+1
2γ +W γ}}), Yes Strongly local

O(logm+ logW) when C = 1

Table 2. Summary of our mechanisms. m = |M| is the number of machines,
and C is the largest number of jobs controlled by a player. In A3-COORD, W =
maxi∈I minj∈M pij
mini∈I minj∈M pij

. In A1-COORD and A2-COORD, PNEs can be computed in poly-

nomial time.

In terms of PoA, our three mechanisms perform differently depending on the
situation. Let m = |M| be the number of machines and C be the largest number

of jobs controlled by a player. A1-COORD achieves the PoA of O(Cq+1m
1
q+1), for

any chosen q > 0. A1-COORD is better suited for the situation when C is some
bounded constant (in this case we can get a PoA of O(mε)). When C is relatively

large, A2-COORD is a better mechanism, with the PoA of O(C
2q
q+1m

1
q+1), for

4

any chosen q, 0 < q ≤ 1 so that 1/q is an integer. For example, if m is bounded
by a constant and C is very large, then we can get a PoA of O(Cε).

Our third mechanism, A3-COORD, has the PoA independent of C and, in
some cases, is superior to the previous two. Let W =

maxi∈I minj∈M pij
mini∈I minj∈M pij

, i.e., the

largest ratio of sizes of two jobs when they are both assigned to the most efficient
machines. Then A3-COORD guarantees the PoA of O(min{W

√
m,

minγ∈Z≥1
{m

γ+1
2γ + W γ}}). Unlike the previous two mechanisms that are local,

A3-COORD is strongly local, thus more “frugal” in terms of the information it
needs. Additionally, when C = 1, (i.e., the original model), A3-COORD achieves
the PoA of O(logm+logW). Previously, Cohen, Dürr, and Thang [9] raised the
question whether it is possible to design a strongly local mechanism that achieves
the PoA of O(polylog(m)). Here we give a partial positive answer—as long as
W = O(mpolylog(m)).

How our mechanisms guarantee PNEs is similar to the original ACOORD1,
using a simple idea: the finishing times of the jobs of the k-th player is dependent
only on the strategies of the first k− 1 players and the k-th player himself. This
idea also ensures the game converges to PNEs in polynomial steps. The main
technical challenge of this work is in the analysis of PoA. To prove that our
mechanisms have the claimed PoAs, we introduce several non-trivial extensions
of Caragiannis’ ideas in the analysis of his ACOORD.

2 Related Work

The design of coordination mechanisms for machine scheduling has been inten-
sively studied in recent years [2, 4, 5, 7, 9, 11, 13, 19]. All these works focus on the
setting where a player controls a single job.

Our three mechanisms are adapted from ACOORD mechanism [7]. This
mechanism uses a global ordering of the jobs according to their distinct IDs.
The finishing time of a job is the total load of the jobs preceding it and itself,
modified by a certain inefficiency parameter. The game induced by this mech-
anism is a potential game which guarantees the existence of a PNE. Moreover,
the convergence to a PNE is fast. Our three mechanisms are generalized from
ACOORD by fine tuning the inefficiency parameter.

Though so far not directly considered in the machine scheduling context, the
notion of “oligopolistic players” has in fact been studied in different settings.
For instance, in a version of selfish routing [23], an atomic player controls a
splittable flow. Such a player can be regarded as an oligopolistic player. See [6,
12] and the references therein for an overview of such games. Another example
of an oligopolistic player is a coalition of players. In [3, 14], a partition equilib-
rium, where the agents are partitioned into coalitions, and only deviations by
the prescribed coalitions are considered, is proved to exist in resource selection
games. In [16, 18], the authors assume that once a set of players form a coali-
tion, they care only about their collective welfare while disregarding their own

1 We note that when c = 1, A1-COORD and A2-COORD reduce to ACOORD.

5

outcomes (thus there is no backstabbing or double-crossing). A coalition, under
such assumptions, is equivalent to an oligopolistic player.

Table 1 summarizes the performance of various known mechanisms in our
setting. As mentioned before, the difficulty is to guarantee both the existence
of PNEs and a small PoA. Only ACOORD and EQUI guarantee PNEs in our
model. To ensure that ACOORD has a PNE, we just need to index jobs in
such a way that all jobs belonging to the same player have consecutive indices.
EQUI was originally designed to guarantee a strong Nash equilibrium, when
players control single jobs. Interestingly, in our model, it can be shown that it
still induces a potential game (thus guaranteeing PNEs). We leave it as an open
question regarding its real PoA when C > 1.

3 Preliminary

We first introduce some necessary notations to facilitate our discussion. Through-
out the paper, we use N to denote an assignment and O the optimal assign-
ment. Nj(resp. Oj) is the set of jobs assigned to machine j in N(resp. O).
L(Nj) =

∑
i∈Nj pij is the total load of jobs assigned to j in assignment N . For

each job i, let pi,min be its smallest size, pi,min = minj∈M pij , and φij its inef-
ficiency on machine j, defined as

pij
pi,min

. Note that only local mechanisms can

make use of the inefficiencies of the jobs in scheduling, while strongly local mech-
anisms cannot. We assume that the set P of players are indexed consecutively,
from 1, 2, · · · , up to |P|. Given job i ∈ I, π(i) denotes the player controlling it.

Proposition 1. [7] For an assignment N and any p ≥ 1,

maxj∈M L(Nj) ≤ (
∑
j∈M L(Nj)

p)
1
p ≤ m

1
p maxj∈M L(Nj).

Proposition 2. Let ai, bi ≥ 0, p ≥ 1, and let f(x) be a convex function.

– Minkowski’s inequality: (
∑s
i=1(ai + bi)

p)1/p ≤ (
∑s
i=1 a

p
i)

1/p + (
∑s
i=1 b

p
i)

1/p.

– Jensen’s inequality:
∑s
i=1 f(ai) ≥ sf(

∑s
i=1 ai
s).

The next proposition is an easy consequence of Minkowski’s inequality.

Proposition 3. Let p ≥ 1 be some integer. Then a1/p + b1/p ≥ (a+ b)1/p.

Proof. By re-writing a1/p as ((a1/p)p)1/p and b1/p as ((b1/p)p)1/p, we can apply
Minkowski’s inequality

((a1/p)p)1/p + ((b1/p)p)1/p ≥ ((a1/p + b1/p)p)1/p

= [a+ b+

p−1∑
t=1

(
p
t

)
(a1/p)t(b1/p)p−t]1/p ≥ (a+ b)1/p.

ut

6

Proposition 4. [7] Suppose that p ≥ 1, A ≥ 0, and Bi ≥ 0 for i = 1, · · · , s.
Then

∑s
i=1((A+Bi)

p −Ap) ≤ (A+
∑s
i=1Bi)

p −Ap.

The following proposition is slightly modified from Caragiannis [7]. Specifi-
cally, we replace the constrain on the exponent p ≥ 1 with p ≥ 0 so as to design
a larger set of mechanisms. The proof is entirely the same as in [7].

Proposition 5. [7] For any z0 ≥ 0, α ≥ 0, and p ≥ 0, the following holds.

(p+ 1)αzp0 ≤ (z0 + α)p+1 − zp+1
0 ≤ (p+ 1)α(z0 + α)p.

Proof. If α = 0, the lemma holds trivially. If α > 0, the lemma holds by observing
that the function zp+1 is convex for any p ≥ 0. Therefore, the slope of the line
crossing (z0, z

p+1
0) and (z0 + α, (z0 + α)p+1) is between its derivatives at points

z0 and z0 + α. ut

Proposition 6. Let A ≥ 0, Bi ≥ 0 for 1 ≤ i ≤ s, and p ≥ 0. Then

(A+

s∑
i=1

Bi)
1+p −A1+p ≤ (1 + p)sp

s∑
i=1

Bi(A+Bi)
p.

Proof. Observe that the function g(x) = x(A+ x)p is convex when x ≥ 0, since
g′′(x) = p(A+ x)p−2(2A+ xp+ x) ≥ 0. Therefore,

s∑
i=1

Bi(A+Bi)
p =

s∑
i=1

g(Bi) ≥ sg(

∑s
i=1Bi
s

) =

s∑
i=1

Bi(A+

∑s
t=1Bt
s

)p,

where the inequality follows from the convexity of g(x) and Jensen’s inequality.
Using the above inequality, we have

(1 + p)sp
s∑
i=1

Bi(A+Bi)
p

≥ (1 + p)sp
s∑
i=1

Bi(A+

∑s
t=1Bt
s

)p

= (1 + p)

s∑
i=1

Bi(As+

s∑
t=1

Bt)
p

≥ (1 + p)

s∑
i=1

Bi(A+

s∑
t=1

Bt)
p

= (1 + p)(

s∑
i=1

Bi)(A+

s∑
i=1

Bi)
p

≥ (A+

s∑
i=1

Bi)
1+p −A1+p,

7

where the last inequality follows from Proposition 5 by setting
∑s
i=1Bi = α,

and z0 = A. The proof follows. ut

4 A1-COORD

In this and the next section, let Nk
j denote the set of jobs assigned to j belonging

to the first k players, for any k ∈ P. Observe that N
|P|
j = Nj and N0

j = ∅.
Finally, let L(Nk

j) =
∑
i:π(i)≤k,i∈Nj pij , the total load of jobs belonging to the

first k players on machine j in N .

A1-COORD: Let N be the assignment. Suppose that job i ∈ Nj . Then

the completion of job i is set as P (i,Nj) = C(φij)
1
q (L(N

π(i)−1
j) + pij),

for some q > 0.

As in the original ACOORD, the term (φij)
1
q is used to encourage a player to

assign his job to a more efficient machine. The term L(N
π(i)−1
j) is the total load

of jobs belonging to the first π(i)−1 players on machine j. So a job’s completion
time is unaffected by jobs belonging to players with indices larger than π(i).
This property will be used when we argue that A1-COORD has a PNE.

The important idea behind our mechanism is that the jobs belonging to
the same player, even if they are assigned to the same machine j, would have
their completion times independent of each other. This follows from the simple

observation that the sum L(N
π(i)−1
j)+pij does not include other jobs belonging

to the player π(i). This property is a key part in our analysis of PoA; also it
allows each player to compute his own optimal strategy in polynomial time (see
Theorem 1). Finally, the multiplicative factor C is introduced to make sure that
A1-COORD produces feasible schedules.

Lemma 1. The schedule decided by A1-COORD is feasible.

Proof. Recall that to prove a schedule is feasible, we need to show that at time
f , if a set I ′ ⊆ Nj of jobs are finished, then

∑
i∈I′ pij ≤ f . It is easy to see that

we only need to consider those times f where some job i ∈ Nj are finished.

Now suppose that in assignment N player k puts jobs i1, i2, · · · , ix≤C on
machine j, where the jobs are indexed by their non-decreasing completion times.
We argue that the completion time P (iy, Nj) of job iy, y ≤ x, is at least as large
as the total load of jobs finishing no later than iy. In the case that multiple jobs
among i1, i2, · · · , ix≤C finish at the same time as iy, w.l.o.g., we can assume
that iy has the largest index. Consider two possibilities.

1. Suppose that none of the jobs belonging to players in P\{1, 2, · · · , k} finishes
earlier than iy. Since jobs i1,· · · , iy−1 finish no later than iy, (φitj)

1/q(L(Nk−1
j)+

pitj) ≤ (φiyj)
1/q(L(Nk−1

j) + piyj), for 1 ≤ t ≤ y − 1. As a result,

8

P (iy, Nj) = C(φiyj)
1/q(L(Nk−1

j) + piyj) ≥
y∑
t=1

(φitj)
1/q(L(Nk−1

j) + pitj) ≥ L(Nk−1
j) +

y∑
t=1

pitj ,

which is no less than the total load of jobs finishing as early as iy.
2. Suppose that some players in P\{1, 2, · · · , k} have jobs on machine j that

finish earlier than iy. Let player k+ s be such player with the largest index.
Suppose further that player k + s has jobs i∗1, i∗2, · · · , i∗z finish as early as
iy on machine j. W.L.O.G., assume that i∗1 is the job with the largest size
among the jobs i∗1, i∗2, · · · , i∗z. Then

P (iy, Nj) ≥ P (i∗1, Nj) = C(φi∗1j)
1/q(L(Nk+s−1

j) + pi∗1j) ≥

(φi∗1j)
1/q(L(Nk+s−1

j) +

z∑
t=1

pi∗t j) ≥ L(Nk+s−1
j) +

z∑
t=1

pi∗t j ,

which is no less than the total load of jobs finishing as early as iy. The proof
follows. ut

Lemma 2. Suppose that N is a PNE under A1-COORD. Then

maxj∈M,i∈Nj P (i,Nj) ≤ C[(
∑
j∈M L(Nj)

q+1)
1
q+1 + maxj∈M L(Oj)].

Proof. Let i∗ be the job with the largest completion time in assignment N .
Suppose that it is assigned to j1 in assignment N and has an inefficiency 1 on
machine j2 (j2 could be the same as j1). Either j2 6= j1, then the player π(i∗)
controlling i∗ has no incentive to move i∗ to j2; or j2 = j1. In both cases, we
have

P (i∗, Nj1) ≤ C(L(N
π(i∗)−1
j2

) + pi∗j2) ≤

C(L(Nj2) + pi∗j2) ≤ C(
∑
j∈M

L(Nj)
q+1)

1
q+1 + C max

j∈M
L(Oj),

where the last inequality follows from Proposition 1 and the fact that in the
optimal, one machine would have load at least pi∗j2 . The proof follows. ut

Lemma 3. Suppose that N is a PNE under A1-COORD. Then

(
∑
j∈M

L(Nj)
q+1)

1
q+1 ≤ 4(q + 1)Cqm

1
q+1 max

j∈M
L(Oj).

Proof. Suppose that job i is assigned to machine j1 in assignment N and machine

j2 in the optimal assignment O. As N is a PNE, C(φij1)1/q(L(N
π(i)−1
j1)+pij1) ≤

9

C(φij2)1/q(L(N
π(i)−1
j2) + pij2). Canceling C, raising both sides to the power of

q, and multiplying them by pi,min, we have

pij1(L(N
π(i)−1
j1

) + pij1)q ≤ pij2(L(N
π(i)−1
j2

) + pij2)q (1)

Define xij = 1(0) if job i is (not) assigned to machine j in assignment N ;
similarly define yij = 1(0) if job i is (not) assigned to machine j in the optimal
O. Then the above inequality can be re-written as

∑
j∈M

xijpij(L(N
π(i)−1
j) + xijpij)

q ≤
∑
j∈M

yijpij(L(N
π(i)−1
j) + yijpij)

q

≤
∑
j∈M

yijpij(L(Nj) + yijpij)
q.

Summing the above inequality over all jobs i ∈ I, we have

(q + 1)
∑
i∈I

∑
j∈M

xijpij(L(N
π(i)−1
j) + xijpij)

q

≤
∑
i∈I

∑
j∈M

(q + 1)yijpij(L(Nj) + yijpij)
q

≤
∑
i∈I

∑
j∈M

[L(Nj) + 2yijpij)
q+1 − (L(Nj) + yijpij]

q+1

≤
∑
j∈M

∑
i∈I

[L(Nj) + 2yijpij)
q+1 − (L(Nj)]

q+1

≤
∑
j∈M

[L(Nj) + 2
∑
i∈I

yijpij)
q+1 − (L(Nj)]

q+1

≤ [(
∑
j∈M

L(Nj)
q+1)

1
q+1 + 2(

∑
j∈M

L(Oj)
q+1)

1
q+1]q+1 −

∑
j∈M

L(Nj)
q+1, (2)

where the second inequality follows from Proposition 5 by setting α = yijpij
and z0 = L(Nj) + yijpij , and p = q; the fourth inequality from Proposition 4
by setting A = L(Nj), Bi = 2yijpij and p = 1 + q; and the fifth inequality from
Minkowski’s inequality.

We next bound
∑
j∈M L(Nj)

q+1 by writing it as a telescopic sum:

10

∑
j∈M

L(Nj)
q+1 =

∑
j∈M

|P|∑
k=1

L(Nk
j)q+1 − L(Nk−1

j)q+1

=
∑
j∈M

|P|∑
k=1

[L(Nk−1
j) +

∑
i:π(i)=k,i∈Nj

pij]
q+1 − L(Nk−1

j)q+1

≤
∑
j∈M

|P|∑
k=1

∑
i:π(i)=k,i∈Nj

(1 + q)|{i|π(i) = k, i ∈ Nj}|qpij(L(Nk−1
j) + pij)

q

≤
∑
j∈M

|P|∑
k=1

∑
i:π(i)=k,i∈Nj

(1 + q)Cqpij(L(Nk−1
j) + pij)

q

= (1 + q)Cq
∑
i∈I

∑
j∈M

xijpij(L(N
π(i)−1
j) + xijpij)

q (3)

≤ Cq{[(
∑
j∈M

L(Nj)
q+1)

1
q+1 + 2(

∑
j∈M

L(Oj)
q+1)

1
q+1]q+1 −

∑
j∈M

L(Nj)
q+1}(4)

where the first inequality follows from Proposition 6 by setting A = L(Nk−1
j),

Bi = pij and p = q; the second inequality from the fact that a player has at
most C jobs on machine j in assignment N ; the third equality from a double
counting argument; and the last inequality from (2).

Rearranging terms in Inequality (4), we have

(
∑
j∈M

L(Nj)
q+1)

1
q+1 ≤

2(
∑
j∈M L(Oj)

q+1)
1
q+1

(1
Cq + 1)

1
q+1 − 1

=
2(
∑
j∈M L(Oj)

q+1)
1
q+1

((1
Cq + 1)Cq)

1
Cq(q+1) − 1

≤ 2m
1
q+1 maxj∈M L(Oj)

((1
Cq + 1)Cq)

1
Cq(q+1) − 1

,

where the second inequality follows from Proposition 1.
Observe that as C ≥ 1, Cq ≥ 1. Then by calculus,

√
e < 2 ≤ (1

Cq + 1)C
q ≤ e.

Thus, the term (
∑
j∈M L(Nj)

q+1)
1
q+1 can be further upper-bounded as follows,

(
∑
j∈M

L(Nj)
q+1)

1
q+1 ≤ 2m

1
q+1 maxj∈M L(Oj)

((1
Cq + 1)Cq)

1
Cq(q+1) − 1

<
2m

1
q+1 maxj∈M L(Oj)

e
1

2Cq(q+1) − 1

≤ 4(q + 1)Cqm
1
q+1 max

j∈M
L(Oj),

where the last inequality holds because of the well-known inequality that ez−1 ≥
z. Hence the proof. ut

11

Theorem 1. A1-COORD guarantees a PNE. Such a PNE can be computed in
polynomial time and each player can compute his optimal strategy in polynomial

time. Moreover, for any fixed q > 0, it guarantees that PoA of O(Cq+1m
1
q+1).

Proof. For the first part, we can construct a PNE as follows. Let all players 1,
2, · · · , |P|, in this order, choose their optimal strategies one at a time. For any
player k, his strategy under A1-COORD is only dependent on the strategies of
previous players. No matter how the later players choose their strategies, player
k has no reason to deviate. Therefore, the outcome is a PNE.

To see that each player can compute his optimal strategy in polynomial time
and the aforementioned PNE can be constructed in polynomial time, observe
that under A1-COORD, each of his jobs has completion time independent of his
other jobs. Therefore, he can simply assign each of his jobs to the machine that
causes the least finishing time of that job. The outcome of such assignment is
clearly his optimal strategy and can be computed in polynomial time.

The last part of the theorem follows from Lemmas 2 and 3. ut

5 A2-COORD

In this section we modify A1-COORD so as to achieve better PoA when C is
relatively large compared to m.

A2-COORD: Let N be the assignment. Suppose that job i ∈ Nj . Then

the completion of job i is set as P (i,Nj) = (φij)
1
q (L(N

π(i)−1
j) + Cpij),

for some 0 < q ≤ 1 and 1/q is an integer.

Lemma 4. The schedule decided by A2-COORD is feasible.

Proof. Suppose that in assignment N player k puts jobs i1, i2, · · · , ix≤C on
machine j, where the jobs are indexed by their non-decreasing completion times.
We need to argue that the completion time P (iy, Nj) of job iy, y ≤ x, is at least
as large as the total load of jobs finishing no later than iy. In the case that
multiple jobs among i1, i2, · · · , ix≤C finish at the same time as iy, W.L.O.G.,
we can assume that iy has the largest index. Consider two possibilities.

1. Suppose that none of the jobs belonging to player P\{1, 2, · · · , k} finishes
as early as iy. Let iz be the heaviest job among i1, i2, · · · , iy. Then as
P (iy, Nj) ≥ P (iz, Nj),

P (iy, Nj) = (φiyj)
1/q(L(Nk−1

j) + Cpiyj) ≥

(φizj)
1/q(L(Nk−1

j) + Cpizj) ≥ L(Nk−1
j) +

y∑
t=1

pitj .

Observe that the last term in the inequality is at least as large as the total
load of the jobs finishing no later than iy.

12

2. Suppose that some players in P\{1, 2, · · · , k} have jobs on machine j that
are finished as early as iy. Let player k + s be such player with the largest
index. Suppose further that player k+s has jobs i∗1, i∗2, · · · , i∗z finish as early
as iy on machine j. W.L.O.G., assume that i∗1 is the job with the largest size
among the jobs i∗1, i∗2, · · · , i∗z. Then

P (iy, Nj) ≥ P (i∗1, Nj) = (φi∗1j)
1/q(L(Nk+s−1

j) + Cpi∗1j) ≥

L(Nk+s−1
j) +

z∑
t=1

pi∗t j ,

which is no less than the total load of jobs finishing as early as iy. The proof
follows. ut

Lemma 5. Suppose that N is a PNE under A2-COORD. Then

maxj∈M,i∈Nj P (i,Nj) ≤ (
∑
j∈M L(Nj)

q+1)
1
q+1 + C maxj∈M L(Oj)

Proof. Let i∗ be the job with the largest completion time. Suppose that it is
assigned to j1 in assignment N and has inefficiency 1 on machine j2 (j2 could
be the same as j1). Either j2 6= j1, then the player π(i∗) controlling i∗ has no
incentive to move i∗ to j2; or j2 = j1. In both cases, we have

P (i∗, Nj1) ≤ L(N
π(i∗)−1
j2

) + Cpi∗j2 ≤ L(Nj2) + Cpi∗j2 ≤

(
∑
j∈M

L(Nj)
q+1)

1
q+1 + C max

j∈M
L(Oj),

where the last inequality follows from Proposition 1 and the fact that in the
optimal, one machine would have load at least pi∗j2 . The proof follows. ut

Lemma 6. Suppose that N is a PNE under A2-COORD. Then

(
∑
j∈M

L(Nj)
q+1)

1
q+1 ≤ [(3q + 2)C2q]

1
q+1m

1
q+1

(1− q/2)
1
q+1

max
j∈M

L(Oj).

Proof. Suppose that job i is assigned to machine j1 in assignment N and machine

j2 in the optimal assignment O. As N is a PNE, (φij1)1/q(L(N
π(i)−1
j1

)+Cpij1) ≤
(φij2)1/q(L(N

π(i)−1
j2

) + Cpij2). Raising both sides by the power of q, and multi-
plying them by pi,min, we have

pij1(L(N
π(i)−1
j1

) + Cpij1)q ≤ pij2(L(N
π(i)−1
j2

) + Cpij2)q

Using the above inequality, we derive

pij1(L(N
π(i)−1
j1

) + pij1)q ≤ pij1(L(N
π(i)−1
j1

) + Cpij1)q ≤

pij2(L(N
π(i)−1
j2

) + Cpij2)q ≤ pij2(L(Nj2) + Cpij2)q.

13

Define xij = 1(0) if job i is (not) assigned to machine j in assignment N ;
similarly define yij = 1(0) if job i is (not) assigned to machine j in the optimal
O. Then the above inequality, if summed over all jobs, can be expressed as

∑
i∈I

∑
j∈M

xijpij(L(N
π(i)−1
j) + xijpij)

q

≤
∑
i∈I

∑
j∈M

yijpij(L(Nj) + Cyijpij)
q

≤
∑
i∈I

∑
j∈M

yijpijL(Nj)
q + yijpij(yijpijC)q

=
∑
j∈M

L(Nj)
q
∑
i:i∈Oj

pij +
∑
j∈M

Cq
∑
i:i∈Oj

p1+qij

≤
∑
j∈M

L(Nj)
qL(Oj) +

∑
j∈M

CqL(Oj)
1+q

≤
∑
j∈M

(1/q − 1)L(Oj)
1+q + 2CqL(Oj)

1+q + 1
2CqL(Nj)

1+q

1/q + 1
+
∑
j∈M

CqL(Oj)
1+q

=
∑
j∈M

L(Nj)
1+q

2Cq(1 + 1/q)
+ L(Oj)

1+q[Cq(1 +
2

1 + 1/q
) +

1− q
1 + q

], (5)

where the second inequality follows from Proposition 3 by setting p = 1/q,

a = L(N
π(i)−1
j) and b = Cyijpij ; the third inequality from Proposition 4 by

setting A = 0, Bi = pij and p = 1+q (so that
∑
i:i∈Oj p

1+q
ij ≤ (

∑
i:i∈Oj pij)

1+q =

L(Oj)
1+q); and the fourth one from the arithmetic-geometric mean inequality

(of 1/q + 1 terms).

We now bound the term
∑
j∈M L(Nj)

q+1.

∑
j∈M

L(Nj)
q+1 ≤ (1 + q)Cq

∑
i∈I

∑
j∈M

xijpij(L(N
π(i)−1
j) + xijpij)

q

≤ (1 + q)Cq{
∑
j∈M L(Nj)

1+q

2Cq(1/q + 1)
+ L(Oj)

1+q[Cq(1 +
2

1 + 1/q
) +

1− q
1 + q

]}

= q/2
∑
j∈M

L(Nj)
1+q + (C2q((1 + q) + 2q) + Cq(1− q))

∑
j∈M

L(Oj)
1+q

≤ q/2
∑
j∈M

L(Nj)
1+q + C2q(3q + 2)

∑
j∈M

L(Oj)
1+q,

where the first inequality follows from the same derivation as in (3); the second
from (5); the third from the fact that Cq(1− q) ≤ C2q.

Rearranging terms in the above inequality, and raising both sides to the
power of 1/(1 + q),

14

(1− q/2)
1

1+q (
∑
j∈M

L(Nj)
1+q)

1
q+1 ≤ (C2q(3q + 2))

1
1+q (

∑
j∈M

L(Oj)
1+q)

1
1+q ≤

(C2q(3q + 2))
1

1+qm
1

1+q max
j∈M

L(Oj),

where the second inequality follows from Proposition 1. The proof follows. ut

Theorem 2. A2-COORD guarantees a PNE. Such a PNE can be computed in
polynomial time and each player can compute his optimal strategy in polynomial
time. Moreover, for any fixed q, 0 < q ≤ 1 so that 1/q is an integer, it guarantees

the PoA of O(C
2q
q+1m

1
q+1).

Proof. The existence of the PNE, and the poly-time computability of such PNEs
and of a player’s optimal strategy follow the same arguments as in the proof of
Theorem 1. The last part of the theorem is due to Lemmas 5 and 6. ut

6 A3-COORD

In this section, we assume that jobs are indexed in such a way that each player
controls jobs with consecutive indices. Precisely, let ck be the number of jobs
controlled by player k. Then his jobs are indexed as 1 +

∑k−1
t=1 ct, 2 +

∑k−1
t=1 ct,

· · · , ck +
∑k−1
t=1 ct. Unlike the previous two sections, here N i

j denotes the set of
jobs with index at most i that are assigned to machine j in N . Accordingly,
L(N i

j) is their total load: L(N i
j) =

∑
i′:i′≤i,i′∈Nj pi′j . Let W =

maxi∈I minj∈M pij
mini∈I minj∈M pij

.

We assume that all job sizes are rescaled so that mini∈I minj∈M pij = 1. Then
pij ≥ 1 for all i, j.

We now introduce A3-COORD.

A3-COORD: Let N be the assignment. Suppose that job i ∈ Nj . Then

the completion of job i is set as P (i,Nj) = (pij)
1
q (L(N i−1

j) +pij). When
C > 1, we set q = 1. When C = 1, we set q = θ(logmW).

Unlike A1-COORD and A2-COORD, here C is absent in the completion time
P (i,Nj). Also notice that we replace the inefficiency φij with the size pij , hence
A3-COORD is strongly local.

Lemma 7. The schedule decided by A3-COORD is feasible.

Proof. Let i1, i2, · · · , ix be the set of jobs assigned to j in N , assuming that
their finishing times are non-decreasing. We argue that when job iy≤x finishes,
the total load of jobs iy′ , y

′ ≤ y, is no larger than P (iy, Nj). W.L.O.G., if
multiple jobs finish at the same time with iy, then iy is the one with the largest
index.

Suppose that all jobs iy′ , y
′ < y, have indices smaller than iy, then P (iy, Nj) =

(piyj)
1/q(L(N

iy−1
j) + piyj) ≥ L(N

iy
j), which is at least as large as the total load

15

of jobs iy′ , for all y′ ≤ y. On the other hand, suppose that a job iy′ , y
′ < y, has

index larger than iy. W.L.O.G., let iy′ be such job with the largest index. Then

P (iy, Nj) ≥ P (iy′ , Nj) ≥ L(N
iy′
j) >

∑y
t=1 pitj and the proof follows. ut

Lemma 8. Suppose that N is a PNE under A3-COORD. Suppose that q = 1
(thus C > 1). Then given any γ ∈ Z+,

max
j∈M,i∈Nj

P (i,Nj) ≤ min

 W (
√∑

j∈M L(Nj)2 + maxj∈M L(Oj)),

γ
γ+1 (

√∑
j∈M L(Nj)2)

γ+1
γ + (W + Wγ

γ+1) maxj∈M L(Oj).

 .

Suppose that q = Θ(logmW) (thus C = 1). Then

max
j∈M,i∈Nj

P (i,Nj) ≤W 1/q[(
∑
j∈M

L(Nj)
q+1)

1
q+1 + max

j∈M
L(Oj)].

Proof. Let i∗ be the job with the largest completion time in assignment N .
Suppose that it is controlled by player π(i∗), is assigned to j1 in assignment N ,
and has the least size on machine j2 (j2 could be the same as j1). Below we only
prove the case of q = 1. See the appendix for the case of q = Θ(logmW).

Let Ix denote the union of job i∗ and the set of jobs controlled by player
π(i∗) that are assigned to j2 in N . First assume that j2 6= j1. As player π(i∗)
has no incentive to move i∗ to j2,

P (i∗, Nj1) +
∑

i′∈Ix\{i∗}

P (i′, Nj2) ≤ pi∗j2(L(N i∗−1
j2

) + pi∗j2)

+
∑

i′∈Ix,i′<i∗
P (i′, Nj2) +

∑
i′∈Ix,i′>i∗

[P (i′, Nj2) + pi′j2pi∗j2].

Notice that the RHS of the inequality is the sum of the costs of the jobs
in set Ix if i∗ moved to j2. Observe that the above inequality holds as well
when j2 = j1. Canceling the term

∑
i′∈Ix\{i∗} P (i′, Nj2) from both sides of the

inequality, we obtain

P (i∗, Nj1) ≤ pi∗j2(L(N i∗−1
j2

) +
∑

i′∈Ix,i′≥i∗
pi′j2)

≤ pi∗j2(L(Nj2) + pi∗j2) ≤WL(Nj2) +W 2. (6)

We can further bound the expression WL(Nj2) +W 2 in two different ways.
First, note that

WL(Nj2) +W 2 ≤W (

√∑
j∈M

L(Nj)2 +W) ≤W (

√∑
j∈M

L(Nj)2 + max
j∈M

L(Oj)),

(7)

16

where the first inequality follows from Proposition 1 and the second by the fact
that one machine would have load at least W in the optimal. A second way to
bound WL(Nj2) +W 2 is as follows.

WL(Nj2) +W 2 ≤
W γ+1 +

∑γ
t=1(L(Nj2)

1
γ)γ+1

γ + 1
+W 2

=
γ

γ + 1
L(Nj2)

γ+1
γ + (W +

W γ

γ + 1
)W

≤ γ

γ + 1
(

√∑
j∈M

L(Nj)2)
γ+1
γ + (W +

W γ

γ + 1
) max
j∈M

L(Oj), (8)

where the first inequality follows from the arithmetic-geometric mean inequality
(of γ + 1 terms), and the second inequality from the same reason as in (7). The
inequalities (6), (7), and (8) together give the first part of lemma.

When q = Θ(logmW), either j2 6= j1, then the player π(i∗) controlling i∗

has no incentive to move i∗ to j2; or j2 = j1. In both cases,

P (i∗, Nj1) ≤ (pi∗j2)1/q(L(N i∗−1
j2

) + pi∗j2) ≤W 1/q(L(Nj2) +W) ≤

W 1/q[(
∑
j∈M

L(Nj)
q+1)

1
q+1 + max

j∈M
L(Oj)],

where the last inequality follows from the same reason as in (7). The last part
of the lemma follows. ut

In the next two lemmas, we show how to bound the term (
∑
j∈M L(Nj)

q+1)
1
q+1 ,

when q = 1 and when q = Θ(logmW), separately.

Lemma 9. Suppose that N is a PNE under A3-COORD and q = 1 (thus C >
1). Then √∑

j∈M
L(Nj)2 ≤

√
m√

3/2− 1
max
j∈M

L(Oj).

Proof. Let xij = 1(0) if job i is (not) assigned to machine j in assignment N .
Caragiannis [7, Theorem 7] showed the following inequality.∑

j

L(Nj)
2

2
≤
∑
i∈I

∑
j∈M

xijpij(L(N i−1
j) + xijpij). (9)

The RHS of the inequality is exactly the sum of costs of all players in P in
assignment N . Therefore,∑

i∈I

∑
j∈M

xijpij(L(N i−1
j) + xijpij) =

∑
k∈P

∑
i:π(i)=k,j:i∈Nj

P (i,Nj). (10)

17

Consider player k ∈ P. He has no incentive to re-assign his jobs to the
machines where they belong to in the optimal. Therefore,

∑
i:π(i)=k,j:i∈Nj

P (i,Nj) ≤

∑
j∈M

[
∑

i:π(i)=k,i∈Oj

pijL(Nj) +
(
∑
i:π(i)=k,i∈Oj pij)

2 +
∑
i:π(i)=k,i∈Oj w

2
ij

2
] ≤

∑
j∈M

[
∑

i:π(i)=k,i∈Oj

pijL(Nj) + (
∑

i:π(i)=k,i∈Oj

pij)
2],

where the first inequality is derived by assuming (pessimistically) that all jobs
of player k in Oj have indices larger than the jobs of all other players in Nj .
Summing the above inequality over all players,

∑
k∈P

∑
i:π(i)=k,j:i∈Nj

P (i,Nj) ≤
∑
j∈M

[L(Oj)L(Nj) +
∑
k∈P

(
∑

i:π(i)=k,i∈Oj

pij)
2]

≤
∑
j∈M

L(Oj)L(Nj) + L(Oj)
2

≤
∑
j∈M

(L(Nj) + L(Oj))
2 −

∑
j∈M

L(Nj)
2

≤ (

√∑
j∈M

L(Nj)2 +

√∑
j∈M

L(Oj)2)2 −
∑
j∈M

L(Nj)
2(11)

where the second inequality follows from Proposition 4 (by setting A = 0 and
p = 1), and the last inequality from Minkowski inequality. By (9), (10), (11),
and re-arranging terms, we have

(
√

3/2− 1)

√∑
j∈M

L(Nj)2 ≤
√∑
j∈M

L(Oj)2 ≤
√
mmax
j∈M

L(Oj),

where the last inequality follows from Proposition 1. The proof follows. ut

Lemma 10. Suppose that N is a PNE under A3-COORD and q = Θ(logmW)
(thus C = 1). Then

(
∑
j∈M

L(Nj)
q+1)

1
q+1 ≤ e(q + 1)m

1
q+1 max

j∈M
L(Oj).

Proof. Let xij = 1(0) if job i is (not) assigned to machine j in assignment N ;
similarly let yij = 1(0) if job i is (not) assigned to machine j in the optimal O.
We make the following claim.

18

∑
i∈I

∑
j∈M

xijpij(L(N i−1
j) + xijpij)

q ≤
∑
i∈I

∑
j∈M

yijpij(L(Nj) + yijpij)
q. (12)

By our index scheme and the fact that C = 1, job i is controlled by player i.
Suppose job i is in j1 in N and in j2 in O. As player i has no incentive to move
his job from j1 to j2,

(pij1)1/q(L(N i−1
j1

) + pij1) ≤ (pij2)1/q(L(N i−1
j2

) + pij2) ≤ (pij2)1/q(L(Nj2) + pij2).

Raising the above inequality to the power of q and summing it over all players,
we have ∑

j∈M

∑
i∈Nj

pij(L(N i−1
j) + pij)

q ≤
∑
j∈M

∑
i∈Oj

pij(L(Nj) + pij)
q,

and Inequality (12) follows.
The rest of the analysis is completely the same as Caragiannis [7, Theorem

7]. He showed the following two inequalities:

(e− 1)(q + 1)
∑
i∈I

∑
j∈M

yijpij(L(Nj) + yijpij)
q ≤

((
∑
j∈M

L(Nj)
q+1)

1
q+1 + e(

∑
j∈M

L(Oj)
q+1)

1
q+1)q+1 −

∑
j∈M

L(Nj)
q+1 (13)

(e− 1)(
∑
j∈M

L(Nj))
q+1 ≤ (e− 1)(q + 1)

∑
i∈I

∑
j∈M

xijpij(L(N i−1
j) + xijpij)

q (14)

Combining (12), (13), and (14), we have

(
∑
j∈M

L(Nj)
q+1)

1
q+1 ≤ e

e
1
q+1 − 1

(
∑
j∈M

L(Oj)
q+1)

1
q+1 ≤ e(q + 1)m

1
q+1 max

j∈M
L(Oj),

where the second inequality is due to the inequality ez−1 ≥ z and Proposition 1.
The proof follows. ut

Theorem 3. A3-COORD guarantees a PNE. Moreover, by setting q = 1, it

guarantees the PoA of O(min{W
√
m,minγ∈Z≥1

{m
γ+1
2γ + W γ}}). In case that

C = 1, by setting q = θ(logmW), it guarantees the PoA of O(logm+ logW).

Proof. The existence of PNE follows the same argument as in the proof of The-
orem 1. The second part of the theorem follows from Lemmas 8, 9, and 10. ut

19

Unfortunately, under A3-COORD, it is NP-hard to decide the optimal strat-
egy for a player. So we cannot use the same procedure as in the previous two
mechanisms to build a PNE in polynomial time. The NP-hardness follows from
the observation that when q = 1, a player controls all the jobs, and only two
identical machines are given, finding an optimal strategy is equivalent to min-
imizing the weighted sum of completion times of jobs. (The latter problem is
NP-hard by a reduction from the partition problem [17].)

References

1. Abed, F., Correa, J., and Huang, C.-C. Optimal coordination mechanisms for
multi-job scheduling games. In 22nd Annual European Symposium on Algorithms
(ESA) (2014).

2. Abed, F., and Huang, C.-C. Preemptive coordination mechanisms for unrelated
machines. In 20th Annual European Symposium on Algorithms (ESA) (2012).

3. Anshelevich, E., Caskurlu, B., and Hate, A. Partition equilibrium always
exists in resource selection games. In SAGT (2010), pp. 42–53.

4. Awerbuch, B., Azar, Y., Richter, Y., and Tsur, D. Tradeoffs in worst-case
equilibria. Theor. Comput. Sci. 361, 2-3 (2006), 200–209.

5. Azar, Y., Jain, K., and Mirrokni, V. S. (almost) optimal coordination mech-
anisms for unrelated machine scheduling. In SODA (2008), pp. 323–332.

6. Bhaskar, U., Fleischer, L., Hoy, D., and Huang, C.-C. Equilibria of atomic
flow games are not unique. In SODA (2009), pp. 748–757.

7. Caragiannis, I. Efficient coordination mechanisms for unrelated machine schedul-
ing. In SODA (2009), pp. 815–824. Journal version to appear in Algorithmica.

8. Christodoulou, G., Koutsoupias, E., and Nanavati, A. Coordination mech-
anisms. In ICALP (2004), pp. 345–357.

9. Cohen, J., Dürr, C., and Thang, N. K. Non-clairvoyant scheduling games.
Theory Comput. Syst. 49, 1 (2011), 3–23.

10. Cohen, J., Dürr, C., and Thang, N. K. Smooth inequalities and equilibrium
inefficiency in scheduling games. In WINE (2012), pp. 350–363.

11. Cole, R., Correa, J. R., Gkatzelis, V., Mirrokni, V. S., and Olver, N.
Inner product spaces for minsum coordination mechanisms. In STOC (2011),
pp. 539–548.

12. Cominetti, R., Correa, J. R., and Stier-Moses, N. E. The impact of
oligopolistic competition in networks. Operations Research 57, 6 (2009), 1421–
1437.

13. Czumaj, A., and Vöcking, B. Tight bounds for worst-case equilibria. ACM
Transactions on Algorithms 3, 1 (2007).

14. Feldman, M., and Tennenholtz, M. Partition equilibrium. In SAGT (2009),
pp. 48–59.

15. Fleischer, L., and Svitkina, Z. Preference-constrained oriented matching. In
Proceedings of the Seventh Workshop on Analytic Algorithmics and Combinatorics
(ANALCO) (2010), pp. 66–73.

16. Fotakis, D., Kontogiannis, S., and Spirakis, P. Atomic congestion games
among coalitions. ACM Transactions on Algorithms 4, 4 (2008). The conference
version appeared in ICALP 2006.

17. Garey, M., and Johnson, D. Computers and Intractablility. Freeman, 1979.

20

18. Hayrapetyan, A., Tardos, E., and Wexler, T. The effect of collusion in
congestion games. In STOC (New York, NY, USA, 2006), ACM Press, pp. 89–98.

19. Immorlica, N., Li, L. E., Mirrokni, V. S., and Schulz, A. S. Coordination
mechanisms for selfish scheduling. Theor. Comput. Sci. 410, 17 (2009), 1589–1598.

20. Koutsoupias, E., and Papadimitriou, C. H. Worst-case equilibria. Computer
Science Review 3, 2 (2009), 65–69.

21. Lenstra, J. K., Shmoys, D. B., and Tardos, É. Approximation algorithms for
scheduling unrelated parallel machines. Math. Program. 46 (1990), 259–271.

22. Nash, J. Non-cooperative games. The Annals of Mathematics 54(2) (1951), 286–
295.

23. Roughgarden, T. Selfish Routing and the Price of Anarchy. The MIT Press,
2005.

A Counter-examples and Lower Bounds for Known
Mechanisms

A.1 PNE Existence for ShortestFirst, AJM-2, and BALANCE

Theorem 4. ShortestFirst, AJM-2, and BALANCE do not induce PNE even
for two identical machines.

Proof. Consider the instance of two identical machines and two players. Player
1 controls a job of size 1 and a job of size 3. Player 2 controls a job of size 2
and a job of size 4. It is easy to verify that this instance has no PNE when
using ShortestFirst. The theorem holds for AJM-2 as well because it is exactly
equivalent to ShortestFirst in the case of two identical machines. The same
example can be used as an evidence that BALANCE does not induce PNE. ut

A.2 PNE Existence for Makespan, BCOORD, and CCOORD

Theorem 5. Makespan, BCOORD when p=1, and CCOORD when p=1, do
not induce PNE even for two identical machines.

Proof. Consider the instance of two identical machines and two players. Player
1 controls a job of size 1. Player 2 controls a job of size 2, a job of size 1, and a
job of size 1/10. It is easy to verify that this instance has no PNE when using
the Makespan policy. Notice that when p=1, both BCOORD and CCOORD are
equivalent to Makespan in identical machines. ut

A.3 PoA for ACOORD, BCOORD, and CCOORD

In the following, if we do not specify the size pij of job i on machine j, we
implicitly assume it is infinity. We first present a simple construction where each
player controls just two jobs.

Theorem 6. For all values of p ≥ 1, when C = 2, ACOORD and BCOORD
have PoA of at least Ω(m). The same bound holds for CCOORD when p=1.

21

Proof. Consider an instance of m machines and n = m− 1 players. Player k, for
1 ≤ k ≤ n, controls two jobs, i0k and i1k, both of which can be processed only on
machine 0 and machine k. Job i0k has size 1 on machine 0, and size 2 on machine
k. Job i1k has size δ on machine 0, and size δ · np on machine k, for some small
δ > 0 where δ << 1/np.

We first focus on ACOORD. Let the total order of all jobs be as follows
i01, i

1
1, i

0
2, i

1
2, · · · , i0n, i1n. Let N be the following assignment. Each player k assigns

job i0k to machine 0 and job i1k to machine k. To see that N is a PNE, consider
player k, whose current cost is k+ δ · np. He has three other possible strategies:

1. Assign both of his jobs to machine 0. Then his cost is k + k + δ.
2. Assign both of his jobs to machine k. Then his cost is 2 ·21/p+(2+δ ·np) ·n.
3. Assign i0k to machine k and i1k to machine 0. Then his cost is k−1+δ+2·21/p.

All these three strategies incur higher costs, so player k has no reason to
deviate. Thus, N is a PNE with makespan of m− 1, while OPT is 2.

Next we consider BCOORD (and notice that CCOORD is the same as BCO-
ORD when p=1). We claim that the same assignment N is also a PNE. Consider
player k, whose current cost is n+ δ · np. He has three other possible strategies:

1. Assign both of his jobs to machine 0. Then his cost is 2n+ 2δ.
2. Assign both of his jobs to machine k. Then his cost is (2 + δ · np) · 21/p +

(2 + δ · np) · n.
3. Assign i0k to machine k and i1k to machine 0. Then his cost is n−1+δ+2·21/p.

All these three strategies incur higher costs, so player k has no reason to
deviate. Thus, N is a PNE with makespan of m− 1, while OPT is 2.

ut

We next expand on the same idea to show that the PoA of
ACOORD/BCOORD/CCOORD can be much higher when C is large.

Theorem 7. For all values of p ≥ 1, ACOORD and BCOORD have PoA of
at least Ω(C(1−ε)(p+1)m/p2), for some small ε > 0. The same bound holds for
CCOORD when p=1.

Proof. Consider an instance of m = (n + 1) · (p2 + τ + 1) machines, where τ is
some positive integer (the larger the τ , the smaller the ε in the lower bound).
Let muv represent a machine for some u, v, where 0 ≤ u ≤ (p2 + τ), 0 ≤ v ≤ n.
Let kst denote a player for some s, t, where 0 ≤ s ≤ (p2 + τ), 1 ≤ t ≤ n. We
next specify the jobs controlled by each player and their sizes on the machines.
Below we assume δ to be some small constant and δ << 1/(nC)6p

2

.

1. For player k0t, 1 ≤ t ≤ n, he controls two jobs i00t, i
1
0t. Job i00t has size 1 on

machine m00, and size 2 on machine m0t; job i10t has size δ on machine m00,
and size δ · np on machine m0t.

22

2. For player kst, with s > 0, 1 ≤ t ≤ n, he controls C + 1 jobs, i0st, i
1
st, · · · , iCst.

Job i0st has size 1 on machine mst, and size C
∑s
a=1 (p/(p+1))a on machine ms0;

job ibst, for 1 ≤ b ≤ C, has size δ on machine m(s−1)0, and size δ(nC)2p
2

on
machine mst.

We first focus on ACOORD. Let the total order for all the jobs be as follows:
i001, i

1
01, i

0
02, i

1
02, · · · , i00n, i10n, i011, i111, · · · , iC11, i012, i112, · · · , iC12, · · · , i01n, i11n, · · · , iC1n,

i021, i
1
21, · · · , iC21, i022, i122, · · · , iC22, · · · , i02n, i12n, · · · , iC2n, i031, i131, · · · , iC31, i032, i132, · · · ,

iC32, · · · , i03n, i13n, · · · , iC3n, · · · , i0(p2+τ)1, i
1
(p2+τ)1, · · · , i

C
(p2+τ)1, i

0
(p2+τ)2, i

1
(p2+τ)2, · · · ,

iC(p2+τ)2, · · · , i
0
(p2+τ)n, i

1
(p2+τ)n, · · · , i

C
(p2+τ)n.

Let N be the following assignment. Each player kst assigns job i0st to machine
ms0 and the remaining job(s) to mst. To see that N is a PNE, consider player
k0t, 1 ≤ t ≤ n. We can use the same argument as in the previous theorem to
show that he has no reason to deviate. Next consider player kst, with s > 0,
1 ≤ t ≤ n, whose current cost is t · C((p+1)/p)

∑s
a=1 (p/(p+1))a + d, where d is the

sum of the cost the jobs i1st, i
2
st, · · · , iCst, thus d << 1. He has three other possible

strategies:

1. Assign job i0st to machine ms0 and at least one of the remaining jobs to
machine m(s−1)0. Then his cost is at least t · C((p+1)/p)

∑s
a=1 (p/(p+1))a + n ·

C
∑s−1
a=1 (p/(p+1))a .

2. Assign job i0st and at least one of the remaining jobs to machine mst . Then

his cost is at least 1 + (1 + δ(nC)2p
2

) · (nC)2p.
3. Assign job i0st to machine mst and the remaining jobs to machine m(s−1)0.

Then his cost is at least 1+n·C1+
∑s−1
a=1 (p/(p+1))a = 1+n·C((p+1)/p)

∑s
a=1 (p/(p+1))a .

All these three strategies incur higher costs, so he has no reason to de-

viate. Thus, N is a PNE with makespan of n · C((p+1)/p)
∑(p2+τ)
a=1 (p/(p+1))a =

Ω(C(1−ε)(p+1)m/p2), for some small ε > 0, while OPT is 2.
Next we consider BCOORD (and notice that CCOORD is the same as BCO-

ORD when p=1). We claim that the same assignment N is also a PNE. Consider
player k0t, 1 ≤ t ≤ n. We can use the same argument as in the previous theorem
to show that he has no reason to deviate. Next consider player kst, with s > 0,
1 ≤ t ≤ n, whose current cost is n · C((p+1)/p)

∑s
a=1 (p/(p+1))a + d, where d is the

sum of the cost the jobs i1st, i
2
st, · · · , iCst, thus d << 1. He has three other possible

strategies:

1. Assign job i0st to machine ms0 and at least one of the remaining jobs to
machine m(s−1)0. Then his cost is at least n · C((p+1)/p)

∑s
a=1 (p/(p+1))a + n ·

C
∑s−1
a=1 (p/(p+1))a .

2. Assign job i0st and at least one of the remaining jobs to machine mst . Then

his cost is at least 1 + ε(nC)2p
2

+ (1 + δ(nC)2p
2

) · (nC)2p.
3. Assign job i0st to machine mst and the remaining jobs to machine m(s−1)0.

Then his cost is at least 1+n·C1+
∑s−1
a=1 (p/(p+1))a = 1+n·C((p+1)/p)+

∑s
a=1 (p/(p+1))a .

23

All these three strategies incur higher costs, so he has no reason to de-

viate. Thus, N is a PNE with makespan of n · C((p+1)/p)
∑(p2+τ)
a=1 (p/(p+1))a =

Ω(C(1−ε)(p+1)m/p2), for small ε > 0, while OPT is 2.
ut

24

