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Abstract. This paper addresses strategies for the stable marriage prob-
lem. For the Gale-Shapley algorithm with men proposing, a classical the-
orem states that it is impossible for every cheating man to get a better
partner than the one he gets if everyone is truthful. We study how to
circumvent this theorem and incite men to cheat. First we devise coali-
tions in which a non-empty subset of the liars get better partners and
no man is worse off than before. This strategy is limited in that not
everyone in the coalition has the incentive to falsify his list. In an at-
tempt to rectify this situation we introduce the element of randomness,
but the theorem shows surprising robustness: it is impossible that every
liar has a chance to improve the rank of his partner while no one gets
hurt. To overcome the problem that some men lack the motivation to
lie, we exhibit another randomized lying strategy in which every liar can
expect to get a better partner on average, though with a chance of get-
ting a worse one. Finally, we consider a variant scenario: instead of using
the Gale-Shapley algorithm, suppose the stable matching is chosen at
random. We present a modified form of the coalition strategy ensuring
that every man in the coalition has a new probability distribution over
partners which majorizes the original one.

1 Introduction

Suppose that n men and n women seek life-long partners. Each of them has a
preference list of the members of the other sex and submits it to a centralized
authority. In the spirit of making all the participants maintain a long-term re-
lationship, the authority has to make sure that the matching does not involve
any blocking pair : a couple each of whom prefers the other over his (her) partner
in the matching. A matching without any blocking pair is stable. The goal of
the authority, given the men’s and women’s preference lists, is to find a stable
matching.

The above situation is the classical stable marriage problem formulated by
Gale and Shapley [4]. Suppose the match-making mechanism is known before-
hand, and all men’s and women’s preference lists are made public. Can a group
of persons (of either sex) falsify their lists to get better partners?

For the Gale-Shapley men-optimal algorithm, some studies have partly an-
swered the question. If women are allowed to submit incomplete lists (i.e., they
can declare some men unacceptable), they can force a men-optimal matching
into a women-optimal one [5]. For men, researchers reached the opposite con-
clusion: honesty is the best policy [3, 10]. The following theorem by Dubins and
Freedman [3] (Roth also gave a restricted version [10]) inspires this work and is
the key to our results.



Theorem 1. A subset of men cannot falsify their preference lists so that every
one of them gets a better partner than in the Gale-Shapley men-optimal algo-
rithm.

This work studies how to circumvent this theorem and encourages men to
falsify their lists. The statement of the theorem does not rule out the possibility
that some of the liars get better partners while the others get the same partners
as before. Based on this observation, we devise a coalition strategy. Moreover,
we prove this is the only cheating strategy in which none of the liars is worse
off.

The coalition strategy has a drawback: it relies on the cooperation of some
men who cannot benefit themselves. We consider that a randomized version of
the coalition strategy might give every liar a chance to get a better partner.
However, we reach an impossibility result which states that such a randomized
strategy is unrealizable, thus in this sense strengthening the Dubins-Freedman
Theorem.

Relaxing the requirement that liars can never be worse off, we present a
randomized strategy in which every liar can expect to get a better partner. Thus,
in an amortized sense, our third attempt in circumventing the Dubins-Freedman
Theorem does succeed.

Finally, we discuss a different scenario: the stable matching is chosen at
random, what would be men’s strategy? This question is raised by Roth and
Vate [13]. We study how the lattice structure underlying the set of stable match-
ings evolves with regard to the coalition strategy. A corollary of our observation
is a modified coalition strategy guaranteeing that every man in the coalition has
a probability distribution over partners which majorizes the original one.

The main contribution of this work is the re-examination of the classical
Dubins-Freedman Theorem and its associated strategy issues. To our knowledge,
ours is the first result about men-lying strategies (deterministic or randomized)
under the Gale-Shapley algorithm. We also present the first men’s group lying
strategy without relying on truncating lists in the context of random stable
matching.

The outline of this paper is as follows. In Section 2, we observe the interaction
between the preference lists and the men-optimal matching. Section 3 formally
presents the coalition strategy. In Section 4, we prove that there always exist
some men who do not gain by lying. In Section 5, we exhibit another randomized
lying strategy in which men on the average can get better partners. Section 6
considers the scenario that the stable matching is chosen at random and analyzes
the effectiveness of the coalition strategy in this context. Section 7 concludes and
discusses related work.

2 Falsifying Preference Lists

In this section, we observe the interaction between falsified lists and the resulting
matchings. Before plunging into technical details, we establish some notation and
terminology and give background. From Section 3 to 5, we assume that the Gale-
Shapley men-optimal algorithm is used and that we know the preferences of all
participants. The sets of men and women are denoted by M and W, both of



size n. When everyone is honest, M0 and Mz are the men-optimal and women-
optimal matchings; Ms denotes the men-optimal matching when some subset of
people lie. For any matching M and some subset of people S ⊆ M

⋃
W, the

collection of partners of people in S is M(S). For example, M0(m) is the partner
of man m in the men-optimal matching. We express the fact that man m prefers
woman w over woman w′ by w �m w′. For man m, w is his stable partner if
there exists any stable matching containing the pair (m,w).

Every man and woman has a strictly ordered preference list of size n (note
that our result still holds even if lists are incomplete). Specifically, for man m,
his preference list is composed of (PL(m),M0(m), PR(m)), where PL(m) and
PR(m) are respectively those women ranking higher and lower than M0(m).
More colloquially, we say the women in PL(m)(or PR(m)) are on the left (right)
of man m’s list. If for every man m ∈ M, M(m) �m M ′(m), matching M is
said to be “at least as good as” matching M ′ and is denoted as M � M ′. If,
besides M � M ′, there exists at least one man m such that M(m) �m M ′(m),
we write M � M ′ and say M is strictly better than M ′; if some men are better
off and some are worse off in M than in M ′, these two matchings are said to be
incomparable, denoted by M ‖ M ′. Finally, if A is a set of distinct objects, π(A)
denotes the set of all |A|! permutations and πr(A) a random permutation from
this set.

The celebrated Gale-Shapley algorithm is recreated below.

1: assign each person to be free;
2: while some man m is free do
3: begin
4: w:= first woman on m’s list to whom m has not yet proposed;
5: if w is free then
6: assign m and w to be engaged to each other;
7: else
8: if w prefers m to her fiance m′ then
9: assign m and w to be engaged and m′ to be free;
10: else
11: w rejects m;
12 end;
13: output the matching

Fig. 1. Gale-Shapley men-optimal algorithm. The women-optimal version can be de-
rived by reversing the roles of men and women.

Our first lemma hints at the necessary ingredient in men’s falsified lists if we
wish for a better outcome for men: Men shifting women from the left to the right
of their lists will not cause any man to be worse off.

Lemma 1. For a subset of men S ⊆ M, if every member m ∈ S submits a
falsified list of the form (πr(PL(m)−X),M0(m), πr(PR(m) ∪X)), X ⊆ PL(m),
then Ms � M0.

Proof. We proceed by contradiction. In Ms, suppose some man m gets a worse
partner than M0(m). Without loss of generality, assume that during the ex-



ecution of the algorithm with true lists, m is the first person rejected by his
M0-partner. The rejection can only be caused by another man m′, who ranks
higher than m in M0(m) preference list. Since m′ has not been accepted by his
M0-partner yet, he must prefer M0(m) over M0(m′). Therefore, (m′,M0(m′))
compose a blocking pair in M0. ut

Interestingly, Lemma 1 also has an intuitive interpretation: if some men know
beforehand that they have no chance of getting certain women, they may as well
avoid proposing to them. Doing this, they do not run any risk of getting worse
partners and may help others get better ones.

It is natural to ask the analogous question of Lemma 1: How about shifting
some women from the right to the left of men’s preference lists? Intuitively, it
seems a dangerous move, because men will now first propose to women they
do not really like. In general, shifting women from the right to the left is more
unpredictable in the outcome, but sometimes useful strategies follow this idea.
We discuss one possible strategy in Section 5. For our purpose at this moment,
we only show that it is impossible that by shifting women from the right to the
left of men’s list, men can reach a strictly better matching than M0.

The next lemma indicates that if men simply permute the left and/or right
portion of their lists, nothing will change. This lemma goes a long way toward
explaining why Lemma 1 is a useful lying stratagem.

Lemma 2. For a subset of men S ⊆ M, if every member m ∈ S submits a
falsified list of the form (πr(PL(m)),M0(m), πr(PR(m))), then Ms = M0.

Proof. We can use the same argument in the proof of Lemma 1 to show that no
man will ever be rejected by his M0-partner. Hence, permuting the right portion
of the men’s preference lists will not cause men to be worse off. However, the
permutation on the left portion of the preference lists might cause some men to
be better off in Ms than in M0. We have to eliminate this possibility.

Suppose there exists a nonempty subset B ⊂M such that each man m ∈ B
is better off in Ms than in M0. Given the falsified lists of men, the stability of
Ms implies that every man m ∈ B is preferred by his partner Ms(m) over any
other man m′ ∈M−B who puts Ms(m) on the left of his preference list. In any
execution of the Gale-Shapley algorithm with the true preference lists, the men
in B must be rejected by their Ms-partners, and this rejection can be caused only
by another man m′ ∈ B. Moreover, after this rejection, his Ms-partner can be
engaged only to men in B. Without loss of generality, assume that m is the last
person in B who is rejected by his Ms-partner. At the point of this rejection, all
the Ms-partners of men in B except Ms(m) must have been engaged, and only
to men in B. However, the rejection of m implies that Ms(m) is also engaged to
another man in B. Hence, |B| women are engaged to |B| − 1 men when the last
rejection takes place, and we reach the desired contradiction. ut

3 Coalition Strategy

In this section we present the coalition strategy. An example could be found in
Figure 2.



An Example Consider the example shown in Figure 2. We make two obser-
vations here. First, a man cannot get a better partner by lying alone (as the
Dubins-Freedman Theorem implies). He has to have some “collaborators” with
whom to exchange partners. If man B wants to be matched to woman b, one
possibility is that he and man D exchange partners and each is matched to a
higher-ranking woman. However, in this example, it is impossible for man E to
improve the rank of his partner, because his M0-partner, woman c, is not on the
left of any other man’s preference list.

Second, continuing the preceding example, for men B and D to be matched
to women b and d respectively, men A, C, and E, when proposing all the way
down to their M0-partners, should avoid breaking the “balance” of men B and
D and women b and d. For example, once man A proposes to woman b, he will
cause man B to be rejected by woman b; on the other hand, if man C makes
proposal to b, it does not matter, as man B is higher up than man C in woman
b’s list. As predicted by the Dubins-Freedman Theorem, the men falsifying their
lists (men A and E) do not all get better partners, but they do help other people
(men B and D) get better ones.

M0-matching Ms-matching
Men’s List Women’s List Men’s (Falsified) List Women’s List
A: abedc a: CBDAE A:aedcb a: CBDAE
B: bedac b: DEABC B:bedac b: DEABC
C: ebacd c: BCDEA C:ebacd c: BCDEA
D: dabce d: ABCED D:dabce d: ABCED
E: edbca e: ABECD E: ecabd e: ABECD
The Match Ranking for men in M0: A(e,3), B(d,3), C(a,3), D(b,3), E(c,4)
The Match Ranking for men in Ms: A(e,3), B(b,1), C(a,3), D(d,1), E(c,4)

Fig. 2. Men A and E falsify their lists to help men B and D get a better partner.
Falsified lists are underlined.

Coalitions We now formally explain the coalition strategy. A coalition is com-
prised of two parts: cabal and accomplices. Each man in the cabal prefers an-
other’s partner to his own and would be happier if they can exchange; the ac-
complices are the men who need to falsify their lists to help them accomplish
this goal.

Definition 1. The cabal of a coalition K = (m1,m2, · · · ,m|K|) is a list of men
such that each man mi, 1 ≤ i ≤ |K|, prefers M0(mi−1) to his own partner
M0(mi), indices taken module |K|.

Having formed the cabal, the men in the cabal need to to enlist the help of
accomplices. Suppose man mi in the cabal wishes to be matched to some woman
w (who is mi−1’s partner). All other men (accomplices) putting her on the left of
their lists, if they are ranked higher than mi in w’s list, should avoid proposing
to her by shifting her to the right of their lists (as implied by Lemma 1).



Definition 2. The accomplices of cabal K = (m1,m2, ...m|K|) is a set of men
A(K) ⊆M such that m ∈ A(K) if

1. m 6∈ K, for any mi ∈ K, if M0(mi) �m M0(m) and m �M0(mi) mi+1, or
2. m = mj ∈ K, for any mi ∈ K, i 6= j, if M0(mi) �mj

M0(mj−1) and
mj �M0(mi) mi+1.

Note that cabal K and its accomplices A(K) might not be disjoint, i.e.,
the people in the cabal might have to falsify their lists as well. An immediate
consequence of the Dubins-Freedman Theorem is that A(K) ∪K ⊃ K.

We can now present the main result of this section.

Theorem 2. Coalition Strategy: If in a coalition C = (K, A(K)), each accom-
plice m ∈ A(K) submits a falsified list of the form (πr(PL(m)−X),M0(m), πr(PR(m)∪
X)), and if

– m ∈ A(K)−K, X = {w|w = M0(mi) ∈ M0(K),m �w mi+1}
– m = mj ∈ A(K)∩K, X = {w|w = M0(mi) ∈ M0(K), w �mj

M0(mj−1),mj �w

mi+1},

then in the resulting Ms-matching, Ms(mi) = M0(mi−1) for mi ∈ K and
Ms(m) = M0(m) for m 6∈ K.

Proof. As implied by Lemma 1, no man will be rejected by his M0-partner, since
men only shift some women from the left to the right of their lists. Moreover, no
man mi in K is going to be rejected by his preferred partner M0(mi−1), since
all the accomplices have altered their lists. Finally, men not in the cabal can
get only their M0-partners and men in the cabal can get only their preferred
Ms-partners. If this is not so and some subset of men get even better partners,
as in the proof of Lemma 2, we can use a pigeonhole argument to refute this
possibility. ut

The coalition strategy is the only strategy that has the nice property of
ensuring that some men are better off and every liar is at least as well off as
before. One might wonder whether there exist other strategies by means of which
liars can manipulate the outcome at the expense of honest men without hurting
themselves. The following theorem precludes this possibility.

Theorem 3. The coalition strategy is the only way for men to falsify their lists
such that in the resulting Ms-matching, some men are better off and every liar
is at least as well off as when he is truthful.

Proof. We proceed by contradiction. Suppose there exists another strategy for
men such that some men can be better off at the expense of honest men, and all
liars are at least as well off as when they are honest. Say some man m (whether
he is honest or not) is better off by being matched to the partner of some honest
man m′, i.e. Ms(m) = M0(m′), while the honest man m′ is worse off. We claim
that (m′,M0(m′)) must be a blocking pair in Ms, because (1) the stability of M0

implies that m′ �M0(m′) m, and (2) since m′ is honest, M0(m′) �m′ Ms(m′). ut



Theorem 3 has an important implication: Liars, if intending to help other men
(or themselves) get better partners, either have to adopt the coalition strategy
(in which no one gets hurt) as defined in Theorem 2, or must accept worse
partners for themselves. This observation prompts us to devise another strategy
in Section 5. The algorithms for finding the coalitions (cabals) can be found in
the appendix. We discuss theoretical implications that directly follow from the
coalition strategy.

Cabalists and Hopeless Men Based on the preference lists and the M0-
matching, a large number (which can be exponential) of coalitions may exist.
We define a man to be one of the cabalists K if he belongs to any one of the cabals
of the coalitions; otherwise, he is one of the hopeless men H. By this definition,
men fall into two categories: M = K

⋃
H and K

⋂
H = ∅. Apparently, hopeless

men cannot benefit from utilizing the coalition strategy. The following lemma,
implying at least one man does not have incentive to cheat, is important in
proving our next major result.

Lemma 3. Whatever the true preference lists, there always exists at least one
hopeless man, i.e., H 6= φ.

Proof. If woman w is the last woman receiving a proposal during the execution
of the Gale-Shapley algorithm, then (1) she has not received any other proposal
before, and (2) she is not in the left portion of any man’s preference list. If this
is not so, then when the last proposal is made to w, she will either reject the
proposer or dump her former partner. In both cases, this “last” proposal will
not terminate the algorithm.

Since the last woman w receiving a proposal is not on the left of any man’s
preference list, M0(w) cannot belong to any cabal. Hence he must be one of the
hopeless men. ut

A by-product of Lemma 3 is an easy proof of weak pareto-optimality of M0,
which has been shown before [6, 10].

Corollary 1. There does not exist a matching M∗, stable or not, such that every
man gets a strictly better partner than in M0.

Proof. Since the last woman w receiving the proposal is not on the left of any
man’s preference list, there cannot be a matching in which every man has a
better partner and one of them is matched to w. ut

4 Impossibility of Forming Leagues

The coalition strategy has one unsatisfactory aspect: The Dubins-Freedman The-
orem ordains that for every coalition, at least one accomplice does not gain from
lying and hence has little motivation of doing so. Can we devise a stratagem such
that everyone is predisposed to cheat? In this section, we show that even with a
randomized strategy, we still cannot overcome the problem that some men lack
the motivation of lying.

We formulate what would be a successful randomized strategy for men.



Definition 3. A league is a subset L ⊆ M with the following properties. Each
man mi ∈ L has a set of possible preference lists si = π(W), and a joint prob-
ability distribution F :s1 × s2 · · · × s|L| → [0, 1] exists such that for every man
mi ∈ L:

– (Positive Expectation): E[Rank(Ms(mi))] > Rank(M0(mi)).
– (Elimination of Risk): If in event E, Rank(M0(mi)) > Rank(Ms(mi)), then

Prob(E) = 0.

Based on Theorem 3, the two requirements imply that the only choice is
to employ a mix of coalition strategies. We can randomly pick some coalition
contained in the league and realize the strategy accordingly. The problem then
boils down to whether we can find a union of coalitions Ci = (Ki, A(Ki)) such
that L =

⋃
i Ki =

⋃
i A(Ki). In other words, in this league, each accomplice

belongs to the cabal of some coalition, and thus has a chance to improve the
rank of his partner (and hence the incentive to lie).

A league would circumvent the Dubins-Freedman Theorem, by allowing ev-
ery liar to improve the rank his partner (in a randomized sense) with no risk.
However, leagues do not exist.

Theorem 4. In any coalition C = (K, A(K)), at least one accomplice is a hope-
less man, i.e., A(K)

⋂
H 6= ∅.

Proof. We first consider maximal coalitions and then go on to more general
cases. A coalition C = (K, A(K)) is maximal if K = M−H. For every man mi

in the cabal of this maximal coalition, we move his preferred partner M0(mi−1)
in the cabal to the front of his list and his M0-partner M0(mi) to the second
place. Note that due to Lemma 1, after this alteration of the lists, a man in
the cabal can be matched only to either his original M0-partner or his preferred
partner in the cabal.

Arrange the proposal sequence of the Gale-Shapley algorithm in the follow-
ing way: all men in M−H propose first and are temporarily engaged to their
preferred partners in the cabal. In the resulting matching, the Dubins-Freedman
Theorem tells us that it is impossible that every liar gets a better partner, so at
least one person mj in the cabal is matched to his M0-partner M0(mj); conse-
quently, mj+1 also can be matched only to his original M0-partner M0(mj+1)
and so forth. The only way to break the “balance” of this cabal is that some hope-
less man m∗ (there exists at least one hopeless man, as indicated by Lemma 3)
proposes to some woman who is a partner of a man in the cabal and he is pre-
ferred by this woman over him. Hence, m∗ must be one of the accomplices in
this coalition.

If the coalition C is not maximal, i.e., |K| < |M − H|, we still can apply
the above argument, with a little more complication. First, choose some cabalist
m not in K, and move his M0-partner to the front of his preference list. Then,
for all other cabalists mk, if M0(m) �mk

M0(mk), shift M0(m) to the end of
his list. Note that by Lemma 1, these operations will not make any man get a
worse partner. We claim that now m becomes a hopeless man and the resulting
Ms-matching is still identical to M0. The reasons are as follows: (1) If there
exists any other cabal K ′ involving m, then the coalition containing the cabal



K ′ cannot be realized. Recall that for a coalition to be formed, the men in the
cabal K ′ must have better partners, but m can only be matched to his M0-
partner, who is on the front of his list. (2) Cabals other than K not involving
m also cannot be realized, because all we have done is to shift M0(m) to the
right of other men’s preference lists. If a coalition containing such a cabal is to
be realized, the accomplices of the coalition have to shift the preferred women
in the cabal to the right of their lists. But M0(m) is not one of them. Hence,
such a coalition cannot succeed.

By applying the above argument repeatedly, we can make all cabalists in
M − (H ∪ K) become hopeless men. For the men in the cabal K (which is
now a maximal coalition), use the same argument we have used before: for each
mi ∈ K, shift M0(mi−1) and M0(mi) to the first two places in his list. Let
all men in K propose first. The “balance” of K can be broken only by some
true hopeless men (those originally in H, instead of those false ones we created,
because the latter will only propose to their M0-partners and stop. Moreover,
Lemma 3 guarantees that H be non-empty). By the above argument, we reach
the conclusion that every coalition has at least one accomplice who is a hopeless
man. ut

By Theorem 4, we know that an all-win league is impossible. A hopeless
man never improves his lot by the coalition strategy, which means that he can
never attain the first requirement in Definition 3. Combining Theorem 3 and
Theorem 4, we derive our major result in this section:

Theorem 5. It is impossible to find a league, thus a successful randomized strat-
egy as defined in Definition 3 cannot be formed.

5 In Pursuit of Motivation

In this section, we show it is possible to devise a randomized strategy in which
every cheating man can expect to get a better partner. The crucial point is that
these liars must be willing to take the risk of getting worse partners. We first
introduce another lying strategy.

To do this we must imagine that a man will seek to improve the expected
rank of his partner. This will by no means always be the case, since his ratings
of women might be very unevenly spaced (and it would be somewhat against
the spirit of the stable matching problem to disallow such ratings). Thus, we can
realistically claim only that such groups of liars may exist.

Lemma 4. Victim Strategy: Suppose M0(m) �m M0(m′) and M0(m) �m′

M0(m′). And for all mi ∈ M− {m,m′}, if M0(m′) ∈ PL(mi), then m �M0(m′)

mi. Let m submit a falsified list of the form
(πr(PL(m)∪M0(m′)),M0(m), πr(PR(m)−M0(m′))), then in the resulting match-
ing Ms:

1. For m (the victim), Ms(m) = M0(m′);
2. For m′ (the benefiter), Ms(m′) �m′ M0(m′);
3. For men mi ∈M− {m,m′},Ms(mi) �mi M0(mi).



Proof. We construct a stable matching M∗ as follows: Retain all the couples in
M0 except that we exchange the partners of m and m′.

We claim that the constructed M∗ is stable, since every man, except m, has
either the same or a better partner. For m, he also gets a “better” partner, since
M0(m′) is now on the left of his perjured preference list. And there is no danger
of the existence of a blocking pair containing M0(m′), since m is more favored
by M0(m′) than any other man putting her on the left of his list.

If the constructed M∗ is not men-optimal, then the “true” men-optimal
matching (after the cheating) Ms will still have the stated properties. Men-
optimality of Ms ensures that every man gets the best possible partner among
all stable matchings. The only exception is m, who can not get a better partner
than M0(m′) in Ms, because of the Dubins-Freedman Theorem. ut

M0-matching Ms-matching
Men’s List Women’s List Men’s (Falsified) List Women’s List
A: bdace a: BADCE A:bdcae a: BADCE
B: cdbae b: CBADE B:cdbae b: CBADE
C: adcbe c: ACBED C:adcbe c: ACBED
D: aebcd d: EDBCA D:aebcd d: EDBCA
E: dabce e: DBECA E: dabce e: DBECA
The Match Ranking for men in M0: A(a,3), B(b,3), C(c,3), D(e,2), E(d,1)
The Match Ranking for men in Ms: A(c,4), B(b,3), C(c,1), D(e,2), E(d,1)

Fig. 3. An example: Man A shifts woman c from the right to the left of his list. He gets
woman c and man C gets woman a. Note man B (C) also can use the same strategy
to help man A (B).

A simple example for the victim strategy can be found in Figure 3. The
problem is the practicality of the victim strategy: where can we find people
with such a self-sacrificing spirit? The randomness of the victim strategy makes
possible that some men be willing to play the role of victim (occasionally).
Here we present an easy example. As shown in Figure 3, a successful alliance is
composed of men A, B and C. Man A (or B, or C) can play the role of victim
to help man C (or A, or B). Suppose we assign the probability of 1/3 to each
one of them to play the victim; then the expected rank of their partner would
be 8/3, which is an improvement.

6 Coalition Strategy in Random Stable Matching

In this section, we modify the coalition strategy for the scenario that the stable
matching is chosen at random. The basic idea is to manipulate men’s preference
lists so as to create as many “good” matchings (in which men get higher-ranking
partners) as possible.

It is well-known that the set of stable matchings constitute a distributive
lattice. In the following, we investigate what happens to the lattice when a



subset of men adopt the coalition strategy. It is easy to see that if men shift
women from the left to the right of their lists but without permuting the right
portions of their lists, all the original stable matchings remain stable with regard
to the falsified lists.

The following is good news for cheating men: even if the authority all of a
sudden decides to change the men-optimal matching to a women-optimal one,
they will not be worse off than when they are truthful.

Lemma 5. Given a subset of men S ⊆ M, let every member m ∈ S submit a
falsified list of the form (πr(PL(m) − X),M0(m), πr(X), PR(m)), X ⊆ PL(m).
Then, in the women-optimal matching, every man still gets his M0-partner.

Proof. This can be observed by the fact that men never receive proposals from
women ranking higher than their M0-partners. ut

By Lemma 5, when the coalition strategy is used, the new women-optimal
matching will be identical to Mz, the original one when everyone is truthful.
Therefore, Mz is still the maximal element in the new lattice L′. As previously
alluded to, the original men-optimal matching M0 is also an element in the new
lattice L′ (but no longer the minimal element, which is now the new men-optimal
matching Ms realized by the coalition strategy). We next show that there is no
newly-created stable matching that precedes M0.

As defined by Gusfield and Irving [7], given a stable matching M , an (ex-
posed) rotation is a circular list σ = ((m1, w1), (m2, w2), · · · , (m|σ|, w|σ|)), in-
dices taken modulo |σ|, such that:

1. M(mi) = wi,
2. mi−1 �wi mi,
3. If wi �mi w �mi wi+1, then M(w) �w mi.

“Eliminating” the rotation σ from M means that every man mi changes
his partner from wi to wi+1 (a worse partner for him). Eliminating an exposed
rotation σ in a stable matching M creates another stable matching M ′ = M/σ,
which is an immediate predecessor of M in the lattice [7, Lemma 2.5.2]. The
following lemma explains what would happen to these rotations when men shift
women from the left to the right of their lists. We present a slightly stronger
result than is required. Let A and B be any ordered lists.

∏
r(A,B) denotes any

mixed list of A and B such that the order of elements in A and in B is still
preserved.

Lemma 6. Given true preference lists, let M and M ′ = M/σ be two stable
matchings where σ is exposed in M and M0 � M . Given a subset of men S ⊆M,
let every member m ∈ S submit a falsified list of the form
(πr(PL(m)−X),M0(m),

∏
r(πr(X), PR(m))), X ⊆ PL(m), then in M , σ is still

exposed with regard to the falsified lists.

Proof. Consider any man mi ∈ S involved in an original rotation σ. Consider any
such woman w being shifted by mi (who originally ranks higher than M0(mi) in
mi’s list); w must prefer her partner in M0 over mi, otherwise, (mi, w) blocks
M0. By the fact that M0 � M , in M , w can not be matched to some one



who ranks lower than M0(w) in her list (otherwise, (M0(w), w) blocks M), so
M(w) �w M0(w) �w mi. Therefore, the fact that in the falsified list of mi, w
appears between wi and wi+1 does not affect the rotation σ. ut

Gusfield and Irving proved that a stable matching can be generated by re-
peatedly eliminating the exposed rotations [7, Corollary 2.5.2]. Combining these
observations, we have,

Theorem 6. Given a subset of men S ⊆ M, let every member m ∈ S submit
a falsified list of the form (πr(PL(m)−X),M0(m), πr(X), PR(m)), X ⊆ PL(m).
Then the following holds:

– The new lattice L′ ⊇ L, the old lattice.
– The set of rotations found along any maximal chain of L′ is a superset

of rotations found along any maximal chain of L. M0 can be generated by
eliminating from Ms all the newly-created rotations with regards to the fal-
sified lists. Moreover, the newly-created rotations only involve men who get
a strictly better partner in Ms.

– For a new stable matchings M [ in L′ − L, either M [‖M0, or M [ � M0.

We now have all the necessary tools to present the major result.

Theorem 7. Suppose Ms is a men-optimal stable matching realizable by the
coalition strategy and C = (K, A(K)) be the corresponding coalition. Let men in
the coalition cheat as follows:

– If m ∈ A(K) − K, m submits a falsified list of the form (πr(PL(m) −
X),M0(m), πr(X), PR(m)), where X is the set of women defined by the coali-
tion strategy for realizing Ms.

– If m ∈ K, m submits a falsified list of the form (Ms(m),M0(m), πr(PL(m)−
Ms(m)), PR(m)).

Then in all the newly-created stable matchings, every man in the coalition C
gets a partner whose rank is at least as high as his M0-partner.

Proof. We first consider the men in the cabal K. Since there is no woman between
their Ms-partners and M0-partners, there is only one rotation δ̂ between Ms and
M0. For a contradiction. Suppose there exists a newly-created matching Mφ in
which men in K get worse partners than their M0-partners, δ̂ must be eliminated.
By Theorem 6, Mφ must be one of the stable matchings in the original lattice
L.

For the accomplices in A(K) −K, if in a stable matching, they, along with
the men in the cabal K, get worse partners than their M0-partners, the same
argument in the preceding paragraph can be applied. The special case that needs
to be taken care of is some newly-created stable matching Mφ which can be
generated from Ms by eliminating some (original) rotations excluding σ̂ (so the
men in the cabal K are still matched to their Ms-partners). Suppose that in Mφ,
some accomplice m gets a worse partner than his M0-partner. By Lemma 6, m
must be matched to some woman ranks lower (in the falsified list) than all those



women he shifts from the PL(m) (who now ranks lower than M0(m) but still
higher than all women in PR(m)). We claim that Mφ cannot be stable. Suppose
w be any woman being shifted in m’s list. Since σ̂ is not eliminated, w is still
a partner of some man in the cabal K, and, by definition of an accomplice, w
prefers m over that man in the cabal. Therefore (m,w) blocks Mφ. ut

In the newly-created matchings, since men in the coalition only get partners
ranking at least as high as their M0-partners, the following is immediate:

Corollary 2. Suppose men submit their preference lists as defined in Theo-
rem 7. Each man in the coalition has a new probability distribution over his
partners which majorizes the original one when everyone is truthful.

Hence, by this corollary, the accomplices are finally rewarded for their co-
operation. As opposed to the Dubins-Freedman Theorem, in this random stable
matching setting, a subset of men can cheat together and all get (expectedly)
better partners.

7 Conclusion and Related Work

In this work, we propose a variety of lying strategies, both deterministic and ran-
domized, for men in the Gale-Shapley algorithm. We also strengthen the classical
theorem stating that honesty is the best policy for men. Even with a randomized
strategy, this theorem still holds. The theorem can only be circumvented if liars
are willing to take risk. We also display the greater applicability of the coalition
strategy in the context of random stable matching.

The coalition strategy causes women to be worse off. In some situations
women can have counter-measures if any one of them is going to receive more
than one proposal. However, the Gale-Shapley algorithm has a feature that can
be exploited by men: women cannot say no when they receive their first proposal.
In other words, men can get together and decide upon a “best” coalition strategy
by formulating the problem into the house-swapping problem. With each man
initially being assigned his M0-partner, the goal is to find the strict core of the
market [11]. Once men agree with one another which women they are supposed
to be matched to, they put these women at the tops of their lists.

Related Work The stable marriage problem, due to its theoretical appeal and
practical applications, has spawned a large body of literature. For a summary,
see [7, 9, 12]. Several early results [2, 3, 6, 10] indicated the futility of men-lying
and this probably caused later work to focus mostly on women-lying strategies.
Gale and Sotomayor [5] presented the women lying strategy of truncating their
lists. Immorlica and Mahdian [8] showed that if men have preference lists of
constant size while women have complete lists and both are drawn from an
arbitrary distribution of preference lists, the chance of women gaining from lying
is vanishingly small. Teo et al. [16] suggested lying strategies for an individual
woman. About permuting men’s preference lists to manipulate the outcome of
the matching, there is an example in the book of Gusfield and Irving [7, P.65].
Another example is given by Roth and Sotomayor [12, P.115]. Roth and Vate [13]



discussed strategy issues when the stable matching is chosen at random. They
proposed a truncation strategy and showed that every stable matching can be
achieved as an equilibrium in truncation strategies.
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A Algorithms for the Coalition Strategy

In this section, we discuss some algorithmic questions arising from our coalition
strategy. In particular, we are concerned about the following:

1. Given a man m, who do we find out whether the coalition strategy can help
him to get a better partner?

2. Similarly, how do we find out which women are possible partners for him
based on the coalition strategy?

3. How do we identify cabalists and hopeless men?

To answer all these questions, we need to identify the cabals of the coalitions.
Once a cabal is found, we can find its necessary accomplices in linear time by
scanning through men’s lists.

We first define a partial order among all matchings that are at least as good
as M0. For any matching M � M0, with a set of possible coalitions in it, can
be transformed into one of its immediate successors in the poset by realizing
any one of its coalitions. Moreover, if there is no more possible coalitions in the
matching µ, then u is a minimal element in the poset. Note that such a matching
satisfies the strong pareto-optimality, i.e., no subset of men can exchange their
partners and all are better off. In a sense, such a matching M can be regarded
as the best possible outcome for men (since it is impossible for them to find a
matching so that all of them are better off than in M .

We present the algorithm. Create an envy graph G = (M, E), in which a covet
arc is directed from m to m′ if m prefers M0(m′) to M0(m). A directed cycle
indicates a possible cabal. A breadth-first-search can check whether a specific
man belongs to some cycle (and thus whether he has the chance to get better
partners using the coalition strategy). But it is better to identify all cabalists
and all hopeless men “in one shot.”

The classical algorithm for finding strongly connected components [15] achieves
exactly this goal. We can remove the arcs connecting two strongly connected
components since they do not belong to any cycle. For a man m, a remaining
arc (m,m′) implies that m′’s partner M(m′) is a possible partner for m based
on the coalition strategy. Moreover, men who are left without outgoing arcs are
hopeless men.

As to finding minimal elements in the poset, we refer to the top-trading-cycles
method [14]. Abraham et al. [1] gave a linear-time implementation.
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