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Abstract. We investigate Knuth’s eleventh open question on stable matchings. In
the stable family problem, sets of women, men, and dogs are given, all of whom
state their preferences among the other two groups. The goalis to organize them
into family units, so that no three of them have incentive to desert their assigned
family members to join in a new family. A similar problem, called the threesome
roommates problem, assumes that a group of persons, each with their preferences
among the combinations of two others, are to be partitioned into triples. Similarly,
the goal is to make sure that no three persons want to break up with their assigned
roommates.
Ng and Hirschberg were the first to investigate these two problems. In their for-
mulation, each participant provides a strictly-ordered list of all combinations.
They proved that under this scheme, both problems are NP-complete. Their pa-
per reviewers pointed out that their reduction exploitsinconsistentpreference lists
and they wonder whether these two problems remain NP-complete if preferences
are required to be consistent. We answer in the affirmative.
In order to give these two problems a broader outlook, we alsoconsider the pos-
sibility that participants can express indifference, on the condition that the pref-
erence consistency has to be maintained. As an example, we propose a scheme in
which all participants submit two (or just one in the roommates case) lists ranking
the other two groups separately. The order of the combinations is decided by the
sum of their ordinal numbers. Combinations are tied when thesums are equal. By
introducing indifference, a hierarchy of stabilities can be defined. We prove that
all stability definitions lead to NP-completeness for existence of a stable match-
ing.

1 Problem Definition

Knuth proposed twelve open questions on the stable matchingproblem [9]. The eleventh
question asks whether the well-studied stable marriage problem [3] can be generalized
to the case of three parties, women, men, and dogs. In this paper, we call this problem
the stable familyproblem and refer generically to all participants in this problem as
“players.” Roughly speaking, given sets of women, men, and dogs, all of whom state
their preferences among the other two groups, the goal is to organize them into family
units so that there is noblocking triple: three players each preferring one another to
their assigned family members. A problem in a similar vein, which we call thethree-
some roommatesproblem, assumes that3n students are to be assigned to the dormitory
bedrooms in some college. They state their preferences of the combinations of two other



persons. The goal is to partition them into sets of size 3. Such a partition (matching) is
said to be stable if no three persons each prefer the others totheir assigned roommates.

As Knuth does not specify any precise definition of “preference” and “blocking
triples,” one can conceive a number of ways to define the two problems. One possi-
ble formulation is that each player submits a strictly-ordered preference list, ranking
all possible combinations that she/he/it can get in a matching. We call such a scheme
strictly-ordered-complete-list (SOCL) scheme. In this setting, Ng and Hirschberg [10]
proved that both problems are NP-complete.

At the end of their paper, Ng and Hirschberg mentioned that their reviewers pointed
out their reduction allows preference to beinconsistent. For example, manm might
rank (w1, d1) higher than(w2, d1), but he also ranks(w2, d2) higher than(w1, d2). In
other words, he does not consistently prefer womanw1 over womanw2 (nor the other
way around). Independently, Subramanian [11] gave an alternative NP-completeness
proof for stable family, but his reduction also uses inconsistent lists.

The reviewers of Ng and Hirschberg wondered whether these two problems remain
NP-complete if inconsistency is disallowed. To answer thisopen question and to mo-
tivate some variants problems we will define, we introduce the notion ofpreference
posetsandsimple lists. In stable family, assuming that each player has two simple lists
in which two different types of players are ranked separately, a preference poset is a
product poset of the two simple lists. In such a poset, the combination (w1, d1) pre-
cedes another combination(w2, d2) only if w1 ranks at least as high asw2 andd1 at
least as high asd2 in the simple lists. If neither combination precedes the other, they
are incomparable. Similarly, in threesome roommates, the preference poset is the prod-
uct poset of the one simple list with itself. By this notion, the question raised by the
reviewers of Ng and Hirschberg can be rephrased as follows. Under theSOCL scheme,
if every player has to submit a preference list which is alinear extensionof her/his/its
preference poset, are the stable family and the threesome roommates still NP-complete?
We answer in the affirmative.

In an attempt to give these two problems a broader outlook, wethen allow players
to express indifference by giving full preference lists containing ties. In particular, to
capture the spirit of maintaining consistency in the preferences, we stipulate that the full
list must be arelaxed linear extensionof a preference poset: strict precedence order in
the poset has to be observed in the relaxed linear extension;only incomparable elements
in the poset can be tied.

We propose the following scheme to make the above concept concrete. Suppose that
a player submits two simple lists (or just one in the roommates case). We create a full
list, ranking the combinations based on the sums of their ordinal numbers. For example,
for manm, the combination of his rank-2 woman and rank-5 dog is as goodas that of
his rank-4 woman and rank-3 dog; while both of them are inferior to the combination of
his top-ranked woman and his top-ranked dog. We call such a scheme precedence-by-
ordinal-number (PON) scheme. ThePON scheme produces full preference lists which
are relaxed linear extensions of preference posets. Also, one can envisage an even more
flexible scheme. For example, instead of giving “ranks,” theplayers can provide “rat-
ings” of other players. The order of the combinations can be decided by the sum of the
ratings; two combinations are tied only when the sums of their ratings are equivalent.



Setting theoretical concerns aside for a moment, the above schemes are probably more
practicable whenn is large, because a player only has to provide lists ofΘ(n) length,
while under theSOCL scheme, they have to give strictly ordered lists of sizeΘ(n2).

By allowing indifference, we can define 4 different types of blocking triples and,
based on them, build up a hierarchy of stabilities. (This hierarchy is similar to that
constructed by Irving in the context of 2-party stable matchings [7].)

– Weak Stable Matching: a blocking triple is one in which all three players of the
blocking triple strictly prefer the other two members in thetriple over their assigned
family members (roommates).

– Strong Stable Matching: a blocking triple is one in which at least two players of
the blocking triple strictly prefer the other two players inthe triple to their assigned
family members (roommates), while the remaining player canbe indifferent or also
strictly prefer the other two players in the triple.

– Super Stable Matching: a blocking triple is one in which at least one player of
the blocking triple strictly prefers the other two players in the triple to her/his/its
assigned family members (roommates), while the remaining players can be indif-
ferent or also strictly prefer the other two players in the triple.

– Ultra Stable Matching: a blocking triple is one in which all three players in the
triple are at least indifferent to the others.

Note that if ties are not allowed in the full preference lists, i.e., theSOCL scheme,
then blocking triples can only be of degree 3. Thus there can be only one type of sta-
bility. For presentational reason, in this case, we refer tothe stability under theSOCL
scheme as the weak stability.

Our Results and Paper Roadmap We will prove in the paper that, if full prefer-
ence lists are (relaxed) linear extensions of preference posets, the problem of deciding
whether weak/strong/super/ultra stable matchings exist is NP-complete in both the sta-
ble family problem and the threesome roommates problem. Ourreduction techniques
are inspired by Ng and Hirschberg’s, although the consistency requirement in the pref-
erences makes our construction more involved. In presenting our result, instead of di-
rectly answering the open question posed by Ng and Hirschberg’s reviewers by studying
weak-stability, we make a detour to first study strong/super/ultra stability. Introducing
them first helps us to explain our intuition behind the more complex reduction for the
former problem.

As is well-known, the stable marriage and the stable roommates problems can
be solved inO(n2) time, by the Gale-Shapley algorithm [3] and by the Irving algo-
rithm [6], respectively. Unfortunately, our results, along with Ng and Hirschberg and
Subramanian’s, indicate that attempts to efficiently solvethe stable matching problem
in generalized cases of three (or more) parties are unlikelyto be fruitful. This is not
surprising, as in theoretical computer science, the fine line betweenP andNP is often
drawn between the numbers two and three.

We organize the paper as follows. In Section 2, we present necessary notation; Sec-
tion 3 proves the NP-completeness of strong/super/ultra stable matchings in the stable
family problem under thePON scheme; Section 4 presents a reduction to transform



a stable family problem to a threesome roommate problem, thus establishing the NP-
completeness of strong/super/ultra stable matchings in the latter; Section 5 considers
theSOCL scheme and proves the NP-completeness of (weak) stable matchings, thereby
answering the open question posed by the anonymous reviewers of Ng and Hirschberg.
Section 6 concludes and discusses related issues. Due to space constraint, we omit some
proofs. See [5] for full details.

2 Preliminaries

We useM, W , D to indicate the sets of men, women, and dogs in stable family;the
students in threesome roommates are denoted asR. In stable family,Lg(p) denotes the
simple list of playerp on the players of typeg ∈ {M,W ,D}. For exampleLW(m) is
the simple list of manm among womenW . In threesome roommates, we simply write
L(m), wherem ∈ R, dropping the subscript.

In general, we use the notation≻ to denote the precedence order (in either posets
or in linear lists). For example, supposing thatpi ranks higher thanpj in the list l, we
write pi ≻l pj . In a posetQ, two elementsqi, qj either one precedes the other, which we
write qi ≻Q qj or qj ≻Q qi, or they are incomparable, which is expressed asqi||Qqj .
The notation≻ is also used to express explicitly the order of players in simple lists. For
example, we writeL(p) = q ≻ r ≻ · · · to show that playerp prefers playerq to player
r. Note also that the notation· · · denotes the remaining players in arbitrary order. We
use the notationrp(q) to indicate the rank ofq on playerp’s simple list.

We say a blocking triple is of degreei, if i players strictly prefer the triple while the
remaining3−i players are indifferent. Unless stated otherwise, in the article, when we
say some triple “blocks,” it is always a blocking triple of degree 3.

A preference poset constructed from listsl1 andl2 is written asl1×l2. To be precise,
given listsl1 andl2 and the posetl1 × l2, supposing that{pi, pj}, {pi′ , pj′} ∈ l1 × l2,
then{pi, pj} ≻l1×l2 {pi′ , pj′} only if (1) pi ≻l1 pi′ , pj = pj′ , or (2) pj ≻l2 pj′ , pi =
pi′ , or (3) pi ≻l1 pi′ , pj ≻l2 pj′ . The notationπ(X) means an arbitrary permutation
of elements in the setX. Eπ(l1 × l2) is an arbitrary linear extension of the preference
posetl1 × l2.

3 Reducing Three-dimensional Matching to Stable Family

In this section, we focus on the NP-completeness of strong stable matching under the
PON scheme. Similar results hold for super stable and ultra stable matchings by a
straightforward argument and will be discussed at the end ofthis section.

Our reduction is from the three-dimensional matching problem, one of the 21 NP-
complete problems in Karp’s seminal paper [8]. The problem instance is given in the
form Υ = (M,W ,D, T ), whereT ⊆ M × W × D. The goal is to decide whether
a perfect matchingM ⊆ T exists. This problem remains NP-complete even if every
player inM∪W ∪D appears exactly 2 or 3 times in the triples ofT [4].

We first explain the intuition behind our reduction. Supposing that manmi ap-
pears in three triples(mi, wia, dia), (mi, wib, dib), (mi, wic, dic) in T , we create three
dopplegangers, mi1, mi2, mi3 in the derived stable family problem instanceΥ ′. We
also create four garbage collectors,w

g
i1, d

g
i1, w

g
i2, d

g
i2. Each dopplegangermij puts a



woman-dog pair, with whom manmi shares a triple, and the garbage collectors on top
of his two simple lists. The goal of our design is that in a stable matching, exactly one
doppleganger will be matched to a woman-dog pair with whommi shares a triple inT ,
while the other two dopplegangers will be matched to garbagecollectors. In the case
that there are only two triples inT containing manmi, we artificially make a copy of
one of the triples, making the total number of triples three,and treat him as described
above.

Now, we will refer to the set of dopplegangers asM1,M2,M3, the set of garbage
collectors asWg

1 ,Wg
2 ,Dg

1 ,Dg
2 and the original set of real women and real dogs asW ,D.

Collectively, we refer to them asX = M1∪M2∪M3∪Wg
1 ∪Wg

2 ∪W∪Dg
1∪Dg

2∪D.
To realize our plan, we introduce two gadgets. The first is three sets of “dummy

players”:m#
1 , w

#
1 , d

#
1 , m

#
2 , w

#
2 , d

#
2 , m

#
3 , w

#
3 , d

#
3 . Their preferences are such that they

must be matched to one another in a stable matching. To be precise, forj ∈ {1, 2, 3},

– LW(m#
j ) = w

#
j ≻ · · · , LD(m#

j ) = d
#
j ≻ · · ·

– LM(w#
j ) = m

#
j ≻ · · · , LD(w#

j ) = d
#
j ≻ · · ·

– LM(d#
j ) = m

#
j ≻ · · · , LW(d#

j ) = w
#
j ≻ · · ·

These nine dummy players are used to “pad” the preference lists of other players.
Their purpose will be clear shortly.

Another gadget we need is a set of “guard players” for each doppleganger inM1 ∪
M2∪M3. They will make sure that in a stable matching, a doppleganger mij will only
get a woman-dog pair with whommi shares a triple inT or those garbage collectors.
As an example, consider the dopplegangermi1. He has six associated guard players,
m♭1

i1 , w♭1
i1 , d♭1

i1 , m♭2
i1 , w♭2

i1 , d♭2
i1 and their preferences are summarized below:

– LW(mi1) = w
g
i2 ≻ w

g
i1 ≻ wia ≻ w♭1

i1 ≻ w♭2
i1 ≻ w

#
1 ≻ w

#
2 ≻ w

#
3 ≻ · · · ,

LD(mi1) = d
g
i2 ≻ d

g
i1 ≻ dia ≻ d♭2

i1 ≻ d♭1
i1 ≻ d

#
1 ≻ d

#
2 ≻ d

#
3 ≻ · · ·

– LW(m♭1
i1) = w♭1

i1 ≻ · · · , LD(m♭1
i1) = d♭1

i1 ≻ · · ·
LW(m♭2

i1) = w♭2
i1 ≻ · · · , LD(m♭2

i1) = d♭2
i1 ≻ · · ·

– LM(w♭1
i1 ) = mi1 ≻ m♭1

i1 ≻ · · · , LD(w♭1
i1 ) = d♭1

i1 ≻ d
#
1 ≻ · · ·

LM(w♭2
i1 ) = mi1 ≻ m♭2

i1 ≻ · · · , LD(w♭2
i1 ) = d♭2

i1 ≻ d
#
1 ≻ · · ·

– LM(d♭1
i1) = mi1 ≻ m♭1

i1 ≻ · · · , LW(d♭1
i1) = w♭1

i1 ≻ w
#
1 ≻ · · ·

LM(d♭2
i1) = mi1 ≻ m♭2

i1 ≻ · · · , LW(d♭2
i1) = w♭2

i1 ≻ w
#
1 ≻ · · ·

The following case analysis proves that, in a stable matching M ′, mi1 will get only
players from the set{wg

i1, w
g
i2, wia, d

g
i1, d

g
i2, dia}.

– Suppose thatmi1 gets two players ranking beloww♭1
i1 andd♭1

i1 respectively. It can be
observed that for bothw♭1

i1 , d♭1
i1 , the best man ismi1. Therefore, they would prefer

mi1 and so does he them, inducing a blocking triple toM ′, a contradiction.
– Suppose thatmi1 gets a womanw ∈ {wia, w

g
i1, w

g
i2} and a dogd ranking below

d♭1
i1 . In this case, we can be sure thatd cannot bed#

1 or d
#
2 or d

#
3 , since their

preferences guarantee that they will only be matched to other dummy players. So,
rmi1

(w)+rmi1
(d) ≥ 10, whilermi1

(w♭1
i1 )+rmi1

(d♭1
i1) = 9, causing(mi1, w

♭1
i1 , d♭1

i1)



to become a blocking triple. This example explains why we need to pad the simple
lists ofmi1 with dummy players.
The case thatmi1 gets a dogd ∈ {dia, d

g
i1, d

g
i2} and a womanw ranking lower than

w♭2
i1 follows analogous arguments;(mi1, w

g
i2, d

g
i2) will become a blocking triple.

– Suppose thatmi1 gets only one of the players from the set{w♭1
i1 , w♭2

i1 , d♭1
i1 , d

♭2
i1}.

Without loss of generality, we assume that(mi1, w
♭1
i1 , dφ), dφ 6= d♭1

i1 , is part of the
matching. For womanw♭1

i1 , dog dφ cannot be the dummy playerd#
1 . Therefore,

rw♭1
i1

(mi1) + rw♭1
i1

(dφ) ≥ 4 > 3 = rw♭1
i1

(m♭1
i1) + rw♭1

i1
(d♭1

i1). Similarly for d♭1
i1 ,

rd♭1
i1

(m♭1
i1) + rd♭1

i1
(w♭1

i1 ) = 3, which is better than whatever combination it can get.

Therefore, we have that(m♭1
i1 , w♭1

i1 , d♭1
i1) constitutes a blocking triple toM ′. This

example shows why we need to pad the preference ofw♭1
i1 , d♭1

i1 (and alsow♭2
i1 , d♭2

i1)
with dummy players.

– Suppose thatmi1 getsw♭1
i1 andd♭1

i1 . Note thatw♭1
i1 ≻ w♭2

i1 andd♭2
i1 ≻ d♭1

i1 . There-
fore, mi1 is indifferent to the combinations ofw♭2

i1 and d♭2
i1 , sincermi1

(w♭1
i1 ) +

rmi1
(d♭1

i1) = 9 = rmi1
(w♭2

i1 ) + rmi1
(d♭2

i1). Additionally, w♭2
i1 , d♭2

i1 strictly prefer
mi1. Hence(mi1, w

♭2
i1 , d♭2

i1) constitutes a blocking triple of degree 2 toM ′. This
explains why we need two sets of guard players to guarantee that the doppleganger
will “behave” in a stable matching.
The case thatmi1 getsw♭2

i1 andd♭2
i1 follows analogous arguments.

The other two dopplegangersmi2, mi3 also have six associated guard players for
each; they, along with their associated guard players, havesimilar preferences to guar-
antee thatmi2 andmi3 will only get garbage collectors or the woman-dog pairs with
whom mi shares triples. The only difference in the lists is thatmi2 andmi3 replace
wia, dia with wib, dib, and withwic, dic, respectively, in their simple lists. For a sum-
mary of the simple lists of members in the setX, see Table 1. It should be noted
that w

g
i1, d

g
i1 (and alsow

g
i2, d

g
i2) rank the three dopplegangers in reverse order. This

trick guarantees that the dopplegangers will not form blocking triples with the garbage
collectors, defeating our purpose. For example, suppose(mi1, wia, dia) is part of the
matching, we want to avoid(mi1, w

g
i1, d

g
i1) to becoming a blocking triple. It can be

easily verified that ifwg
i1 andd

g
i1 are matched tomi2 or mi3, such a blocking triple will

not be formed.
Finally, garbage collectors also use dummy players to pad their simple lists, to

avoid the awkward situation that some doppleganger is matched to a real woman and a
garbage collector dog (or a real dog and a garbage collector woman). How this arrange-
ment works will be clear in the proof below.

Lemma 1. Suppose a stable matchingM ′ exists in the derived stable family problem
instanceΥ ′. The following facts hold inM ′:

– Fact A: The three sets of dummy players are matched to one another.
– Fact B: For each dopplegangermij ∈ M1 ∪ M2 ∪ M3, the ranks of his family

members inM ′ are at least as high as 3 in his simple lists.
– Fact C: The six associated guard players of each doppleganger mij ∈ M1∪M2∪
M3 are matched to one another.



Table 1.The simple lists of all players in the setX = M1∪M2∪M3∪W
g
1 ∪W

g
2 ∪W∪D

g
1 ∪

D
g
2 ∪D. We assume that there exist three triples(mi, wia, dia), (mi, wib, dib), (mi, wic, dic) in

T .

Player Simple Lists
mi1 ∈ M1 LW(mi1)=w

g
i2 ≻ w

g
i1 ≻ wia ≻ w♭1

i1 ≻ w♭2
i1 ≻ w

#
1 ≻ w

#
2 ≻ w

#
3 ≻ · · ·

LD(mi1) = d
g
i2 ≻ d

g
i1 ≻ dia ≻ d♭2

i1 ≻ d♭1
i1 ≻ d

#
1 ≻ d

#
2 ≻ d

#
3 ≻ · · ·

mi2 ∈ M1 LW(mi2)=w
g
i2 ≻ w

g
i1 ≻ wib ≻ w♭1

i2 ≻ w♭2
i2 ≻ w

#
1 ≻ w

#
2 ≻ w

#
3 ≻ · · ·

LD(mi2) = d
g
i2 ≻ d

g
i1 ≻ dib ≻ d♭2

i2 ≻ d♭1
i2 ≻ d

#
1 ≻ d

#
2 ≻ d

#
3 ≻ · · ·

mi3 ∈ M1 LW(mi3)=w
g
i2 ≻ w

g
i1 ≻ wic ≻ w♭1

i3 ≻ w♭2
i3 ≻ w

#
1 ≻ w

#
2 ≻ w

#
3 ≻ · · ·

LD(mi3) = d
g
i2 ≻ d

g
i1 ≻ dic ≻ d♭2

i3 ≻ d♭1
i3 ≻ d

#
1 ≻ d

#
2 ≻ d

#
3 ≻ · · ·

w
g
i1 ∈ W

g
1 LM(wg

i1) = mi1 ≻ mi2 ≻ mi3 ≻ · · ·

LD(wg
i1) = d

g
i1 ≻ d

#
1 ≻ d

#
2 ≻ d

#
3 ≻ · · ·

d
g
i1 ∈ D

g
1 LM(dg

i1) = mi3 ≻ mi2 ≻ mi1 ≻ · · ·

LW(dg
i1) = w

g
i1 ≻ w

#
1 ≻ w

#
2 ≻ w

#
3 ≻ · · ·

w
g
i2 ∈ W

g
2 LM(wg

i2) = mi1 ≻ mi2 ≻ mi3 ≻ · · ·

LD(wg
i2) = d

g
i2 ≻ d

#
1 ≻ d

#
2 ≻ d

#
3 ≻ · · ·

d
g
i2 ∈ D

g
2 LM(dg

i2) = mi3 ≻ mi2 ≻ mi1 ≻ · · ·

LW(dg
i2) = w

g
i2 ≻ w

#
1 ≻ w

#
2 ≻ w

#
3 ≻ · · ·

w ∈ W LM(w) = · · ·

LD(w) = · · ·

d ∈ D LM(d) = · · ·

LW(d) = · · ·

Proof. Fact A follows directly from construction. Fact B is true as we have argued in
the case analysis before. Fact C is true because if the guard players are not matched to
one another, they will blockM ′, unlessw♭1

ij , d♭1
ij or w♭2

ij , d♭2
ij are matched tomij in M ′,

but this is impossible because of Fact B. ⊓⊔

Lemma 2. Suppose a stable matchingM ′ exists in the derived stable family problem
instanceΥ ′. Consider the garbage collectorswg

i1, d
g
i1, w

g
i2, d

g
i2 created for manmi ∈

M. We must have thatwg
i1, d

g
i1 belong to the same triplet1 and thatwg

i2, d
g
i2 belong

to the same triplet2 in M ′. Moreover, int1 and t2, the man player must be one of the
dopplegangersmi1, mi2 andmi3.

Proof. We will prove this lemma by progressively establishing the following facts.

Fact D: w
g
i2 andd

g
i2 must belong to the same triplet2 in M ′.

Proof: For a contradiction, suppose thatw
g
i2 andd

g
i2 are in different triples inM ′.

We claim that(mi1, w
g
i2, d

g
i2) forms a blocking triple. It is obvious thatmi1 andw

g
i2

prefer such a triple. Now let the man and woman partners ofd
g
i2 bemφ andwφ 6= w

g
i2;

then by Fact A in Lemma 1,rd
g
i2

(w) ≥ 5. We have thatrd
g
i2

(mi1) + rd
g
i2

(wg
i2) = 4 <

6 ≤ rd
g
i2

(mφ) + rd
g
i2

(wφ). Sod
g
i2 will also prefermi1 andw

g
i2, forming a blocking

triple with them toM ′. This proof also shows why we need to pad the preferences of
the garbage collectors.



Fact E: w
g
i1 andd

g
i1 must belong to the same triplet1 in M ′.

Proof: For a contradiction, suppose that(mφ1, w
g
i1, d

φ1) and (mφ2, wφ2, d
g
i1) are

triples inM ′. There exists at least one doppleganger in{mi1, mi2, mi3} preferring the
combination ofwg

i1 andd
g
i1 (since at most one doppleganger can be matched tow

g
i2

andd
g
i2). Let such a doppleganger bemij . Then by Fact A in Lemma 1,rw

g
i1

(mij) +

rw
g
i1

(dg
i1) ≤ 4 < 6 ≤ rw

g
i1

(mφ1) + rw
g
i1

(dφ2); and similarly,rd
g
i1

(mij) + rd
g
i1

(wg
i1) ≤

4 < 6 ≤ rd
g
i1

(mφ2) + rd
g
i1

(wφ2), implying that(mij , w
g
i1, d

g
i1) blocksM ′.

Fact F: w
g
i2 andd

g
i2 must be matched to one of the dopplegangers ofmi in M ′, and

so arew
g
i1 andd

g
i1.

Proof: If w
g
i2 andd

g
i2 are not matched to a doppleganger ofmi, then any dopple-

gangermij will prefer the combination of them over his family members,causing
(mij , w

g
i2, d

g
i2) to block M ′. A similar argument applies to the case ofw

g
i1 andd

g
i1,

giving the lemma. ⊓⊔

By the previous two lemmas, we have established the correctness of the reduction
on one side.

Lemma 3. (Sufficiency) If there exists a stable matchingM ′ in the derived stable
family problem instanceΥ ′, there exists a perfect matchingM in the original three-
dimensional matching instanceΥ .

To show the necessity, we need to prove one more lemma.

Lemma 4. In a matchingM ′ in the derived stable family problem instanceΥ ′, sup-
pose that dummy players are matched to one another. Suppose further that the garbage
collectors ofmi are matched to two of the dopplegangers ofmi, while the remaining
dopplegangermij is matched to a real woman and a real dog with whommi shares
a triple in T in the original three-dimensional matching instanceΥ . Then there is no
blocking triple in which the dopplegangersmi1, mi2, andmi3 are involved.

Proof. We assume that(mi1, w
g
i2, d

g
i2), (mi2, w

g
i1, d

g
i1), (mi3, wic, dic) ∈ M ′. Other

cases follow analogous arguments. We claim that there does not exist a blocking triple of
the form (mij , w

g
i1, d

φ1), (mij , w
g
i2, d

φ2), (mij , w
φ3, d

g
i1), and(mij , w

φ4, d
g
i2) where

dφ1 6= d
g
i1, dφ2 6= d

g
i2, wφ3 6= w

g
i1, andwφ4 6= w

g
i2. We only argue the first case. Since

dφ1 6∈ {d#
1 , d

#
2 , d

#
3 }, we haverw

g
i1

(dφ1) ≥ 5 > 3 = rw
g
i1

(dg
i1)+rw

g
i1

(mi2). Therefore,
w

g
i1 has no incentive to join the combination ofmij anddφ1.

Now we only need to consider the three remaining potential blocking triples:
(mi2, w

g
i2, d

g
i2), (mi3, w

g
i2, d

g
i2), (mi3, w

g
i1, d

g
i1). It can be easily verified that they do

not blockM ′ because the orders of the three dopplegangers in the simple lists ofwg
i1

andd
g
i1 (and alsowg

i2 andd
g
i2) are reversed. ⊓⊔

Lemma 5. (Necessity) Suppose that there is a perfect matchingM in the original three-
dimensional matching instanceΥ . There also exists a stable matchingM ′ in the derived
stable family problem instanceΥ ′.



Proof. We build a stable matchingM ′ in Υ ′ as follows. Let the dummy players
{m#

j , w
#
j , d

#
j }, 1 ≤ j ≤ 3, be matched to one another. Given any dopplegangermij ,

let his guard players{m♭1
ij , w♭1

ij , d♭1
ij }, {m

♭2
ij , w♭2

ij , d♭2
ij } be matched to one another as

well. Furthermore, suppose that(mi, wix, dix) ∈ M . Let the doppleganger who lists
wix anddix above his guard players be matched towix anddix, while the other two
dopplegangers be matched to the garbage collectors. By thisconstruction, it can be seen
that none of the guard players and dummy players will be part of a blocking triple. This,
combined with Lemma 4, completes the proof. ⊓⊔

Suppose that in the given three-dimensional matching instanceΥ , |M| = |W| =
|D| = n. Then in the derived instanceΥ ′, we use in all3n dopplegangers,18n guard
players,4n garbage collectors,2n real women and real dogs, and 9 dummy players.
Their preferences (in the form of simple lists) can be generated inO(n2) time. There-
fore, this is a polynomial-time reduction. Also, given any matching, we definitely can
check its stability inO(n3) time. Combining the two facts with Lemma 3 and Lemma 5,
we can conclude:

Theorem 1. It is NP-complete to decide whether strong stable matchingsexist under
thePON scheme. Therefore, the question of deciding existence of strong stable matching
is also NP-complete when the full preference lists are consistent, i.e., when they are
relaxed linear extensions of preference posets.

Super Stability and Ultra Stability It can be observed that throughout the proof, all
arguments involving blocking triples use those of degree 3.The only exception is the
occasion that we argue that a doppleganger cannot be matchedto his guard players in
a stable matching. To recall, supposing that(mij , w

♭1
ij , d♭1

ij ) is part of a matching, then
(mij , w

♭2
ij , d♭2

ij ) is a blocking triple of degree 2. (Or if the latter is part of the match-
ing, the former is a blocking triple of degree 2). Therefore,our reduction only uses
blocking triples of degree 2 or 3; both are still blocking triples with regard to super
stability and ultra stability. Moreover, when we argue the strong-stability of matchings
in the reduction, we never allow blocking triples of degree 0or degree 1 to exist. There-
fore, essentially, our reduction has also established the NP-completeness of super stable
matchings and ultra stable matchings.

4 Threesome Roommates with Relaxed Linear Extensions of
Preference Posets

In this section, we exhibit a reduction of stable family to threesome roommates, thereby
establishing the NP-completeness of strong/super/ultra stable matchings in the latter
problem. Instead of thePON scheme, we use the more general scheme in which any
relaxed linear extension of preference posets is allowed. We choose to use this scheme
because the involved reduction technique has a different flavor. Nonetheless, we do have
another reduction for thePON scheme. See [5] for details.

Let an instance of stable family problem beΥ = (M,W ,D, Ψ), whereΨ represents
the preferences of the players inM ∪ W ∪ D. We create an instance of threesome



roommatesΥ ′ = (R′, Ψ ′) by copying all players inM ∪ W ∪ D into R′. Regarding
the preferences inΨ ′, we first build up the simple lists of all players.

– Supposem ∈ M, L(m) = LW(m) ≻ LD(m) ≻ π(M−{m}).
– Supposew ∈ W , L(w) = LD(w) ≻ LM(w) ≻ π(W − {w}).
– Supposed ∈ D, L(d) = LM(d) ≻ LW(d) ≻ π(D − {d}).

In words, a man lists all women and then all dogs, based respectively on their origi-
nal order in his simple lists inΨ . He then attaches other fellow men in arbitrary order to
the end of his list. Women and dogs have analogous arrangements in their simple lists.

Having constructed the simple lists, we still need to build consistent relaxed linear
extensions. We will exploit the following lemma, whose proof can be found in the full
version [5].

Lemma 6. Let l be a strictly-ordered list. Suppose thatl is decomposed into nonempty
contiguous sublists(l1, l2, · · · , lk) such that (1)

⋃k
i=1 li = l, (2) if e ≻li f , thene ≻l f ,

and (3) ife ∈ li, f ∈ lj , i < j, thene ≻l f . Then there exists a linear extension ofl × l

such that all combinations drawn from{li, lj} precede all pairs drawn from{li′ , lj′},
provided thati ≤ j, i′ ≤ j′ and one of the following conditions holds (1)i < i′, (2)
i = i′, j < j′.

By Lemma 6, we can construct the linear extensions as follows:

– Considerm ∈ M and assume thatW = LW(m), D = LD(m), N = π(M −
{m}). His relaxed linear extension is:Eπ(W × W ) ≻ X ≻ Eπ(W × N) ≻
Eπ(D×D) ≻ Eπ(D×N) ≻ Eπ(N ×N), whereX is the original relaxed linear
extension of manm’s preference poset given inΨ .

– Considerw ∈ W and assume thatD = LD(w), N = LM(w), W = π(W−{w}).
Her relaxed linear extension is:Eπ(D×D) ≻ Y ≻ Eπ(D×W ) ≻ Eπ(N ×N) ≻
Eπ(N × W ) ≻ Eπ(W × W ), whereY is the original relaxed linear extension of
womanw’s preference poset given inΨ .

– Considerd ∈ D and assume thatN = LM(d), W = LW(d), D = π(D−{d}). Its
relaxed linear extension is:Eπ(N × N) ≻ Z ≻ Eπ(N × D) ≻ Eπ(W × W ) ≻
Eπ(W × D) ≻ Eπ(D × D), whereZ is the original relaxed linear extension of
dogd’s preference poset given inΨ .

To prove that the reduction fromΥ to Υ ′ is valid, we will rely heavily on the fol-
lowing technical lemma.

Lemma 7. In the derived instanceΥ ′, if a stable matchingM ′ exists, every triple in
M ′ must contain a man, a woman, and a dog. Moreover, suppose thatin a matching
M ′′ in Υ ′ in which each player gets two other types of players as roommates, then a
blocking triple cannot contain two (or three) players of thesame type.

Proof. For the first part, we argue case by case.



1. If {m, wi, wj} ∈ M ′, there exists another manm′ who can get neither a woman-
woman combination nor a woman-dog combination. By construction, m′ would
prefer any woman-dog combination to his assigned roommatesin M ′. Similarly,
there exists a dogd′ who gets another fellow dog inM ′. Such a dog would prefer
a man-woman combination to its assigned roommates inM ′. Finally, womanwi

and wj would prefer a dog-man combination. Therefore, both{m′, wi, d
′} and

{m′, wj , d
′} blockM ′, a contradiction.

2. If {m, mi, mj} ∈ M ′, then there exists a womanw who gets a fellow woman in
M ′ and a dogd who gets a fellow dog inM ′. Thus, womanw would prefer a dog-
man combination and dogd would prefer a man-woman combination. Therefore,
{m,w, d}, {mi, w, d}, {mj , w, d} blockM ′, a contradiction.

3. All other cases can be argued similarly.

For the second part, suppose that matchingM ′′ has the stated property. Given any
manm, by our construction, if there is a blocking triple containingm and in which there
are two players of the same type, the only possibility of a blocking triple is{m, wi, wj}.
However, neitherwi norwj would prefer such a triple, because in our construction, for
a woman, a dog-man combination is better than a man-woman combination. The other
potential blocking triples not involving men follow analogous arguments, thus giving
us the lemma. ⊓⊔

It is straightforward to use Lemma 7 to prove our reduction isa valid one.

Theorem 2. Deciding whether strong/super/ultra stable matchings exist in the three-
some roommates problem is NP-complete when full preferencelists are consistent, i.e.,
when they are relaxed linear extension of preference posets.

5 Weak Stability under the SOCL Scheme

Due to space constraint, we can only state our results and leave the details to the full
version [5].

Theorem 3. It is NP-complete to decide whether weak stable matchings exist under
theSOCL scheme, for both the stable family and the threesome roommates problems.
Hence, it is also NP-complete to decide whether a weak stablematching exists when
consistent preferences are allowed to contain ties: i.e. the full preferences are relaxed
linear extensions of preference posets.

6 Conclusion and Related Problems

In this paper, we answer the open question of whether the stable family and the three-
some roommates problems are NP-complete if all players haveto provide consistent
preference lists. We introduce a scheme in which players canexpress indifference on
the precondition that their preferences have to be consistent. Under this scheme, a vari-
ety of stabilities are defined and we prove that all lead to NP-complete problems.

Since we have proved that the general cases of stable family and threesome room-
mates are NP-complete, a natural question to ask is whether there are special cases that



allow polynomial time solutions. Actually, examples of thetwo problems that can be
solved efficiently do exist.

Consider the following scheme. Every player submits two simple lists. A man eval-
uates combinations first by the woman he gets, then by the dog;a woman first by the
man she gets, then by the dog; a dog first by the man it gets, thenby the woman. (Note
the asymmetry). It is not hard to see that we can apply the Gale-Shapley algorithm twice
to get a weak stable matching: letting the men propose to women and then propose to
dogs. Women and dogs make the decision of acceptance or rejection based on their
simple lists of men [2]. Merging the two matchings will give astable matching in the
stable family problem.

However, even a little twist can make the above scheme hard tosolve. Suppose a
man decides first based on the woman he gets and then the dog; a woman first based on
the dog she gets and then on the man; a dog decides first based onthe man it gets then
on the woman. The Gale-Shapley algorithm no longer works [1].

Interestingly, the above scheme is reminiscent of another open problem allegedly
originated by Knuth. Suppose that a man has only a simple listfor women; a woman
has only a simple list for dogs; a dog has only a simple list formen. This problem is
calledcircular stable matching. Its complexity is still unknown.
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