
Classified Stable Matching

Chien-Chung Huang?

Max-Planck-Institut für Informatik, Saarbrücken, 66123, Germany
villars@mpi-inf.mpg.de

Abstract. We introduce the classified stable matching problem, a problem motivated by academic
hiring. Suppose that a number of institutes are hiring faculty members from a pool of applicants. Both
institutes and applicants have preferences over the other side. An institute classifies the applicants based
on their research areas (or any other criterion), and, for each class, it sets a lower bound and an upper
bound on the number of applicants it would hire in that class. The objective is to find a stable matching
from which no group of participants has reason to deviate. Moreover, the matching should respect the
upper/lower bounds of the classes.
In the first part of the paper, we study classified stable matching problems whose classifications belong
to a fixed set of “order types.” We show that if the set consists entirely of downward forests, there is a
polynomial-time algorithm; otherwise, it is NP-complete to decide the existence of a stable matching.
In the second part, we investigate the problem using a polyhedral approach. Suppose that all classifications
are laminar families and there is no lower bound. We propose a set of linear inequalities to describe stable
matching polytope and prove that it is integral. This integrality allows us to find various optimal stable
matchings using Ellipsoid algorithm. By studying the geometric structure of fractional stable matchings,
we are able to generalize a theorem of Teo and Sethuraman in the context of classified stable matching:
given any number of stable matchings, if every applicant is assigned to his median choice among all stable
matchings, the outcome is still a stable matching. Finally, a ramification of our result is the description of
the stable matching polytope for the many-to-many (unclassified) stable matching problem. This answers
an open question posed by Sethuraman, Teo and Qian.

? Research supported by an Alexander von Humboldt fellowship

1 Introduction

Imagine that a number of institutes are recruiting faculty members from a pool of applicants. Both
sides have their preferences. It would be ideal if there is a matching from which no applicant and
institute have reason to deviate. If an applicant prefers another institute to the one he is assigned to
(or maybe he is unassigned) and this institute also prefers him to any one of its assigned applicants,
then this institute-applicant pair is a blocking pair. A matching is stable if there is no blocking pair.

The above scenario is the well-studied hospitals/residents problem [8, 12] in a different guise.
It is known that stable matchings always exist and can be found efficiently by the Gale-Shapley
algorithm. However, real world situations can be more complicated. An institute may have its own
hiring policy and may find certain sets of applicants together unacceptable. For example, an institute
may have reasons to avoid hiring too many applicants graduated from the same school; or it may
want to diversify its faculty so that it can have researchers in many different fields.

This concern motivates us to consider the following problem. An institute, besides giving its
preference among the applicants, also classifies them based on their expertise (or some other criterion).
For each class, it sets an upper bound and a lower bound on the number of applicants it would hire.
Each institute defines its own classes and classifies the applicants in its own way (and the classes
need not be disjoint). We consider this flexibility a desirable feature, as there are some research fields
whose boundaries are blurred; moreover, some versatile researchers may be hard to categorize.

We call the above problem classified stable matching. Even though motivated by academic
hiring, it comes up any time objects on one side of the matching have multiple partners that may be
classified. For example, the two sides can be jobs and machines; each machine is assigned several jobs
but perhaps cannot take two jobs with heavy memory requirements.

To make the problem precise, we introduce necessary notation and terminology. A set A of ap-
plicants and a set I of institutes are given. Each applicant/institute has a strictly-ordered (but not
necessarily complete) preference list over the other side. The notation �x indicates either strictly
better or equal in terms of preference of an entity e ∈ A ∪ I while �e means strictly better. For
example, if applicant a ∈ A strictly prefers institute i ∈ I to another institute i′ ∈ I, we write
i �a i′. The preference list of institute i is denoted as Li. The set of applicants on Li who rank higher
(respectively lower) than some particular applicant a are written as Li�a (respectively Li≺a).

An institute i has a capacity Q(i) ∈ Z+, the maximum number of applicants it can hire. It defines

its own classification C(i) = {Cij}
|C(i)|
j=1 , which is a family of sets over the applicants in its preference

list. Each class Cij ∈ C(i) has an upperbound q+(Cij) ∈ Z+ and a lowerbound q−(Cij) ∈ Z+ ∪ {0},
on the number of applicants it would hire in that class. Given a matching µ, µ(a) is the institute
applicant a is assigned to. We write µ(i) = (ai1, ai2, · · · , aik), k ≤ Q(i) to denote the set of applicants
institute i gets in µ, where aij are listed in decreasing order based on its preference list. In this paper,
we will slightly abuse notation, treating an (ordered) tuple such as µ(i) as a set.

Definition 1. Given a tuple t = (ai1, ai2, · · · , aik) where aij are ordered based on their decreasing
rankings on institute i’s preference list, it is said to be a feasible tuple of institute i, or just feasible
for short, if the following conditions hold:

– k ≤ Q(i);

– given any class Cij ∈ C(i), q−(Cij) ≤ |t ∩ Cij | ≤ q+(Cij).

Definition 2. A matching µ is feasible if all the tuples µ(i), i ∈ I are feasible. A feasible matching
is stable if and only if there is no blocking group. A blocking group is defined as follows. Let µ(i) =

1

(ai1, ai2, · · · , aik), k ≤ Q(i). A feasible tuple g = (a′i1, a
′
i2, · · · , a′ik′), k ≤ k′ ≤ Q(i), forms a blocking

group (i;g) with institute i if

– for 1 ≤ j ≤ k′, i �a′ij µ(a′ij), and for 1 ≤ j ≤ k, a′ij �i aij, and

– either there exists l, 1 ≤ l ≤ k such that a′il �i ail and i �a′il µ(a′il), or that k′ > k.

Informally speaking, the definition requires that for a blocking group to be formed, all involved
applicants have to be willing to switch to, or stay with, institute i. The collection of applicants in the
blocking group should still respect the upper and lower bounds in each class; moreover, the institute
gets a strictly better deal (in the Pareto-optimal sense). Note that when there is no class lower bound,
then the stable matching as defined in Definition 2 can be equivalently defined as a feasible matching
with the conventional blocking pairs (see Lemma 17 in Section 4). When the class lower bound is
present, the definition of the blocking groups captures our intuition that an institute should not
indiscriminately replace a lower ranking applicant assigned to it with a higher applicant (with whom
it forms a blocking pair), otherwise, the outcome for it may not be a feasible one.

In our proofs, we often use the notation µ(i)|aa′ to denote a tuple formed by replacing a ∈ µ(i)
with a′. The order of the tuple µ(i)|aa′ is still based on institute i’s preference list. If we write µ(i)|a,
then this new tuple is obtained by adding a into µ(i) and re-ordered. In a matching µ, if a class Cij is

fully-booked, i.e. |µ(i) ∩Cij | = q+(Cij), we often refer to such a class as a “bottleneck” class. We also
define an “absorption” operation: given a set B of classes, <(B) returns the set of classes which are
not entirely contained in other classes in B.

Our Results It would be of interest to know how complicated the classifications of the institutes
can be while still allowing the problem a polynomial time algorithm. In this work, we study the
classified stable matching problems whose classifications belong to a fixed set of “order types.”
The order type of a classification is the inclusion poset of all non-empty intersections of classes. We
introduce necessary definitions to make our statement precise.

Definition 3. The class inclusion poset P (i) = (C(i),�) of an institute i is composed of sets of the

elements from Li: C(i) = {C|C = Cij ∩ Cik, where Cij , C
i
k ∈ C(i)}1. In P (i), C

i
j � C

i
k if C

i
j ⊃ C

i
k;

and C
i
j‖C

i
k if C

i
j 6⊃ C

i
k and C

i
k 6⊃ C

i
j.

Definition 4. Let P = {P1, P2, · · · , Pk} be a set of posets. A classified stable matching instance
(A, I) belongs to the group of P-classified stable matching problems if for each poset Pj ∈ P,
there exists an institute i ∈ I whose class inclusion poset P (i) is isomorphic to Pj and conversely,
every class inclusion poset P (i) is isomorphic to a poset in P.

We call a poset a downward forest if given any element, no two of its successors are incomparable.
Our first main result is the following dichotomy theorem.

Theorem 5. Let P = {P1, P2, · · · , Pk} be a set of posets. P-classified stable matching problems can be
solved in polynomial time if every poset Pj ∈ P is a downward forest; on the other hand, if P contains
a poset Pj which is not a downward forest, the existence of a stable matching is NP-complete.

1 Note that this definition allows a class to intersect itself, i.e., C = Cij ∩ Cij . This implies that C(i) ⊇ C(i).

2

We remark that if P is entirely composed of downward forests, then every classification C(i) must
be a laminar family2. In this case, we call the problem laminar classified stable matching
(henceforth LCSM).

We present an O(m2) time algorithm for LCSM, where m is the total size of all preferences. Our
algorithm is extended from the Gale-Shapley algorithm. Though intuitive, its correctness is difficult
to argue due to various constraints3. Furthermore, we show that several well-known structural results
in the hospitals/residents problem can be further generalized in LCSM. On the other hand, if
some institute i has a classification C(i) violating laminarity, then P must contain a poset which has
a “V” (where the “bottom” is induced by two intersecting classes in C(i) which are its parents “on
top.”) We will make use of this fact to design a gadget for our NP-complete reduction. In particular,
in our reduction, all institutes only use upperbound constraints. Sections 2 and 3 will be devoted to
these results.

Our dichotomy theorem implies a certain limit on the freedom of the classifications defined by
the institutes. For example, an institute may want to classify the applicants based on two different
criteria simultaneously (say by research fields and gender); however, our result implies this may cause
the problem to become intractable.

In the second part, we study LCSM using a mathematical programming approach. Assume that
there is no lower bound on the classes. We extend the set of linear inequalities used by Bäıou and
Balinski [4] to describe stable matchings and generalize a bin-packing algorithm of Sethuraman, Teo,
and Qian [23] to prove that the polytope is integral. The integrality of our polytope allows us to use
suitable objective functions to obtain various optimal stable matchings using Ellipsoid algorithm. As
our LP has an exponential number of constraints, we also design a separation oracle.

By studying the geometric structure of fractional stable matchings, we are able to generalize a
theorem of Teo and Sethuraman [24]: in (one-to-one) stable marriage, given any number of stable
matchings, if we assign every man his median choice among all women with whom he is matched in
the given set of matchings and we do similarly for women, the outcome is still a stable matching. This
theorem has been generalized in the context of hospitals/residents problem [6, 14, 23]. We prove
that in LCSM, this theorem still holds: if we apply this “median choice operation” on all applicants,
the outcome is still a stable matching4.

A final ramification of our polyhedral result is an answer to an open question posed by Sethuraman,
Teo and Qian [23]: how do we describe the stable matching polytope in the classical “unclassified”
many-to-many stable matching problem? We show this problem can be reduced to LCSM by suitable
cloning and classifications.

All the polyhedral results will be presented in Section 4. In Section 5 we conclude. Omitted proofs
and details can be found in the appendix.

1.1 Related Work

Stable matching problems have drawn the intensive attention of researchers in various disciplines in
the past decades since the seminal paper of Gale and Shapley [8]. For a summary, see [12, 15, 19].
Vande Vate [25] initiated the study of stable matching using mathematical programming approach;
further developments using this approach can be found in [2, 4, 18, 20, 22–24].

2 A laminar family F has no pair of intersecting classes, that is, if A,B ∈ F , then either A ∩ B = ∅, or A ⊆ B, or
B ⊆ A.

3 If there is no lower bound on the classes, the proof can be significantly simplified.
4 However, this “median choice operation” on the applicants’ side does not mean that all institutes will get their

(lexicographically) median outcome. Thus, the “fairness” of the resultant matching is to a certain degree lost in our
generalizations. See Section 4 for details.

3

Fleiner [7] studied the many-many stable matching in a much more general context. Using a fixed-
point approach, he proved that stable matchings always exist provided that the preference of each
entity is a substitutable choice function. Roughly speaking, such a function can be realized by imposing
a matroid over a linear order of elements. In LCSM, supposing that there is no lower bound on the
classes, then each laminar family is equivalent to a partition matroid. We prove that stable matchings
always exist in this situation. Hence, our algorithm in Section 2 can be seen as a constructive proof
of a special case of Fleiner’s existence theorem.

Abraham, Irving and Manlove introduced the student-project allocation problem [3]. It
can be shown that in LCSM, if all classifications are just partitions over the applicants and there is
no lower bound, our problem is equivalent to a special case of their problem. They posed the open
question whether there is a polynomial time algorithm for their problem if there is lower bound on
the projects (classes). Our result in Section 2 gives a partial positive answer.

Two recent works [5, 13] also consider the Hospitals/Residents problem in the context of having
lower bounds on the hospitals’ side. In [5], an interesting variation of the Hospitals/Residents problem
which has a similar flavor to the current work is defined as follows: each hospital has its individual
quota and sets of hospitals may also have collective quotas.

2 An Algorithm for Laminar Classified Stable Matching

In this section, we present a polynomial time algorithm to find a stable matching if it exists in the
given LCSM instance, otherwise, to report that none exists.

We pre-process our instance as follows. If applicant a is on institute i’s preference list, we add a
class Cia1 = {a} into C(i). Furthermore, we also add a class Ci] into C(i) including all applicants in

Li. After this pre-processing, the set of classes in C(i) form a tree whose root is the Ci]; moreover,

an applicant a belongs to a sequence of classes a(C(i)) = (Cia1, C
i
a2, · · · , Ciaz(= Ci])), which forms a

path from the leaf to the root in the tree (i.e., Ciaj is a super class of Ciaj′ , provided j′ < j.) For each

non-leaf class Cij , let c(Cij) denote the set of its child classes in the tree. We can assume without loss

of generality that q−(Cij) ≥
∑

Cik∈c(C
i
j)
q−(Cik) for any non-leaf class Cij . Finally, let q+(Ci]) := Q(i),

q−(Ci]) :=
∑

Cik∈c(C
i
])
q−(Cik); for all applicants a ∈ Li, q+(Cia1) := 1 and q−(Cia1) := 0.

Our algorithm finds an applicant-optimal-institute-pessimal stable matching. The applicant-optimality
means that all applicants get the best outcome among all stable matchings; on the other hand,
institute-pessimality means that all institutes get an outcome which is “lexicographically” the worst
for them. To be precise, suppose that µ(i) = (ai1, ai2, · · · , aik) and µ′(i) = (ai1, ai2, · · · , aik) are the
outcomes of two stable matchings for institute i5. If there exists k′ ≤ k so that aij = a′ij , for all
1 ≤ j ≤ k′ − 1 and aik′ �i a′ik′ , then institute i is lexicographically better off in µ than in µ′.

We now sketch the high-level idea of our algorithm. We let applicants “propose” to the institutes
from the top of their preference lists. Institutes make the decision of acceptance/rejection of the
proposals based on certain rules (to be explained shortly). Applicants, if rejected, propose to the next
highest-ranking institutes on their lists. The algorithm terminates when all applicants either end up
with some institutes, or run out of their lists. Then we check whether the final outcome meets the
upper and lower bounds of all classes. If yes, the outcome is a stable matching; if no, there is no stable
matching in the given instance.

How the institutes make the acceptance/rejection decisions is the core of our algorithm. Intuitively,
when an institute gets a proposal, it should consider two things: (i) will adding this new applicant

5 In LCSM, an institute always gets the same number of applicants in all stable matchings. See Theorem 15 below.

4

violate the upper bound of some class? (ii) will adding this applicant deprive other classes of their
necessary minimum requirement? If the answer to any of the two questions is positive, the institute
should not just take the new applicant unconditionally; instead, it has to reject someone it currently
has (not necessarily the new comer).

Below we will design two invariants for all classes of an institute. Suppose that institute i gets a
proposal from applicant a, who belongs to a sequence of classes a(C(i)) = (Cia1, C

i
a2, · · · , Ci]). We check

this sequence of classes from the leave to the root. If adding applicant a into class Ciaj does not violate

these invariants, we climb up and see if adding applicant a into Cia(j+1) violates the invariant. If we

can reach all the way to Ci] without violating the invariants in any class in a(C(i)), applicant a is just

added into institute i’s new collection. If, on the other hand, adding applicant a into Cia(j+1) violates

the invariants, institute i rejects some applicant in Cia(j+1) who is from a sequence of subclasses of

Cia(j+1) which can afford to lose one applicant.

We define a deficiency number ∆(Cij) for each class Cij ∈ C(i). Intuitively, the deficiency number

indicates how many more applicants are necessary for class Cij to meet the lower bound of all its
subclasses. This intuition translates into the following invariant:

Invariant A: ∆(Cij) ≥
∑

Cik∈c(C
i
j)
∆(Cik), ∀Cij ∈ C(i), c(Cij) 6= ∅,∀i ∈ I.

In the beginning, ∆(Cij) is set to q−(Cij) and we will explain how ∆(Cij) is updated shortly. Its

main purpose is to make sure that after adding some applicants into Cij , there is still enough “space”

for other applicants to be added into Cij so that we can satisfy the lower bound of all subclasses of

Cij . In particular, we maintain

Invariant B: q−(Cij) ≤ |µ(i) ∩ Cij |+∆(Cij) ≤ q+(Cij),∀Cij ∈ C(i),∀i ∈ I.

We now explain how ∆(Cij) is updated. Under normal circumstances, we decrease ∆(Cij) by 1

once we add a new applicant into Cij . However, if Invariant A is already “tight”, i.e., ∆(Cij) =∑
Cik∈c(C

i
j)
∆(Cik), then we add the new applicant Cij without decreasing ∆(Cij). The same situation

may repeat until the point that |µ(i) ∩ Cij | + ∆(Cij) = q+(Cij) and adding another new applicant in

Cij is about to violate Invariant B. In this case, something has to be done to ensure that Invariant B

holds: some applicant in Cij has to be rejected, and the question is whom?

Let us call a class a surplus class if |µ(i)∩Cij |+∆(Cij) > q−(Cij) and we define an affluent set for

each class Cij as follows:

$(Cij , µ(i)) = {a|a ∈ µ(i) ∩ Cij ; for each Cij′ ∈ a(C(i)) and Cij′ ⊂ Cij , |µ(Cij′)|+∆(Cij′) > q−(Cij′)}.

In words, the affluent set $(Cij , µ(i)) is composed of the set of applicants currently assigned to

institute i, part of Cij , and each of whom belonging to a sequence of surplus subclasses of Cij . In our

algorithm, to prevent Invariant B from being violated in a non-leaf class Cij , institute i rejects the

lowest ranking applicant a in the affluent set $(Cij , µ(i)).

The pseudo-code of the algorithm is presented in Figure 1.

5

Initialization
0: ∀i ∈ I, ∀Cij ∈ C(i), ∆(Cij) := q−(Cij);

Algorithm
1: While there exists an applicant a unassigned and he has not been rejected by all institutes on his list
2: Applicant a proposes to the highest ranking institute i to whom he has not proposed so far;
3: Assume that a(C(i)) = (Cia1, C

i
a2, · · · , Ciaz(= Ci]));

4: µ(i) := µ(i) ∪ {a} // Institute i accepts applicant a provisionally;
5: For t = 2 To z // applicant a can be added into Cia1 directly;
6: If ∆(Ciat) >

∑
Ci

k
∈c(Ci

at)
∆(Cik) Then ∆(Ciat) := ∆(Ciat)− 1;

7: If #(Ciat) +∆(Ciat) > q+(Ciat) Then
8 Let $(Ciat, µ(i)) = {a|a ∈ µ(i) ∩ Ciat; for each Cij′ ∈ a(C(i)) and Cij′ ⊂ Ciat, |µ(Cij′)|+∆(Cij′) > q−(Cij′)};
9 Let the lowest ranking applicant in $(Ciat, µ(i)) be a†;

10 µ(i) := µ(i)\{a†} // Institute i rejects applicant a†;
11: GOTO 1;
12: If there exists an institute i with ∆(Ci]) > 0 Then Report ”There is no stable matching”;
13: Else Return the outcome µ, which is a stable matching;

Fig. 1. The pseudo code of the algorithm. It outputs the applicant-optimal-institute-pessimal matching µ if it exists;
otherwise, it reports that there is no stable matching.

2.1 Correctness of the Algorithm

In our discussion, Ciat is a class in a(C(i)), where t is the index based on the size of the class Ciat in
a(C(i)). Assume that during the execution of the algorithm, applicant a proposes to institute i and
when the index t of the For loop of Line 5 becomes l and results in a† being rejected, we say applicant
a is stopped at class Cial, and class Cial causes applicant a† to be rejected.

The first lemma describes some basic behavior of our algorithm.

Lemma 6. (i) Immediately before the end of the while loop, Invariants A and B hold.

(ii) Let applicant a be the new proposer and assume he is stopped at class Cial. Then

(iia) Between the time interval that he makes the new proposal and he is stopped at Cial, ∆(Ciat)
remains unchanged, for all 1 ≤ t ≤ l; moreover, given any class Ciat, 2 ≤ t ≤ l, ∆(Ciat) =∑

Cik∈c(C
i
at)
∆(Cik).

(iib) When a is stopped at a non-leaf class Cial, $(Cial, µ(i)) 6= ∅; in particular, any class Ciat,
1 ≤ t ≤ l − 1, is temporarily a surplus class.

(iii) Immediately before the end of the while loop, if class Cij is a non-leaf surplus class, then ∆(Cij) =∑
Cik∈c(C

i
j)
∆(Cik).

(iv) Suppose that applicant a is the new proposer and Cial ∈ a(C(i)) causes applicant a† to be rejected
and a†(C(i)) = (Ci

a†1
, Ci

a†2
, · · · , Ci

a†l†
(= Cial), · · ·). Then immediately before the end of the while

loop, ∆(Ci
a†t′

) =
∑

Cik∈c(C
i
a†t′

)∆(Cik), for all 2 ≤ t′ ≤ l†; moreover, |µ(i) ∩ Ci
a†l†
| + ∆(Ci

a†l†
) =

q+(Ci
a†l†

).

Proof. (i) can be proved by induction on the number of proposals institute i gets. For (iia), since
Invariant A is maintained, if ∆(Ciat) is decreased for some class Ciat, 1 ≤ t ≤ l, the algorithm will
ensure that applicant a would not be stopped in any class, leading to a contradiction. Now by (iia),
the set of classes {Ciat}l−1t=1 are (temporarily) surplus classes when applicant a is stopped at Cial, so
$(Cial, µ(i)) 6= ∅, establishing (iib). Note that this also guarantees that the proposed algorithm is never
“stuck.”

6

(iii) can be proved inductively on the number of proposals that institute i gets. Assuming a is the
new proposer, there are two cases: (1) Suppose that applicant a is not stopped in any class. Then a
class Ciat ∈ a(C(i)) can become surplus only if the stated condition holds ; (2) Suppose that applicant
a is stopped in some class, which causes a† to be rejected. Let the smallest class containing both a and
a† be Cial′ . Applying (iia) and observing the algorithm, it can be verified that only a class Ciat ⊂ Cial′
can become a surplus class and for such a class, the stated condition holds.

Finally, for the first part of (iv), let Cial′ denote the smallest class containing both a and a†. Given
a class Ci

a†t′
, if Cial′ ⊆ Cia†t′ ⊆ C

i
al, (iia) gives the proof. If Ci

a†t′
⊂ Cial′ , observe that the former must

have been a surplus class right before applicant a made the new proposal. Moreover, before applicant
a proposed, (iii) implies that for a non-leaf class Ci

a†t′
⊂ Cial′ , the stated condition regarding the

deficiency numbers is true. The last statement of (iv) is by the algorithm and Invariant B. ut

Lemma 7. Assume that a†(C(i)) = (Ci
a†1
, Ci

a†2
, · · · , Ci

a†l†
, · · ·). During the execution of the algo-

rithm, suppose that class Ci
a†l†

causes applicant a† to be rejected. In the subsequent execution of the
algorithm, assuming that µ(i) is the assignment of institute i at the end of the while loop, then
there exists l‡, where l‡ ≥ l† such that |µ(i) ∩ Ci

a†l‡
| + ∆(Ci

a†l‡
) = q+(Ci

a†l‡
); furthermore, for

all 2 ≤ t ≤ l‡, all applicants in $(Ci
a†t
, µ(i)) rank higher than a†. Moreover, for all 2 ≤ t ≤ l‡,

∆(Ci
a†t

) =
∑

Cik∈c(C
i
a†t

)∆(Cik).

Proof. We prove based on the induction on the number of proposals institute i receives after a† is
rejected. The base case is when a† is just rejected. Let l‡ = l†. Then it is obvious that all applicants
in the affluent sets $(Ci

a†t
, µ(i)), 2 ≤ t ≤ l‡, rank higher than a† and the rest of the lemma holds by

Lemma 6(iv).

For the induction step, let a be the new proposer. There are four cases. Except the second case,
we let l‡ remain unchanged after a’s proposal.

– Suppose that a 6∈ Ci
a†l‡

and he does not cause anyone in Ci
a†l‡

to be rejected. Then the proof is
trivial.

– Suppose that a 6∈ Ci
a†l‡

and he is stopped in class Cial, which causes an applicant a∗ ∈ Ci
a†l‡

to
be rejected. a∗ must be part of the affluent set $(Ci

a†l‡
, µ(i)) before a proposed. By induction

hypothesis, a∗ �i a†. Moreover, since a∗ is chosen to be rejected, all the applicants in the (new)
affluent sets $(Ci

a†t
, µ(i)), for each class Ci

a†t
, where Ci

a†l‡
⊂ Ci

a†t
⊆ Cial, rank higher than a∗,

hence, also higher than a†. Now let Cial be the new Ci
a†l‡

and the rest of the lemma follows from
Lemma 6(iv).

– Suppose that a ∈ Ci
a†l‡

and he is not stopped in Ci
a†l‡

or any of its subclasses. We argue that a must
be accepted without causing anyone to be rejected; moreover, the applicants in all affluent sets
$(Ci

a†t
, µ(i)), for all 1 ≤ t ≤ l‡ remain unchanged. Let the smallest class in a†(C(i)) containing a be

Ci
a† l̃

. Note that before a proposed, the induction hypothesis states that |µ(i)∩Ci
a†l‡
|+∆(Ci

a†l‡
) =

q+(Ci
a†l‡

). As applicant a is not stopped at Ci
a†l‡

, the set of values ∆(Ci
a†t

), l̃ ≤ t ≤ l‡, must have
decreased during his proposal and this implies that he will not be stopped in any class.

Now let a(C(i)) = (Cia1, · · · , Cial, Cia(l+1)(= Ci
a† l̃

), · · ·). Since ∆(Ci
a† l̃

) =
∑

Cik∈c(C
i
a† l̃

)∆(Cik) before

applicant a proposed by the induction hypothesis, for ∆(Ci
a† l̃

) to decrease, ∆(Cial) must have

decreased as well. Choose the smallest class Cial∗ ⊂ Cia† l̃ whose value ∆(Cial∗) has decreased during

a’s proposal. We claim that Cial∗ must have been a non-surplus class before and after applicant
a’s proposal. If the claim is true, then all the affluent sets $(Ci

a†t
, µ(i)), for all 1 ≤ t ≤ l‡, remain

unchanged after applicant a’s proposal.

7

It is obvious that Cial∗ 6= Cia1. So assume that Cial∗ is a non-leaf class. Suppose for a contra-
diction that Cial∗ was a surplus class before a proposed. Lemma 6(iii) implies that ∆(Ci

a†l∗
) =∑

Cik∈c(C
i
a†l∗

)∆(Cik) before a proposed. Then for∆(Ci
a†l∗

) to decrease during a’s proposal,∆(Ci
a†(l∗−1))

must have decreased as well. But then this contradicts our choice of Ci
a†l∗

. So we establish that
Cial∗ was not surplus and remains so after a’s proposal.

– Suppose that a ∈ Ci
a†l‡

and when he reaches a subclass of Ci
a†l‡

or the class itself, the latter causes
some applicant a∗ to be rejected. To avoid trivialities, assume a 6= a∗. Let the smallest class in
a†(C(i)) containing a be Ci

a† l̃
and the smallest class in a†(C(i)) containing a∗ be Ci

a†l∗
. Below we

only argue that the case that Ci
a† l̃
⊆ Ci

a†l∗
. The other case that Ci

a†l∗
⊂ Ci

a† l̃
follows essentially

the same argument.
After a’s proposal, observe that only the affluent sets $(Ci

a†t
, µ(i)), l̃ ≤ t < l∗, can have new

members (who are from the child class of Ci
a† l̃

containing a). Without loss of generality, let G be
the set of new members added into one of the any above sets.
To complete the proof, we need to show that either G = ∅ or all members in G rank higher than
a†. If before applicant a proposed, a∗ belonged to a sequence of surplus classes Cia∗t ⊂ Ci

a†l∗
, he

was also part of the affluent set $(Ci
a†l∗

, µ(i)) or part of µ(i)∩Ci
a†1

before a proposed. By induction

hypothesis, a∗ �i a†. Observing Lemma 6(iib), all applicants in G must rank higher than a∗, hence
also than a†. On the other hand, if a∗ belongs to some class Cia∗t ⊂ Ci

a†l∗
which was not surplus

before a proposed, then Ci
a∗ l̃

= Cia∗l∗ and Cia∗t must also contain a and remain a non-surplus class
after a’s proposal. In this case G = ∅. ut

The following lemma is an abstraction of several counting arguments that we will use afterwards.

Lemma 8. Let each class Cij be associated with two numbers αij and βij and q−(Cij) ≤ αij , β
i
j ≤

q+(Cij). Given any non-leaf class Cij, α
i
j =

∑
Cik∈c(C

i
j)
αik and βij ≥

∑
Cik∈c(C

i
j)
βik; moreover, if βij =∑

Cik∈c(C
i
j)
βik then such a non-leaf class Cij is said to be tight in β. If βij > q−(Cij), then Cij has to be

tight in β.

(i) Given a non-leaf class Ci
a†l†

with αi
a†l†

< βi
a†l†

, we can find a sequence of classes Ci
a†l†
⊃ · · · ⊃ Ci

a†1
,

where αi
a†t

< βi
a†t

, for 1 ≤ t ≤ l†.
(ii) Given a non-leaf class Cix with αix ≤ βix, suppose that there exists a leaf class Ci

aφ1
⊂ Cix such that

αi
aφ1

> βi
aφ1

. Moreover, all classes Ci
aφt

are tight in β, where Ci
aφ1
⊆ Ci

aφt
⊆ Cix, then we can find

a class Cix′, where Ci
aφ1
⊂ Cix′ ⊆ Cix, αix′ ≤ βix′, and two sequences of classes with the following

properties:

(iia) Ci
aφ1
⊂ Ci

aφ2
⊂ · · · ⊂ Ci

aφlφ
⊂ Cix′, where αi

aφt
> βi

aφt
for 1 ≤ t ≤ lφ;

(iib) Cix′ ⊃ Cia†l† ⊃ · · · ⊃ C
i
a†1

, where αi
a†t

< βi
a†t

, for 1 ≤ t ≤ l†.

Proof. For (i), since q−(Ci
a†l†

) ≤ αi
a†l†

< βi
a†l†

, class Ci
a†l†

is tight in β. Therefore,
∑

Cik∈c(C
i
a†l†

) α
i
k =

αi
a†l†

< βi
a†l†

=
∑

Cik∈c(C
i
a†l†

) β
i
k. By counting, there exists a class Ci

a†(l†−1) ∈ c(C
i
a†l†

) with q−(Ci
a†(l†−1)) ≤

αi
a†(l†−1) < βi

a†(l†−1). Repeating the same argument gives us the sequence of classes.

For (ii), let us climb up the tree from Ci
aφ1

until we meet a class Cix′ ⊆ Cix with αix′ ≤ βix′ . This
gives us the sequence of classes stated in (iia).

Now since the class Cix′ is tight in β,
∑

Cik∈c(C
i
x′)
αik = αix′ ≤ βix′ =

∑
Cik∈c(C

i
x′)
βik. Moreover, as

Ci
aφlφ
∈ c(Cix′) and αi

aφlφ
> βi

aφlφ
, by counting, we can find another class Ci

a†l†
∈ c(Cix′)\{Ciaφlφ} such

that βi
a†l†

> αi
a†l†
≥ q−(Ci

a†l†
). Now applying (i) gives us the sequence of classes in (iib). ut

8

We say that (i; a) is a stable pair if there exists any stable matching in which applicant is assigned
to institute i. A stable pair is by-passed if institute i rejects applicant a during the execution of our
algorithm.

Lemma 9. During the execution of the algorithm, if an applicant aφ is rejected by institute i, then
(i; aφ) is not a stable pair.

Proof. We prove by contradiction. Assume that (i; aφ) is the first by-passed stable pair and there
exists a stable matching µφ in which µφ(aφ) = i. For each class Cij ∈ C(i), we associate two numbers

αij := |µφ(i) ∩Cij | and βij := |µ(i) ∩Cij |+∆(Cij). Here ∆(·)s are the values recorded in the algorithm

right after aφ is rejected (before the end of the while loop); similarly, µ(i) is the assignment of i at
that point.

It is obvious that αi
aφ1

> βi
aφ1

and the class Cix causing aφ to be rejected is not Ci
aφ1

. By
Lemma 6(iv), all classes Ci

aφt
are tight in β, where Ci

aφ1
⊂ Ci

aφt
⊆ Cix. It can be checked all the

conditions as stated in Lemma 8(ii) are satisfied. In particular, βix = q+(Cix) ≥ αix; moreover, if
βij > q−(Cij), C

i
j must be tight (by Lemma 6(iii)).

So, we can find two sequences of classes {Ci
aφt
}lφt=1 and {Ci

a†t
}l†t=1, where Ci

aφlφ
, Ci

a†l†
∈ c(Cix′) and

Cix′ ⊆ Cix, with the following properties:

q+(Ciaφt) ≥ |µ
φ(i) ∩ Ciaφt| > |µ(i) ∩ Ciaφt|+∆(Ciaφt) ≥ q

−(Ciaφt),∀t, 1 ≤ t ≤ l
φ;

q−(Cia†t) ≤ |µ
φ(i) ∩ Cia†t| < |µ(i) ∩ Cia†t|+∆(Cia†t) ≤ q

+(Cia†t), ∀t, 1 ≤ t ≤ l
†.

The second set of inequalities implies that the classes {Ci
a†t
}l†t=1 are surplus in µ. Thus there exists

an applicant a† ∈ (µ(i)\µφ(i))∩Ci
a†1

. Since (i; aφ) is the first by-passed stable pair, i �a† µφ(a†) and

since aφ is rejected instead of a†, a† �i aφ. Now observe the tuple µφ(i)|aφa† is feasible due to the

above two sets of strict inequalities. Thus we have a group (i;µφ(i)|aφa†) to block µφ, a contradiction.
ut

Lemma 10. At the termination of the algorithm, if there exists an institute i ∈ I such that ∆(Ci]) >
0, there is no stable matching in the given instance.

Proof. Suppose, for a contradiction, that there exists an institute i with ∆(Ci]) > 0 and there is a

stable matching µφ. Let µ be the assignment when the algorithm terminates. By Lemma 9, if an
applicant is unmatched in µ, he cannot be assigned in µφ either. So |µφ| ≤ |µ|. In the following, ∆(·)s
refer to values recorded in the final outcome of the algorithm. Consider two cases.

– Suppose that |µφ(i)| > |µ(i) ∩ Ci]|. Then as |µφ| ≤ |µ|, we can find another institute i′ 6= i

such that |µφ(i′)| < |µ(i′) ∩ Ci′] |. For each class Ci
′
j ∈ C(i′), let αi

′
j := |µφ(i′) ∩ Ci′j | and βi

′
j :=

|µ(i′)∩Ci′j |+∆(Ci
′
j). It can be checked that the condition stated in Lemma 8(i) is satisfied (note

that those βi
′
j fulfill the condition due to Lemma 6(iii)). Therefore, we can find a sequence of

classes {Ci′
a†t
}l†t=1, where Ci

′

a†l†
= Ci

′
] , and

|µφ(i′) ∩ Ci′a†t| < |µ(i′) ∩ Ci′a†t|+∆(Ci
′

a†t) ≤ q
+(Ci

′

a†t),∀t, 1 ≤ t ≤ l
†,

where the second inequality follows from Invariant B. Then there exists an applicant a† ∈
(µ(i′)\µφ(i′)) ∩ Ci′

a†1
. By Lemma 9, i′ �a† µφ(a†), giving us a group (i′;µφ(i′)|a†) to block µφ,

a contradiction. Note the feasibility of µφ(i′)|a† is due to the above set of strict inequalities.

9

– Suppose that |µφ(i)| ≤ |µ(i) ∩ Ci]|. We first claim that Ci] must be a surplus class in µ(i). If not,

then q−(Ci]) = ∆(Ci]) + |µ(i) ∩ Ci]| > |µ(i) ∩ Ci]|, implying that |µφ(i)| ≥ q−(Ci]) > |µ(i) ∩ Ci]|, a

contradiction. So Ci] is a surplus class, and by Lemma 6(iii),

|µφ(i)| =
∑

Cik∈c(C
i
])

|µφ(i) ∩ Cik| ≤ |µ(i) ∩ Ci]| < |µ(i) ∩ Ci]|+∆(Ci]) =
∑

Cik∈c(C
i
])

|µ(i) ∩ Cik|+∆(Cik).

For each class Cij ∈ C(i), let αij := |µφ(i)∩Cij | and βij := |µ(i)∩Cij |+∆(Cij) and invoke Lemma 8(i).

The above inequality implies that αi] < βi] and note that by Lemma 6(iii), the condition regarding

β is satisfied. Thus we have a sequence of surplus classes Ci
a†l†

(= Ci]) ⊃ · · · ⊃ Cia†1 so that

q−(Cia†t) ≤ |µ
φ(i) ∩ Ciaφt| < |µ(i) ∩ Cia†t|+∆(Cia†t) ≤ q

+(Cia†t),∀t, 1 ≤ t ≤ l
†,

implying that there exists an applicant a† ∈ (µ(i)\µφ(i)) ∩ Ci
a†1

and i �a† µφ(a†) by virtue

of Lemma 9. The tuple µφ(i)|a† is feasible because of the above set of strict inequalities. Now
(i;µφ(i)|aφ) blocks µφ, a contradiction. ut

Lemma 11. Suppose that in the final outcome µ, for each institute i ∈ I, ∆(Ci]) = 0. Then µ is a
stable matching.

Proof. For a contradiction, assume that a group (i; g) blocks µ. Let aφ to be the highest ranking
applicant in g\µ(i). Since aφ is part of the blocking group, he must have proposed to and been
rejected by institute i during the execution of the algorithm, thus i �aφ µ(aφ). By Lemma 7, there
exists a class Ci

aφl‡
such that |µ(i) ∩ Ci

aφl‡
| + ∆(Ci

aφl‡
) = |µ(i) ∩ Ci

aφl‡
| = q+(Ci

aφl‡
). Moreover, it is

obvious that |g ∩ Ci
aφ1
| > |µ(i) ∩ Ci

aφ1
|. We now make use of Lemma 8(ii) by letting αij := |g ∩ Cij |

and βij := |µ(i) ∩ Cij | for each class Cij ∈ C(i). Note that all classes are tight in β, Ci
aφ1
⊂ Ci

aφl‡
, and

|µ(i)∩Ci
aφl‡
| = q+(Ci

aφl‡
) ≥ |g∩Ci

aφl‡
|, satisfying all the necessary conditions. Thus, we can discover a

sequence of classes {Ci
a†t
}l†t=1 stated in Lemma 8(iib), where Ci

a†l†
∈ c(Ci

aφl
) and Ci

aφ1
⊂ Ci

aφl
⊆ Ci

aφl‡
,

such that

q−(Cia†t) ≤ |g ∩ C
i
a†t| < |µ(i) ∩ Cia†t| ≤ q

+(Cia†t),∀j, 1 ≤ t ≤ l
†,

and there exists an applicant a† ∈ (µ(i)\g) ∩ Ci
a†1

. The above set of strict inequalities mean that all

classes Ci
a†t

, 1 ≤ t ≤ l†, are surplus classes in µ. Then a† forms part of the affluent set $(Ci
aφl
, µ(i)).

By Lemma 7, they all rank higher than aφ. This contradicts our assumption that aφ is the highest-
ranking applicant in g\µ(i). ut

Lemma 12. Suppose that in the final outcome µ, for each institute i ∈ I, ∆(Ci]) = 0. Then µ is an
institute-pessimal stable matching.

Proof. Suppose, for a contradiction, that there exists a stable matching µφ such that there exists
an institute i which is lexicographically better off in µ than in µφ. Let a† be the highest ranking
applicant in µ(i)\µφ(i). By Lemma 9, i �a† µφ(i). If |µφ(i) ∩ Ci

a†t
| < |µ(i) ∩ Ci

a†t
| ≤ q+(Ci

a†t
), for

all classes Ci
a†t
∈ a†(C(i)), then (i;µφ(i)|aφ) blocks µφ, a contradiction. So choose the smallest class

Cix ∈ a†(C(i)) such that |µφ(i) ∩ Cix| ≥ |µ(i) ∩ Cix|. It is clear that Cix ⊃ Cia†1.
Now we apply Lemma 8(ii) by letting αij := |µ(i) ∩ Cij | and βij := |µφ(i) ∩ Cij | for each class

Cij ∈ C(i). It can be checked all conditions stated in Lemma 8(ii) are satisfied. So there exists a class

10

Cix′ such that Ci
a†1
⊂ Cix′ ⊆ Cix and we can find two sequences of classes {Ci

aφt
}lφt=1 and {Ci

a†t
}l†t=1,

where Ci
aφlφ

, Ci
a†l†
∈ c(Cix′), with the following properties:

q+(Cia†t) ≥ |µ(i) ∩ Cia†t| > |µ
φ(i) ∩ Cia†t| ≥ q

−(Cia†t),∀t, 1 ≤ t ≤ l
†;

q−(Ciaφt) ≤ |µ(i) ∩ Ciaφt| < |µ
φ(i) ∩ Ciaφt| ≤ q

+(Ciaφt), ∀t, 1 ≤ t ≤ l
φ.

The second set of inequalities implies that we can find an applicant aφ ∈ (µφ(i)\µ(i)) ∩ Ci
aφ1

.

Recall that we choose a† to be the highest ranking applicant in µ(i)\µφ(i), so a† �i aφ. Now we have

a group (i;µφ(i)|aφa†) to block µφ to get a contradiction. The feasibility of µφ(i)|aφa† is due to the
above two sets of strict inequalities. ut

Based on Lemmas 9, 10, 11, and 12, we can draw the conclusion in this section.

Theorem 13. In O(m2) time, where m is the total size of all preferences, the proposed algorithm
discovers the applicant-optimal-institute-pessimal stable matching if stable matchings exist in the given
LCSM instance; otherwise, it correctly reports that there is no stable matching. Moreover, if there is
no lower bound on the classes, there always exists a stable matching.

To see the complexity, first note that there can be only O(m) proposals. The critical thing in
the implementation of our algorithm is to find out the lowest ranking applicant in each affluent set
efficiently. This can be done by remembering the lowest ranking applicant in each class and this
information can be updated in each proposal in O(m) time, since the number of classes of each
institute is O(m), given that the classes form a laminar family.

2.2 Structures of Laminar Classified Stable Matching

Recall that we define the “absorption” operation as follows. Given a family of classes B, <(B) returns
the set of classes which are not entirely contained in other classes in B. Note that in LCSM, <(B)
will be composed of a pairwise disjoint set of classes.

We review the well-known rural hospitals theorem [9, 16].

Theorem 14. (Rural Hospitals Theorem) In the hospitals/residents problem, the following holds.

(i) A hospital gets the same number of residents in all stable matchings, and as a result, all stable
matchings are of the same cardinality.

(ii) A resident who is assigned in one stable matching gets assigned in all other stable matchings;
conversely, an unassigned resident in a stable matching remains unassigned in all other stable
matchings.

(iii) An under-subscribed hospital gets the same set of residents in all other stable matchings.

It turns out that rural hospitals theorem can be generalized in LCSM. On the other hand, if
some institutes use intersecting classes in their classifications, rural hospitals theorem fails (stable
matching size may differ). See the appendix for such an example.

Theorem 15. (Generalized Rural Hospitals Theorem in LCSM) Let µ be a stable matching. Given
any institute i, suppose that B is the set of bottleneck classes in µ(i) and D is the subset of classes
in C(i) such that <(B) ∪D partitions Li. The following holds.

11

(i) An institute gets the same number of applicants in all stable matchings, and as a result, all
stable matchings are of the same cardinality.

(ii) An applicant who is assigned in one stable matching gets assigned in all other stable matchings;
conversely, an unassigned applicant in a stable matching remains unassigned in all other stable
matchings.

(iii) Every class Cik ∈ <(B) ∪D has the same number of applicants in all stable matchings.
(iv) In a class Cik ⊆ C ∈ D, or in a class Cik which contains only classes in D, the same set of

applicant in class Cik will be assigned to institute i in all stable matchings.
(v) A class Cik can have different sets of applicants in different stable matchings only if Cik ⊆ C ∈
<(B) or Cik ⊇ C ∈ <(B).

Proof. We choose µ† to be the applicant-optimal stable matching.

Claim A: Suppose that a ∈ µ†(i)\µ(i). Then there exists a class Cial ∈ a(C(i)) such that (i)
|µ(i) ∩ Cial| = q+(Cial), and (ii) a ∈ Cial ⊆ C ∈ <(B).

Proof of Claim A. If for all classes Ciat ∈ a(C(i)), |µ(i)∩Ciat| < q+(Ciat), then as µ† is applicant-
optimal, i �a µ(a), so (i;µ(i)|a) blocks µ, a contradiction. This establishes (i).(ii) follows easily. ut

Let B̃ ⊆ B be the subset of these bottleneck classes containing at least one applicant µ†(i)\µ(i).
By Claim A(ii), <(B̃) ⊆ <(B). This implies that for all classes Cik ∈ (<(B)\<(B̃))∪D, |µ(i)∩Cik| ≥
|µ†(i) ∩ Cik|. Combining this fact with Claim A(ii), we have

|µ(i)| =
∑

Cik∈(<(B)\<(B̃))∪D

|µ(i) ∩ Cik|+
∑

Cik∈<(B̃)

|µ(i) ∩ Cik|

≥
∑

Cik∈(<(B)\<(B̃))∪D

|µ†(i) ∩ Cik|+
∑

Cik∈<(B̃)

q+(Cial) (*)

=
∑

Cik∈(<(B)\<(B̃))∪D

|µ†(i) ∩ Cik|+
∑

Cik∈<(B̃)

|µ†(i) ∩ Cik|

= |µ†(i)|.

Thus, |µ| ≥ |µ†| and it cannot happen that |µ| > |µ†|, otherwise, there exists an applicant who
is assigned in µ but not in µ†. This contradicts the assumption that the latter is applicant-optimal.
This completes the proof of (i) and (ii) of the theorem.

Since |µ| = |µ†|, Inequality (*) holds with equality. We make two observations here.

Observation 1: For each class Cik ∈ <(B), it is also a bottleneck in µ†(i).
Observation 2: an applicant a ∈ µ†(i)\µ(i) must belong to a bottleneck class in µ†(i).

Let B† be the set of bottleneck classes in µ†(i) and choose D† so that <(B†) ∪D† partitions Li.
By Observation 2, each applicant in µ†(i)∩Cik, where Cik ∈ D†, must be part of µ(i). So for each class
Cik ∈ D†, |µ(i) ∩ Cik| ≥ |µ†(i) ∩ Cik|. We claim that it cannot happen that |µ(i) ∩ Cik| > |µ†(i) ∩ Cik|.
Suppose not. Then by (i), there are two possible cases.

– There exists another class Cik′ ∈ D† so that |µ(i)∩Cik′ | < |µ†(i)∩Cik′ |. Then we have a contradiction
to Observation 2.

12

– There exists another class Cik′ ∈ <(B†) so that |µ(i)∩Cik′ | < |µ†(i)∩Cik′ |. For each class Cij ∈ C(i),

let αij := |µ(i)∩Cij | and βij := |µ†(i)∩Cij |. Then we can invoke Lemma 8(i) and find an applicant

aφ ∈ µ†(i)\µ(i) so that for each class Ci
aφt
∈ aφ(C(i)), Ci

aφt
⊆ Cik′ , |µ(i) ∩Ci

aφt
| < |µ†(i) ∩Ci

aφt
| ≤

q+(Ci
aφt

). Then by Claim A(ii) and Observation 1, there must exist another class Cik′′ ∈ <(B)

containing aφ and Cik′′ ⊃ Cik′ . By Observation 1, Cik′′ is also a bottleneck class in µ†(i). This
contradicts the assumption that Cik′ ∈ <(B†).

So we have that for each class Cik ∈ D†, |µ(i)∩Cik| = |µ†(i)∩Cik|. For each class Cik ∈ B†, we can
use the same argument to show that |µ(i) ∩ Cik| = |µ†(i) ∩ Cik|. This gives us (iii) and (iv). (v) is a
consequence of (iv). ut

3 NP-completeness of P-Classified Stable Matching

Theorem 16. Suppose that the set of posets P = {P1, P2, · · · , Pk} contains a poset which is not a
downward forest. Then it is NP-complete to decide the existence of a stable matching in P-classified
stable matching. This NP-completeness holds even if there is no lower bound on the classes.

Our reduction is from one-in-three sat. It is involved and technical, so we just highlight the
idea here. As P must contain a poset that has a “V ” in it, some institutes use intersecting classes. In
this case, even if there is no lower bound on the classes, it is possible that the given instance disallows
any stable matching. We make use of this fact to design a special gadget. The main technical difficulty
of our reduction lies in that in the most strict case, we can use at most two classes in each institute’s
classification.

4 Polyhedral Approach

In this section, we take a polyhedral approach to studying LCSM. We make the simplifying assump-
tion that there is no lower bound. In this scenario, we can use a simpler definition to define a stable
matching.

Lemma 17. In LCSM, if there is no lower bound, i.e., given any class Cij, q
−(Cij) = 0, then a stable

matching as defined in Definition 2 can be equivalently defined as follows. A feasible matching µ is sta-
ble if and only if there is no blocking pair. A pair (i, a) is blocking, given that µ(i) = (ai1, ai2, · · · , aik),
k ≤ Q(i), if

– i �a µ(a);
– for any class Ciat ∈ a(C(i)), |Li�a ∩ µ(i) ∩ Ciat| < q+(Ciat).

The definition of blocking pairs suggests a generalization of the comb used by Bäıou and Balin-
ski [4].

Definition 18. Let Γ = I×A denote the set of acceptable institute-applicant pairs. The shaft S(Ai),
based on a feasible tuple Ai of institute i, is defined as follows:

S(Ai) = {(i, a′) ∈ Γ : ∀Cij ∈ a′(C(i)), |Li�a′ ∩Ai ∩ Cij | < q+(Cij)}.
The tooth T (i, a) is defined for every (i, a) ∈ Γ as follows:

T (i, a) = {(i′, a) ∈ Γ : i′ �a i}.

13

In words, (i, a′) forms part of the shaft S(Ai), only if the collection of a′ and all applicants in Ai

ranking strictly higher than a′ does not violate the quota of any class in a′(C(i)). We often refer to
an applicant a ∈ Ai as a tooth-applicant.

We associate a |Γ |-vector xµ (or simply x when the context is clear) with a matching µ: xµia = 1

if µ(a) = i, otherwise, xµia = 0. Suppose that Γ̂ ⊆ Γ . Then x(Γ̂) =
∑

(i,a)∈Γ̂ xia. We define a comb

K(i, S(Ai)) as the union of the teeth {T (i, ai)}ai∈Ai and the shaft S(Ai).

Lemma 19. Every stable matching solution x satisfies the comb inequality for any comb K(i, S(Ai)):

x(K(i, S(Ai)) ≡ x(S(Ai)) +
∑
aj∈Ai

x(T (i, aj)\{i, aj}) ≥ |Ai|.

It takes a somehow involved counting argument to prove this lemma. Here is the intuition about
why the comb inequality captures the stability condition of a matching. The value of the tooth
x(T (i, a)) reflects the “happiness” of the applicant a ∈ Ai. If x(T (i, a)) = 0, applicant a has reason
to shift to institute i; on the other hand, the values collected from the shaft x(S(Ai)) indicates the
“happiness” of institute i: whether it is getting enough high ranking applicants (of the “right” class).
An overall small comb value x(K(i, S(Ai))) thus expresses the likelihood of a blocking group including
i and some of the applicants in Ai.

Now let Ki denote the set all combs of institute i. We write down the linear program:

∑
i:(i,a)∈Γ

xia ≤ 1,∀a ∈ A (1)

∑
a:(i,a)∈Γ,a∈Cij

xia ≤ q+(Cij), ∀i ∈ I, ∀Cij ∈ C(i) (2)

x(K(i, S(Ai))) =
∑

(i,a)∈K(i,S(Ai))

xia ≥ |Ai|, ∀K(i, S(Ai)) ∈ Ki,∀i ∈ I (3)

xia ≥ 0,∀(i, a) ∈ Γ (4)

Suppose there is no classification, i.e., Hospitals/Residents problem. Then this LP reduces to
the one formulated by Bäıou and Balinski [4]. However, it turns out that this polytope is not integral.
The example in Figure 2 demonstrates the non-integrality of the polytope. In particular, observe that
since µ is applicant-optimal, in all other stable matchings, applicant a3 can only be matched to i5.
However, the value xi1a3 = 0.2 > 0 indicates that x is outside of the convex hull of integral stable
matchings.

Here we make a critical observation. Suppose that in a certain matching µφ, applicant a3 is
assigned to i1. Then a2 cannot be assigned to i1 due to the bound q+(C1

1) (see Constraint (2)). If µφ

is to be stable, then a2 must be assigned to some institute ranking higher than i1 on his list (in this
example there is none), otherwise, (i, µφ(i1)|a3a2) is bound to be a blocking group in µφ. Thus, the
required constraint to avoid this particular counter-example can be written as

x(T (i1, a2)\{i1, a2}) ≥ xi1a3 .

We now formalize the above observation. Given any class Cij ∈ C(i), we define a class-tuple

tij = (ai1, ai2, · · · , aiq+(Cij)
). Such a tuple fulfills the following two conditions:

14

Institute Preferences Classifications Class bounds
i1:a1a6a7a2a3 C1

1 = {a2, a3} Q(i1) = 2, q+(C1
1) = 1

i2:a4a7 Q(i2) = 1
i3:a2a4 Q(i3) = 1
i4:a5a6 Q(i4) = 1
i5:a3a5a7a1 C5

1 = {a3, a5} Q(i5) = 2, q+(C5
1) = 1

Applicant Preferences
a1:i5i1
a2:i1i3
a3:i1i5
a4:i3i2
a5:i5i4
a6:i4i1
a7:i2i1i5

(Applicant-optimal stable matching) µ = {(i1; a2, a6), (i2; a7), (i3; a4), (i4; a5), (i5; a1, a3)}

(A fractional matching x that is not inside the convex hull of integral stable matchings)
xi1a1 = 0.5, xi1a6 = 0.8, xi1a7 = 0.2, xi1a2 = 0.3, xi1a3 = 0.2.
xi2a4 = 0.7, xi2a7 = 0.3.
xi3a2 = 0.7, xi3a4 = 0.3.
xi4a5 = 0.8, xi4a6 = 0.2.
xi5a3 = 0.8, xi5a5 = 0.2, xi5a7 = 0.5, xi5a1 = 0.5.

Fig. 2. An example showing that the polytope formed by Constraints (1)-(4) is not integral. Since µ is applicant-optimal,
in all other stable matchings, applicant a3 can only be matched to i5. However, the value xi1a3 = 0.2 > 0 indicates that
x is outside of the convex hull of integral stable matchings.

1. tij ⊆ Cij ;
2. if Cij is a non-leaf class, then given any subclass Cik of Cij , |tij ∩ Cik| ≤ q+(Cik).

Let Li≺tij denote the set of applicants ranking lower than all applicants in tij and Li�tij the set of

applicants ranking at least as high as the lowest ranking applicant in tij .

Lemma 20. Every stable matching solution x satisfies the following inequality for any class-tuple tij:∑
aij∈tij

x(T (i, aij)\{i, aij}) ≥
∑

a∈Cij∩Li≺ti
j

xia.

As before, it takes a somehow involved counting argument to prove the lemma but its basic idea
is already portrayed in the above example. Now let Tij denote the set of class-tuples in class Cij ∈ C(i)

and Li≺tij denote the set of applicants ranking lower than all applicants in tij . We add the following

sets of constraints. ∑
aij∈tij

x(T (i, aij)\{i, aij}) ≥
∑

a∈Cij∩Li≺ti
j

xia,∀tij ∈ Tij ,∀Tij (5)

15

Let Pfsm denote the set of all solutions satisfying (1)-(5) and Psm the convex hull of all (integral)
stable matchings. In this section, our main result is Pfsm = Psm. We say (i, a) are matched under x
if xia > 0.

Definition 21. Let x ∈ Pfsm and Ωi(x) be the set of applicants that are matched to institute i under
x. Let Ωi(x) be composed of ai1, ai2, · · · , ordered based on the decreasing preference of institute i.

1. Define Hi(x) as a tuple composed of applicants chosen based on the following procedure: adding
aij greedily unless adding the next applicant into Hi(x) will cause Hi(x) to violate the quota
of some class. Equivalently, ail 6∈ Hi(x) only if there exists a class Cij ∈ ail(C(i)) such that

|Hi(x) ∩ {ait}l−1t=1| = q+(Cij).

2. Define Ei(x) as a tuple composed of applicants for whom institute i is the most preferred institute
that they are matched under x, i.e., an applicant a ∈ Ei(x), if x(T (i, a)\{(i, a)}) = 0 and xia > 0.
The order of the applicants in Ei(x) is based on the decreasing preference of institute i.

Lemma 22. Ei(x) is feasible for institute i.

Proof. We need to show that given any class Cij ∈ C(i), |Ei(x)∩Cij | ≤ q+(Cij). We proceed by induction

on the height of Cij in the tree structure of C(i). The base case is a leaf class. If |Ei(x)∩Cij | > q+(Cij),

form a class-tuple by picking the first q+(Cij) applicants in Ei(x)∩Cij . Then Constraint (5) is violated

in such a class-tuple. For the induction step, if |Ei(x)∩Cij | > q+(Cij), again choose the q+(Cij) highest-

ranking applicants in Ei(x)∩Cij and we claim they form a class-tuple of Cij , the reason being that by

induction hypothesis, given any Cik ⊂ Cij , |Ei(x)∩Cik| ≤ q+(Cik). Now Constraint (5) is again violated
in such a class-tuple. ut

Lemma 23. Suppose that x ∈ Pfsm.

(i) For each institute i ∈ I, we can find two sets U and V of pairwise disjoint classes so that U ∪ V
partitions Li and all applicants in Ωi(x)\Hi(x) belong to the classes in U . Moreover,

(ia) |Hi(x)| =
∑

Cik∈U
q+(Cik) +

∑
Cik∈V

|Hi(x) ∩ Cik|;
(ib) for each class Cik ∈ U , |Hi(x)∩Cik| = |Ei(x)∩Cik| = q+(Cik); for each class Cik ∈ V and each

applicant a ∈ Cik, if xia > 0, then xia = 1;

(ic) for each class Cik ∈ U ,
∑

a∈Cik
xia = q+(Cik).

(ii) For every applicant a ∈ Hi(x), x(T (i, a)) =
∑

i∈I xia = 1; moreover, given any two institutes i,
i′ ∈ I, Hi(x) ∩Hi′(x) = ∅.

(iii) |Hi(x)| = |Ei(x)| for all institutes i ∈ I.

(iv)
∑

a∈A xia = |Ei(x)| for all institutes i ∈ I.

Proof. For (i), given any applicant a ∈ Ωi(x)\Hi(x), by Definition 21, there exists some class Cij ∈
a(C(i)) for which |Hi(x) ∩ Cij | = q+(Cij). Let B be the set of classes Cij which contain at least one

applicant in Ωi(x)\Hi(x) and |Cij ∩Hi(x)| = q+(Cij). Let U := <(B) and choose V in such a way so

that U ∪ V partitions Li. Now (ia) is a consequence of counting. We will prove (ib)(ic) afterwards.

For (ii), by definition of Hi(x), none of the applicants in Ωi(x)\Hi(x) contributes to the shaft
x(S(Hi(x))). As a result, for Constraint (3) to hold for the comb K(i, S(Hi(x))), every tooth-applicant
a ∈ Hi(x) must contribute at least 1, and indeed, by Constraint (1), exactly 1. So we have the first

16

statement of (ii). The second statement holds because it cannot happen that x(T (i, a)) = x(T (i′, a)) =
1, given that xia > 0 and xi′a > 0.

For (iii), By Definition 21, all sets Ei(x) are disjoint; thus, every applicant who is matched under
x belongs to exactly one Ei(x) and at most one Hi(x) by (ii). Therefore,

∑
i∈I |Ei(x)| ≥

∑
i∈I |Hi(x)|

and we just need to show that for each institute i, |Ei(x)| ≤ |Hi(x)|, and this follows by using (ia):

|Hi(x)| =
∑
Cik∈U

q+(Cik) +
∑
Cik∈V

|Hi(x) ∩ Cik| ≥
∑
Cik∈U

|Ei(x) ∩ Cik|+
∑
Cik∈V

|Ei(x) ∩ Cik| = |Ei(x)|, (6)

where the inequality follows from Lemma 22 and the fact all applicants in Ωi(x)\Hi(x) are in classes
in U . So this establishes (iii). Moreover, as Inequality (6) must hold with equality throughout, for
each class Cik ∈ V , if applicant a ∈ Cik is matched to institute i under x, he must belong to both
Hi(x) and Ei(x), implying xia = 1; given any class Cik ∈ U , |Hi(x)∩Cik| = |Ei(x)∩Cik| = q+(Cik). So
we have (ib).

For (iv), consider the comb K(i, S(Ei(x))). By definition, x(T (i, a)\{(i, a)}) = 0 for each applicant
a ∈ Ei(x). So

x(K(i, S(Ei(x)))) = x(S(Ei(x)))

=
∑
Cik∈V

|Ei(x) ∩ Cik|+
∑
Cik∈U

∑
a′∈Cik,(i,a′)∈S(Ei(x))

xia′

≤
∑
Cik∈V

|Ei(x) ∩ Cik|+
∑
Cik∈U

q+(Cik) = |Ei(x)|,

where the inequality follows from Constraint (2) and the rest can be deduced from (ib). By Con-
straint (3), the above inequality must hold with equality. So for each class Cik ∈ U ,

∑
a′∈Cik,(i,a′)∈S(Ei(x))

xia′ =∑
a′∈Cik

xia′ = q+(Cik), giving us (ic) and implying that there is no applicant in Cik ∈ U who is matched

to institute i under x ranking lower than all applicants in Ei(x) ∩ Cik. The proof of (iv) follows by

∑
a∈A

xia =
∑
Cik∈V

∑
a∈Cik

xia +
∑
Cik∈U

∑
a∈Cik

xia =
∑
Cik∈V

|Ei(x) ∩ Cik|+
∑
Cik∈U

q+(Cik) = |Ei(x)|.

ut

Packing Algorithm

We now introduce a packing algorithm to establish the integrality of the polytope. Our algorithm is
generalized from that proposed by Sethuraman, Teo, and Qian [23]. Given x ∈ Pfsm, for each institute
i, we create |Ei(x)| “bins,” each of size (height) 1; each bin is indexed by (i, j), where 1 ≤ j ≤ |Ei(x)|.
Each xia > 0 is an “item” to be packed into the bins. Bins are filled from the bottom to the top.
When the context is clear, we often refer to those items xia as simply applicants; if applicant a ∈ Cij ,
then the item xia is said to belong to the class Cij .

In Phase 0, each institute i puts the items xia, if a ∈ Hi(x), into each of its |Ei(x)| bins. In the
following phase, t = 1, 2, · · · , our algorithm proceeds by

– first finding out the set Lt of bins with maximum available space;

17

– then assigning each of the bins in Lt one item.

The assignment in each phase proceeds by steps, indexed by l = 1, 2, · · · , |Lt|. The order of the
bins in Lt to be examined does not matter. How the institute i chooses the items to be put into its
bins is the crucial part in which our algorithm differs from that of Sethuraman, Teo, and Qian. We
maintain the following invariant.

Invariant C: The collection of the least preferred items in the |Ei(x)| bins (e.g., the items
currently on top of institute i’s bins) should respect of the quotas of the classes in C(i).

Subject to this invariant, institute i chooses the best remaining item and adds it into the bin (i, j),
which has the maximum available space in the current phase. This unavoidably raises another issue:
how can we be sure that there is at least one remaining item for institute i to put into the bin (i, j)
without violating Invariant C? We will address this issue in our proof.

Theorem 24. Let x ∈ Pfsm. Let Mi,j be the set of applicants assigned to bin (i, j) at the end of
any step of the packing procedure and ai,j be the lowest-ranking applicant of institute i in bin (i, j)
(implying xiai,j is on top of bin (i, j)). Then

(i) In any step, suppose that the algorithm is examining bin (i, j). Then institute i can find at least
one item in its remaining items to add into bin (i, j) without violating Invariant C;

(ii) For all bins (i, j), x(Mi,j\{ai,j}) + x(T (i, ai,j)) = x(Mi,j) + x(T (i, ai,j)\{(i, ai,j)}) = 1;
(iii) At the end of any step, institute i can organize a comb K(i, S(Ai)) where Ai is composed of appli-

cants in {ai,j′}
|Ei(x)|
j′=1 so that x(K(i, S(Ai)) =

∑|Ei(x)|
j′=1 x(Mi,j′)+

∑|Ei(x)|
j′=1 x(T (i, ai,j′)\{(i, ai,j′)}) =

|Ei(x)|;
(iv) At the end of any step, an item xia is not put into institute i’s bins if and only if there exists a

class Ciat ∈ a(C(i)) so that |{ai,j′}
|Ei(x)|
j′=1 ∩ Ciat ∩ Li�a| = q+(Ciat).

(v) If xia is packed and xi′a is not, then i′ �a i;
(vi) At the end of any phase, the ai,j in all bins are distinct. In particular, for any applicant a who

is matched under x, there exists some bin (i, j) such that a = ai,j.

Proof. We first assume that (ii) holds and prove (i). Observe that (ii) implies that given any applicant
a ∈ Ei(x), its corresponding item xia, if already put into a bin, must be on its top and fills it completely.
Since (i, j) currently has available space, at least one applicant in Ei(x) is not in institute i’s bins yet.
We claim that there exists at least one remaining applicant in Ei(x) that can be added into bin (i, j).
Suppose not. Let the set of applicants in Ei(x) that are not put into i’s bins be G. Given any applicant
a ∈ G, there must exist some class Cik ∈ a(C(i)) for which |

⋃
1≤j′≤|Ei(x)|,j′ 6=j ai,j′ ∩C

i
k| = q+(Cik). Let

B be the set of classes Cik that contains at least one applicant in G and |
⋃

1≤j′≤|Ei(x)|,j′ 6=j ai,j′ ∩C
i
k| =

q+(Cik). Let G′ be (Ei(x)\G)\
⋃
Cik∈<(B)C

i
k, the subset of applicants in Ei(x) that are already put

into the bins but not belonging to any class in <(B). Note that none of the applicants in G′ can be
in the bin (i, j). Thus, by counting the number of the bins minus (i, j), we have

|Ei(x)| − 1 ≥ |G′|+
∑

Cik∈<(B)

|
|Ei(x)|⋃

j′=1,j′ 6=j
ai,j′ ∩ Cik| = |G′|+

∑
Cik∈<(B)

q+(Cik)

Note that all applicants in Ei(x)\G′ are in some class in <(B) (either they are already put into
the bins or not). Then by the pigeonhole principle, there is at least one class Cik ∈ <(B) for which
|(Ei(x)\G′) ∩ Cik| > q+(Cik), contradicting Lemma 22.

18

We now prove (ii)-(vi) by induction on the number of phases. In the beginning, (ii)(v)(vi) holds by
Lemma 23(ii)(iii). (iii)(iv) hold by settingAi := Hi(x) and observation Definition 21 and Lemma 23(ii).
Suppose that the theorem holds up to Phase t. Let α be the maximum available space in Phase t+ 1.
Suppose that the algorithm is examining bin (i, j) and institute i chooses item xia to be put into this
bin. From (vi) of the induction hypothesis, applicant a is on top of another bin (i′, j′), where i′ 6= i,
in the beginning of phase t+ 1. Then by (ii)(v) of the induction hypothesis,

x(T (i, a)) ≤ x(T (i′, a))− xi′a = 1− x(Mi′,j′) ≤ α, (7)

where the last inequality follows from our assumption that in Phase t + 1, the maximum available
space is α. Note also that

x(T (i, a)) = α, then (i′, j′) ∈ Lt+1 (bin (i′, j′) is also examined in Phase t+ 1). (8)

Assume that A
i

is a tuple composed of applicants in {ai,j′}
|Ei(x)|
j′=1 . For our induction step, let

Ai := A
i|ai,ja, the new set of items on top of i’s bins after a is put on top of ai,j .

We first prove (iv). Since xia is not put into the bin before this step, by (iv) of the induction

hypothesis, there exists some class Cial ∈ a(C(i)) for which |Ai ∩ Cial ∩ Li�a| = q+(Cial). Let Cial be
the smallest such class. Since xia is allowed to put on top of xiai,j , aij �i a and aij ∈ Cial, otherwise,
Invariant C regarding q+(Cial) is violated.

Now we show that all other items xia′ fulfill the condition stated in (iv). There are two cases.

– Suppose that xia′ is not put into the bins yet.

• Suppose that ai,j �i a′ �i a. We claim that it cannot happen that for all classes Cia′t ∈ a′(C(i)),
|Ai ∩Cia′t ∩ Li�a′ | < q+(Cia′t), otherwise, Ai|aa′ is still feasible, in which case institute i would
have chosen xia′ , instead of xia to put into bin (i, j), a contradiction.

• Suppose that ai,j �i a �i a′. By (iv) of the induction hypothesis, there exists a class Cia′l′ ∈
a′(C(i)) for which |Ai∩Cia′l′∩Li�a′ | = q+(Cia′l′). If Cia′l′ 6⊂ Cial, it is easy to see that |Ai∩Cia′l′∩
Li�a′ | = q+(Cia′l′); if Cia′l′ ⊂ Cial, then Cial ∈ a′(C(i)) and we have |Ai ∩ Cial ∩ Li�a′ | = q+(Cial).
In both situations, the condition of (iv) regarding xia′ is satisfied.

– Suppose that xia′ is already put into the bins. It is trivial if a′ �i a, so assume that a �i a′. We
claim that none of the classes Cia′t ∈ a′(C(i)) can be a subclass of Cial or Cial itself. Otherwise,

Cial ∈ a′(C(i)), and we have q+(Cial) = |Ai ∩ Cial ∩ Li�a| ≥ |A
i ∩ Cial ∩ Li�a′ |, a contradiction to

(iv) of the induction hypothesis. Now since for every class Cia′t ∈ a′(C(i)), we have Cia′t 6⊆ Cial, we

have |Ai ∩ Cia′t ∩ Li�a′ | = |Ai ∩ Cia′t ∩ Li�a′ | < q+(Cia′t), where the strict inequality is due to the
induction hypothesis.

We notice that the quantity
∑|Ei(x)|

j′=1 x(Mi,j′) is exactly the sum of the shaft x(S(A
i
)) (before xia

is added) or x(S(Ai)) (after xia is added) by observing (iv). Below let x(M i,j) and x(Mi,j) denote the
total size of the items in bin (i, j) before and after xia is added into it. So x(Mi,j) = x(M i,j) + xia.
Now we can derive the following:

19

x(K(i, S(Ai))) = x(S(Ai)) + x(T (i, a)\{(i, a)}) +

|Ei(x)|∑
j′=1,j′ 6=j

x(T (i, ai,j′)\{(i, ai,j′)})

= x(M i,j) + xia + x(T (i, a)\{(i, a)}) +

|Ei(x)|∑
j′=1,j′ 6=j

x(Mi,j′) + x(T (i, ai,j′)\{(i, ai,j′)})

= x(M i,j) + x(T (i, a)) + |Ei(x)| − 1 (by (ii) of the induction hypothesis)

≥ |Ei(x)| (by Constraint (3))

For the above inequality to hold,

x(M i,j) + x(T (i, a)) ≥ 1. (9)

Since x(M i,j) = 1−α and x(T (i, a)) ≤ α by Inequality (7), Inequality (9) must hold with equality,
implying that x(K(i, S(Ai))) = |Ei(x)|, giving us (iii).

Since institute i puts xia into bin (i, j), the “new” Mi,j and the “new” ai,j (=a) satisfies

x(Mi,j) + x(T (i, a)\{(i, a)}) = 1.

This establishes (ii). (v) follows because Inequality (7) must hold with equality throughout. There-
fore, there is no institute i′′ which ranks strictly between i and i′ and xi′′a > 0.

Finally for (vi), note that x(T (i, a)) = α if the item xia is put into some bin in Phase t+1. All such
items are the least preferred items in their respective “old” bins (immediately before Phase t+ 1), it
means the items on top of the newly-packed bins are still distinct. Moreover, from (8), if a bin (i, j)
is not examined in Phase t + 1, then its least preferred applicant cannot be packed in phase t + 1
either. ut

We define an assignment µα based on a number α ∈ [0, 1) as follows. Assume that there is a line of
height α “cutting through” all the bins horizontally. If an item xia whose position in i’s bins intersects
α, applicant a is assigned to institute i. In the case this cutting line of height α intersects two items
in the same bin, we choose the item occupying the higher position. More precisely:

Given α ∈ [0, 1), for each institute i ∈ I, we define an assignment as follows: µα(i) = {a :
1− x(T (i, a)) ≤ α < 1− x(T (i, a)) + xia}.

Theorem 25. The polytope determined by Constraints (1)-(5) is integral.

Proof. We generate uniformly at random a number α ∈ [0, 1) and use it to define an assignment µα.
To facilitate the discussion, we choose the largest α′ ≤ α so that µα

′
= µα. Intuitively, this can be

regarded as lowering the cutting line from α to α′ without modifying the assignment, and 1 − α′ is
exactly the maximum available space in the beginning of a certain phase l during the execution of our
packing algorithm. Note that the assignment µα is then equivalent to giving those applicants (items)
on top of institute i’s bins to i at the end of phase l.

We now argue that µα is a stable matching. First, it is a matching by Theorem 24(vi). The
matching respects the quota of all classes since Invariant C is maintained. What remains to be
argued is the stability of µα. Suppose, for a contradiction, (i, aφ) is a blocking pair. We consider the
possible cases.

20

– Suppose that xiaφ > 0 and xiaφ is not put into the bins yet at the end of Phase l. Then by
Theorem 24(iv) and the definition of blocking pairs, (i, aφ) cannot block µα.

– Suppose that xiaφ > 0 and xiaφ is already put into the bins at the end of Phase l. If µα(aφ) = i,
there is nothing to prove. So assume µα(aφ) 6= i and this means that the item xiaφ is “buried”
under some other item on top of some of i’s bins at the end of Phase l. Then by Theorem 24(v),
aφ is assigned to some other institute ranking higher than i, contradicting the assumption that
(i, aφ) is a blocking pair.

– Suppose that xiaφ = 0. There are two subcases.

• Suppose that for each of the classes Ci
aφt
∈ aφ(C(i)), |µα(i) ∩ Ci

aφt
| < q+(Ci

aφt
). Then we

can form a new feasible tuple µα(i)|aφ. It can be inferred from the definition of the shaft
that x(S(µα(i)|aφ)) ≤ x(S(µα(i)). Moreover, by Theorem 24(iii), we have x(K(i, S(µα(i))) =
|Ei(x)|. Now by Constraint (3),

|Ei(x)|+ 1 ≤ x(K(i, S(µα(i)|aφ)))

≤ x(S(µα(i)) + x(T (i, aφ)\{(i, aφ)}) +
∑
a∈µα

x(T (i, a)\{(i, a)})

= x(K(i, S(µα(i)))) + x(T (i, aφ)\{(i, aφ)})
= |Ei(x)|+ x(T (i, aφ)\{(i, aφ)}).

As a result, x(T (i, aφ)\{(i, aφ)}) = 1, implying that µα(aφ) �aφ i, a contradiction to the
assumption that (i, a) blocks µα.
• Suppose that there exists a class Ci

aφlφ
∈ aφ(C(i)) for which |µα(i) ∩ Ci

aφlφ
| = q+(Ci

aφlφ
). Let

Ci
aφlφ

be the smallest such class. By definition of blocking pairs, there must exist an applicant

a† ∈ µα(i)∩Ci
aφlφ

who ranks lower than aφ. Choose a† to be the lowest ranking such applicant
in µα(i). We make the following critical observation:

x(S(µα(i)|a†aφ)) ≤ x(S(µα(i)))− xia† . (10)

To see this, we first argue that given an item xia > 0, if it does not contribute to the shaft
S(µφ(i)), then it cannot contribute to shaft S(µα(i)|a†aφ) either. It is trivial if a �i a†. So
assume that a† �i a. First suppose that a 6∈ Ci

aφlφ
. Then given any class Ciat ∈ a(C(i)),

|µα(i) ∩Ciat ∩ Li�a| = |µα(i)|a†aφ ∩Ciat ∩ Li�a|, and Theorem 24(iv) states that there is a class
Cial ∈ a(C(i)) such that |µα(i) ∩ Cial ∩ Li�a| = q+(Cial). Secondly suppose that a ∈ Ci

aφlφ
.

Observe that q+(Ci
aφlφ

) = |µα(i)|a†aφ ∩ Ci
aφlφ
∩ Li�a† | = |µφ(i)|a†aφ ∩ Ci

aφlφ
∩ Li�a| (the first

equality follows from the choice of a†). In both cases, we conclude that xia cannot contribute

to the shaft S(µφ(i)|a†aφ). The term xia† does not contribute to the shaft S(µφ(i)|a†aφ) by the
same argument. Now using Constraint (3), Theorem 24(iii), and Inequality (10), we have

|Ei(x)| ≤ x(K(i, S(µα(i)|a†aφ)))

≤ x(S(µα(i)))− xia† + x(T (i, aφ)\{(i, aφ)}) +
∑

a∈µα(i)\{a†}

x(T (i, a)\{(i, a)}))

= |Ei(x)| − x(T (i, a†)) + x(T (i, aφ)). (Note that xiaφ = 0).

Therefore,

21

x(T (i, aφ)) ≥ x(T (i, a†)) ≥ 1− α′ ≥ 1− α.

So µα(aφ) �aφ i, again a contradiction to the assumption that (i, aφ) blocks µα.

So we have established that the generated assignment µα is a stable matching. Now the re-
maining proof is the same as in [24]. Assume that µα(i, a) = 1 if and only if applicant a is
assigned to institute i under µα. Then

Exp[µα(i, a)] = xia.

Then xia =
∫ 1
0 µ

α(i, a)dα and x can be written as a convex combination of µα as α varies over
the interval [0, 1). The integrality of the polytope thus follows. ut

4.1 Optimal Stable Matching

Since our polytope is integral, we can write suitable objective functions to target for various optimal
stable matchings using Ellipsoid algorithm [11]. As the proposed LP has an exponential number of
constraints, we also design a separation oracle to get a polynomial time algorithm. The basic idea of
our oracle is based on dynamic programming.

4.2 Median-Choice Stable Matching

An application of our polyhedral result is the following.

Theorem 26. Suppose that in the given instance, all classifications are laminar families and there
is no lower bound, q−(Cij) = 0 for any class Cij. Let µ1, µ2, · · · , µk be stable matchings. If we assign
every applicant to his median choice among all the k matchings, the outcome is a stable matching.

Proof. Let xµt be the solution based on µt for any 1 ≤ t ≤ k and apply our packing algorithm on the

fractional solution x =
∑k
t=1 xµt
k . Then let α = 0.5 and µ0.5 be the stable matching resulted from the

cutting line of height α = 0.5. We make the following observation based on Theorem 24:

Suppose that applicant a is matched under x and those institutes with which he is matched
are i1, i2, · · · , ik′ , ordered based on their rankings on a’s preference list. Assume that he is
matched to it nt times among the k given stable matchings. At the termination of the packing
algorithm, each of the items xila, 1 ≤ l ≤ k′, appears in institute il’s bins and its position is

from
∑l−1

t=1
nt
k to

∑l
t=1

nt
k .

Now µ0.5 gives every applicant his median choice follows easily from the above observation. ut

Using similar ideas, we can show that an applicant-optimal stable matching must be institute-
(lexicographical)-pessimal and similarly an applicant-pessimal stable matching must be institute-
(lexicographical)-optimal: by taking x as the average of all stable matchings and consider the two
matching µε and µ1−ε with arbitrary small ε > 0. Hence, it is tempting to conjecture that the
median choice stable matching is also a lexicographical median outcome for the institutes. Somehow
surprisingly, it turns out not to be the case and a counter-example can be found in the appendix.

22

4.3 Polytope for Many-to-Many “Unclassified” Stable Matching

In the many-to-many stable matching problem, each entity e ∈ I ∪ A has a quota Q(e) ∈ Z+ and
a preference over a subset of the other side. A matching µ is feasible if given any entity e ∈ I ∪ A,
(1) |µ(e)| ≤ Q(e), and (2) µ(e) is a subset of the entities on e′s preference list. A feasible matching
µ is stable if there is no blocking pair (i, a), which means that i prefers a to one of the assignments
µ(i), or if |µ(i)| < Q(i) and a 6∈ µ(i); and similarly a prefers i to one of his assignments µ(a), or if
|µ(a)| < Q(a) and i 6∈ µ(a).

We now transform the problem into (many-to-one) LCSM. For each applicant a ∈ A, we create
Q(a) copies, each of which retains the original preference of a. All institutes replace the applicants
by their clones on their lists. To break ties, all institutes rank the clones of the same applicant in an
arbitrary but fixed manner. Finally, each institute treats the clones of the same applicant as a class
with upper bound 1. It can be shown that the stable matchings in the original instance and in the
transformed LCSM instance have a one-one correspondence. Thus, we can use Constraints (1)-(5)
to describe the former6.

5 Conclusion and Future Work

In this paper, we introduce classified stable matching and present a dichotomy theorem to draw
a line between its polynomial solvability and NP-completeness. We also study the problem using the
polyhedral approach and propose polynomial time algorithms to obtain various optimal matchings.

We choose the terms “institutes” and “applicants” in our problem definition, instead of the more
conventional hospitals and residents, for a reason. We are aware that in real-world academics, many
departments not only have ranking over their job candidates but also classify them based on their
research areas. When they make their hiring decision, they have to take the quota of the classes into
consideration. And in fact, we were originally motivated by this common practice.

classified stable matching has happened in real world. In a hospitals/residents matching pro-
gram in Scotland, certain hospitals declared that they did not want more than one female physician7.
Roth [17] proposed an algorithm to show that stable matchings always exist.

There are quite a few questions that remain open. The obvious one would be to write an LP
to describe LCSM with both upper bounds and lower bounds. Even though we can obtain various
optimal stable matchings, the Ellipsoid algorithm can be inefficient. It would be nicer to have fast
combinatorial algorithms. The rotation structure of Gusfield and Irving [12] seems the way to go.

Acknowledgments

I thank Peter Winkler for suggesting to me the idea of classified stable matching and Alvin
Roth and Jay Sethuraman for several fruitful discussions. The idea of reducing many-to-many stable
matching to LCSM was suggested by Jay Sethuraman. The comments of SODA 10 reviewers have
been extremely helpful.

6 This cloning technique works for the many-to-one hospitals/residents problem, i,.e, we can clone the hospitals and
use the original one-one stable marriage polytope [25] to describe that of the former [21, 23]. However, this trick does
not work here for many-to-many matching. The reason is that the same applicant cannot be assigned to an institute
multiple times. And that is why our classifications help to resolve this problem.

7 However the restriction has not been in place since at least 1997, and possibly longer [1].

23

References

1. Private Communication.
2. Abeledo, H. G., and Rothblum, U. G. Stable matchings and linear inequalities. Discrete Applied Mathematics

54(1) (1994), 1–27.
3. Abraham, D., Irving, R., and Manlove, D. Two algorithms for the student-project allocation problem. Journal

of Discrete Algorithms 5(1) (2007), 73–90.
4. Bäıou, M., and Balinski, M. The stable admissions polytope. Mathematical Programming, series A 87 (2000),

427–439.
5. Biró, P., Fleiner, T., Irving, R., and Manlove, D. The college admissions problem with lower and common

quotas. University of Glasgow, Computing Science Department Research Report, TR-2009-303, 2009.
6. Fleiner, T. Some results on stable matchings and fixed points, 2002. TR-2002-08, EGRES, December.
7. Fleiner, T. A fixed-point approach to stable matchings and some applicants. Mathematical Operations Research

28(1) (2003), 103–126.
8. Gale, D., and Shapley, L. College admissions and the stability of marriage. American Mathematical Monthly

69(1) (1962), 9–15.
9. Gale, D., and Sotomayor, M. Some remarks on the stable matching problem. Discrete Applied Mathematics 11

(1985), 223–232.
10. Garey, M., and Johnson, D. Computers and Intractablility. Freeman, 1979.
11. Grötschel, M., Lovász, L., and Schrijver, A. The ellipsoid method and its consequences in combinatorial

optimization. Combinatorica 1(2) (1981), 70–89.
12. Gusfield, D., and Irving, R. The Stable Marriage Problem. The MIT Press, 1989.
13. Hamada, K., Miyazaki, S., and Iwama, K. The hospitals/residents problem with quota lower bounds. In Match-

Up: Matching Under Preferences–Algorithms and Complexity, Satellite workshop of ICALP 2008 (2008), pp. 55–66.
14. Klaus, B., and Klijn, F. Median stable matching for college admissions. International Journal of Game Theory

34(1) (2006), 1–11.
15. Knuth, D. Mariages stables et leurs relations avec d’autre problèmes combinatoires. Les Presses de l’université de

Montréal, 1976.
16. Roth, A. On the allocation of residents to rural hospitals: a general property of two-sided matching markets.

Econometrica 54 (1986), 425–427.
17. Roth, A. A natural experiment in the organization of entry level labor markets: Regional markets for new physicians

and surgeons in the U.K. American Economic Review 81 (1991), 415–440.
18. Roth, A., Rothblum, U. G., and Vate, J. H. V. Stable matchings, optimal assignments and linear programming.

Mathematics of operation research 18 (1993), 808–828.
19. Roth, A., and Sotomayor, M. Two-sided matching: A study in game-theorectic modeling and analysis. Cambridge

University Press, 1990.
20. Rothblum, U. G. Characterization of stable matchings as exterme points of a polytope. Mathematical Programming

54 (1992), 1475–1480.
21. Sethuraman, J. Private communication, 2009.
22. Sethuraman, J., and Teo, C.-P. A polynomial-time algorithm for the bistable roommates problem. Journal of

Computer and System Sciences 63(3) (2001), 486–497.
23. Sethuraman, J., Teo, C.-P., and Qian, L. Many-to-one stable matching: Geometry and fairness. Mathematics

of Operations Research 31(3) (2006), 581–596.
24. Teo, C.-P., and Sethuraman, J. The geometry of fractional stable matchings and its applications. Mathematics

of Operations Research 23(4) (2001), 874–891.
25. Vate, J. H. V. Linear programming brings martial bliss. Operation Research Letters 8 (1989), 147–153.

24

A An Example for Section 2.2

In contrast to the generalized rural hospitals theorem in LCSM, if some institutes use intersecting
classes, stable matching sizes may differ. Figure 3 is an example.

Institute Preferences Classifications Quota
i1:a1a2a3 C1

1 = {a1, a2}, C1
2 = {a1, a3} Q(i1) = 2, q+(C1

1) = 1, q+(C1
2) = 1

i2:a2a1a3a4 C2
1 = {a2, a1}, C2

2 = {a2, a3}, C2
3 = {a2, a4} Q(i2) = 2, q+(C2

1) = 1, q+(C2
2) = 1, q+(C2

3) = 1

Applicant Preferences
a1:i1i2
a2:i1i2
a3:i1i2
a4:i2

Stable Matchings
µA = {(i1; a1), (i2; a2)}
µB = {(i1; a2, a3), (i2; a1, a4)}

Fig. 3. An example of stable matchings of different sizes.

B Missing Proofs of Section 3

In this section, we prove Theorem 16. We assume that the set of posets P = {P1, P2, · · · , Pk} contains
a poset which is not a downward forest. Moreover, we assume that there is no lower bound on the
classes.

Without loss of generality, we assume that P1 is not a downward forest. Such a poset must have
a “V.” By definition, there exists institute i whose class inclusion poset P (i) is isomorphic to P1.
This implies that institute i must have two intersecting classes in C(i). In the following, we will
present a reduction in which all institutes use at most two classes (that can be intersecting). It is
straightforward to use some dummy institutes and applicants to “pad” our reduction so that every
poset Pj ∈ P is isomorphic to some class inclusion poset of the institutes in the derived instance. Our
reduction is from one-in-three-sat. We will use an instance in which there is no negative literal.
(NP-completeness still holds under this restriction [10].)

The overall goal is to design a reduction so that the derived P-classified stable matching
instance allows a stable matching if and only if the given instance φ = c1 ∧ c2 ∧ · · · ∧ ck is satisfiable.
We will build a set of clause gadgets to represent each clause cj . For every pair of literals which belong
to the same clause, we create a literal-pair gadget. Such a gadget will guarantee that at most one
literal it represents can be “activated” (set to TRUE). The clause gadget interacts with the literal-
pair gadgets in such a way that if the clause is to be satisfied, exactly one literal it contains can be
activated.

Literal-Pair Gadget Suppose that xji and xji′ both belong to the same clause cj . We create a gadget

Υ ji,i′ composed of four applicants {aji,t}2t=1 ∪ {a
j
i′,t}

2
t=1 and two institutes {Iji , I

j
i′} whose preferences

and classifications are summarized below.

25

aji,1: Iji � Γ (aji,1) � Iji′ Iji : aji,2 � a
j
i,1 � a

j
i′,2 � a

j
i′,1 � Ψ(Iji) C

I
j
i

1 = {aji,1, a
j
i,2}, C

I
j
i

2 = {aji,1, a
j
i′,1}

aji,2: Iji′ � I
j
i Q(Iji) = 2, q+(C

I
j
i

1) = 1, q+(C
I
j
i

2) = 1

aji′,1: Iji � Γ (aji′,1) � Iji′ I
j
i′ : a

j
i,1 � a

j
i,2 � a

j
i′,1 � a

j
i′,2 C

I
j

i′
1 = {aji,1, a

j
i,2}

aji′,2: Iji′ � I
j
i Q(Iji′) = 2, q+(C

I
j

i′
1) = 1

We postpone the explanation of the Γ and Ψ functions for the time being. We first make the
following claim.

Claim B: Suppose that in a stable matching µ, the only possible assignments for {aji,1, a
j
i,2, a

j
i′,1, a

j
i′,2}

are {Iji , I
j
i′}. Then there can only be three possible outcomes in µ.

1. µ(aji,1) = Iji , µ(aji,2) = Iji′ , µ(aji′,1) = Iji′ , µ(aji′,2) = Iji . (In this case, we say xi is activated
while xi′ remains deactivated.)

2. µ(aji,1) = Iji′ , µ(aji,2) = Iji , µ(aji′,1) = Iji , µ(aji′,2) = Iji′ . (In this case, we say xi′ is activated
while xi remains deactivated.)

3. µ(aji,1) = Iji′ , µ(aji,2) = Iji , µ(aji′,1) = Iji′ , µ(aji′,2) = Iji . (In this case, we say both xi and xi′

remain deactivated.)

Claim B can be easily verified. Note that the case µ(aji,1) = Iji , µ(aji,2) = Iji′ , µ(aji′,1) = Iji ,

µ(aji′,2) = Iji′ will not happen due to the quota q+(C
Iji
2). This case corresponds to the situation that

xi and xi′ are both activated and is what we want to avoid.

We now explain how to realize the supposition in Claim B about the fixed potential assignments
for {aji,t}2t=1 ∪ {a

j
i′,t}

2
t=1 in a stable matching. It can be easily checked that if aji,1 is matched to some

institute in Γ (aji,1), or either of {aji,1, a
j
i,2} is unmatched; or if either of {aji′,1, a

j
i′,2} is unmatched,

then there must exist a blocking group involving a subset of {Iji , I
j
i′ , {a

j
i,t}2t=1, {a

j
i′,t}

2
t=1}. However,

the following matching µφ can happen in which aji′,1 is matched to some institute in Γ (aji′,1) but there

is no blocking group : µφ(aji,1) = Iji , µφ(aji,2) = µφ(aji′,2) = Iji′ , µ
φ(aji′,1) ∈ Γ (aji′,1).

8

To prevent the above scenario from happening (i.e., we want µφ to be unstable), we introduce

another gadget Υ
j
i , associated with Iji , to guarantee a blocking group will appear. We now list the

preferences and classifications of the members of Υ
j
i below.

aji,1: I
j
i,4 � I

j
i,1 � I

j
i,3 � I

j
i,2 I

j
i,1: aji,5 � a

j
i,2 � a

j
i,4 � a

j
i,6 � a

j
i,3 � a

j
i,1 Q(I

j
i,1) = 2

aji,2: I
j
i,3 � I

j
i,4 � I

j
i,2 � I

j
i,1 I

j
i,2: aji,4 � a

j
i,6 � a

j
i,2 � a

j
i,3 � a

j
i,1 � a

j
i,5 C

I
j
i,2

1 = {aji,1, a
j
i,2, a

j
i,3}, C

I
j
i,2

2 = {aji,3, a
j
i,4, a

j
i,5}

aji,3: I
j
i,4 � I

j
i,3 � I

j
i,1 � I

j
i,2 Q(I

j
i,2) = 2, q+(C

I
j
i,2

1) = 1, q+(C
I
j
i,2

2) = 1

aji,4: I
j
i,4 � I

j
i,1 � I

j
i,2 � I

j
i,3 I

j
i,3: aji,4 � a

j
i,5 � a

j
i,6 � a

j
i,3 � a

j
i,1 � a

j
i,2 C

I
j
i,3

1 = {aji,1, a
j
i,2, a

j
i,3}, C

I
j
i,3

2 = {aji,3, a
j
i,4, a

j
i,5}

aji,5: I
j
i,2 � I

j
i,4 � I

j
i,3 � I

j
i,1 Q(I

j
i,3) = 2, q+(C

I
j
i,3

1) = 1, q+(C
I
j
i,3

2) = 1

aji,6: I
j
i,2 � I

j
i,4 � I

j
i,3 � I

j
i,1 I

j
i,4: aji,4 � a

j
i,1 � a

j
i,6 � a

j
i,2 � a

j
i,3 � a

j
i,4 C

I
j
i,4

1 = {aji,1, a
j
i,2, a

j
i,3}, C

I
j
i,4

2 = {aji,3, a
j
i,4, a

j
i,5}

Q(I
j
i,4) = 2, q+(C

I
j
i,4

1) = 1, q+(C
I
j
i,4

2) = 1

8 It can be verified that if aji,1 is matched to some institute in Γ (aji′,1), the above assignment is the only possibility
that no blocking group arises.

26

The above instance Υ
j
i has the following features, every one of which is crucial in our construction.

Feature A Υ
j
i does not allow a stable matching; more importantly, if in the given matching µ,

|µ(I
j
i,1)| < 2, then there exists at least one blocking group which is not of the form (I

j
i,1; a

j
i,x, a

j
i,y),

where {aji,x, a
j
i,y} ⊂ {a

j
i,t}6t=1.

Feature B When the institute I
j
i,1 is “removed” from the instance Υ

j
i (i.e. I

j
i,1 is struck from the

preferences of the applicants {aji,t}6t=1), there exists at least one stable matching. For instance,

the following matching µ is stable, if I
j
i,1 is removed: µ(I

j
i,2) = (aji,6, a

j
i,3), µ(I

j
i,3) = (aji,5, a

j
i,2),

µ(I
j
i,4) = (aji,4, a

j
i,1).

Feature C Each of the three institutes {Iji,t}4t=2 uses exactly two intersecting classes; more impor-

tantly, institute I
j
i,1 does not use any classification at all.

Our idea is to let the institute Iji in the gadget Υ ji,i′ “play the role” of I
j
i,1 in the gadget of Υ

j
i and

add the other members in Υ
j
i into gadget Υ ji,i′ . To be precise, let Ψ(Iji) = aji,5 � aji,2 � aji,4 � aji,6 �

aji,3 � aji,1 (the same preference list of I
j
i,1) and add the other members of Υ

j
i into the gadget Υ ji,i′

without modifying their preference lists (and classifications). We now explain how the above features

of Υ
j
i help to realize the supposition in Claim B about the potential assignments of the applicants

{aji,t, a
j
i′,t}

2
t=1 in a stable matching.

1. In a matching µφ, suppose that institute Iji is only assigned aji,1 while aji′,1 is assigned to some

institutes in Γ (aji′,1) (the problematic case we discussed above). As a result, institute Iji can

take one more applicant from the set {aji,t}6t=1. By Feature A, there must exist a blocking group

involving the members in Υ
j
i . More importantly, this blocking group need not be composed of Iji

and two applicants from {aji,t}6t=1.

2. In a matching µφ, suppose that institutes Iji is assigned two applicants from the set {aji,t, a
j
i′,t}

2
t=1.

Then I
j
i,1 can be regarded as being removed from the instance Υ

j
i . And there exists a stable

matching among the other members of the instance Υ
j
i . This explains the necessity of Feature B.

3. Finally, since Iji already uses two intersecting classes, I
j
i,1 should not use any more classes. This

explains the reason why Feature C is necessary.

We have left the functions Γ (aji,1) and Γ (aji′,1) unexplained so far. They contain institutes belonging
to the clauses gadgets, which will be the final component in our construction.

Clause Gadget Suppose that cj = xj1 ∨ x
j
2 ∨ x

j
3. We create a clause gadget Υ̂j composed of two

institutes {Îjt }2t=1 and six applicants {âjt}6t=1. Their preferences and classifications are summarized
below.

We now explain how the Λ functions in the clause gadgets interact with the Γ functions in the
literal-pair gadgets. The former is composed of applicants in the literal-pair gadgets while the latter is
composed of institutes in the clause gadgets. Our intuition is that the only possible stable matchings
in the clause gadgets will enforce exactly one of its three literals to be activated. To be precise, let
π(X) denote an arbitrary order among the elements in the set X. Then:

27

âj1: Îj2 � Î
j
1 Î

j
1 : âj5 � â

j
1 � â

j
2 � Λ(xj1) � âj6 � Λ(xj2) � âj3 � Λ(xj3) � âj4

âj2: Îj1 � 2̂j1 C
Î
j
1

1 = {âj1, â
j
2, â

j
5, â

j
6, Λ(xj1)}, C Î

j
1

2 = {âj2, â
j
5, â

j
6, Λ(xj2)}

âj3: Îj2 � Î
j
1 Q(Îj1) = 3, q+(C

Î
j
1

1) = 2, q+(C
Î
j
1

2) = 2

âj4: Îj1 � Î
j
2 Î

j
2 : âj6 � â

j
2 � â

j
1 � â

j
5 � â

j
4 � â

j
3

âj5: Îj2 � Î
j
1 C

Î
j
2

1 = {âj1, â
j
2, â

j
5, â

j
6}, C

Î
j
2

2 = {âj1, â
j
4, â

j
6}.

âj6: Îj1 � Î
j
2 Q(Îj2) = 3, q+(C

Î
j
2

1) = 2, q+(C
Î
j
2

2) = 2

Λ(xjt) = π({aj
′

i,1| if aj
′

i,1 ∈ Υ
j′

i,i′ and xj
′

i = xjt}), for t ∈ {1, 2, 3}.

Γ (aji,1) = π({Îj
′

1 | if clause cj′ = xj
′

1 ∨ x
j′

2 ∨ x
j′

3 contains the literal xji .})

Claim C Suppose there exists a stable matching µ in the derived instance. Then there can be
only three possible outcomes for the members in the clause gadget Υ̂j .

1. µ(Îj1) = (âj5, â
j
1, â

j
3), µ(Îj2) = (âj6, â

j
2, â

j
4). Moreover, in this case, xj2 must be activated while

xj1 and xj3 must remain deactivated.

2. µ(Îj1) = (âj5, â
j
2, â

j
4), µ(Îj2) = (âj6, â

j
1, â

j
5). Moreover, in this case, xj3 must be activated while

xj1 and xj2 must remain deactivated.

3. µ(Îj1) = (âj2, â
j
6, â

j
3), µ(Îj2) = (âj1, â

j
5, â

j
4). Moreover, in this case, xj1 must be activated while

xj2 and xj3 must remain deactivated.

Proof of Claim C. We have argued previously that in a stable matching µ, the applicants in the
literal-pair gadgets cannot be matched to the institutes in the clause gadget. So both Îj1 and Îj2 can

only have applicants from the set {âjt}6t=1 in µ. We first make the following observation.

In a stable matching µ, one of the applicants in the following three pairs {âj1, â
j
2}, {â

j
3, â

j
4},

{âj5, â
j
6} must be assigned to Îj1 ; while the other applicant in the above three pairs must be

assigned to Îj2 .

The above observation can be easily verified. So there are eight possible combinations in µ. Except
the three combinations listed in the claim, the other five will cause blocking groups to arise.

1. µ(Îj1) = (âj1, â
j
6, â

j
3), µ(Îj2) = (âj2, â

j
5, â

j
4). Then (Îj1 ;µ(Îj1)|â

j
2 âj6) blocks µ.

2. µ(Îj1) = (âj1, â
j
6, â

j
4), µ(Îj2) = (âj2, â

j
5, â

j
3). Then again (Îj1 ;µ(Îj1)|â

j
2 âj6) blocks µ.

3. µ(Îj1) = (âj5, â
j
2, â

j
3). Note that the tuple µ(Îj2) = (âj6, â

j
1, â

j
4) is not feasible. So µ(Îj2) = (âj6, â

j
1).

But then (Îj2 , µ(Îj2)|âj3) blocks µ.

4. µ(Îj1) = (âj5, â
j
1, â

j
4), µ(Îj2) = (âj6, â

j
2, â

j
3). In this case, institute Îj1 can replace âj4 with an applicant

in Λ(xj2) or an applicant in Λ(xj3) to have a blocking group, unless both xj2 and xj3 are activated.

However, this is impossible, since we have a literal-pair gadget Υ j2,3 and by Claim B, at most one

of xj2 and xj3 can be activated. So we have a contradiction.

5. µ(Îj1) = (âj2, â
j
6, â

j
4), µ(Îj2) = (âj1, â

j
5, â

j
3). Then the existence of a blocking group involving Îj1 and

some applicants in Λ(xj1)∪Λ(xj3) is guaranteed. The reason is similar to the previous case: xj1 and

xj3 cannot be both activated.

28

Finally, we remark that the three possible outcomes in µ listed in the lemma will guarantee that
exactly one of the three literals in clause cj can be activated. The reason is again the same as in the
last two cases that we just explained. This completes the proof of Claim C. ut

Now by Claim C, we establish Theorem 16

C Missing Proofs of Section 4

Lemma 17. In LCSM, if there is no lower bound, i.e., given any class Cij, q
−(Cij) = 0, then a stable

matching as defined in Definition 2 can be equivalently defined as follows. A feasible matching µ is sta-
ble if and only if there is no blocking pair. A pair (i, a) is blocking, given that µ(i) = (ai1, ai2, · · · , aik),
k ≤ Q(i), if

– i �a µ(a);
– for any class Ciat ∈ a(C(i)), |Li�a ∩ µ(i) ∩ Ciat| < q+(Ciat).

Proof. If we have a blocking group (i; g), institute i and the highest ranking applicant in g\µ(i) must
be a blocking pair. Conversely, given a blocking pair (i; a), assuming that |µ(i)| = Q(i) (the case

that |µ(i)| < Q(i) follows a similar argument), we can form a blocking group (i;µ(i)|a†a), where a†

is chosen as follows: (1) if there exists a class Ciat ∈ a(C(i)) such that |µ(i) ∩ Ciat| = q+(Ciat), choose
the smallest such class Ciat ∈ a(C(i)) and let a† be the lowest ranking applicant in µ(i) ∩ Ciat; (2)
otherwise, a† is simply the lowest ranking applicant in µ(i). ut

Lemma 19. Every stable matching solution x satisfies the comb inequality for any comb K(i, S(Ai)):

x(K(i, S(Ai)) ≡ x(S(Ai)) +
∑
aj∈Ai

x(T (i, aj)\{i, aj}) ≥ |Ai|.

We use the following notation to facilitate the proof. Give a tuple Ai, we define yia as follows:

yia =

{
1 either a ∈ Ai, x(T (i, a)) = 1; or a 6∈ Ai, xia = 1, and (i, a) ∈ S(Ai);
0 o.w.

Let y(Cij) =
∑

a∈Li∩Cij
yia. This quantity indicates how much a class Cij contributes to the comb

value x(K(i, S(Ai))). Thus, if U is a set of classes in C(i) partitioning Li, then x(K(i, S(Ai))) =∑
Cij∈U

y(Cij).

Proof. We prove by showing that if x(K(i, S(Ai))) < |Ai|, there exists a blocking pair (i, a†), where
a† ∈ Ai. We proceed by contradiction. First note that there exists a non-empty subset G ⊆ Ai of
applicants a for whom x(T (i, a)) = 0, otherwise, x(K(i, S(Ai))) ≥ |Ai|, an immediate contradiction.
For each applicant a ∈ G, there must exist a class Cial ∈ a(C(i)) for which

∑
a′∈Li�a∩Cial

xia′ = q+(Cial),

otherwise, (i, a) is a blocking pair and we are done. Now for each applicant a ∈ G, choose the smallest
class Cial for which

∑
a′∈Li�a∩Cial

xia′ = q+(Cial) and denote this class as Ca. We introduce a procedure

to organize a set U of disjoint classes.

Let G be composed of a1, a2, · · · , a|G| ordered based on their decreasing rankings on Li
For i = 1 To |G|

if ai ∈ C ∈ U , then do nothing
else U := U\{C|C ∈ U,C ⊂ Cal} //Cal may be a superclass of some classes in U

U := U ∪ {Cal}. // adding Cal into U

29

Claim The output U from the above procedure comprises of a disjoint set of classes containing
all applicants in G, and for each class Cij ∈ U , y(Cij) ≥ q+(Cij).

We will prove the claim shortly. Now

x(K(i, S(Ai))) =
∑
Cij∈U

y(Cij) + |Ai\{∪Cij∈UC
i
j}| ≥

∑
Cij∈U

q+(Cij) + |Ai\{∪Cij∈UC
i
j}| ≥ |Ai|,

a contradiction. ut
Proof of the Claim. It is easy to see that the classes in U are disjoint and contain all applicants

in G. Below we show that during the execution of the procedure, if Cij ∈ U , then y(Cij) ≥ q+(Cij).
We proceed by induction on the number of times U is updated. In the base case U is an empty set
so there is nothing to prove.

For the induction step, assume that al is being examined and Cal is about to be added into U .
Observe that even though

∑
a∈Li�al∩Cal

xia = q+(Cal), there is no guarantee that if xia = 1, then

yia = 1 for each a ∈ Li�al ∩Cal . The reason is that there may exist some class Cij ∈ a(C(i)) for which

|Ai ∩ Cij ∩ Li�a| = q+(Cij) and a 6∈ Ai. Then (i, a) is not part of the shaft x(S(Ai)) and yia = 0.
To deal with the above situation, we need to do some case analysis. Let B be the set of subclasses

Cij of Cal for which |Ai∩Cij∩Li�al | = q+(Cij). Choose D to be the subclasses of Cal so that <(B∪U)∪D
partitions Cal . We make three observations below.

(i) for each class Cij ∈ <(B ∪ U) and Cij ∈ U , y(Cij) ≥ q+(Cij) ≥
∑

a∈Lial∩C
i
j
xia.

(ii) for each class Cij ∈ D, if a ∈ Li�al ∩ C
i
j and xia = 1, then yia = 1.

(iii) for each class Cij ∈ <(B ∪ U) and Cij 6∈ U , then for each applicant a ∈ Li�al ∩ C
i
j ∩ Ai,

either a ∈ G and a ∈ C ∈ U , or that a 6∈ G (implying that x(T (i, a)) = 1). Moreover,
y(Cij) ≥

∑
a∈Li�al∩C

i
j
xia

(i) is because of the induction hypothesis and the feasibility assumption of x. (ii) follows from
the fact that a ranks higher than al and the way we define a class in D. For (iii), first notice that
if Cij ∈ <(B ∪ U) and Cij 6∈ U , then such a class Cij must be part of <(B) and Cij may contain

some classes in U . Now suppose that ai ∈ G ∩ Li�al but does not belong to any class in U . Then our

procedure would have added the class Cai into U before examining al, a contradiction. To see the
last statement of (iii), let G′ be set of applicants in Li�al ∩ C

i
j ∩Ai who do not belong to any classes

in U . Then

y(Cij) ≥
∑

Cik∈U,C
i
k⊂C

i
j

y(Cik) + |G′| ≥
∑

Cik∈U,C
i
k⊂C

i
j

q+(Cik) + |G′| ≥ q+(Cij) ≥
∑

a∈Li�al∩C
i
j

xia,

where the first inequality follows from the first part of (iii), the second inequality the induction
hypothesis, the third the fact that Cij ∈ <(B) (thus |Li�al ∩ C

i
j ∩ Ai| = q+(Cij)), and the fourth the

feasibility assumption of x.
Now combining all the three observations, we conclude that

y(Cal) =
∑

Cij∈<(B∪U)

y(Cij) +
∑
Cik∈D

y(Cij) ≥
∑

Cik∈<(Bl∪U)∪Dl

∑
a∈Li�al∩C

i
k

xia = q+(Cij),

and the induction step is completed. ut

30

Lemma 20. Every stable matching solution x satisfies the following inequality for any class-tuple tij:∑
aij∈tij

x(T (i, aij)\{i, aij}) ≥
∑

a∈Cij∩Li≺ti
j

xia (*)

Proof. We prove by contradiction. Suppose that in a given class-tuple tij (*) does not hold. We will

show that we can find a blocking pair (i, a†), where a† ∈ tij . Let the set of applicants a ∈ tij with
x(T (i, a)) = 0 be G, α =

∑
a′∈Li

≺ti
j

∩Cij
xia′ > 0, and β =

∑
a′∈tij

xia′ . By assumption, at most α − 1

applicants a ∈ tij have x(T (i, a)\{(i, a)}) = 1. Thus,

|G| ≥ q+(Cij)− β − α+ 1. (11)

Claim: At least one applicant a† ∈ G belongs to a sequence of classes Ci
a†t
∈ a†(C(i)) such

that if Ci
a†t
⊆ Cij , then

∑
a′∈Li

�a†
∩Ci

a†t
xia′ < q+(Ci

a†t
).

We will prove the claim shortly. Observe that given any class Cik ⊃ Cij ,
∑

a′∈Li
�a†
∩Cik

xia′ < q+(Cik):

as α > 0, some applicant aφ ∈ Cik ranking lower than a† has xiaφ = 1 and Constraint (2) enforces that∑
a′∈Li∩Cik

xia′ ≤ q+(Cik). Combining the above facts, we conclude that (i, a†) is a blocking pair. ut

Proof of the Claim. We prove by contradiction. Suppose that for every applicant a ∈ G, there
exists some class Ciat ∈ a(C(i)), Ciat ⊆ Cij , and

∑
a′∈ Li�a∩Ciat

xia′ = q+(Ciat).

LetB be the set of classes Cik ⊆ Cij such that Cik contains an applicant a ∈ G and
∑

a′∈Li�a∩Cik
xia′ =

q+(Cik) (which then will equal
∑

a′∈Li
�ti
j

∩Cik
xia′ due to Constraint (2)). For each class Cik ∈ <(B),∑

a∈Li
�ti
j

∩Cik

xia = q+(Cik) ≥ |tij ∩ Cik| =
∑

a′∈Li
�ti
j

∩tij∩Cik

xia′ + |G ∩ Cik|, (12)

where the first inequality follows from the definition of the class-tuple. Now we have

q+(Cij)− α− β ≥
∑

Cik∈<(B)

∑
a′∈(Li

�a‡
∩Cik)\t

i
j

xia′ ≥
∑

Cik∈<(B)

|G ∩ Cik| = |G| ≥ q+(Cij)− α− β + 1,

a contradiction. Note that the first inequality follows from Constraint (2), the second inequality
from (12), the equality right after is because every applicant in G belongs to some class in B, and
the last inequality is due to (11). ut

D Separation Oracle in Section 4.1

It is clear that Constraints (1)(2)(4) can be separated in polynomial time. So we assume that x
satisfies these constraints and focus on finding a violated Constraint (3) and/or Constraint (5).

31

Separating Constraint (3) We first make an observation. For each institute i, it suffices to check
whether all the combs with exactly Q(i) teeth satisfy Constraint (3). To see this, suppose that there

is a feasible tuple A
i

with less than Q(i) applicants and x(K(i, S(A
i
))) < |Ai|. Then we can add

suitable applicants into A
i

to get a feasible tuple Ai with exactly Q(i) applicants. Noticing that

x(S(Ai)) ≤ x(S(A
i
)), we have

x(K(i, S(Ai))) ≤ x(S(A
i
)) +

∑
a∈Ai

x(T (i, a)\{(i, a)}) +
∑

a∈Ai\Ai
x(T (i, a)\{(i, a)})

< |Ai|+
∑

a∈Ai\Ai
x(T (i, a)\{(i, a)})

≤ |Ai|+ |Ai| − |Ai|
= |Ai|,

where the last inequality follows from our assumption that x satisfies Constraint (1).
To illustrate our idea, we first explain how to deal with the case that the original classification

C(i) is just a partition over Li (before we add the pseudo root class Ci]). We want to find out the tuple

Ai of length Q(i), whose lowest ranking applicant is a†, which gives the smallest x(K(i, S(Ai))). If we
have this information for all possible a†, we are done. Note that because of our previous discussion,
if there is no feasible tuple of length Q(i) whose lowest ranking applicant is a†, we can ignore those
cases.

Our main idea is to decompose the value of x(K(i, S(Ai))) based on the classes and use dynamic
programming to find out the combinations of the tooth-applicants that give the smallest comb values.
More precisely,

Definition 27. Assume that Aij ⊆ Cij, 0 ≤ |Aij | ≤ q+(Cij), and all applicants in Aij rank higher than

a†. Let

x(Aij , a
†) =

∑
a∈Li

�a†
∩Cij ,(i,a)∈S(Aij)

xia +
∑
a∈Aij

x(T (i, a)\{(i, a)})

Z(Cij , sj , a
†) = minAij :Aij⊆Cij ,|Aij |=sj

x(Aij , a
†).

Note that this definition requires that if xia contributes to x(Aij , a
†), then a has to rank higher

than a†, belongs to Cij , and the (i, a) is part of the shaft S(Aij).

Suppose that we have properly stored all the possible values of Z(Cij , sj , a
†) and assume that

a† ∈ Cij′ . Then for each class Cij 6= Cij′ , assume that 0 ≤ sj ≤ q+(Cij) and for class Cij′ , 0 ≤ sj′ ≤
q+(Cij′) − 1, then the tuple Ai whose lowest ranking applicant is a†, that gives the smallest comb
value is the following one:

x(K(i, S(Ai))) = x(T (i, a†)) +minsj :
∑
Ci
j
∈C(i) sj=Q(i)−1

∑
Cij∈C(i)

Z(Cij , sj , a
†).

The above quantity can be calculated using standard dynamic programming technique. So the
question boils down to how to calculate Z(Cij , sj , a

†). There are two cases.

32

– Suppose that sj < q+(Cij). Observe that all the positive xia, where a ∈ Cij ∩ Li�a† will contribute

to the value x(Aij , a
†). So, to calculate Z(Cij , sj , a

†), we only need to find out the sj applicants a

in Cij ∩ Li�a† with the smallest values x(T (i, a)\{(i, a)}). This can be easily done in polynomial
time.

– Suppose that sj = q+(Cij). Different from the previous case, some of the positive xia, where

a ∈ Cij ∩ Li�a† will not contribute to x(Aij , a
†). Our idea is to “pin down” the lowest ranking

applicant a‡ ∈ Aij . After we pin down a‡, we know that the positive xias that contribute to

x(Aij , a
†) are those with a ∈ Cij ∩ Li�a‡ , while those with a ∈ Cij ∩ (Li≺a‡ ∩ Li�a†) do not. So what

remains to be done is to find out the sj − 1 applicants a in Cij ∩ Li�a‡ with the smallest values

x(T (i, a)\{(i, a)}). We then enumerate all possible a‡ ∈ Cij ∩ Li�a† and find out the applicant a‡

that gives the smallest Z(Cij , sj , a
†). The whole process can be done in polynomial time.

We now explain how to generalize to the case that C(i) is a laminar family. In the previous
simplified case that C(i) is a partition, we critically collect the following information:

Suppose that Aij ⊆ Cij and 0 ≤ |Aij | ≤ q+(Cij) and all applicants in Aij rank at least as

high as a‡ and strictly higher than a†. What is the choice of Aij so that x(S(Aij), a
†) +∑

a∈Aij
x(T (i, a)\{(i, a)}) is minimized?

The above question motivates the following definition.

Definition 28. Assume that Aij ⊆ Cij, 0 ≤ |Aij | ≤ q+(Cij) and all applicants in Aij rank at least as

high as a‡, who in turn, ranks higher than a†. Furthermore, let x(Aij , a
†) inherit the definition as

defined in Definition 27. We define

Z(Cij , sj , a
‡, a†) = min

Aij :A
i
j⊆Cij ,|Aij |=sj ,all applicants in Aij rank at least as high as a‡.

x(Aij , a
†).

For the case that Z(Cij , sj , a
‡, a†) is not well-defined, e.g., there is no feasible tuple of length sj

so that all applicants in Aij ⊆ Cij rank at least as high as a‡, or a† �i a‡, let Z(Cij , sj , a
‡, a†) be an

arbitrary large value.

In the following, we also associate each Z(Cij , sj , a
‡, a†) with the corresponding feasible tuple Aij that

realizes this value9. This helps us to identify the tuple that is violated in Constraint (3).

Theorem 29. For all classes Cij ∈ C(i), we can correctly calculate all possible Z(Cij , sj , a
‡, a†) in

polynomial time, for all a† and a‡ combinations.

Proof. We first remark that in the calculation, we indeed only need to find out all the values of
Z(Cij , sj , a

‡, a†) for a‡ ∈ Cij . For the case of a‡ 6∈ Cij , simply copy the value of Z(Cij , sj , a
‡, a†) where

a‡ ∈ Cij and is the lowest ranking applicant that ranks higher than a‡. If there is no such applicant,

let Z(Cij , sj , a
‡, a†) be an arbitrary large value.

We now give an inductive proof based on the height of class Cij in the tree structure of C(i).

The base case is when Cij is a leaf class. Then the calculation of all Z(Cij , sj , a
‡, a†) can be done in

essentially the same way as we have shown in the case that C(i) is a partition.

9 If Z(Cij , sj , a
‡, a†) is some arbitrary large value, let its corresponding tuple be φ and indeed this will not matter.

33

For the induction step, let Cij be a non-leaf class and assume that a‡ ∈ Cik′ ∈ c(Cij). To calculate

Z(Cij , sj , a
‡, a†), we need to find out a feasible tuple Aij of size sj , all of whose applicants rank at least

as high as a‡ so that x(Aij , a
†) is minimized.

Observe that a feasible tuple Aij can be decomposed into a set of tuples Aij =
⋃
Cik∈c(C

i
j)
Aik, where

Aik ⊆ Cik ∈ c(Cij).

1. Suppose that sj < q+(Cij). Then by definition, x(S(Aij), a
†) =

∑
Cik∈c(C

i
j)
x(S(Aik), a

†). So

x(Aij , a
†) =

∑
Cik∈c(C

i
j)

∑
a∈Aik

x(T (i, a)\{(i, a)}) + x(S(Aik), a
†)

 .
For each class Cik ∈ c(Cij), the minimum quantity

∑
a∈Aik

x(T (i, a)\{(i, a)}) + x(S(Aik), a
†) is

exactly Z(Cik, sk, a
‡, a†). As a result, for each class Cik 6= Cik′ , let 0 ≤ sk ≤ q+(Cik), and for class

Cik′ , let 0 ≤ sk′ ≤ q+(Cik′)− 1:

Z(Cij , sj , a
‡, a†) = x(T (i, a‡)) +minsk:

∑
sk

=sj−1
∑

Cik∈c(C
i
j)

Z(Cik, sk, a
‡, a†).

Thus, we can find out Z(Cij , sj , a
‡, a†) by dynamic programming.

2. Suppose that sj = q+(Cij). Note that this time since the class Cij will be “saturated”, the term

x(S(Aij), a
†) does not get any positive values xia, provided that a ∈ Cij ∩ (Li�a† ∩ Li≺a‡). So

x(S(Aij), a
†) =

∑
Cik∈c(C

i
j)
x(S(Aik), a

‡) and this implies that

x(Aij , a
†) =

∑
Cik∈c(C

i
j)

∑
a∈Aik

x(T (i, a)\{(i, a)}) + x(S(Aik), a
‡)

 .
Let a‡ be the lowest ranking applicant that ranks higher than a‡. Then for each class, Cik ∈ c(Cij),

the minimum quantity
∑

a∈Aik
x(T (i, a)\{(i, a)}) +x(S(Aik), a

‡) is exactly Z(Cik, sk, a
‡, a‡). Assuming

that for each class Cik 6= Cik′ , let 0 ≤ sk ≤ q+(Cik), and let 0 ≤ sk′ ≤ q+(Cik′)− 1, we have

Z(Cij , sj , a
‡, a†) = x(T (i, a‡)) +minsk:

∑
sk

=sj−1
∑

Cik∈c(C
i
j)

Z(Cik, sk, a
‡, a‡).

As before, this can be calculated by dynamic programming. ut

Now choose the smallest Z(Ci], Q(i) − 1, a‡, a†) among all possible a‡ who rank higher than a†

and assume that Ai] is the corresponding tuple. It is easy to see that among all feasible tuples Ai of

length Q(i) whose lowest ranking applicant is a†, the one has the smallest comb value x(K(i, S(Ai)),
is exactly the tuple Ai] ∪ {a†}.

Separating Constraint (5) We again make use of dynamic programming. The idea is similar to
the previous one and the task is much simpler, so we will be brief.

Suppose that we are checking all the class-tuples Tij corresponding to class Cij . Let T i
j,a†
⊆ Tij be

the subset of class-tuples whose lowest ranking applicants is a†. We need to find out the class-tuple
ti
j,a†
∈ T i

j,a†
with the smallest value

34

x(T (i, a†)\{(i, a†)}) +
∑

a∈ti
j,a†
\{a†}

x(T (i, a)\{(i, a)}),

and check whether this value is no less than
∑

a∈Cij∩Li≺a†
xia. If it is, then we are sure that all class-

tuples in T i
j,a†

satisfy Constraint (5), otherwise, we find a violated constraint. The above quantity can
be easily calculated by dynamic programming as before.

E A Counter Example for Section 4.2

The example shown in Figure 4 contains five stable matchings. If we apply the median choice oper-
ation on all of them, we get the stable matching µ2, which does not give institutes i1 and i2 their
lexicographical median outcome.

Institute Preferences Classifications Class Bounds
i1:axaya1a2a3a4 C1

1 = {a1, a2}, C1
2 = {a3, a4} Q(i1) = 2, q+(C1

1) = 1, q+(C1
2) = 1

i2:azawa2a1a4a3 C2
1 = {a1, a2}, C2

2 = {a3, a4} Q(i2) = 2, q+(C2
1) = 1, q+(C2

2) = 1
i3:a1a2a3a4axayazaw Q(i3) = 4

Applicant Preferences
a1:i2i1i3
a2:i1i2i3
a3:i2i1i3
a4:i1i2i3
ax:i3i1
ay:i3i1
az:i3i2
aw:i3i2

Stable Matchings
µ1 = {(i1; ax, ay), (i2; az, aw), (i3; a1, a2, a3, a4)}
µ2 = {(i1; a1, a3), (i2; a2, a4), (i3; ax, ay, az, aw)}
µ3 = {(i1; a1, a4), (i2; a2, a3), (i3; ax, ay, az, aw)}
µ4 = {(i1; a2, a3), (i2; a1, a4), (i3; ax, ay, az, aw)}
µ5 = {(i1; a2, a4), (i2; a1, a3), (i3; ax, ay, az, aw)}

Fig. 4. An example of median choice stable matching which does not give the institutes their lexicographically median
outcome.

35

