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Abstract. We investigate Knuth'’s eleventh open question on stablehirags. In
the stable family problem, sets of women, men, and dogs aengall of whom
state their preferences among the other two groups. Theigtmbrganize them
into family units, so that no three of them have incentiveasett their assigned
family members to join in a new family. A similar problem, tead the threesome
roommates problem, assumes that a group of persons, edcthwiit preferences
among the combinations of two others, are to be partition&gtriples. Similarly,
the goal is to make sure that no three persons want to brealithuph®ir assigned
roommates.

Ng and Hirschberg were the first to investigate these twolprob. In their for-
mulation, each participant provides a strictly-orderest tf all combinations.
They proved that under this scheme, both problems are NReden Their pa-
per reviewers pointed out that their reduction exploitonsistenpreference lists
and they wonder whether these two problems remain NP-cdeiblereferences
are required to be consistent. We answer in the affirmative.

In order to give these two problems a broader outlook, we edssider the pos-
sibility that participants can express indifference, oa tlondition that the pref-
erence consistency has to be maintained. As an example ppege a scheme in
which all participants submit two (or just one in the roomasatase) lists ranking
the other two groups separately. The order of the combinaii® decided by the
sum of their ordinal numbers. Combinations are tied wherstimes are equal. By
introducing indifference, a hierarchy of stabilities camdefined. We prove that
all stability definitions lead to NP-completeness for exigte of a stable match-
ing.

1 Problem Definition

Knuth proposed twelve open questions on the stable matphiddem [9]. The eleventh
question asks whether the well-studied stable marriagelgmo[3] can be generalized
to the case of three parties, women, men, and dogs. In therpap call this problem
the stable familyproblem and refer generically to all participants in thislgem as
“players.” Roughly speaking, given sets of women, men, amgisdall of whom state
their preferences among the other two groups, the goal isganize them into family
units so that there is nblocking triple three players each preferring one another to
their assigned family members. A problem in a similar veihjoh we call thethree-
some roommatgzoblem, assumes that students are to be assigned to the dormitory
bedrooms in some college. They state their preferencegaidimbinations of two other



persons. The goal is to partition them into sets of size 3hSugartition (matching) is
said to be stable if no three persons each prefer the othéngitcassigned roommates.

As Knuth does not specify any precise definition of “prefesshand “blocking
triples,” one can conceive a number of ways to define the tvablpms. One possi-
ble formulation is that each player submits a strictly-oedepreference list, ranking
all possible combinations that she/hel/it can get in a matghive call such a scheme
strictly-ordered-complete-lisSOCL) scheme. In this setting, Ng and Hirschberg [10]
proved that both problems are NP-complete.

At the end of their paper, Ng and Hirschberg mentioned theit tieviewers pointed
out their reduction allows preference to leonsistent For example, mamn might
rank (w1, dy) higher than(ws, d1), but he also rankéws, d2) higher than(wy, ds). In
other words, he does not consistently prefer womarover womanw, (nor the other
way around). Independently, Subramanian [11] gave annatie NP-completeness
proof for stable family, but his reduction also uses incstesit lists.

The reviewers of Ng and Hirschberg wondered whether thesgotablems remain
NP-complete if inconsistency is disallowed. To answer dgen question and to mo-
tivate some variants problems we will define, we introduce tbbtion ofpreference
posetsandsimple lists In stable family, assuming that each player has two sinigte |
in which two different types of players are ranked sepayatelpreference poset is a
product poset of the two simple lists. In such a poset, thebdoation (w,,d,) pre-
cedes another combinatidms, d2) only if w; ranks at least as high as, andd; at
least as high ad, in the simple lists. If neither combination precedes theegtthey
are incomparable. Similarly, in threesome roommates, thepence poset is the prod-
uct poset of the one simple list with itself. By this notiohetquestion raised by the
reviewers of Ng and Hirschberg can be rephrased as followdetheSOCL scheme,
if every player has to submit a preference list which Ighaar extensiorof her/his/its
preference poset, are the stable family and the threesoonemates still NP-complete?
We answer in the affirmative.

In an attempt to give these two problems a broader outlookher allow players
to express indifference by giving full preference lists @ining ties. In particular, to
capture the spirit of maintaining consistency in the prefiees, we stipulate that the full
list must be aelaxed linear extensioaf a preference poset: strict precedence order in
the poset has to be observed in the relaxed linear extermignincomparable elements
in the poset can be tied.

We propose the following scheme to make the above concepteten Suppose that
a player submits two simple lists (or just one in the roommatese). We create a full
list, ranking the combinations based on the sums of theinafchumbers. For example,
for manm, the combination of his rank-2 woman and rank-5 dog is as gmoithat of
his rank-4 woman and rank-3 dog; while both of them are iofen the combination of
his top-ranked woman and his top-ranked dog. We call suclhense precedence-by-
ordinal-numberPON) scheme. Th&€ON scheme produces full preference lists which
are relaxed linear extensions of preference posets. Afsocan envisage an even more
flexible scheme. For example, instead of giving “ranks,” pfeyers can provide “rat-
ings” of other players. The order of the combinations candaded by the sum of the
ratings; two combinations are tied only when the sums ofr ttagings are equivalent.



Setting theoretical concerns aside for a moment, the abmhenses are probably more
practicable whem is large, because a player only has to provide list® 0f) length,
while under theSOCL scheme, they have to give strictly ordered lists of €4@?).

By allowing indifference, we can define 4 different types @ddking triples and,
based on them, build up a hierarchy of stabilities. (Thigdrghy is similar to that
constructed by Irving in the context of 2-party stable matgh [7].)

— Weak Stable Matching: a blocking triple is one in which alleih players of the
blocking triple strictly prefer the other two members in thiple over their assigned
family members (roommates).

— Strong Stable Matching: a blocking triple is one in whicheddt two players of
the blocking triple strictly prefer the other two playerie triple to their assigned
family members (roommates), while the remaining playertmamdifferent or also
strictly prefer the other two players in the triple.

— Super Stable Matching: a blocking triple is one in which asleone player of
the blocking triple strictly prefers the other two playersthe triple to her/his/its
assigned family members (roommates), while the remainiagaps can be indif-
ferent or also strictly prefer the other two players in thplé.

— Ultra Stable Matching: a blocking triple is one in which dirée players in the
triple are at least indifferent to the others.

Note that if ties are not allowed in the full preference lists., theSOCL scheme,
then blocking triples can only be of degree 3. Thus there @arily one type of sta-
bility. For presentational reason, in this case, we refeéh#stability under th&OCL
scheme as the weak stability.

Our Results and Paper Roadmap We will prove in the paper that, if full prefer-
ence lists are (relaxed) linear extensions of preferensetgothe problem of deciding
whether weak/strong/super/ultra stable matchings exisH-complete in both the sta-
ble family problem and the threesome roommates problem.r&duction techniques
are inspired by Ng and Hirschberg’s, although the consisteequirement in the pref-
erences makes our construction more involved. In presgiatim result, instead of di-
rectly answering the open question posed by Ng and Hirsgish@viewers by studying
weak-stability, we make a detour to first study strong/slyttea stability. Introducing
them first helps us to explain our intuition behind the mormptex reduction for the
former problem.

As is well-known, the stable marriage and the stable rooramatroblems can
be solved inO(n?) time, by the Gale-Shapley algorithm [3] and by the Irvingcalg
rithm [6], respectively. Unfortunately, our results, agpwith Ng and Hirschberg and
Subramanian’s, indicate that attempts to efficiently sthestable matching problem
in generalized cases of three (or more) parties are unliteelye fruitful. This is not
surprising, as in theoretical computer science, the fine tietweerP andNP is often
drawn between the numbers two and three.

We organize the paper as follows. In Section 2, we presemssacy notation; Sec-
tion 3 proves the NP-completeness of strong/super/uldalestmatchings in the stable
family problem under th&ON scheme; Section 4 presents a reduction to transform



a stable family problem to a threesome roommate problens, éistablishing the NP-
completeness of strong/super/ultra stable matchingsdratter; Section 5 considers
theSOCL scheme and proves the NP-completeness of (weak) stablbinggcthereby
answering the open question posed by the anonymous rew@ivsig and Hirschberg.
Section 6 concludes and discusses related issues. Duecapastraint, we omit some
proofs. See [5] for full details.

2 Preliminaries

We useM, W, D to indicate the sets of men, women, and dogs in stable fahiéy;
students in threesome roommates are denotéd &s stable family,L,(p) denotes the
simple list of playerp on the players of typg € { M, W, D}. For exampleLyy, (m) is
the simple list of mamn among women/V. In threesome roommates, we simply write
L(m), wherem € R, dropping the subscript.

In general, we use the notationto denote the precedence order (in either posets
or in linear lists). For example, supposing thatranks higher thap; in the list{, we
write p; >; p;. In a poset), two elements;, ¢; either one precedes the other, which we
write ¢; >~¢ ¢; Or q; ¢ ¢;, Or they are incomparable, which is expressed;#gq; .
The notation- is also used to express explicitly the order of players inpénfists. For
example, we writd.(p) = ¢ > r > -- - to show that playep prefers player to player
r. Note also that the notation- denotes the remaining players in arbitrary order. We
use the notatiom,(q) to indicate the rank of on playerp’s simple list.

We say a blocking triple is of degrégif i players strictly prefer the triple while the
remaining3—i players are indifferent. Unless stated otherwise, in ttielar when we
say some triple “blocks,” it is always a blocking triple ofgtee 3.

A preference poset constructed from listeindi, is written ag; x I5. To be precise,
given listsi; andl; and the posely x 2, supposing thafp;, p;}, {pi,pj } € l1 x la,
then{pi,p;} =i xi, {pir,p;r} only if (1) pi =1, pir, pj = pjr, OV (2)pj =1, Pjr i =
pir, Of (3)p; =1, pir,p; >1, Py The notationt(X) means an arbitrary permutation
of elements in the seX. E(I; x l3) is an arbitrary linear extension of the preference
posetl; x Is.

3 Reducing Three-dimensional Matching to Stable Family

In this section, we focus on the NP-completeness of straaigesmatching under the
PON scheme. Similar results hold for super stable and ultralestatatchings by a
straightforward argument and will be discussed at the enisfsection.

Our reduction is from the three-dimensional matching peablone of the 21 NP-
complete problems in Karp’s seminal paper [8]. The problastance is given in the
form?Y” = (M, W,D,T), whereT C M x W x D. The goal is to decide whether
a perfect matching\t C 7 exists. This problem remains NP-complete even if every
playerinM U W U D appears exactly 2 or 3 times in the triplesiof4].

We first explain the intuition behind our reduction. Suppgsthat manm; ap-
pears in three tripleém;, w;q, diq ), (M, Wi, dip), (M, Wie, dic) IN T, We create three
dopplegangersm;i, m;2, m;3 in the derived stable family problem instan@é. We
also create four garbage collectots), , d?,, w?,, d%,. Each dopplegangen;; puts a



woman-dog pair, with whom mam,; shares a triple, and the garbage collectors on top
of his two simple lists. The goal of our design is that in a Eabatching, exactly one
doppleganger will be matched to a woman-dog pair with whenshares a triple irf,
while the other two dopplegangers will be matched to gartmaijectors. In the case
that there are only two triples iff containing manmn;, we artificially make a copy of
one of the triples, making the total number of triples thi@ad treat him as described
above.

Now, we will refer to the set of dopplegangers./as;, M-, M3, the set of garbage
collectors asVy{, Wy, D7, Dj and the original set of real women and real doggla9.
Collectively, we refer to them a& = M; UMoUM3zUW] UWSUWUD{UDSUD.

To realize our plan, we introduce two gadgets. The first isdhsets of “dummy
players:m? w¥ d¥ m¥ w¥, d¥, m¥ w¥, df. Their preferences are such that they
must be matched to one another in a stable matching. To bseréeor; € {1, 2,3},

~ Lw(mf) = wl = - Lp(m¥)=df = -
_LM(w;&):mf>---- 7LD(’UJ;-#)= f>_

These nine dummy players are used to “pad” the preferenisedisother players.
Their purpose will be clear shortly.

Another gadget we need is a set of “guard players” for eaclpldganger inM; U
My UMs. They will make sure that in a stable matching, a dopplegamggwill only
get a woman-dog pair with whom; shares a triple ir¥” or those garbage collectors.
As an example, consider the dopplegangei. He has six associated guard players,

m2l, wil, dit,mb3 w?, d27 and their preferences are summarized below:

— Ly(ma) = wl = w?) = wig = 0} = w2 = w? = wd = w? ~ ...,

Lp(miy) = d?) = d%) = dig = d22 = &2} = d¥ = dff = df - -

- Lw(m) =w} = Lp(m}}) = djf = -
Lw(mi) = wj >, Lp(mj) = djf = -

= Lym(wl) =miy =mi} =+ Lp(wl) = df = df = -
L) =mi = m3 = - Lp(w) = dF = df =

= Lp(d}) = mg = mb = o Lyy(d2) = wit = w] =
Laa(d3) = miy = mi2 =+ Ly (d3?) = wi? = w] = -

The following case analysis proves that, in a stable matchiy, m;; will get only
players from the sefw?, , wi,, w;q, dJ;, d%, dia}-

— Suppose thaty;; gets two players ranking below?; andd’} respectively. It can be
observed that for both’!, d’1, the best man is;;. Therefore, they would prefer
m;; and so does he them, inducing a blocking triplé/f6, a contradiction.

— Suppose thain;; gets a womamnw € {w;,, wd;,wl,} and a dogl ranking below
d?!. In this case, we can be sure thatannot bed” or d¥ or d¥, since their
preferences guarantee that they will only be matched tor ciinamy players. So,
oy (W) 7, (d) > 10, whiler,,, (w247, (d2F) = 9, causingm;;, w?l, d’F)



to become a blocking triple. This example explains why wedrtegpad the simple
lists of m;; with dummy players.

The case that;; gets adogl € {d;,, d/,, d%} and a womanw ranking lower than
w?? follows analogous argumentsy;1, w,, d%) will become a blocking triple.

— Suppose thatn;; gets only one of the players from the get’}, w’?, d2}, d’?}.
Without loss of generality, we assume titat;;, w?},d?),d® # d:}, is part of the
matching. For woman®!, dogd® cannot be the dummy playelﬁf. Therefore,
Pypr (Min) + 7,0 (d%) > 4 > 3 = rym(m}) + 0 (d71). Similarly for dif,
T (m?) + T (w?}) = 3, which is better than whatever combination it can get.
Therefore, we have thdtn’}, w?}, d’) constitutes a blocking triple td1’. This
example shows why we need to pad the preferenag’bfd’} (and alsow’?, d?
with dummy players.

— Suppose thatn;; getsw’ andd’}. Note thatw?! > w?? andd’? > d’}. There-
fore, m;; is indifferentto the combinations ofv’? and d%2, sincer,,,,, (w’}) +
P (1) = 9 = 7, (W23) + 7y, (d2F). Additionally, w??, d°? strictly prefer
m;1. Hence(m;1, w??, d’?) constitutes a blocking triple of degree 2 id’. This
explains why we need two sets of guard players to guaransétid doppleganger
will “behave” in a stable matching.

The case that;; getsw?? andd’? follows analogous arguments.

The other two dopplegangers;», m;3 also have six associated guard players for
each; they, along with their associated guard players, bisnidar preferences to guar-
antee thatn;> andm,s will only get garbage collectors or the woman-dog pairs with
whom m; shares triples. The only difference in the lists is thgt andm;s replace
Wiq, dig With wyp, d;p,, and withw,., d;., respectively, in their simple lists. For a sum-
mary of the simple lists of members in the st see Table 1. It should be noted
that w?,, d, (and alsowf,, d%,) rank the three dopplegangers in reverse order. This
trick guarantees that the dopplegangers will not form bilegkriples with the garbage
collectors, defeating our purpose. For example, suppose, w;,,d;,) is part of the
matching, we want to avoi¢im;;, w?,,d?,) to becoming a blocking triple. It can be
easily verified that itvf; andd?, are matched ten;, or m;3, such a blocking triple will
not be formed.

Finally, garbage collectors also use dummy players to pad simple lists, to
avoid the awkward situation that some doppleganger is redtttha real woman and a
garbage collector dog (or a real dog and a garbage collecioram). How this arrange-
ment works will be clear in the proof below.

Lemma 1. Suppose a stable matchidd’ exists in the derived stable family problem
instanceY”. The following facts hold id/’:

— Fact A: The three sets of dummy players are matched to ondé@not

— Fact B: For each dopplegangern,;; € M; U My U Mg, the ranks of his family
members inV/’ are at least as high as 3 in his simple lists.

— Fact C: The six associated guard players of each dopplegamge € M; UM, U
M3 are matched to one another.



Table 1.The simple lists of all players in the s& = M; UMaUMsUW{ UWI UWUDJ U
DJ UD. We assume that there exist three triples, wiq, dia), (M4, Wi, div), (M4, Wic, dic) I
7.

Player Simple Lists

] - g g ] b1 b2 # # #
mi1 € My Lw(min)=wiy = wi) = wia = wiy = wii = wi = wd =wi =
Lp(ma) =d% = &%) = dia = &3 = &3 = dff = dff = df ~
miz € My Ly (miz)=wh = wi = wi = wis = wis = wi = wf = wi =
Lp(miz) = d% = d%) = di = d23 = d2% = d¥ = dff = d¥f ~

mis € My L (maz)—w?y = wd = wie = wia = w3 = w} = w = w] =
Lp(miz) = d% = d%) = die = d23 = do3 = df = d¥f = dIf ~
wi e Wy Lam(wdy) = maix = mag = myz = - -
Lo(wd) =dé = df = dif = df ~
dgl GD? LM(d?l):mi3>mi2>mi1>'--
Ly (d})) = w} = w? - w? >w§k’E e
wdy € WY La(wiy) =mi > mye > mZ; -
Lp(wd) =d’, = df = dif = df ~
de € 'Dg L (de) m4i3 > M42 > Mi1 > -
L (d%) = wé = wi = wif ~ wf >
Lo(w) =
deD Lai(d) =
Lw(d) =

Proof. Fact A follows directly from construction. Fact B is true as Wave argued in
the case analysis before. Fact C is true because if the glererp are not matched to
one another, they will blocRZ’, unlessw?}, 2} or w??, d;? are matched ten; in M’,

but this is impossible because of Fact B. a

Lemma 2. Suppose a stable matchidd’ exists in the derived stable family problem
instanceY”. Consider the garbage collectots?,, d?,, w¥,, dJ, created for manm, €
M. We must have thabzl, 7, belong to the same triple, and thatwy,, d7, belong
to the same triple, in M’. Moreover, int; andt,, the man player must be one of the
dopplegangersn;i, m;2 andms.

Proof. We will prove this lemma by progressively establishing tbkkofving facts.
Fact D: wf, anddY, must belong to the same triplein A/’.

Proof: For a contradiction, suppose thaf, andd?, are in different triples in\/’.
We claim that(m;, w?,, d?,) forms a blocking triple. It is obvious that;; and wa
prefer such a triple. Now let the man and woman partnerg.,pbe m? andw‘f’ # wy;
then by Fact A in Lemma Irys (w) > 5. We have that ;5 (m;1) + 749, (w; h)=4<
6 < rgg, (m?) 4 rqg (w?). So de will also preferm;; and wh, formmg a blocking
triple with them to}?”. This proof also shows why we need to pad the preferences of
the garbage collectors.



Fact E: wf, andd?, must belong to the same triplein A/’

Proof: For a contradiction, suppose thah®!, w?,, d*!) and (m®?, w??, d?,) are
triples in M’. There exists at least one dopplegangefrin;, m;2, m;3} preferring the
combination ofw?, andd?, (since at most one doppleganger can be matched’jo
andd?,). Let such a doppleganger be;;. Then by Fact A in Lemma &;,s (m;;) +
Tpo (df) <4.<6 <1y (m®h) + T, (d®?); and similarly,rgs (mi;) + rqs (w};) <
4 <6 <rgo (m??) +rge (w??), implying that(m;;, wf, , 7, ) blocks M.

Fact F: w, anddy, must be matched to one of the dopplegangersoh M’, and
so arewy, anddy, .

Proof: If w?, andd?, are not matched to a dopplegangemef, then any dopple-
gangerm,; will prefer the combination of them over his family membecsusing
(mgj, wly,d%,) to block M’'. A similar argument applies to the casewf, andd?,,
giving the lemma. a0

By the previous two lemmas, we have established the coesstaf the reduction
on one side.

Lemma 3. (Sufficiency) If there exists a stable matchiiff in the derived stable
family problem instanc&”, there exists a perfect matching in the original three-
dimensional matching instan@e

To show the necessity, we need to prove one more lemma.

Lemma 4. In a matchingM’ in the derived stable family problem instan®é sup-

pose that dummy players are matched to one another. Suptiserfthat the garbage
collectors ofm; are matched to two of the dopplegangersiof while the remaining
doppleganger;; is matched to a real woman and a real dog with whomshares

a triple in 7 in the original three-dimensional matching instarife Then there is no
blocking triple in which the dopplegangeis;, m;2, andm;s are involved.

Proof. We assume thatm1, wi,, d%), (miz, wi), d?)), (mis, wic, dic) € M'. Other
cases follow analogous arguments. We claim that there duexist a blocking triple of
the form (m;;, wd, d®), (myj, wh, d??), (m;, w?3,d?,), and (m;;, w?*, d%,) where
do £ d?), d9? # dy, w? £ w), andw? # wl,. We only argue the first case. Since
d*t ¢ {d¥,di  di}, we haver,s (d°') > 5 > 3 = ry9 (d)) + 7,9 (mi2). Therefore,
w?, has no incentive to join the combination:ef; andd®.

Now we only need to consider the three remaining potent@diihg triples:
(Mg, wiy, ddy), (Mg, wih, d%), (mas, wf),d?)). It can be easily verified that they do
not block A" because the orders of the three dopplegangers in the sisdef w?,
andd?, (and alsawy, andd?,) are reversed. o

Lemma 5. (Necessity) Suppose that there is a perfect matchirig the original three-
dimensional matching instan@@ There also exists a stable matchihg in the derived
stable family problem instanc¥'.



Proof. We build a stable matching/’ in 7’ as follows. Let the dummy players

{mf, wf, df}, 1 < j < 3, be matched to one another. Given any doppleganger
let his guard playergm?}, w}}, d)t}, {m}? w?, d;?} be matched to one another as
well. Furthermore, suppose that;, w;., d;,) € M. Let the doppleganger who lists
w;, andd;, above his guard players be matchedug@ andd;,, while the other two
dopplegangers be matched to the garbage collectors. Bgahgruction, it can be seen
that none of the guard players and dummy players will be gartidocking triple. This,

combined with Lemma 4, completes the proof. a

Suppose that in the given three-dimensional matchingnest#, |M| = |[W| =
|D| = n. Then in the derived instan&¥, we use in al3n dopplegangers|,8n guard
players,4n garbage collector9n real women and real dogs, and 9 dummy players.
Their preferences (in the form of simple lists) can be geteerin O(n?) time. There-
fore, this is a polynomial-time reduction. Also, given angtehing, we definitely can
check its stability irD(n?) time. Combining the two facts with Lemma 3 and Lemma 5,
we can conclude:

Theorem 1. It is NP-complete to decide whether strong stable matchaxist under
thePON scheme. Therefore, the question of deciding existenceafsttable matching
is also NP-complete when the full preference lists are cest, i.e., when they are
relaxed linear extensions of preference posets.

Super Stability and Ultra Stability It can be observed that throughout the proof, all
arguments involving blocking triples use those of degre&t& only exception is the
occasion that we argue that a doppleganger cannot be matziésiguard players in
a stable matching. To recall, supposing that;;, wg;, d;}) is part of a matching, then
(mij,wgf, dgf-) is a blocking triple of degree 2. (Or if the latter is part oktmatch-
ing, the former is a blocking triple of degree 2). Therefover reduction only uses
blocking triples of degree 2 or 3; both are still blockingptés with regard to super
stability and ultra stability. Moreover, when we argue theisg-stability of matchings
in the reduction, we never allow blocking triples of degrem @egree 1 to exist. There-
fore, essentially, our reduction has also established fxedimpleteness of super stable

matchings and ultra stable matchings.

4 Threesome Roommates with Relaxed Linear Extensions of
Preference Posets

In this section, we exhibit a reduction of stable family teeisisome roommates, thereby
establishing the NP-completeness of strong/super/ultiales matchings in the latter
problem. Instead of thON scheme, we use the more general scheme in which any
relaxed linear extension of preference posets is allowedlchiidose to use this scheme
because the involved reduction technique has a differamrflBlonetheless, we do have
another reduction for thBeON scheme. See [5] for details.

Let an instance of stable family problem®Be= (M, W, D, ¥), where? represents
the preferences of the players ivt U W U D. We create an instance of threesome



roommateq” = (R’,¥’) by copying all players inM U W U D into R'. Regarding
the preferences i#t’, we first build up the simple lists of all players.

— Supposen € M, L(m) = Ly(m) = Lp(m) > 7(M — {m}).
— Supposav € W, L(w) = Lp(w) = Ly(w) = 7(W — {w}).
— Supposel € D, L(d) = Lap(d) = Ly(d) = w(D — {d}).

In words, a man lists all women and then all dogs, based ré&gploon their origi-
nal order in his simple lists it#. He then attaches other fellow men in arbitrary order to
the end of his list. Women and dogs have analogous arrandsinetheir simple lists.
Having constructed the simple lists, we still need to buddsistent relaxed linear
extensions. We will exploit the following lemma, whose proan be found in the full
version [5].

Lemma 6. Let! be a strictly-ordered list. Suppose thds decomposed into nonempty
contiguous sublistf1, I, - - - , ) such that (1)\)2.“:1 l; =1,(2)ife >, f,thene —; f,
and (3) ife € [;, f € 1,4 < j, thene >; f. Then there exists a linear extension of [
such that all combinations drawn froffd;, I, } precede all pairs drawn fronfl;/,1; },
provided thati < 5,7’ < j' and one of the following conditions holds (@@L x i’, (2)
i=1i,5<j.

By Lemma 6, we can construct the linear extensions as follows

— Considerm € M and assume thalV = Ly(m),D = Lp(m),N = 7(M —
{m}). His relaxed linear extension i€ (W x W) = X = E (W x N) >
E.(Dx D) > E (D xN) > E (N x N),whereX is the original relaxed linear
extension of mamn’s preference poset given ih.

— Considerw € W and assume thd? = Lp(w), N = Ly(w), W = 7(W —{w}).
Her relaxed linear extension i, (D x D) =Y »= E . (DxW) »= E (N xN) >
E.(N xW) = E.(W x W), whereY is the original relaxed linear extension of
womanw’s preference poset given ih.

— Considerd € D and assume tha&f = L (d), W = Lw(d), D = n(D — {d}). Its
relaxed linear extension i€, (N x N) = Z = E (N x D) = E.(W x W) >
E.(W x D) = E.(D x D), whereZ is the original relaxed linear extension of
dogd’s preference poset given ih.

To prove that the reduction froM to 7" is valid, we will rely heavily on the fol-
lowing technical lemma.

Lemma 7. In the derived instanc&”, if a stable matching\/’ exists, every ftriple in
M’ must contain a man, a woman, and a dog. Moreover, supposénttatmatching
M" in 7’ in which each player gets two other types of players as roaesnghen a
blocking triple cannot contain two (or three) players of ga@me type.

Proof. For the first part, we argue case by case.



1. If {m,w;,w;} € M’, there exists another man’ who can get neither a woman-
woman combination nor a woman-dog combination. By consitncm’ would
prefer any woman-dog combination to his assigned roommatag’. Similarly,
there exists a dod’ who gets another fellow dog ifd’. Such a dog would prefer
a man-woman combination to its assigned roommate® inFinally, womanw;
andw; would prefer a dog-man combination. Therefore, béth', w;,d’'} and
{m/, w;,d} block M’, a contradiction.

2. If {m,m;, m;} € M’, then there exists a womanwho gets a fellow woman in
M’ and a dogl who gets a fellow dog id/’. Thus, womany would prefer a dog-
man combination and dagwould prefer a man-woman combination. Therefore,
{m,w,d},{m;,w,d},{m;,w,d} block M’, a contradiction.

3. All other cases can be argued similarly.

For the second part, suppose that matching has the stated property. Given any
manm, by our construction, if there is a blocking triple contaigin and in which there
are two players of the same type, the only possibility of @kilog triple is{m, w;, w,}.
However, neithetu; norw; would prefer such a triple, because in our construction, for
a woman, a dog-man combination is better than a man-womabioation. The other
potential blocking triples not involving men follow analmgs arguments, thus giving
us the lemma. a

It is straightforward to use Lemma 7 to prove our reductioa i&lid one.

Theorem 2. Deciding whether strong/super/ultra stable matchingstexi the three-
some roommates problem is NP-complete when full prefellesisare consistent, i.e.,
when they are relaxed linear extension of preference posets

5 Weak Stability under the SOCL Scheme

Due to space constraint, we can only state our results ané kba details to the full
version [5].

Theorem 3. It is NP-complete to decide whether weak stable matchinig$ erder
the SOCL scheme, for both the stable family and the threesome rooesnpablems.
Hence, it is also NP-complete to decide whether a weak stablehing exists when
consistent preferences are allowed to contain ties: i.e.fthl preferences are relaxed
linear extensions of preference posets.

6 Conclusion and Related Problems

In this paper, we answer the open question of whether théesfamily and the three-
some roommates problems are NP-complete if all players taypeovide consistent
preference lists. We introduce a scheme in which playerseganess indifference on
the precondition that their preferences have to be comgidteder this scheme, a vari-
ety of stabilities are defined and we prove that all lead toddPwyplete problems.

Since we have proved that the general cases of stable familyteieesome room-
mates are NP-complete, a natural question to ask is whétler are special cases that



allow polynomial time solutions. Actually, examples of ttve problems that can be
solved efficiently do exist.

Consider the following scheme. Every player submits twopdintists. A man eval-
uates combinations first by the woman he gets, then by thealagyman first by the
man she gets, then by the dog; a dog first by the man it getshthdre woman. (Note
the asymmetry). It is not hard to see that we can apply the-Ghépley algorithm twice
to get a weak stable matching: letting the men propose to wame then propose to
dogs. Women and dogs make the decision of acceptance otiogjdased on their
simple lists of men [2]. Merging the two matchings will givesiable matching in the
stable family problem.

However, even a little twist can make the above scheme hasdlt@. Suppose a
man decides first based on the woman he gets and then the dogyanvirst based on
the dog she gets and then on the man; a dog decides first batieel iman it gets then
on the woman. The Gale-Shapley algorithm no longer works [1]

Interestingly, the above scheme is reminiscent of anothengroblem allegedly
originated by Knuth. Suppose that a man has only a simpléolistfomen; a woman
has only a simple list for dogs; a dog has only a simple listnfi@n. This problem is
calledcircular stable matchinglts complexity is still unknown.
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