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1 Introduction

1.1 About H2M

H2M is a set of MATLAB/OCTAVE functions that implement the EM algorithm [1], [2]
in the case of mixture models or hidden Markov models with multivariate Gaussian state-
conditional distribution. More specifically, three special cases have been considered

1. Gaussian mixture models.

2. Ergodic (or fully connected) Gaussian hidden Markov models.

3. Left-right Gaussian hidden Markov models.

In fact, the case 2 and 3 above do not significantly differ except for the fact that in the
case of a left-right HMM, one needs to estimate the parameters from multiple observation
sequences. In all three cases, it is possible to use either diagonal or full covariance matrices
for the state-conditional distributions.

The H2M/cnt extension (added in version 2.0) handles similar models but for scalar
count (discrete valued positive) data. Three cases have been considered

1. Mixture of Poisson distributions.

2. Hidden Markov models with Poisson state conditional distribution.

3. Hidden Markov models with Negative binomial state conditional distribution.

Compared to the main H2M functions, only the case of ergodic models (ie. models that can
be trained from a single long observation sequence rather than from multiple sequences)
has been considered.

1.2 Current version and changes

There is a list of the changes that have been made since the first version of H2M (Mar.
18, 1997) in the file h2m/doc/CHANGES. The current version number is 2.0. Since version
1.3, the code for the multivariate Gaussian case has been pretty stable and changes have
mostly concerned the documentation and examples.

The H2M/cnt extension appeared only in version 2.0.
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1.3 License and warranty

You should read the h2m/LICENSE file (especially if you plan selling this code to the
MathWorks - or to someone else - or suing me because it doesn’t work).

1.4 MATLAB/OCTAVE compatibility

H2M functions where originally developed using MATLAB V4 and then MATLAB V5,
they will thus run on any currently available version of MATLAB. The only exception is
the mex-file c_dgaus.c which uses the mex-specific V5 syntax (the obsolete V4 lines are
commented out) - if you are using the MATLAB compiler mcc however you shouldn’t need
that anyway (see section 2.5.3).

The H2M functions have also been tested using OCTAVE (the GNU alternative to
MATLAB), version 2.0.13. It basically works as long as you are using the --traditional

switch. The sub-directory octave contains a minimal set of MATLAB compatibility rou-
tines needed to run the three examples ex_basic, ex_bic and ex_sprec (remember to
append this sub-directory to your loadpath using the path command if you are using
OCTAVE). The only significant difference is that OCTAVE does not allow for sparse
matrices.

The H2M/cnt functions have been tested under version 2.0.16 of OCTAVE (always
using the --traditional switch). Note that the simulation routines (pm_gen, ph_gen

and nbh_gen) do require some functions that have been introduced in version 2.0.14 of
OCTAVE (poisson_rnd and gamma_rnd for simulating random deviates). The H2M/cnt

functions naturally run without problem using MATLAB V5 but you will need the Statis-
tics toolbox which contains the poissrnd and gammrnd functions in order for the simulation
routines to work (see section 4.2.2 for other possible solutions).

1.5 FAQ

Here are the answers to some questions I have been asked several times (hope this helps):

Q1: Why does the log-likelihood takes positive values? For Gaussian state con-
ditional densities, the likelihood is a value from a probability density function (pdf)
and should thus not be interpreted as a probability (it can take any positive values,
not only those smaller than 1). For such models, obtaining log-likelihood values
greater than 0 is certainly not a bug. It is easy to see that if you scale your obser-
vations by, say, 10, and modify the parameters of the model accordingly (divide the
means by 10 and the variances by 10 to the square), then the likelihood is multiplied
by 10^(T*p) (the log-likelihood is increased by T*p*log(10)) where T is the number
of observations and p their dimension.

Q2: Does H2M has some limits on the dimension or on the scaling of the data?
The dynamics of the Gaussian pdf increases steadily with the dimension, so that if
you are in large dimension and try to compute the value of the Gaussian pdf far from
the mean vector (given the covariance matrix) you are likely to obtain 0. But this
does not prevent the use of H2M tools in large dimension (vectors of dimension 10
to 50), the only thing is that the Gaussian parameters should not be initialized too
far from “plausible values”. Remember that exp(-40^2/2) will already be rounded
to zero (in double precision) so that these type of problems indeed occur. The way
the problem usually appears is that you get the message “Warning: Divide by zero”
caused by the following line of hmm_fb (or the equivalent line in mix_post):
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alpha(i,:) = alpha(i,:) / scale(i);

because all values of alpha for some time index i are null. If this occurs check your
initialization (are the mean vectors centered on the data?) and try increasing the
variances (especially useful if you have outliers).

If you work with very large dimensional mixture parameters (dimension 100 or more),
you can use mix_postl instead of mix_post which is robust with respect to the
problems mentioned above (albeit, with an increase computational cost, as the un-
ormalized posterior probabilities are first evaluated on a log-scale).

Q3: Does hmm mint operate well? It is important to understand that hmm_mint does
not correspond to an ”optimal” initialization (if there is one). It is just an heuris-
tic commonly used in speech processing which consist in chopping each parameter
sequence into N segments of equal length where N is the number of states. It will
clearly not work if you have many states, many allowed transitions (ie. many entries
of the transition matrix not initialized to zero) and few training sequences.

Q4: Is it possible to use discrete (eg., vector quantized) observations? No, H2M
implements continuous observations as described in section 6.6 of [3]. The so called
“discrete HMM” which requires prior quantization of the data using VQ (this is
the one considered in section 6.4 of [3] as well as in the first part of the tutorial
by Rabiner [4]) can not be implemented using H2M (note that these models are not
really used anymore nowadays).

Q5: Is it possible to use mixture conditional densities? Not directly. If you think
of it though, you will realize that an HMM with N states and mixtures of K Gaussian
densities as state conditional distributions is equivalent to an HMM with N*K states
with some constraints on the transition matrix. There is however two limitations
in using H2M for that purpose: (1) you will have to modify the EM re-estimation
formulas to take into account the constraints on the transition matrix (should not
be too difficult), (2) you will rapidly have to deal with huge transition matrices.

Q6: Why does the covariance matrices becomes ill-conditioned? Problems with
covariance matrices nearly always stem from the fact that there are too many HMM
states compared to the available training data. In these conditions it is possible that
outliers states which are associated to only one (or to a few) data points (a problem
also experienced with vector quantization) will appear during the training. Using
fewer states and/or more training data usually solve the problem. You may also
switch to diagonal covariance matrices if you are using full covariance matrices. In
any case you should read section 2.5.2 on heuristics which may prevent this problem
from happening.

Q7: In the first example of ex basic, why does the initial distribution converges
to a degenerate value? It is easilly checked that the recursion

π
(k+1)
0 (i) = P (k)(S1 = i|X1) =

π
(k)
0 (i)P (X1|S1 = i)∑
j π

(k)
0 (j)P (X1|S1 = j)

converges to a value of π0 such that π0(i) = 1 for one of the states indices (this will
typically happen when trying to estimate mixture weights from a single observation).
By looking at the values of the first line of the arrays \alpha and beta, it is easily
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verified that \alpha is, by large, the dominant factor so that P (S1 = i|X1, . . . , XT ) ≈
P (S1 = i|X1). Hence the EM recursion for π0, π

(k+1)
0 (i) = P (k)(S1 = i|X1, . . . , XT ),

behaves as the recursion discussed above. This is of course due to the choice of a
random transition matrix A_sim together with widely separated Gaussian compo-
nents. Remember anyway that when observing only one sequence of observations,
estimation of the initial probability distribution π0 is basically hopeless (see discus-
sion on p. 361 of [5]). If you really intend to estimate π0, then you must have several
(independent) observations sequences available.

2 Models with multivariate Gaussian state conditional dis-
tribution

2.1 Data structures

No specific data structures have been used, so that a HMM with multivariate Gaussian
state conditional distribution consists of:

pi0 Row vector containing the probability distribution for the first (unobserved) state:
π0(i) = P (S1 = i).

A Transition matrix: aij = P (St + 1 = j|St = i).

mu Mean vectors (of the state-conditional distributions) stacked as row vectors, such that
mu(i,:) is the mean (row) vector corresponding to the i-th state of the HMM.

Sigma Covariance matrices. These are stored one above the other in two different way de-
pending on whether full or diagonal covariance matrices are used: for full covariance
matrices,

Sigma((1+(i-1)*p):(i*p),:)

(where p is the dimension of the observation vectors) is the covariance matrix cor-
responding to the i-th state; for diagonal covariance matrices, Sigma(i,:) contains
the diagonal of the covariance matrix for the i-th state (ie. the diagonal coefficients
stored as row vectors).

For a left-right HMM, pi0 is assumed to be deterministic (ie. pi0 = [1 0 ... 0]) and
A can be made sparse in order to save memory space (A should be upper triangular for
a left-right model). Using sparse matrices is however not possible if you want to compile
your m-files using mcc (MATLAB) or if you are using OCTAVE.

A Gaussian mixture model, is rather similar except that as the underlying jump process
being i.i.d., pi0 and A are replaced by a single row vector containing the mixture weights
w defined by w(i) = P (st = i).

Most functions (those that have mu and Sigma among their input arguments) are able
to determine the dimensions of the model (size of observation vectors and number of
states) and the type of covariance matrices (full or diagonal) from the size of their input
arguments. This is achieved by the two functions hmm_chk and mix_chk.

For more specialized variables such as those that are used during the forward-backward
recursions, I have tried to use the notations of L. R. Rabiner in [4] (or [3]) which seem
pretty standard:

alpha Forward variables: αt(i) = P (X1, . . . , Xt, St = i).
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beta Backward variables: βt(i) = P (Xt+1, . . . , XT |St = i).

gamma A posteriori distributions of the states:

γt(i) = P (St = i|X1, . . . , XT )

I have also tried to use systematically the convention of multivariate data analysis that
the matrices should have “more rows than columns”, so that the observation vectors are
stacked in X as row vectors (the number of observed vectors being usually greater than
their dimension). The same is true for alpha, beta and gamma which are T*N matrices
(where T is the number of observation vectors and N the number of states).

2.2 Simple types: ex basic

The script ex_basic.m contains some code corresponding to low dimensional examples of
the three basic HMM types that are handled by H2M.

2.2.1 Ergodic model with full covariance matrices

Let X denote a matrix containing T observed vectors, the EM estimation of the parameters
take the following form:

for i = 1:n_iter

[alpha, beta, logscale, dens] = hmm_fb(X, A, pi0, mu, Sigma);

logl(i) = log(sum(alpha(T,:))) + logscale;

[A, pi0] = hmm_tran(alpha, beta, dens, A, pi0);

[mu, Sigma] = hmm_dens(X, alpha, beta, COV_TYPE);

end;

COV_TYPE is just a flag that should be set to 0 when using full covariance matrices and to
1 for diagonal covariance matrices.

Notice that at each step, the log-likelihood is computed from the forward variables
using a correction term logscale returned by hmm_fb (for forward-backward) which con-
tains the sum of the logarithmic scaling factors used during the computation of alpha

and beta. In the present version scaling of the forward variable is performed at each time
index t = 2:T (which means that each row of the alpha matrix sums to one, except the
first one). This systematic scaling appears to be much safer when using input data with
largely varying range. The backward variable is scaled using the same normalization fac-
tors as indicated in [4] (using exactly the same normalization factors is important for the
re-estimation of the coefficients of the transition matrix). Note that the mere suppression
of the scaling procedure would lead to numerical problems in almost every cases of interest
(when the length of the observation sequences if greater than 50 for instance) despite the
double precision representation used in MATLAB/OCTAVE.

If you don’t want to see what’s going on you can simply use

[A, pi0, mu, Sigma, logl] = hmm(X, A, pi0, mu, Sigma, n_iter);

which calls the very same piece of code except for the fact that the messages concerning
the execution time are suppressed: all the computational functions print those messages
by default but this can be suppressed by supplying and optional argument (named QUIET)
different from zero.
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2.2.2 Left-right HMM

This case is not really different from the last one except that the case of multiple obser-
vation sequences has been considered:

for i = 1:n_iter

[A, logl(i), gamma] = hmm_mest(X, st, A, mu, Sigma);

[mu, Sigma] = mix_par(X, gamma, COV_TYPE);

end;

In this case, the matrix X contains all the observation sequences and the vector st

yields the index corresponding to the beginning of each sequence so that X(1:st(2)-1,:)
contains the vectors that correspond to the first observation sequence, and so on un-
til X(st(length(st)),length(X(1,:),:) which corresponds to the last observation se-
quence.

The transition parameters are re-estimated inside hmm_mest and the a posteriori dis-
tribution of the states are returned in gamma. Once again, if you don’t want to see what’s
happening you could more simply use

[A, mu, Sigma, logl] = hmm(X, st, A, mu, Sigma, n_iter);

In fact, if you need to estimate the parameter of an ergodic model using multiple (in-
dependent) observation sequences, you may use hmm_mest as well, but hmm_mest assumes
that pi0 = [1 0 ... 0] (ie. that the Markov chain starts from the first state).

2.2.3 Mixture model

The EM estimation in the case of mixture model is achieved through

for i = 1:n_iter

[gamma, logl(i)] = mix_post(X, w, mu, Sigma);

[mu, Sigma, w] = mix_par(X, gamma, COV_TYPE);

end;

or, more simply

[w, mu, Sigma, logl] = mix(X, w, mu, Sigma, n_iter);

2.3 Another mixture example: ex bic

ex_bix is a richer example with mixtures where you analyze some simulated data con-
sisting of mixture observations plus a small portion of outliers (simulated from another
density). To assess the fit provided by mixture models with different numbers of com-
ponents, the BIC (Bayesian Information Criterion) is used [6]. The aim of this example
is not to promote the use of BIC for selecting the number of component in a mixture
model (see the comments in ex_bix concerning the sensitivity of the procedure to various
parameters of the analysis) but rather to illustrate the use of H2M functions in a more
“realistic” setting.
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2.4 A more advance example (sequence recognition with HMM): ex sprec

The script ex_sprec.m contains a more elaborate example of the use of H2M functions for
an isolated words speaker-dependent recognition task (with no recording variability). I
included this example because it provided a simple way of answering most of the question
I was asked concerning H2M (please, don’t ask me about speech recognition anymore!). I
do however insist on the following: (1) ex_sprec.m is not meant to be used
for real-world speech recognition (see section 2.5.3 on computation time and
memory usage), (2) I am not a speech recognition expert and thus cannot
answer questions concerning this particular use of H2M functions.

This is a very simplistic example where basic models (left-right models with five states
and a single shared covariance matrix) are sufficient to get rid of all errors on a small size
training set (which is again not at all typical of real-world speech recognition applications).
The code is commented so that it should not be too difficult to figure out what’s going on.

If you run into trouble, it will probably happens when reading the signal file data/

digits.sig which is a binary file contains shorts (16 bits signed integers) recorded on a
little-endian system (PCs running Windows or Linux are typically little-endian systems,
most Unix workstations are big-endian). I have successfully run ex_sprec on various
Unix systems (little and big-endian) using either MATLAB V5 or OCTAVE 2.0, so I hope
to have cleared all the input/output problems. The script tries to determine which of
MATLAB or OCTAVE is used so as to add the octave subdirectory to the search path if
needed.

Running ex_sprec requires about 6 Mb of memory, or 15 Mb if you have to overwrite
the signal file (which is my own stupid way of coping with old versions of MATLAB or
OCTAVE running on big-endian systems). On my own Linux box (Pentium III - 1 GHz
hardarwe), the computation time for ex_sprec (parameterization, training and recogni-
tion) ranges from 48.5 s under OCTAVE to 9.1 s using MATLAB with all computational
routines compiled.

2.5 Implementation issues

2.5.1 Initialization

Initialization plays an important part in iterative algorithms such as the EM. Usually the
choice of the initialization point will strongly depend on the application considered. I use
only two very basic methods of initializing the parameters:

For left-right models hmm_mint initializes all the model parameters using a uniform
“hard” segmentation of each data sequence (each sequence is splitted in N consecu-
tive sections, where N is he number of states in the HMM, the vectors thus associated
with each state are used to obtain initial parameters of the state-conditional distri-
butions).

For mixture models svq implements a binary splitting vector quantization algorithm.
This usually provides efficient initial estimates of the parameters of the Gaussian
densities. Note that svq uses the unweighted Euclidean distance as performance
criterion. If the components of the input vectors are strongly correlated and/or of
very different magnitude, it would be preferable to use svq on the vectors Φxt where
Φ is the Cholevski factor associated with Cov−1(x), ie. Φ′Φ = Cov−1(x).
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2.5.2 Modifications of the EM recursions

It is common practice to introduce some modifications of the EM algorithm in order to
avoid known pitfalls. The fact that the likelihood becomes infinite for singular covariance
matrices is maybe the problem most often encountered in practice. Solutions include
thresholding the individual variances coefficients in the diagonal case or adding a constant
diagonal matrix at each iteration. This is certainly useful, particularly in the case where
there is “not enough” training data (compared to the complexity of the model). There is
however a risk of modifying the properties of the EM algorithm with such modifications,
in particular the likelihood may decrease at some iteration. A perhaps more elegant way
of handling such problems consists in using priors for the HMM parameters in a Bayesian
framework [7].

Most HMM packages such as HTK (popular development tool for speech processing
applications) use such modifications in order to avoid these problems (the same is true
for vector quantization where heuristics can be introduced to avoid the appearance of
singleton clusters). No such modification has been used here but these are easy to code
using something like:

for i = 1:n_iter

[A, logl(i), gamma] = hmm_mest(X, st, A, mu, Sigma);

[mu, Sigma] = mix_par(X, gamma, DIAG_COV);

Sigma = Sigma + SMALL_VALUE*ones(size(Sigma)); % EM Modif. (assuming

% diagonal covariances)

end;

Another frequently used solution is to “share” some model parameters (ie. to constrain
them to be equal) such as the variances of different states. This usually necessitates only
minor modifications of the EM re-estimation equations [8] - see the function ex_sprec

(section 2.4) for an example of variance sharing.
Finally the aforementioned HTK toolkit uses a modification of the HMM model which

force the forward-backward recursions to give null probability to sequences that do not
end in the final state (these modified equations are obtained simply by assuming that each
observed sequence is terminated by an END OF SEQUENCE symbol associated with a
terminal state located after the actual final state of the HMM). This doesn’t modify much
the EM estimates, except in case where very few training sequences are available (moreover
this is clearly limited to left-right HMMs).

2.5.3 Computation time and memory usage

Each function is implemented in a rather straightforward way and should be easy to
read. In some case (such as hmm_tran for instance) however, the code may be less easy
to read because of aggressive “matlabization” (vectorization) which helps save computing
time. Note that one of the most time-consuming operation is the computation of Gaus-
sian density values (for all input vectors and all states of the model). In the case I use
more frequently (Gaussian densities with diagonal covariance), I have included a mex-file
(c_dgaus) which is used in priority if it is found on MATLAB’s search path (expect a gain
of a factor 5 to 10 on hmm_fb and mix_post). Some routines could easily be made more
efficient (hmm_vit for instance) if someone has some time to do so.

Especially if you are using full covariance matrices or if you can’t compile the mex-file
c_dgaus, these routines can be made much faster by using the MATLAB compiler mcc (if
you paid for it): I apologize if it looks like a plain commercial, but execution time gets
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approximately divided by 10 on functions such as hmm_fb when using mcc. In the four
components 2-D mixture model (last example in script ex_basic.m) with 50 000 (fifty
thousand) observation vectors, the execution time (on an old fashioned 1998 SUN SPARC
workstation) for each EM iteration was: 3 seconds when using diagonal covariance with
the mex-file c_dgaus; 3 minutes when using full covariance; 10 seconds for full covariance
matrices when the files mix_post and mix_par had been compiled using MATLAB’s mcc.
Only the ratios between these figures are actually of interest since these should run faster
on modern computers (with a Pentium III - 1 GHz PC running Linux, the full covariance
case, without compilation, boils down to 25 seconds).

Users of the MATLAB compiler should compile in priority the file gauseval (compu-
tation of the Gaussian densities) which represents the main computational load in many
of the routines. Compiling the high-level functions like mix, hmm (and vq) fails because I
used variable names ending with a trailing underscore to denote the updated parameters
(sorry for that!) It wouldn’t be very useful anyway since only the compilation of the
low-level functions significantly speeds up the computation. Note that functions compiled
with mcc can’t handle sparse matrices, which is a problem for left-right HMMs (for this
reason, I don’t recommend compiling a function like hmm_fb). Finally, in version 5.2 (the
first MATLAB V5 version on which the compiler actually runs) it is possible to use com-
pilation pragmas (or to specify them as arguments of mcc). Using the pragma #inbounds

is an absolute requirement if you want to obtain any gain in execution time and to avoid
memory overflows (#realonly also helps but to a much lesser extent - moreover mcc does
not seem to handle this properly in the version I use which is 5.2.0.3084). I have included
these pragmas when possible in gauseval.m, gauslogv.m mix_par.m and mix_post.m.

Memory space is also a factor to take into account: typically, using more than 50 000
training vectors of dimension 20 with HMMs of size 30 is likely to cause problems on
most computers. Usually, the largest matrices are alpha and beta (forward and backward
probabilities), gamma (a posteriori distribution for the states) and dens (values of Gaussian
densities). The solution would consists in reading the training data from disk-files by
blocks... but this is another story!

3 The H2M/cnt extension: models for scalar count data

The H2M/cnt extension contains a set of functions for estimation of mixture and hidden
Markov models appropriate for count data (positive, discrete valued time series). Cur-
rently implemented are functions for the EM estimation of Poisson mixtures and HMMs
as well as HMMs with Negative Binomial state conditional distributions.

If you are only interested in speech processing, then you can safely
skip this section (and delete the cnt subdirectory if you want).

3.1 Nomenclature

The names of the functions in the H2M/cnt extension follow these conventions:

p* Poisson something...

pm * function for Poisson Mixture modeling

ph * function for Poisson Hidden Markov modeling

nb* Negative Binomial something..
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nbm * function for Negative Binomial Mixture modeling

nbh * function for Negative Binomial Hidden Markov modeling

The meaning of the suffix is similar to what has been used for the main H2M functions:

* ch CHecks that the data structure is correct (and return the model dimension)

* gen GENerates simulated data from the model

* em EM estimation of the parameters of the model

* vit Maximum a posteriori estimation of the sequence of states using dynamic program-
ming (also known as VITerbi algorithm)

Note that only the high-level function * em is provided (in the main H2M functions,
EM estimation is split into several routines which can used separately such as gauseval,
hmm_fb, hmm_tran and hmm_dens).

3.2 Data structures

3.2.1 Poisson mixture model

A Poisson mixture model is defined by the two (1-D) arrays:

wght Mixture weights (positive and sum to 1)

rate Component rates (parameters of the Poisson distributions)

3.2.2 Poisson HMM

A Poisson HMM is defined by

TRANS The transition matrix of the hidden chain

rate Component rates (parameters of the Poisson distributions)

3.2.3 Negative binomial mixture model

A negative binomial mixture model is defined by three (1-D) arrays:

wght Mixture weights (positive and sum to 1)

alpha Component (positive) shape parameters

beta Component (positive) inverse scales

3.2.4 Negative binomial HMM

A negative binomial HMM is defined by

TRANS The transition matrix of the hidden chain

alpha Component (positive) shape parameters

beta Component (positive) inverse scales

11



The Negative Binomial distribution is such that

P(N = n) =

(
n+ α− 1
α− 1

)(
β

1 + β

)α( 1

1 + β

)n
for n ∈ N

which has mean α/β and variance α(1 + β)/β2. The negative binomial distribution can
be viewed as a Poisson (continuous) mixture for which the rate follows a Gamma(α, β)
distribution (this is the method used for simulating from the model in nbh_gen). If you
don’t know what the negative binomial distribution is, you should refer, for instance, to [9]
or perhaps to [10].

3.2.5 Note on the initial distribution of HMMs in H2M/cnt

Contrary to what was the case for the H2M main functions, the H2M/cnt HMM functions
are mostly intended to deal with ergodic models which are estimated from a single long
observation sequence (whereas left-right HMMs such as those used in speech processing
need to be trained using multiple observation sequences). With a single (long) training
sequence, the initial distribution is a parameter that has little influence and that cannot be
estimated consistently. Taking this into account, it is assumed that the initial distribution
(usually called pi0 in the H2M functions is uniform (equal probabilities for all states of the
model).

3.3 Examples

The file ex_cnt contains examples of use of the H2M/cnt functions on simulated data for
the three models:

1. Poisson mixture

2. Poisson hidden Markov model

3. Negative-binomial hidden Markov model

All the models considered in ex_cnt have two states. The script tries to figure out which
of OCTAVE or MATLAB is used so as to make sure that the plots do not look too bad.

4 Reference

4.1 Functions in the main directory

4.1.1 Alphabetical list of functions

c dgaus Computes a set of multivariate normal density values in the case of diagonal
covariance matrices (mex-file).

ex 1d A simple 1 Dimensional Gaussian HMM example (3 states)

ex basic How to use the h2m functions on the three basic model types:

ex bic Example of cluster analysis with varying number of mixture

ex fb bms Script to check that the results of Forward-Backward and and Backward
Markovian Smoothing are the same.

ex sprec (Unrealistic) example of isolated word recognition

12



gauselps Plots 2D projections of Gaussian ellipsoids.

gauseval Computes a set of multivariate normal density values.

gauslogv Computes a set of multivariate normal log-density values.

hmm Performs multiple iterations of the EM algorithm.

hmm chk Checks the parameters of an HMM and returns its dimensions.

hmm dens Reestimates the Gaussian parameters for an HMM.

hmm fb Implements the forward-backward recursion (with scaling).

hmm gen Generates a sequence of observation given an HMM.

hmm mest Reestimates the transition parameters for multiple observation sequences.

hmm mint Initializes the distribution parameters using multiple observations (left-right
model).

hmm post Implements backward Markovian smoothing (forward-backward alternative).

hmm psim Generates a random sequence of conditional HMM states.

hmm tran Reestimates the transition part of an HMM.

hmm vit Computes the most likely sequence of states (Viterbi DP algorithm).

lrhmm Performs multiple iterations of the EM algorithm for a left-right model.

mix Performs multiple iterations of the EM algorithm for a mixture model.

mix chk Checks the parameters of a mixture model and return its dimensions.

mix gen Generates a sequence of observation for a Gaussian mixture model.

mix par Reestimates mixture parameters.

mix post Computes a posteriori probabilities for a Gaussian mixture model.

mix postl Alternative to mix post which uses logarithmic computation to avoid under-
flows (useful in very large dimensional models).

randindx Generates random indexes with a specified probability distribution.

statdis Returns the stationary distribution of a Markov chain.

svq Vector quantization using successive binary splitting steps.

vq Vector quantization using the K-means (or LBG) algorithm.

13



4.1.2 Notes

The main functions are described in section 2.2 (or in the example scripts), other functions
include:

hmm_gen and mix_gen generate data vectors according to a given model. This is useful
for testing algorithms on “prototype data”. hmm_psim generates a random sequence of
HMM state conditional to an observation sequence. This can be used for doing Monte
Carlo simulations (the way it works is described, for instance, in [11] as “sampling the
indicator variables”).

gauseval and gauslogv compute values of the Gaussian probability density (or the
logarithm of it for gauslogv) for several Gaussian distributions and several observed vec-
tors at the same time. Computing as many values as possible at the same time is much
faster than calling the function several times (especially when the number of Gaussian
distributions is large).

gauselps plots the 2-D projections of the Gaussian ellipsoids corresponding to the
Gaussian distribution (this is certainly one of the most useful things in order to see what’s
going on, at least for low dimensional models).

statdis computes the stationary distribution of a finite state-space Markov chain from
its transition matrix.

4.2 Functions in the H2M/cnt extension

4.2.1 Alphabetical list of functions

digamma Computes the digamma (also called psi) function (d log gamma).

ex cnt Script to illustrate the three basic models handled by H2M/cnt.

nb ml Maximum likelihood estimation for negative binomial data.

nbh chk Checks the parameters of a negative binomial HMM and returns its dimension.

nbh em Estimates the parameters of a negative binomial HMM using EM.

nbh gen Simulates data from a negative binomial HMM.

nbh vit A posteriori sequence estimation for negative binomial HMM.

nbm chk Checks the parameters of a negative binomial mixture

nbm em Estimates the parameters of a negative binomial miture using EM.

nbm gen Simulates data from a negative binomial mixture.

ph chk Checks the parameters of a Poisson HMM and returns its dimension.

ph em Estimates the parameters of a Poisson HMM using the EM algorithm.

ph gen Simulates data from a Poisson HMM.

ph vit A posteriori sequence estimation for Poisson HMM.

pm chk Checks the parameters of a Poisson mixture and returns its dimension.

pm em Estimates the parameters of a Poisson mixture using the EM algorithm.

pm gen Simulates data from a Poisson mixture.

trigamma Computes the trigamma function (d^2 log gamma).
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4.2.2 Notes

The simulation routines pm_gen, ph_gen and nbh_gen need functions to generate random
numbers from the Poisson and Gamma distributions. For this reason, they must be run
either under OCTAVE version 2.014 (or above) or with MATLAB equipped with the
Statistics Toolbox.
If you do not fall into one of the two cases above (which probably means that you are
using MATLAB but don’t want to pay for the Statistics toolbox), you can still get around
using the free Statbox toolbox by Gordon K Smyth but you will have to modify the names
of the random number generators. Another option, would be to use GSL - The GNU
Scientific Library whose recent versions contain a compiled binary named gsl_randist

which can be used directly for simulating random numbers from the command line (if you
are courageous and have a decent C compiler, you can also use the GSL library modules
for writing a mex file). Linux users should find this packaged in any recent version of their
favorite distribution under the name gsl or gsl-bin (Debian).

The function nbh_em uses a modified version of the EM algorithm in which after the
E step, the EM intermediate quantity is maximized explicitly with respect to the beta

parameters while the alpha parameters are updated using a single Newton step. The first
and second derivative of the part of the EM intermediate quantity which depends on the
alpha parameters are computed using the special functions digamma and trigamma. See
[12] for details concerning the convergence of such modified versions of EM.

If you are using OCTAVE, you will also need the gammaln m-file (which computes the
log of the gamma function) to run ph_em, ph_vit, nbh_em or nbh_vit. This function is in
the subdirectory h2m/octave which you should thus append to your loadpath using the
path command.

4.2.3 Known problems

To avoid the use of a line search routine, the Newton steps are used in nb_ml and nbh_em

without checking that the objective function indeed increases and that alpha does not
become negative. This is of course something that could break down convergence (and at
least make the likelihood non strictly increasing from one iteration to the other). Note
that it is easily checked though that in both cases, the part of the likelihood or of the EM
intermediate quantity which depends only on alpha is concave, and thus the situation is
rather easy compared to a general optimization task.

In practice problems never seem to happen as long that you have at least a few non
null observations and that your starting values are not too crazy when using nbh_em (for
real data, you can for instance use nb_ml to obtain credible initialization values). If you
see the message

Warning: could not update alpha

too often when using nbh_em then you are probably in one of those bad cases and should
check your starting values (the other option is that you have very few data points - say
less than 10 - and/or that these are almost all zero, in which case there is not much to be
expected from estimating the parameters anyway).

5 To do

What follows is a remark that could be useful for people needing to
adapt the code to a new type of model rather than an actual wishlist
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since I don’t plan to to this myself at the moment.

If you take a look at the code in nbh_em, ph_em or pm_em and compare these with the
corresponding functions for multivariate Gaussian state conditional distributions (mix,
hmm, etc) you will se that they are all very similar and that one could indeed develop
generic routines for EM estimation of mixtures and HMMs. The only model specific
elements that are needed are

1. A routine that compute the density values given the data and the parameters char-
acterizing the different model states (this is done by the function gauseval for
multivariate Gaussian distributions).

2. A routine that updates the parameters of the state conditional distributions given
the a posteriori state probabilities (this is done by the hmm_dens for multivariate
Gaussian distributions). This second function can be somewhat more difficult to
implement since one needs to consider the precise form of the EM intermediate
quantity, but usually this just boils down to a straightforward modification of the
maximum likelihood computation in the corresponding model (see, for instance, the
end of pm_em for the case of Poisson distributions).

Everything else (including the forward-backward recursions and the reestimation of the
transition matrix and, if needed, of the initial states - that is functions such as hmm_fb,
hmm_vit, hmm_tran or mix_post) is absolutely generic.

For doing this with MATLAB/OCTAVE, one would have to use eval statements
(so as to allow passing the names of the above two routines as parameters) as well as
variable number of input arguments (since all distributions do not have the same number
of parameters). The latter could be done easilly in MATLAB (starting from V 5) using
the varargin construct.

6 Downloading H2M

(Updated on 28 Aug 2012)

H2M is available as a Unix gz-compressed tape archive at
http://perso.telecom-paristech.fr/˜cappe/Code/H2m/h2m.tgz

A PC zip file h2m.zip is also available in the same directory. The size of both archives
is about 1.2 Mb (two third of which corresponding to the data file used to run the example
ex_sprec of section 2.4). The .tgz and .zip archives also contain the documentation in
HTML and PDF formats.

The permanent adress for h2m is
http://perso.telecom-paristech.fr/˜cappe/Code/H2m.html
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