
A Fully Polynomial-Time Approximation Scheme for Speed Scaling

with Sleep State

Antonios Antoniadis∗ Chien-Chung Huang† Sebastian Ott‡

Abstract

We study classical deadline-based preemptive scheduling
of jobs in a computing environment equipped with both
dynamic speed scaling and sleep state capabilities: Each job
is specified by a release time, a deadline and a processing
volume, and has to be scheduled on a single, speed-scalable
processor that is supplied with a sleep state. In the sleep
state, the processor consumes no energy, but a constant
wake-up cost is required to transition back to the active
state. In contrast to speed scaling alone, the addition of
a sleep state makes it sometimes beneficial to accelerate the
processing of jobs in order to transition the processor to
the sleep state for longer amounts of time and incur further
energy savings. The goal is to output a feasible schedule that
minimizes the energy consumption. Since the introduction
of the problem by Irani et al. [17], its exact computational
complexity has been repeatedly posed as an open question
(see e.g. [2,9,16]). The currently best known upper and lower
bounds are a 4/3-approximation algorithm and NP-hardness
due to [2] and [2, 18], respectively.

We close the aforementioned gap between the upper
and lower bound on the computational complexity of speed
scaling with sleep state by presenting a fully polynomial-
time approximation scheme for the problem. The scheme is
based on a transformation to a non-preemptive variant of
the problem, and a discretization that exploits a carefully
defined lexicographical ordering among schedules.

1 Introduction

As energy-efficiency in computing environments be-
comes more and more crucial, chip manufacturers are
increasingly incorporating energy-saving functionalities
to their processors. One of the most common such func-
tionalities is dynamic speed scaling, where the processor
is capable to dynamically adjust the speed at which it
operates. A higher speed implies a higher performance,
but this performance comes at the cost of a higher en-
ergy consumption. On the other hand, a lower speed
results in better energy-efficiency, but at the cost of
performance degradation. In practice, it has been ob-
served [6,10] that the power consumption of the proces-
sor is approximately proportional to its speed cubed.

∗Max-Planck-Institut für Informatik, Saarbrücken, Germany.

aantonia@mpi-inf.mpg.de
†Chalmers University, Göteborg, Sweden. villars@gmail.com
‡Max-Planck-Institut für Informatik, Saarbrücken, Germany.

ott@mpi-inf.mpg.de

However, even when the processor is idling, it con-
sumes a non-negligible amount of energy just for the
sake of “being active” (for example because of leakage
current). Due to this fact, additional energy-savings
can be obtained by further incorporating a sleep state
to the processor, in addition to the speed-scaling capa-
bility. A sleep state is a state of negligible or even zero
energy-consumption, to which the processor can tran-
sition when it is idle. Some fixed energy-consumption
is then required to transition the processor back to the
active state in order to continue processing.

This article studies the offline problem of minimiz-
ing energy-consumptions in computational settings that
are equipped with both speed scaling and sleep state
capabilities. This problem is called speed scaling with
sleep state, and the algorithmic study of it was initiated
in [17].

Consider a processor that is equipped with two
states: the active state during which it can execute
jobs while incurring some energy consumption, and
the sleep state during which no jobs can be executed,
but also no energy is consumed. We assume that a
wake-up operation, that is a transition from the sleep
state to the active state, incurs a constant energy cost
C > 0, whereas transitioning from the active state to
the sleep state is free of charge. Further, as in [2, 17],
the power required by the processor in the active state
is an arbitrary convex and non-decreasing function P
of its speed s. We assume that P (0) > 0, since (i) as
already mentioned, real-world processors are known to
have leakage current and (ii) otherwise the sleep state
would be redundant. Further motivation for considering
arbitrary convex power functions for speed scaling can
be found, for example, in [7].

The input is a set J of n jobs. Each job j is
associated with a release time rj , a deadline dj and a
processing volume vj . One can think of the processing
volume as the number of CPU cycles that are required
in order to completely process the job, so that if job
j is processed at a speed of s, then vj/s time-units
are required to complete the job. We call the interval
[rj , dj) the allowed interval of job j, and say that job

j is active at time point t if and only if t ∈ [rj , dj)
1.

Furthermore, we may assume without loss of generality
that minj∈J rj = 0, and that vmin := minj∈J vj is
normalized to 1 (if v∗ 6= 1 is the real minimum volume,
we can scale the instance by dividing the rj ’s, dj ’s,
and vj ’s by v∗, and using the power function P (s) · v∗
along with the original wake-up cost C). Further, let
dmax := maxj∈J dj be the latest deadline of any job.

A schedule is defined as a mapping of every time
point t to the state of the processor, its speed, and
the job being processed at t (or null if there is no job
running at t). Note that the processing speed is zero
whenever the processor sleeps, and that a job can only
be processed when the speed is strictly positive. A
schedule is called feasible when the whole processing
volume of every job j is completely processed in j’s
allowed interval [rj , dj). Preemption of jobs is allowed.

The energy consumption incurred by schedule S
while the processor is in the active state, is its power
integrated over time, i.e.

∫
P (s(t))dt, where s(t) is

the processing speed at time t, and the integral is
taken over all time points in [0, dmax) during which the
processor is active under S. Assume that S performs k
transitions from the sleep state to the active state. (We
will assume throughout the paper that initially, prior
to the first release time, as well as finally, after the last
deadline, the processor is in the active state. However,
our results can be easily adapted for the setting where
the processor is initially and/or eventually in the sleep
state). Then the total energy consumption of S is
E(S) :=

∫
P (s(t))dt + kC, where again the integral is

taken over all time points at which S keeps the processor
in the active state. We are seeking a feasible schedule
that minimizes the total energy consumption.

Observe that, by Jensen’s inequality, and by the
convexity of the power function, it is never beneficial
to process a job with a varying speed. Irani et al. [17]
observed the existence of a critical speed scrit, which is
the most efficient speed for processing jobs. This critical
speed is the smallest speed that minimizes the function
P (s)/s. Note that, by the convexity of P (s), the only
case where the critical speed scrit is not well defined, is
when P (s)/s is always decreasing. However, this would
render the setting unrealistic, and furthermore make the
algorithmic problem trivial, since it would be optimal to
process every job at an infinite speed. We may therefore
assume that this case does not occur. Further, it can
be shown (see [17]) that for any s ≥ scrit, the function
P (s)/s is non-decreasing.

1Unless stated differently, throughout the text an interval will
always have the form [·, ·).

1.1 Previous Work The theoretical model for dy-
namic speed scaling was introduced in a seminal paper
by Yao, Demers and Shenker [20]. They developed a
polynomial time algorithm called YDS, that outputs a
minimum-energy schedule for this setting. Irani, Shukla
and Gupta [17] initiated the algorithmic study of speed
scaling combined with a sleep state. Such a setting sug-
gests the so-called race to idle technique where some
jobs are accelerated over their minimum required speed
in order to incur a higher energy-saving by transition-
ing the processor to the sleep state for longer periods of
time (see [3, 12, 13, 19] and references therein for more
information regarding the race to idle technique). Irani
et al. developed a 2-approximation algorithm for speed
scaling with sleep state, but the computational com-
plexity of the scheduling problem has remained open.
The first step towards attacking this open problem was
made by Baptiste [8], who gave a polynomial time algo-
rithm for the case when the processor executes all jobs
at one fixed speed level, and all jobs are of unit-size.
Baptiste’s algorithm is based on a clever dynamic pro-
gramming formulation of the scheduling problem, and
was later extended to (i) arbitrarily-sized jobs in [9], and
(ii) a multiprocessor setting in [11].

More recently, Albers and Antoniadis [2] improved
the upper bound on the approximation ratio of the
general problem, by developing a 4/3-approximation
algorithm. For the special case of agreeable deadlines
and a power function of the form P (s) = sα + β (with
constant α > 1 and β > 0), Bampis et al. [4] provided an
exact polynomial time algorithm. With respect to the
lower bound, [2] gave an NP-hardness reduction from
the partition problem. The reduction uses a particular
power function that is based on the partition instance,
i.e., it is considered that the power function is part of the
input. The reduction of [2] was later refined by Kumar
and Shannigrahi [18], to show that the problem is NP-
hard for any fixed, non-decreasing and strictly convex
power function.

The online setting of the problem has also been
studied. Irani et al. [17] gave a (22α−2αα + 2α−1+2)-
competitive online algorithm. Han et al. [14] improved
upon this result by developing an (αα + 2)-competitive
algorithm for the problem. Both of the above results
assume a power function of the form P (s) = sα + β,
where α > 1 and β > 0 are constants.

A more thorough discussion on the above scheduling
problems can be found in the surveys [1, 16].

1.2 Our Contribution We study the offline setting
of speed scaling with sleep state. Since the introduction
of the problem by Irani et al. [17], its exact computa-
tional complexity has been repeatedly posed as an open

question (see e.g. [2, 9, 16]). The currently best known
upper and lower bounds are a 4/3-approximation algo-
rithm and NP-hardness due to [2] and [2, 18], respec-
tively. In this paper, we settle the open question re-
garding the computational complexity of the problem,
by presenting a fully polynomial-time approximation
scheme.

At the core of our approach is a transformation of
the original preemptive problem into a non-preemptive
scheduling problem of the same type. At first sight,
this may seem counterintuitive, especially as Bampis et
al. [5] showed that (for the problem of speed scaling
alone) the ratio between an optimal preemptive and an
optimal non-preemptive solution on the same instance
can be very high. However, this does not apply in our
case, as we consider the non-preemptive problem on a
modified instance, where each job is replaced by a poly-
nomial number of pieces. Furthermore, in our analysis,
we make use of a particular lexicographic ordering that
does exploit the advantages of preemption.

In order to compute an optimal schedule for the
modified instance via dynamic programming, we require
a number of properties that pieces must satisfy in a valid
schedule. The definition of these properties is based on
a discretization of the time horizon by a polynomial
number of time points. Roughly speaking, we focus
on those schedules that start and end the processing
of each piece at such time points, and satisfy a certain
constraint on the processing order of the pieces. Proving
that a near-optimal schedule in this class exists is
the most subtle part of our approach. On the one
hand, our DP structurally relies on the processing order
constraint, but on the other hand, such a property is
difficult to establish in an optimal schedule after having
introduced indivisible volumes (since pieces of different
jobs might have different volumes and cannot easily be
interchanged). To get around this, we first ensure the
right ordering in an optimal schedule for the preemptive
setting, and then perform a series of transformations to
a non-preemptive schedule with the above properties.
Each of these transformations increases the energy
consumption only by a small factor, and maintains the
correct ordering among the pieces.

We remark that Baptiste [8] used a dynamic pro-
gram of similar structure for the case of unit-sized jobs
and a fixed-speed processor equipped with a sleep state.
This dynamic program is also based on a particular or-
dering of jobs, which, however, is not sufficient for our
setting. Since we have pieces of different sizes, the swap-
ping argument used in [8] is rendered impossible.

In Section 2, we describe the YDS algorithm
from [20] for the problem of speed scaling without a sleep
state, and then show several properties that a schedule

produced by YDS has for our problem of speed scaling
with sleep state. We then, in Section 3, define a particu-
lar class of schedules that have a set of desirable proper-
ties, and show that there exists a schedule in this class,
whose energy consumption is within a (1+ε)-factor from
optimal. Finally, in Section 4, we develop an algorithm
based on a dynamic program, that outputs, in polyno-
mial time, a schedule of minimal energy consumption
among all the schedules of the aforementioned class.

2 Preliminaries

We start by giving a short description of the YDS
algorithm presented in [20]. For any interval I, let B(I)
be the set of jobs whose allowed intervals are contained
in I. We define the density of I as

dens(I) =

∑
j∈B(I) vj

|I|
.

Note that the average speed that any feasible schedule
uses during interval I is no less than dens(I). YDS
works in rounds. In the first round, the interval I1 of
maximal density is identified, and all jobs in B(I1) are
scheduled during I1 at a speed of dens(I1), according
to the earliest deadline first policy. Then the jobs
in B(I1) are removed from the instance and the time
interval I1 is “blacked out”. In general, during round i,
YDS identifies the interval Ii of maximal density (while
disregarding blacked out times, and already scheduled
jobs), and then processes all jobs in B(Ii) at a uniform
speed of dens(Ii). YDS terminates when all jobs are
scheduled, and its running time is polynomial in the
input size.

We remark that the speed used for the processing of
jobs can never increase between two consecutive rounds,
i.e., YDS schedules the jobs by order of non-increasing
speeds. Furthermore, note that by the definition of
YDS, all the jobs scheduled in each round i have their
allowed interval within Ii.

Given any job instance J , let FAST (J) be the
subset of J that YDS processes at a speed greater than
or equal to scrit, and let SLOW (J) := J \ FAST (J).
The following lemma is an extension of a fact proven by
Irani et al. [17].

Lemma 2.1. For any job instance J , there exists an
optimal schedule (w.r.t. speed scaling with sleep state)
in which

1. Every job in FAST (J) is processed according to
YDS.

2. Every job k ∈ SLOW (J) is run at a uniform speed
sk ≤ scrit, and the processor never (actively) runs at
a speed less than sk during [rk, dk).

We call an optimal schedule with these properties a
YDS-extension for J .

Proof. To break ties among schedules with equal energy
consumption, we introduce the pseudo cost function∫
s(t)2dt (this idea was first used in [17]). Consider

a minimal pseudo cost schedule Y , so that Y satisfies
property 1 of the lemma, and minimizes the energy
consumption among all schedules fulfilling this property.
It was shown in [17] that Y is optimal for instance J ,
and that under Y

(∗)

Every job k ∈ SLOW (J) is run at a uniform
speed sk, and the processor never (actively) runs
at a speed less than sk during those portions of
[rk, dk) where no job from FAST(J) is processed.

It therefore remains to prove that the speeds sk are
no higher than scrit. For the sake of contradiction,
assume that there exists a job j ∈ SLOW (J) which
is processed at speed higher than scrit. Let I be a
maximal time interval, so that (i) I includes at least
part of the execution of j, and (ii) at any time point
t ∈ I the processor either runs strictly faster than scrit,
or executes a job from FAST (J). Then there must
exist a job k ∈ SLOW (J) (possibly k = j) which is
executed to some extent during I, and whose allowed
interval is not contained in I (otherwise, when running
YDS, the density of I after the jobs in FAST (J) have
been scheduled is larger than scrit, contradicting the
fact that YDS processes all remaining jobs slower than
scrit). By the maximality of I, there exists some interval
I ′ ⊆ [rk, dk) right before I or right after I, during which
no job from FAST (J) is executed, and the processor
either runs with speed at most scrit or resides in the
sleep state. The first case contradicts property (∗), as
k is processed during I and thus at speed sk > scrit. In
the second case, we can use a portion of I ′ to slightly
slow down k to a new speed s′, such that scrit < s′ < sk.
The resulting schedule Y ′ has energy consumption no
higher than Y , as P (s)/s is non-decreasing for s ≥ scrit.
Furthermore, if Cp is the pseudo cost of Y , then Y ′ has
pseudo cost Cp− vksk + vks

′ < Cp. This contradicts our
assumptions on Y . �

By the previous lemma, we may use YDS to sched-
ule the jobs in FAST (J), and need to find a good
schedule only for the remaining jobs (which are ex-
actly SLOW (J)). To this end, we transform the in-
put instance J to an instance J ′, in which the jobs
FAST (J) are replaced by dummy jobs. This introduc-
tion of dummy jobs bears resemblance to the approach
of [2]. We then show in Lemma 2.2, that any schedule
for J ′ with a certain property, can be transformed to a

schedule for J without any degradation in the approx-
imation factor.

Consider the schedule SY DS that algorithm YDS
produces on J . Let Ii = [yi, zi), i = 1, . . . , ` be the i-th
maximal interval in which SY DS continuously runs at a
speed greater than or equal to scrit, and let T1, . . . , Tm
be the remaining maximal intervals in [0, dmax) not
covered by intervals I1, I2, . . . , I`. Furthermore, let
T := ∪1≤k≤m Tk. Note that the intervals Ii and Ti
partition the time horizon [0, dmax), and furthermore,
by the way YDS is defined, every job j ∈ FAST (J)
is active in exactly one interval Ii, and is not active
in any interval Ti. The opposite does not necessarily
hold, i.e., a job j ∈ SLOW (J) may be active in several
(consecutive) intervals Ii and Ti′ . We transform J to a
job instance J ′ as follows:

• For every job j ∈ SLOW (J), if there exists an i such
that rj ∈ Ii (resp. dj ∈ Ii), then we set rj := zi (resp.
dj := yi), else we keep the job as it is.

• For each Ii, we replace all jobs j ∈ FAST (J) that
are active in Ii by a single job jdi with release time
at yi, deadline at zi, and processing volume vdi equal
to the total volume that SY DS schedules in Ii, i.e.
vdi =

∑
j∈B(Ii)

vj .

Clearly, the above transformation can be done in poly-
nomial time. Note that after the transformation, there
is no release time or deadline in the interior of any inter-
val Ii. Furthermore, we have the following proposition:

Proposition 2.1. FAST (J ′) = {jdi : 1 ≤ i ≤ `} and
SLOW (J ′) = SLOW (J).

Proof. Since J ′ = {jdi : 1 ≤ i ≤ `} ∪ SLOW (J), and
furthermore SLOW (J ′) and FAST (J ′) are disjoint
sets, it suffices to show that (i) FAST (J ′) ⊇ {jdi : 1 ≤
i ≤ `} and that (ii) SLOW (J ′) ⊇ SLOW (J).

For (i), we observe that no job jdi can be feasibly
scheduled at a uniform speed less than scrit. As YDS
uses a uniform speed for each job, these jobs must
belong to FAST (J ′).

For (ii), consider the execution of YDS on J ′. More
specifically, consider the first round when a job from
SLOW (J) is scheduled. Let I be the maximal density
interval of this round, and let JS and Jd be the sets of
jobs from SLOW (J) and {jdi : 1 ≤ i ≤ `}, respectively,
that are scheduled in this round (note that I contains
the allowed intervals of these jobs). As the speed
used by YDS is non-increasing from round to round,
it suffices to show that dens(I) < scrit.

Consider a partition of I into maximal intervals
Λ1, . . . ,Λa, s.t. each Λk is contained in some interval

Ii or Ti. Then

dens(I) =

∑
j∈Jd

vj

|I|
+

∑
j∈JS

vj

|I|

=
∑

Λk 6⊆T

(
|Λk|
|I|

dens(Λk)

)
+

∑
Λk⊆T |Λk|
|I|

·
∑
j∈JS

vj∑
Λk⊆T |Λk|

≤
(∑

Λk 6⊆T

|Λk|
|I|

)
dens(I)+

(
1−

∑
Λk 6⊆T

|Λk|
|I|

)
·
∑
j∈JS

vj∑
Λk⊆T |Λk|

,

since no Λk can have a density larger than dens(I)
(because I is the interval of maximal density). It follows
that

dens(I) ≤
∑
j∈JS

vj∑
Λk⊆T |Λk|

.

Furthermore, by the definition of SLOW (J), it is
possible to schedule all jobs in JS during I ∩ T , at
a speed slower than scrit (since none of the steps in the
transformation from J to J ′ reduces the time any job is
active during T). Together with the previous inequality,
this implies dens(I) < scrit. �

The following lemma suggests that for obtaining an
FPTAS for instance J , it suffices to give an FPTAS for
instance J ′, as long as we schedule the jobs jdi exactly
in their allowed intervals Ii.

Lemma 2.2. Let S′ be a schedule for input instance
J ′, that (i) processes each job jdi exactly in its allowed
interval Ii (i.e. from yi to zi), and (ii) is a c-
approximation for J ′. Then S′ can be transformed
in polynomial time into a schedule S that is a c-
approximation for input instance J .

Proof. Given such a schedule S′, we leave the processing
in the intervals T1, . . . , Tm unchanged, and replace for
each interval Ii the processing of job jdi by the original
YDS-schedule SY DS during Ii. It is easy to see that the
resulting schedule S is a feasible schedule for J . We
now argue about the approximation factor.

Let OPT be a YDS-extension for J , and let OPT′

be a YDS-extension for J ′. Recall that E(·) denotes
the energy consumption of a schedule (including wake-
up costs). Additionally, let EI(S) denote the total en-
ergy consumption of S in all intervals I1, . . . , I` without
wake-up costs (i.e. the energy consumption for process-
ing or being active but idle during those intervals), and
define similarly EI(S′), EI(OPT), and EI(OPT ′) for
the schedules S′, OPT, and OPT′, respectively. Since
S′ is a c-approximation for J ′, we have

E(S′) ≤ cE(OPT ′).

Note that OPT′ schedules exactly the job jdi in each
Ii (using the entire interval for it) by Proposition 2.1,
and thus each of the schedules S, S′, OPT, and OPT′

keeps the processor active during every entire interval
Ii. Therefore

E(S)− E(S′) = EI(S)− EI(S′),

since S and S′ have the same wake-up costs and do not
differ in the intervals T1, . . . , Tm. Moreover,

E(OPT)− E(OPT ′) = EI(OPT)− EI(OPT ′),

as E(OPT)−EI(OPT) and E(OPT ′)−EI(OPT ′) are
both equal to the optimal energy consumption during
T of any schedule that processes the jobs SLOW (J) in
T and resides in the active state during each interval Ii
(including all wake-up costs of the schedule). Clearly,
EI(S) = EI(OPT), and since both S′ and OPT′

schedule exactly the job jdi in each Ii (using the entire
interval for it), we have that EI(S′) ≥ EI(OPT ′).
Therefore

E(S)− E(S′) ≤ E(OPT)− E(OPT ′).

We next show that 0 ≤ EI(OPT) − EI(OPT ′) =
E(OPT)− E(OPT ′), which implies

E(S) ≤ E(OPT)− E(OPT ′) + E(S′)

≤ c(E(OPT)− E(OPT ′)) + E(S′)

≤ c(E(OPT)− E(OPT ′)) + cE(OPT ′)

≤ cE(OPT).

Since YDS (when applied to J) processes a volume
of exactly vdi in each interval Ii, the average speed of
OPT in Ii is vdi /|Ii|. On the other hand, OPT′ runs
with a speed of exactly vdi /|Ii| during Ii, and therefore
EI(OPT) ≥ EI(OPT ′). �

3 Discretizing the Problem

After the transformation in the previous section, we
have an instance J ′. In this section, we show that there
exists a “discretized” schedule for J ′, whose energy
consumption is at most 1 + ε times that of an optimal
schedule for J ′. In the next section, we will show how
such a discretized schedule can be found by dynamic
programming.

Before presenting formal definitions and technical
details, we here first sketch the ideas behind our ap-
proach.

A major challenge of the original problem is that
we need to deal with an infinite number of possible
schedules. We overcome this intractability by “discretiz-
ing” the problem as follows: (1) we break each job in

SLOW (J ′) into smaller pieces, and (2) we create a set
of time points and introduce the additional constraint
that each piece of a job has to start and end at these
time points. The number of the introduced time points
and job pieces are both polynomial in the input size and
1/ε, which greatly limits the amount of guesswork we
have to make in the dynamic program. The challenge
is to both find such a discretization and argue that it
does not increase the optimal energy consumption by
too much.

3.1 Further Definitions and Notation We first
define the set W of time points. Given an error

parameter ε > 0, let δ := min{ 1
4 ,

ε
4

P (scrit)
P (2scrit)−P (scrit)

}.
Intuitively, δ is defined in such a way that speeding up
the processor by a factor (1 + δ)3 does not increase the
power consumption by more than a factor 1 + ε (see
Lemma 3.3).

Let W ′ :=
⋃
j∈J ′{rj , dj}, and consider the elements

of W ′ in sorted order. Let ti, 1 ≤ i ≤ |W ′| be the i-th
element of W ′ in this order. We call an interval [ti, ti+1)
for 1 ≤ i ≤ |W ′|−1 a zone, and observe that every zone
is either equal to some interval Ii or contained in some
interval Ti.

For each i in 1, . . . , |W ′| − 1, let x(i) be the largest
integer j so that

(1 + δ)j
1

4n2scrit(1 + δ)d1/δe
≤ ti+1 − ti.

We are now ready to define the set of time points W as
follows:

W := W ′
⋃

i s.t. [ti,ti+1)⊆T
0≤j≤x(i)

1≤r≤16n6d1/δe2(1+d1/δe){
ti + r ·

(1 + δ)j 1
4n2scrit(1+δ)d1/δe

16n6d1/δe2(1 + d1/δe)
,

ti+1 − r ·
(1 + δ)j 1

4n2scrit(1+δ)d1/δe

16n6d1/δe2(1 + d1/δe)

}
.

Let us explain how these time points in W come
about. As we will show later (Lemma 3.1(2)), there
exists a certain optimal schedule for J ′ in which each
zone [ti, ti+1) ⊆ T contains at most one contiguous max-
imal processing interval, and this interval “touches” ei-
ther ti or ti+1 (or both). The geometric series (1 +
δ)j 1

4n2scrit(1+δ)d1/δe of time points is used to approx-

imate the ending/starting time of this maximal pro-
cessing interval. For each guess of the ending/starting

time, we split the guessed interval, during which the
job pieces (to be defined formally immediately) are to
be processed, into 16n6d1/δe2(1+d1/δe) many intervals
of equal length. An example of the set W for a given
zone can be seen in Figure 1.

Note that |W | is polynomial in the input size and
1/ε.

Definition 3.1. We split each job j ∈ SLOW (J ′)
into 4n2d1/δe equal sized pieces, and also consider each
job jdi as a single piece on its own. For every piece u
of some job j, let job(u) := j, ru := rj, du := dj, and
vu := vj/(4n

2d1/δe) if j ∈ SLOW (J ′), and vu := vj
otherwise. Furthermore, let D denote the set of all
pieces from all jobs.

Note that |D| = ` + |SLOW (J ′)| · 4n2d1/δe is
polynomial in the input size and 1/ε. We now define
an ordering of the pieces in D.

Definition 3.2. Fix an arbitrary ordering of the jobs
in J ′ , s.t. for any two different jobs j and j′, j ≺ j′

implies rj ≤ rj′ . Now extend this ordering to the set of
pieces, s.t. for any two pieces u and u′, there holds

u ≺ u′ ⇒ job(u) � job(u′).

We point out that any schedule for J ′ can also be
seen as a schedule for D, by implicitly assuming that
the pieces of any fixed job are processed in the above
order.

We are now ready to define the class of discretized
schedules.

Definition 3.3. A discretized schedule is a schedule
for J ′ that satisfies the following two properties:

(i) Every piece is completely processed in a single zone,
and without preemption.

(ii) The execution of every piece starts and ends at a
time point from the set W .

A discretized schedule S is called well-ordered if and
only if

(iii) For any time point t, such that in S a piece u ends
at t, S schedules all pieces u′ � u with du′ ≥ t after
t.

Finally, we define a particular ordering over possible
schedules, which will be useful in our analysis.

Definition 3.4. Consider a given schedule. For every
job j ∈ J ′, and every x ≤ vj, let cj(x) denote the
earliest time point at which volume x of job j has

ti ti+1

ti+1ti

Figure 1: We assume that r = 1 . . . 8 and that x(i) = 2. The red dashed points correspond to j = 1 and the blue
dotted points to j = 2. For clarity, we drew the points defined from ti and from ti+1 in two separate pictures.
Note that for each j the number of points is the same and the points of the same color are at equal distance from
each other.

been finished under this schedule. Furthermore, for any
j ∈ J ′, we define

qj :=

∫ vj

0

cj(x)dx.

Let j1 ≺ j2 ≺ · · · ≺ j|J ′| be the jobs in J ′. A
schedule S is lexicographically smaller than a schedule
S′ if and only if it is lexicographically smaller with
respect to the vector (qj1 , qj2 , . . . , qj|J ′|).

Observe that shifting the processing interval of any
fraction of some job j to an earlier time point (without
affecting the other processing times of j) decreases the
value of qj .

3.2 Existence of a Near-Optimal Discretized
Schedule In this section, we first show that there exists
a YDS-extension for J ′ with certain nice properties
(recall that a YDS-extension is an optimal schedule
satisfying the properties of Lemma 2.1). We then
explain how such a YDS-extension can be transformed
into a well-ordered discretized schedule, and prove that
the speed of the latter, at all times, is at most (1 +
δ)3 times that of the former. This fact essentially
guarantees the existence of a well-ordered discretized
schedule with energy consumption at most 1 + ε that of
an optimal schedule for J ′.

Lemma 3.1. Let OPT be a lexicographically minimal
YDS-extension for J ′. Then the following hold:

1. Every job jdi is scheduled exactly in its allowed
interval Ii.

2. Every zone [ti, ti+1) ⊆ T has the following two
properties:

(a) There is at most one contiguous maximal pro-
cessing interval within [ti, ti+1), and this inter-
val either starts at ti and/or ends at ti+1. We
call this interval the block of zone [ti, ti+1).

(b) OPT uses a uniform speed of at most scrit
during this block.

3. There exist no two jobs j′ � j, such that a portion
of j is processed after some portion of j′, and before
dj′ .

Proof.

1. Since FAST (J ′) = {jdi : 1 ≤ i ≤ `} (by Propo-
sition 2.1), and OPT is a YDS-extension, it follows
that each jdi is processed exactly in its allowed inter-
val Ii.

2. (a) Assume for the sake of contradiction that
[ti, ti+1) ⊆ T contains a number of maximal
intervals N1, N2, . . . , Nψ (ordered from left to
right2) during which jobs are being processed,
with ψ ≥ 2. Let M1,M2, . . . ,Mψ′ (again or-
dered from left to right) be the remaining maxi-
mal intervals in [ti, ti+1), so thatN1, . . . , Nψ and
M1, . . . ,Mψ′ partition the zone [ti, ti+1). Fur-
thermore, note that for each i = 1, . . . , ψ′, the
processor is either active but idle or asleep dur-
ing the whole interval Mi, since otherwise set-
ting the processor asleep during the whole in-
terval Mi would incur a strictly smaller energy
consumption.

We modify the schedule by shifting the in-
tervals Ni, i = 2, . . . , ψ to the left, so that
N1, N2, . . . , Nψ now form a single contiguous
processing interval. The intervals Mk lying to
the right of N1 are moved further right and
merge into a single (longer) interval M ′ during
which no jobs are being processed. If the pro-
cessor was active during each of these intervals
Mk, then we keep the processor active during
the new interval M ′, else we transition it to the

2For any two time points t1 < t2, we say that t1 is to the left
of t2, and t2 is to the right of t1.

sleep state. We observe that the resulting sched-
ule is still a YDS-extension (note that its energy
consumption is at most that of the initial sched-
ule), but is lexicographically smaller.

For the second part of the statement, assume
that there exists exactly one contiguous maxi-
mal processing interval N1 within [ti, ti+1), and
that there exist two M -intervals, M1 and M2

before and after N1, respectively.

We consider two cases:

• The processor is active just before ti, or the
processor is asleep both just before ti and just
after ti+1: In this case we can shift N1 left
by |M1| time units, so that it starts at ti.
Again, we keep the processor active during
[ti + |N1|, ti+1) only if it was active during
both M1 and M2. As before, the resulting
schedule remains a YDS-extension, and is
lexicographically smaller.

• The processor is in the sleep state just before
ti but active just after ti+1: In this case we
shift N1 by |M2| time units to the right, so
that its right endpoint becomes ti+1. During
the new idle interval [ti, ti + |M1|+ |M2|) we
set the processor asleep. Note that in this
case the processor was asleep during M1. The
schedule remains a YDS-extension, but its
energy consumption becomes strictly smaller:
(i) either the processor was asleep during M2,
in which case the resulting schedule uses the
same energy while the processor is active but
has one wake-up operation less, or (ii) the
processor was active and idle during M2, in
which case the resulting schedule saves the
idle energy that was expended during M2.

(b) The statement follows directly from the second
property of Lemma 2.1 and the fact that all jobs
processed during [ti, ti+1) belong to SLOW (J ′)
and are active in the entire zone.

3. Assume for the sake of contradiction that there exist
two jobs j′ � j, such that a portion of j is processed
during an interval Z = [ζ1, ζ2), ζ2 ≤ dj′ , and
some portion of j′ is processed during an interval
Z ′ = [ζ ′1, ζ

′
2), with ζ ′2 ≤ ζ1. We first observe that

both jobs belong to SLOW (J ′). This follows from
the fact that both jobs are active during the whole
interval [ζ ′1, ζ2), and processed during parts of this
interval, whereas any job jdi (which are the only
jobs in FAST (J ′)) is processed exactly in its entire
interval [yi, zi) (by statement 1 of the lemma).

By the second property of Lemma 2.1, both j and
j′ are processed at the same speed. We can now

apply a swap argument. Let L := min{|Z|, |Z ′|}.
Note that OPT schedules only j′ during [ζ ′2 − L, ζ ′2)
and only j during [ζ2 − L, ζ2). Swap the part of the
schedule OPT in [ζ ′2−L, ζ ′2) with the schedule in the
interval [ζ2−L, ζ2). Given the above observations, it
can be easily verified that the resulting schedule (i)
is feasible and remains a YDS-extension, and (ii) is
lexicographically smaller than OPT.

�

The next lemma shows how to transform the lexi-
cographically minimal YDS-extension for J ′ of the pre-
vious lemma into a well-ordered discretized schedule.
This is the most crucial part of our approach. Roughly
speaking, the transformation needs to guarantee that
(1) in each zone, the volume of a job j ∈ SLOW (J ′)
processed is an integer multiple of vj/(4n

2d1/δe) (this is
tantamount to making sure that each zone has integral
job pieces to deal with), (2) the job pieces start and end
at the time points in W , and (3) all the job pieces are
processed in the “right order”. As we will show, the new
schedule may run at a higher speed than the given lex-
icographically minimal YDS-extension, but not by too
much.

Lemma 3.2. Let OPT be a lexicographically minimal
YDS-extension for J ′, and let sS(t) denote the speed
of schedule S at time t, for any S and t. Then there
exists a well-ordered discretized schedule F , such that
at any time point t ∈ T , there holds

sF (t) ≤ (1 + δ)3sOPT (t),

and for every t /∈ T , there holds

sF (t) = sOPT (t).

Proof. Through a series of three transformations, we
will transform OPT to a well-ordered discretized sched-
ule F , while upper bounding the increase in speed
caused by each of these transformations. More specifi-
cally, we will transform OPT to a schedule F1 satisfy-
ing (i) and (iii) of Definition 3.3, then F1 to F2 where
we slightly adapt the block lengths, and finally F2 to
F which satisfies all three properties of Definition 3.3.
Each of these transformations can increase the speed by
at most a factor (1+δ) for any t ∈ T and does not affect
the speed in any interval Ii.

Transformation 1 (OPT → F1): We will trans-
form the schedule so that

(i) For each job j ∈ SLOW (J ′), an integer multiple
of vj/(4n

2d1/δe) volume of job j is processed
in each zone, and the processing order of jobs

within each zone is determined by ≺. Together
with property 1 of Lemma 3.1, this implies that
F1 (considered as a schedule for pieces) satisfies
Definition 3.3(i).

(ii) The well-ordered property of Definition 3.3 is
satisfied.

(iii) For all t ∈ T it holds that sF1(t) ≤ (1+δ)sOPT (t),
and for every t /∈ T it holds that sF1

(t) =
sOPT (t).

Note that by Lemma 3.1, every zone is either empty,
filled exactly by a job jdi , or contains a single block. For
any job j ∈ SLOW (J ′), and every zone [ti, ti+1), let V ij
be the processing volume of job j that OPT schedules
in zone [ti, ti+1). Since there can be at most 2n different
zones, for every job j there exists some index h(j), such

that V
h(j)
j ≥ vj/(2n).

For every job j ∈ SLOW (J ′), and every i 6= h(j),
we reduce the load of job j processed in [ti, ti+1), by
setting it to

V̄ij =
⌊
V ij /

vj
4n2d1/δe)

⌋
· vj

4n2d1/δe
.

Finally, we set the volume of j processed in

[th(j), th(j)+1) to V̄h(j)
j = vj −

∑
i 6=h(j) V̄ij . To keep the

schedule feasible, we process the new volume of each
non-empty zone [ti, ti+1) ⊆ T in the zone’s original
block Bi, at a uniform speed of

∑
j∈SLOW (J ′)(V̄ij)/|Bi|.

Here, the processing order of the jobs within the block
is determined by ≺.

Note that in the resulting schedule F1, a job may
be processed at different speeds in different zones, but
each zone uses only one constant speed level.

It is easy to see that F1 is a feasible schedule in
which for each job j ∈ SLOW (J ′), an integer multiple
of vj/(4n

2d1/δe) volume of j is processed in each zone,
and that V̄ij ≤ V ij for all i 6= h(j). Furthermore, if i =

h(j), we have that V̄ij − V ij ≤ vj/(2nd1/δe), and V ij ≥
vj/(2n). It follows that V̄ij ≤ V ij +V ij /d1/δe ≤ (1+δ)V ij
in this case, and therefore sF1

(t) ≤ (1 + δ)sOPT (t) for
all t ∈ T . We note here, that for every job jdi , and the
corresponding interval Ii, nothing changes during the
transformation.

We finally show that F1 satisfies the well-ordered
property of Definition 3.3. Assume for the sake of
contradiction that there exists a piece u ending at some
t, and there exists a piece u′ � u with du′ ≥ t that is
scheduled before t. Recall that we can implicitly assume
that the pieces of any fixed job are processed in the
corresponding order ≺. Therefore job(u′) � job(u), by
definition of the ordering ≺ among pieces. Furthermore,
if [tk, tk+1) and [tk′ , tk′+1) are the zones in which u and

u′, respectively, are scheduled, then k′ < k, as k′ = k
would contradict F1’s processing order of jobs inside a
zone. Also note that du′ ≥ tk+1, since t ∈ (tk, tk+1],
and (tk, tk+1) does not contain any deadline. This
contradicts property 3 of Lemma 3.1, as the original
schedule OPT must have processed some volume of
job(u′) in [tk′ , tk′+1), and some volume of job(u) in
[tk, tk+1).

Transformation 2 (F1 → F2): In this transforma-
tion, we slightly modify the block lengths, as a prepa-
ration for Transformation 3. For every non-empty zone
[ti, ti+1) ⊆ T , we increase the uniform speed of its block
until it has a length of (1+δ)j 1

4n2scrit(1+δ)d1/δe for some

integer j ≥ 0, keeping one of its endpoints fixed at ti
or ti+1. Note that in F1, the block had length at least

1
4n2scrit(1+δ)d1/δe , since it contained a volume of at least

1/(4n2d1/δe), and the speed in this zone was at most
(1 + δ)scrit. The speedup needed for this modification
is clearly at most (1 + δ).

As this transformation does not change the process-
ing order of any pieces nor the zone in which any piece
is scheduled, it preserves the well-ordered property of
Definition 3.3.

Transformation 3 (F2 → F): In this final
transformation, we want to establish Definition 3.3(ii).
To this end, we shift and compress certain pieces in
F2, such that every execution interval starts and ends
at a time point from W (this is already true for pieces
corresponding to jobs jdi). The procedure resembles a
transformation done in [15]. For any zone [ti, ti+1) ⊆
T , we do the following: Consider the pieces that F2

processes within the zone [ti, ti+1), and denote this
set of pieces by Di. If Di = ∅, nothing needs to
be done. Otherwise, let γ be the integer such that
(1 + δ)γ 1

4n2scrit(1+δ)d1/δe is the length of the block in

this zone, and let

∆ :=
(1 + δ)γ 1

4n2scrit(1+δ)d1/δe

16n6d1/δe2(1 + d1/δe)
.

Note that in the definition of W , we introduced
16n6d1/δe2(1 + d1/δe) many time points (for j = γ and
r = 1, . . . , 16n6d1/δe2(1 + d1/δe)) that subdivide this
block into 16n6d1/δe2(1 + d1/δe) intervals of length ∆.
Furthermore, since |Di| ≤ 4n3d1/δe, there must exist a
piece u ∈ Di with execution time Γu ≥ 4n3d1/δe(1 +
d1/δe)∆. We now partition the pieces in Di\u into D+,
the pieces processed after u, and D−, the pieces pro-
cessed before u. First, we restrict our attention to D+.
Let q1, . . . , q|D+| denote the pieces in D+ in the order
they are processed by F2. Starting with the last piece
q|D+|, and going down to q1, we modify the schedule as
follows. We keep the end of q|D+|’s execution interval
fixed, and shift its start to the next earlier time point in

W , reducing its uniform execution speed accordingly.
At the same time, to not produce any overlappings,
we shift the execution intervals of all qk, k < |D+| by
the same amount to the left (leaving their lengths un-
changed). Eventually, we also move the execution end
point of u by the same amount to the left (leaving its
start point fixed). This shortens the execution interval
of u and “absorbs” the shifting of the pieces in D+ (note
that the processing speed of u increases as its interval
gets shorter). We then proceed with q|D+|−1, keeping
its end (which now already resides at a time point in W)
fixed, and moving its start to the next earlier time point
in W . Again, the shift propagates to earlier pieces in
D+, which are moved by the same amount, and short-
ens u’s execution interval once more. When all pieces in
D+ have been modified in this way, we turn to D− and
apply the same procedure there. This time, we keep the
start times fixed and instead shift the right end points
of the execution intervals further to the right. As be-
fore, u “absorbs” the propagated shifts, as we increase
its start time accordingly. After this modification, the
execution intervals of all pieces in Di start and end at
time points in W .

To complete the proof, we need to argue that the
speedup of piece u is bounded by a factor (1 + δ).
Since |Di| ≤ 4n3d1/δe, u’s execution interval can be
shortened at most 4n3d1/δe times, each time by a length
of at most ∆. Furthermore, recall that the execution
time of u was Γu ≥ 4n3d1/δe(1 + d1/δe)∆. Therefore,
its new execution time is at least Γu − 4n3d1/δe∆ ≥
Γu − Γu

1+d1/δe , and the speedup factor thus at most

Γu

Γu − Γu

1+d1/δe
=

1

1− 1
1+d1/δe

≤ 1 + δ.

Again, the transformation does not change the
processing order of any pieces nor the zone in which any
piece is scheduled, and thus preserves the well-ordered
property of Definition 3.3. �

We now show that the speedup used in our trans-
formation does not increase the energy consumption
by more than a factor of 1 + ε. To this end, observe
that for any t ∈ T , the speed of the schedule OPT in
Lemma 3.2 is at most scrit, by Lemma 3.1(2). Fur-
thermore, note that the final schedule F has speed zero
whenever OPT has speed zero. This allows F to use
exactly the same sleep phases as OPT (resulting in the
same wake-up costs). It therefore suffices to prove the
following lemma, in order to bound the increase in en-
ergy consumption.

Lemma 3.3. For any s ∈ [0, scrit], there holds

P
(
(1 + δ)3s

)
P (s)

≤ 1 + ε.

Proof.

P
(
(1 + δ)3s

)
P (s)

(1)

≤
P
(
(1 + 4δ)s

)
P (s)

=
P (s) + 4δsP (s+4δs)−P (s)

4δs

P (s)

(2)

≤
P (s) + 4δsP (s+scrit)−P (s)

scrit

P (s)

(3)

≤
P (s) + 4δsP (2scrit)−P (scrit)

scrit

P (s)

(4)

≤ 1 + 4δ
scrit

P (scrit)
· P (2scrit)− P (scrit)

scrit
(5)

≤ 1 + ε.

In the above chain of inequalities, (1) holds since
δ ≤ 1

4 and P (s) is non-decreasing. (2) and (3) follow
from the convexity of P (s), and the fact that 4δs ≤
scrit. Inequality (4) holds since scrit minimizes P (s)/s
(and thus maximizes s/P (s)), and (5) follows from the
definition of δ. �

We summarize the major result of this section in
the following lemma.

Lemma 3.4. There exists a well-ordered discretized
schedule with an energy consumption no more than
(1 + ε) times the optimal energy consumption for J ′.

4 The Dynamic Program

In this section, we show how to use dynamic program-
ming to find a well-ordered discretized schedule with
minimum energy consumption. In the following, we dis-
cuss only how to find the minimum energy consumption
of this target schedule, as the actual schedule can be
easily retrieved by proper bookkeeping in the dynamic
programming process.

Recall that D is the set of all pieces and W the set
of time points. Let u1, u2, . . . , u|D| be the pieces in D,
and w.l.o.g. assume that u1 ≺ u2 ≺ . . . ≺ u|D|.

Definition 4.1. For any k ∈ {1, . . . , |D|}, and τ1 ≤
τ2, τ1, τ2 ∈ W , we define Ek(τ1, τ2) as the minimum
energy consumption during the interval [τ1, τ2], of a
well-ordered discretized schedule so that

1. all pieces {u � uk : τ1 < du ≤ τ2} are processed in
the interval [τ1, τ2), and

2. the machine is active right before τ1 and right after
τ2.

In case that there is no such feasible schedule, let
Ek(τ1, τ2) =∞.

The DP proceeds by filling the entries Ek(τ1, τ2) by
decreasing index of k. The base cases are

E|D|+1(τ1, τ2) := min{P (0)(τ2 − τ1), C},

for all τ1, τ2 ∈ W, τ1 ≤ τ2. For the recursion step,
suppose that we are about to fill in Ek(τ1, τ2). There
are two possibilities.

• Suppose that duk
6∈ (τ1, τ2]. Then clearly Ek(τ1, τ2) =

Ek+1(τ1, τ2).

• Suppose that duk
∈ (τ1, τ2]. By definition, piece uk

needs to be processed in the interval [τ1, τ2). We need
to guess its actual execution period [b, e) ⊆ [τ1, τ2),
and process the remaining pieces {u � uk+1 : τ1 <
du ≤ τ2} in the two intervals [τ1, b) and [e, τ2). We
first rule out some guesses of [b, e) that are bound to
be wrong.

– By Definition 3.3(i), in a discretized schedule, a
piece has to be processed completely inside a zone
[ti, ti+1) (recall that ti ∈ W ′ are the release times
and deadlines of the jobs). Therefore, in the right
guess, the interior of [b, e) does not contain any
release times or deadlines; more precisely, there is
no time point ti ∈W ′ so that b < ti < e.

– By Definition 3.3(iii), in a well-ordered discretized
schedule, if piece uk ends at time point e, then all
pieces u′ � uk with deadline du′ ≥ e are processed
after uk. However, consider the guess [b, e), where
e = du′ for some u′ � uk (notice that the previous
case does not rule out this possibility). Then u′

cannot be processed anywhere in a well-ordered
schedule. Thus, such a guess [b, e) cannot be right.

By the preceding discussion, if the guess (b, e) is right,
the two sets of pieces {u � uk+1 : τ1 < du ≤ b} and
{u � uk+1 : e < du ≤ τ2}, along with piece uk,
comprise all pieces to be processed that are required
by the definition of Ek(τ1, τ2). Clearly, the former set
of pieces {u � uk+1 : τ1 < du ≤ b} has to be processed
in the interval [τ1, b); the latter set of pieces, in a well-
ordered schedule, must be processed in the interval
[e, τ2) if [b, e) is the correct guess for the execution of
the piece uk.

We therefore have that

Ek(τ1, τ2) = min
b,e∈W, [b,e)⊆[τ1,τ2),

[b,e)⊆[ruk
,duk

),

6∃ti∈W ′, s.t. b<ti<e,
6∃u′�uk, s.t. du′=e.{

Ek+1(τ1, b) + P (
vuk

e− b
)(e− b) + Ek+1(e, τ2)

}

if there exist b, e ∈ W with the properties stated un-
der the min-operator, and Ek(τ1, τ2) =∞ otherwise.

It can be verified that the running time of the
DP is polynomial in the input size and 1/ε. The
minimum energy consumption for the target schedule
is E1(0, dmax).

Theorem 4.1. There exists a fully polynomial-time ap-
proximation scheme (FPTAS) for speed scaling with
sleep state.

Proof. Given an arbitrary instance J for speed scaling
with sleep state, we can transform it in polynomial
time to an instance J ′, as seen in Section 2. We
then apply the dynamic programming algorithm that
was described in this section to obtain a well-ordered
discretized schedule S ′ of minimal energy consumption
for instance J ′. By Lemma 3.4, we have that S ′ is
a (1 + ε)-approximation for instance J ′. Furthermore,
note that every discretized schedule (and therefore also
S ′) executes each job jdi exactly in its allowed interval
Ii = [yi, zi). This holds because there are no time points
from the interior of Ii included inW , and any discretized
schedule must therefore choose to run jdi precisely from
yi ∈ W to zi ∈ W . Therefore, by Lemma 2.2, we can
transform S ′ to a schedule S in polynomial time and
obtain a (1 + ε)-approximation for J . �

References

[1] Susanne Albers. Energy-efficient algorithms. Com-
mun. ACM, 53(5):86–96, 2010.

[2] Susanne Albers and Antonios Antoniadis. Race to idle:
New algorithms for speed scaling with a sleep state.
ACM Transactions on Algorithms, 10(2):9, 2014.

[3] Peter Bailis, Vijay Janapa Reddi, Sanjay Gandhi,
David Brooks, and Margo I. Seltzer. Dimetrodon:
processor-level preventive thermal management via idle
cycle injection. In DAC, pages 89–94. ACM, 2011.

[4] Evripidis Bampis, Christoph Dürr, Fadi Kacem, and
Ioannis Milis. Speed scaling with power down schedul-
ing for agreeable deadlines. Sustainable Computing:
Informatics and Systems, 2(4):184–189, 2012.

[5] Evripidis Bampis, Alexander Kononov, Dimitrios Let-
sios, Giorgio Lucarelli, and Ioannis Nemparis. From
preemptive to non-preemptive speed-scaling schedul-
ing. In COCOON, pages 134–146. Springer, 2013.

[6] Nikhil Bansal, Ho-Leung Chan, Dmitriy Katz, and
Kirk Pruhs. Improved bounds for speed scaling in de-
vices obeying the cube-root rule. Theory of Computing,
8(1):209–229, 2012.

[7] Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Speed
scaling with an arbitrary power function. ACM Trans-
actions on Algorithms, 9(2):18, 2013.

[8] Philippe Baptiste. Scheduling unit tasks to minimize
the number of idle periods: a polynomial time al-
gorithm for offline dynamic power management. In
SODA, pages 364–367. ACM Press, 2006.

[9] Philippe Baptiste, Marek Chrobak, and Christoph
Dürr. Polynomial-time algorithms for minimum energy
scheduling. ACM Transactions on Algorithms, 8(3):26,
2012.

[10] David M. Brooks, Pradip Bose, Stanley E. Schuster,
Hans Jacobson, Prabhakar N. Kudva, Alper Buyukto-
sunoglu, John-David Wellman, Victor Zyuban, Man-
ish Gupta, and Peter W. Cook. Power-aware microar-
chitecture: Design and modeling challenges for next-
generation microprocessors. IEEE Micro, 20(6):26–44,
November 2000.

[11] Erik D. Demaine, Mohammad Ghodsi, Mohammad-
Taghi Hajiaghayi, Amin S. Sayedi-Roshkhar, and
Morteza Zadimoghaddam. Scheduling to mini-
mize gaps and power consumption. J. Scheduling,
16(2):151–160, 2013.

[12] Anshul Gandhi, Mor Harchol-Balter, Rajarshi Das,
and Charles Lefurgy. Optimal power allocation in
server farms. In SIGMETRICS/Performance, pages
157–168. ACM, 2009.

[13] Matthew Garrett. Powering down. ACM Queue,
5(7):16–21, 2007.

[14] Xin Han, Tak Wah Lam, Lap-Kei Lee, Isaac Kar-
Keung To, and Prudence W. H. Wong. Deadline
scheduling and power management for speed bounded
processors. Theor. Comput. Sci., 411(40-42):3587–
3600, 2010.

[15] Chien-Chung Huang and Sebastian Ott. New results
for non-preemptive speed scaling. In MFCS, pages
360–371. Springer, 2014.

[16] Sandy Irani and Kirk Pruhs. Algorithmic problems
in power management. SIGACT News, 36(2):63–76,
2005.

[17] Sandy Irani, Sandeep K. Shukla, and Rajesh Gupta.
Algorithms for power savings. ACM Transactions on
Algorithms, 3(4), 2007.

[18] Gunjan Kumar and Saswata Shannigrahi. NP-
hardness of speed scaling with a sleep state. CoRR,
abs/1304.7373, 2013.

[19] Arun Raghavan, Laurel Emurian, Lei Shao, Marios C.
Papaefthymiou, Kevin P. Pipe, Thomas F. Wenisch,
and Milo M. K. Martin. Utilizing dark silicon to save
energy with computational sprinting. IEEE Micro,
33(5):20–28, 2013.

[20] F. Frances Yao, Alan J. Demers, and Scott Shenker.
A scheduling model for reduced cpu energy. In FOCS,
pages 374–382. IEEE Computer Society, 1995.

