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March 8th 2014:   Impact of wind 
and solar on net-load at CAISO

Ramp limitations cause price-spikes

Price spike due to high net-load ramping
need when solar production ramped out

Negative prices due to high
mid-day solar production
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Challenges of Renewable Energy Integration

Some of the Challenges

1 Ducks

MISO, CAISO, and others: seek markets for ramping products

2 Ramps
3 Regulation

One potential solution:
Large-scale storage with fast charging/discharging rates

Let’s consider some alternatives
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Virtual Energy Storage

Control Architecture
Frequency Decomposition

Today: PJM decomposes regulation signal based on bandwidth,
R = RegA + RegD

Proposal: Each class of DR (and other) resources will have its own
bandwidth of service, based on QoS constraints and costs.
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Virtual Energy Storage

Frequency Decomposition
Taming the Duck

March 8th 2014:   Impact of wind 
and solar on net-load at CAISO

Ramp limitations cause price-spikes

Price spike due to high net-load ramping
need when solar production ramped out
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ISOs need help: ... ramp capability shortages could result in a single, five-minute

dispatch interval or multiple consecutive dispatch intervals during which the price of

energy can increase significantly due to scarcity pricing, even if the event does not

present a significant reliability risk http://tinyurl.com/FERC-ER14-2156-000
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Virtual Energy Storage

Frequency Decomposition
Taming the Duck

One Day at CAISO 2020

ISO/RTOs are seeking ramping products
to address engineering challenges, and
to avoid scarcity prices

Do we need ramping products?

Net Load Curve
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Virtual Energy Storage

Frequency Decomposition
Regulation
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Virtual Energy Storage

Demand Dispatch
Responsive Regulation and desired QoS
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Demand Dispatch: Power consumption from loads varies automatically
and continuously to provide service to the grid, without impacting QoS to
the consumer
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Virtual Energy Storage

Demand Dispatch
Responsive Regulation and desired QoS
– A partial list of the needs of the grid operator, and the consumer

High quality Ancillary Service? Does the deviation in power
consumption accurately track the desired deviation target?

Reliable?

Cost effective?

Customer QoS constraints satisfied?
The pool must be clean, fresh fish stays cold, building climate is
subject to strict bounds, farm irrigation is subject to strict constraints,
data centers require sufficient power to perform their tasks.

Virtual energy storage: achieve these goals simultaneously
through distributed control
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Control of Deferrable Loads



Control of Deferrable Loads: Goals and Architecture

Control Goals and Architecture
Prefilter and decision rules designed to respect needs of load and grid

Two components to local controlLocal feedback loop

Local
Control

Load i
ζt Y i

tU i
t Pre�lter Decision

ζt U i
t

Xi
t

Xi
t

Requirements

Minimal communication: Each load monitors its state and a
regulation signal from the grid

Aggregate must be controllable: Randomized policies required for
finite-state loads

Questions

• How to analyze aggregate of similar loads? • Local control design?
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Mean Field Model

Control Architecture
Aggregate of similar deferrable loads

...

Load 1

BA
Reference (MW)

Load 2

Load N

ζ
r 

+

Gc

Power
Consumption (MW) 

Examples: Chillers in HVAC systems, water heaters, residential TCLs, ...
... residential pool pumps
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Mean Field Model

Load Model
Controlled Markovian Dynamics

...

Load 1

BA
Reference (MW)

Load 2

Load N

ζ
r 

+

Gc

Power
Consumption (MW) 

Assumptions:

Discrete time: ith load Xi(t) evolves on finite state space X

Each load is subject to common controlled Markovian dynamics.

Signal ζ = {ζt} is broadcast to all loads

Controlled transition matrix {Pζ : ζ ∈ R}:

P{Xi
t+1 = x′ | Xi

t = x, ζt = ζ} = Pζ(x, x
′)

U : X→ R models the needs of the grid
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Mean Field Model

Aggregate Model

N loads running independently, each under the command ζ.

Empirical Distributions:

µNt (x) =
1

N

N∑
i=1

I{Xi(t) = x}, x ∈ X

yNt =
1

N

N∑
i=1

U(Xi
t) =

∑
x

µNt (x)U(x)

Question: How to design Pζ?
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yNt =
1
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N∑
i=1

U(Xi
t) =
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x

µNt (x)U(x)

Limiting model:

µt+1 = µtPζt , yt :=
∑
x

µt(x)U(x)

via Law of Large Numbers for martingales

Question: How to design Pζ?
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Local Control Design

Local Design
Goal: Construct a family of transition matrices {Pζ : ζ ∈ R}

Design: Consider first the finite-horizon control problem:

pζ(x1, . . . , xT ) =

T−1∏
i=0

Pζ(xi, xi+1) , x0 ∈ X

Explicit solution for finite T :

p∗ζ(x
T
0 ) ∝ exp

(
ζ

T∑
t=0

U(xt)
)
p0(x

T
0 )

As T →∞, we obtain transition matrix Pζ
Explicit construction via eigenvector problem:

Pζ(x, y) =
1

λ

v(y)

v(x)
P̂ζ(x, y) , x, y ∈ X,

where P̂ζv = λv, P̂ζ(x, y) = exp(ζU(x))P0(x, y)

Extension/reinterpretation of [Todorov 2007] + [Kontoyiannis & M 200X]
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µ t+1 = µtP ζt

yt = 〈µt,U〉
Φt+1 = AΦt + Bζt

γt = CΦt
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Linearized Dynamics

Mean Field Model
Linearized Dynamics

Mean-field model: µt+1 = µtPζt , yt = µt(U)

Linear state space model:
Φt+1 = AΦt +Bζt

γt = CΦt

Interpretations: |ζt| is small, and π denotes invariant measure for P0.

• Φt ∈ R|X|, a column vector with
Φt(x) ≈ µt(x)− π(x), x ∈ X

• γt ≈ yt − y0; deviation from nominal steady-state

• A = P T
0 , Ci = U(xi), and input dynamics linearized:

BT =
d

dζ
πPζ

∣∣∣
ζ=0
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Linearized Dynamics

Example: One Million Pools in Florida
How Pools Can Help Regulate The Grid

 1,5KW 400V

Needs of a single pool

. Filtration system circulates and cleans: Average pool pump uses
1.3kW and runs 6-12 hours per day, 7 days per week

. Pool owners are oblivious, until they see frogs and algae

. Pool owners do not trust anyone: Privacy is a big concern

Single pool dynamics:
1 2 T−1 T

. . .

T

On

O�

12T−1

...
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Linearized Dynamics

Pools in Florida Supply G2 – BPA regulation signal∗
Stochastic simulation using N = 105 pools

 

 Reference Output deviation  (MW)
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PI control: ζt = 19et + 1.4eIt , et = rt − yt and eIt =
∑t

k=0 ek

Each pool pump turns on/off with probability depending on
1) its internal state, and 2) the BPA reg signal

∗
transmission.bpa.gov/Business/Operations/Wind/reserves.aspx
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Conclusions and Future Directions

Challenges: intermittence and volatility of renewable generation
In the absence of grid-level efficient storage, increased need for responsive
fossil-fuel generators, negating the environmental benefits of renewables

Approach: creating Virtual Energy Storage through direct control of
flexible loads - helping the grid while respecting user QoS
(MDP on the local level and mean-field analysis of the aggregate)

Current and future research directions

Extending local control design to include disturbance from the nature

Investigating needs for communication and forecast
(minimizing communication and computation costs while providing
reliable service to the grid)

Integrating VES with traditional generation and batteries (resource
allocation optimization problems involving different time scales)
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Conclusions

Thank You!
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