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Département d’Informatique de l’ENS

Joint work with Prabir Barooah, Yue Chen, and Sean Meyn
University of Florida

http://www.di.ens.fr/~busic/
http://ccc.centers.ufl.edu/


Challenges

Challenges of renewable power generation

Impact of wind and solar on net-load at CAISO

Ramp limitations cause price-spikes

Price spike due to high net-load ramping
need when solar production ramped out

Negative prices due to high
mid-day solar production
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Challenges of renewable power generation

Impact of wind and solar on net-load at CAISO

Ramp limitations cause price-spikes

Price spike due to high net-load ramping
need when solar production ramped out

Negative prices due to high
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Challenges

Challenges of renewable power generation

Balancing control loop

wind and solar volatility seen as disturbance

grid level measurements: scalar function of time (ACE) a linear combination
of frequency deviation and the tie-line error (power missmatch between the
sceduled and actual power out of the balancing region)

compensation Gc designed by a balancing authority

In many cases control loops are based on standard PI (proportional-integral)
control design.

Compensation

+

Disturbances

Measurements

GRIDActuation
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Challenges

Challenges of renewable power generation

Increasing needs for ancillary services

0 20 40 60 80 100 120 140 160
t/hour

Re
fe

re
nc

e 
(fr

om
 B

al
an

ci
ng

 A
ut

ho
rit

y) Balancing Authority Ancillary Services Grid

 Voltage
 Frequency
 Phase

Σ

−

In the past, provided by the generators - high costs!



Challenges

Tracking Grid Signal with Residential Loads

Tracking objective:
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Prior work

Deterministic centralized control:
Sanandaji et al. 2014 [HICSS], Biegel et al. 2013 [IEEE TSG]

Randomized control:
Mathieu, Koch, Callaway 2013 [IEEE TPS] (decisions at the BA)
Meyn, Barooah, B., Chen, Ehren 2015 [IEEE TAC]
(local decisions, restricted load models)



Challenges

Tracking Grid Signal with Residential Loads
Example: 20 pools, 20 kW max load

Each pool consumes 1kW when operating
12 hour cleaning cycle each 24 hours

Power Deviation:
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Challenges

Tracking Grid Signal with Residential Loads
Example: 300,000 pools, 300 MW max load

Each pool consumes 1kW when operating
12 hour cleaning cycle each 24 hours
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Demand Dispatch

Control Goals and Architecture
Macro control

High-level control layer: BA or a load aggregator.

The balancing challenges are of many different categories and time-scales:

Automatic Generation Control (AGC); time scales of seconds to 20 minutes.

Balancing reserves. In the Bonneville Power Authority, the balancing reserves
include both AGC and balancing on timescales of many hours. Balancing on
a slower time-scale is achieved through real time markets in some other
regions of the U.S.

Contingencies (e.g., a generator outage)

Peak shaving

Smoothing ramps from solar or wind generation



Demand Dispatch

Control Goals and Architecture
Local Control: decision rules designed to respect needs of load and grid

Demand Dispatch: Power consumption from loads varies automatically to provide
service to the grid, without impacting QoS to the consumer
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Min. communication: each load monitors its state and a regulation signal
from the grid.

Aggregate must be controllable: randomized policies for finite-state loads.



Mean Field Model

Load Model
Controlled Markovian Dynamics

...

Load 1

BA
Reference (MW)

Load 2

Load N

ζ
r 

+

Gc

Power
Consumption (MW) 

Discrete time: ith load Xi(t) evolves on finite state space X

Each load is subject to common controlled Markovian dynamics.

Signal ζ = {ζt} is broadcast to all loads

Controlled transition matrix {Pζ : ζ ∈ R}:

P{Xi
t+1 = x′ | Xi

t = x, ζt = ζ} = Pζ(x, x
′)

Questions

• How to analyze aggregate of similar loads? • Local control design?



Aggregate model



Mean Field Model

How to analyze aggregate?
Mean field model

N loads running independently, each under the command ζ.

Empirical Distributions:

µNt (x) =
1

N

N∑
i=1

I{Xi(t) = x}, x ∈ X

U(x) power consumption in state x,

yNt =
1

N

N∑
i=1

U(Xi
t) =

∑
x

µNt (x)U(x)

Mean-field model:
via Law of Large Numbers for martingales

µt+1 = µtPζt , yt = 〈µt,U〉

ζt = ft(y0, . . . , yt) by design



Local Control Design



Local Control Design

Local Design
Goal: Construct a family of transition matrices {Pζ : ζ ∈ R}

Myopic Design: Pmyopζ (x, x′) := P0(x, x′) exp
(
ζU(x′)− Λζ(x)

)
with Λζ(x) := log

(∑
x′ P0(x, x′) exp

(
ζU(x′)

))
the normalizing constant.

Exponential family design: Pζ(x, x
′) := P0(x, x′) exp

(
hζ(x, x

′)− Λhζ (x)
)

with

hζ(x, x
′) = ζH0(x, x′).

The choice of H0 will typically correspond to the linearization of a more advanced
design around the value ζ = 0 (or some other fixed value of ζ).
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Local Control Design

Local Design
Goal: Construct a family of transition matrices {Pζ : ζ ∈ R}

Individual Perspective Design
Consider a finite-time-horizon optimization problem: For a given terminal time T ,
let p0 denote the pmf on strings of length T ,

p0(x1, . . . , xT ) =

T−1∏
i=0

P0(xi, xi+1) ,

where x0 ∈ X is assumed to be given. The scalar ζ ∈ R is interpreted as a
weighting parameter in the following definition of total welfare. For any pmf p,

WT (p) = ζEp
[ T∑
t=1

U(Xt)
]
−D(p‖p0)

where the expectation is with respect to p, and D denotes relative entropy:

D(p‖p0) :=
∑

x1,...,xT

log
( p(x1, . . . , xT )

p0(x1, . . . , xT )

)
p(x1, . . . , xT )



Local Control Design

Local Design
Goal: Construct a family of transition matrices {Pζ : ζ ∈ R}

It is easy to check that the myopic design is an optimizer for the horizon T = 1,

Pmyopζ (x0, ·) ∈ arg max
p

W1(p).

The infinite-horizon mean welfare is denoted,

η∗ζ = lim
T→∞

1

T
WT (p∗T )

Explicit construction via eigenvector problem:

Pζ(x, y) =
1

λ

v(y)

v(x)
P̂ζ(x, y) , x, y ∈ X,

where P̂ζv = λv, P̂ζ(x, y) = exp(ζU(x))P0(x, y)

Extension/reinterpretation of [Todorov 2007] + [Kontoyiannis & Meyn 200X]



Local Control Design

Example: pool pumps
How Pools Can Help Regulate The Grid

 1,5KW 400V

Needs of a single pool

. Filtration system circulates and cleans: Average pool pump uses 1.3kW and
runs 6-12 hours per day, 7 days per week

. Pool owners are oblivious, until they see frogs and algae

. Pool owners do not trust anyone: Privacy is a big concern

Single pool dynamics: X = {(m, j) : m ∈ {0, 1}, j ∈ {1, 2, . . . , I}}.
1 2

. . .On

O�
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I −1 I
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Local Control Design

Tracking Grid Signal with Residential Loads
Example: 20 pools, 20 kW max load

Each pool consumes 1kW when operating
12 hour cleaning cycle each 24 hours

Power Deviation:
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Local Control Design

Tracking Grid Signal with Residential Loads
Example: 300,000 pools, 300 MW max load

Each pool consumes 1kW when operating
12 hour cleaning cycle each 24 hours

Power Deviation:
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Local Control Design

Range of services provided by pools
Example: 10,000 pools, 10 MW max load

ReferencePower Deviation
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Local Control Design

Local Design
Extending local control design to include exogenous disturbances

State space for a load model: X = Xu × Xn.

Components Xn are not subject to direct control
(e.g. impact of the weather on the climate of a building).

Conditional-independence structure of the local transition matrix

P (x, x′) = R(x, x′u)Q0(x, x′n), x′ = (x′u, x
′
n)

Q0 models uncontroled load dynamics and exogenous disturbances.
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Local Control Design

Local Design
Goal: Construct a family of transition matrices {Pζ : ζ ∈ R}

Nominal model
A Markovian model for an individual load, based on its typical behavior.

Finite state space X = {x1, . . . , xd};
Transition matrix P0, with unique invariant pmf π0.

Common structure for design
The family of transition matrices used for distributed control is of the form:

Pζ(x, x
′) := P0(x, x′) exp

(
hζ(x, x

′)− Λhζ (x)
)

with hζ continuously differentiable in ζ, and the normalizing constant

Λhζ (x) := log
(∑
x′

P0(x, x′) exp
(
hζ(x, x

′)
))

Assumption: for all x ∈ X, x′ = (x′u, x
′
n) ∈ X, hζ(x, x

′) = hζ(x, x
′
u).
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Local Control Design

Local Design
Goal: Construct a family of transition matrices {Pζ : ζ ∈ R}

Construction of the family of functions {hζ : ζ ∈ R}

Step 1: The specification of a function H that takes as input a transition matrix.
H = H(P ) is a real-valued function on X× X.

Step 2: The families {Pζ} and {hζ} are defined by the solution to the ODE:

d
dζhζ = H(Pζ), ζ ∈ R,

in which Pζ is determined by hζ through:

Pζ(x, x
′) := P0(x, x′) exp

(
hζ(x, x

′)− Λhζ (x)
)

The boundary condition: h0 ≡ 0.



Local Control Design

Local Design
Extending local control design to include exogenous disturbances

For any function H◦ : X→ R, one can define

H(x, x′u) =
∑
x′
n

Q0(x, x′n)H◦(x′u, x
′
n) (1)

Then functions {hζ} satisfy

hζ(x, x
′
u) =

∑
x′
n

Q0(x, x′n)h◦ζ(x
′
u, x
′
n),

for some h◦ζ : X→ R. Moreover, these functions solve the d-dimensional ODE,

d
dζh
◦
ζ = H◦(Pζ), ζ ∈ R,

with boundary condition h◦0 ≡ 0.



Local Control Design

Individual Perspective Design

Local welfare function: Wζ(x, P ) = ζU(x)−D(P‖P0),

where D denotes relative entropy: D(P‖P0) =
∑
x′ P (x, x′) log

( P (x,x′)
P0(x,x′)

)
.

Markov Decision Process: lim supT→∞
1
T

∑T
t=1E[Wζ(Xt, P )]

Average reward optimization equation (AROE):

max
P

{
Wζ(x, P ) +

∑
x′

P (x, x′)h∗ζ(x
′)
}

= h∗ζ(x) + η∗ζ

where P (x, x′) = R(x, x′u)Q0(x, x′n), x′ = (x′u, x
′
n)



Local Control Design

Individual Perspective Design

ODE method for IPD design:

Family {Pζ}: Pζ(x, x′) := P0(x, x′) exp
(
hζ(x, x

′)− Λhζ (x)
)

Functions {hζ}: hζ(x, x′u) =
∑
x′
n
Q0(x, x′n)h◦ζ(x

′
u, x
′
n),

for h◦ζ : X→ R solutions of the d-dimensional ODE,

d
dζh
◦
ζ = H◦(Pζ), ζ ∈ R,

with boundary condition h◦0 ≡ 0.

H◦ζ (x) = d
dζh
◦
ζ(x) =

∑
x′ [Zζ(x, x

′)− Zζ(x◦, x′)]U(x′), x ∈ X,

where Z = [I − P + 1⊗ π]−1 =
∑∞
n=0[Pζ − 1⊗ π]n is the fundamental matrix.



Local Control Design

Example: Thermostatically Controlled Loads

refrigerators, water heaters, air-conditioning . . .

TCLs are already equipped with primitive “local intelligence” based on a
deadband (or hysteresis interval)

The state process for a TCL at time t:

X(t) = (Xu(t), Xn(t)) = (m(t),Θ(t)) ,

where m(t) ∈ {0, 1} denotes the power mode (“1” indicating the unit is on),
and Θ(t) the inside temperature of the load

Exogenous disturbances: ambient temperature, and usage



Local Control Design

Example: Thermostatically Controlled Loads

The standard ODE model of a water heater is the first-order linear system,

d

dt
Θ(t) = −λ[Θ(t)−Θa(t)] + γm(t)− α[Θ(t)−Θin(t)]f(t) ,

Θ(t) temperature of the water in the tank
Θin(t) temperature of the cold water entering the tank
f(t) flow rate of hot water from the WH
m(t) power mode of the WH (“on” indicated by m(t) = 1).

Deterministic deadband control: Θ(t) ∈ [Θ−, Θ+]

Nominal model for local control design: based on the specification of two CDFs
for the temperature at which the load turns on or turns off

F�(θ)

Θ− Θ+θ⊕0

1

0

F⊕(θ

θ

)

Θ− Θ+θ�0

1

0

�



Local Control Design

Example: Thermostatically Controlled Loads

Discrete-time control.

At time instance k, if the water heater is on (i.e., m(k) = 1), then it turns off
with probability,

p	(k + 1) =
[F	(Θ(k + 1))− F	(Θ(k))]+

1− F	(Θ(k))

where [x]+ := max(0, x) for x ∈ R;

Similarly, if the load is off, then it turns on with probability

p⊕(k + 1) =
[F⊕(Θ(k))− F⊕(Θ(k + 1))]+

F⊕(Θ(k))

The nominal behavior of the power mode can be expressed

P{m(k) = 1 | θ(k − 1), θ(k),m(k − 1) = 0} = p⊕(k)

P{m(k) = 0 | θ(k − 1), θ(k),m(k − 1) = 1} = p	(k)



Local Control Design

Example: Thermostatically Controlled Loads

Myopic design - exponential tilting of these distributions:

p⊕ζ (k) := P{m(k) = 1 | θ(k − 1), θ(k),m(k − 1) = 0, ζ(k − 1) = ζ}

=
p⊕(k)eζ

p⊕(k)eζ + 1− p⊕(k)

p	ζ (k) = P{m(k) = 0 | θ(k − 1), θ(k),m(k − 1) = 1, ζ(k − 1) = ζ}

=
p	(k)

p	(k) + (1− p	(k))eζ

If p⊕0 (k) > 0, then the probability p⊕ζ (k) is strictly increasing in ζ, approaching 1

as ζ →∞; it approaches 0 as ζ → −∞, if p⊕0 (k) < 1.



Local Control Design

Example: Thermostatically Controlled Loads
System identification

d
dt

Θ(t) = −λ[Θ(t)−Θa(t)] + γm(t)− α[Θ(t)−Θin(t)]f(t) ,

Θ(t) temperature of the water in the tank

Θin(t) temperature of the cold water entering the tank

f(t) flow rate of hot water from the WH

m(t) power mode of the WH (“on” indicated by m(t) = 1).

Temp. Ranges ODE Pars. Loc. Control

Θ+ ∈ [118, 122] F λ ∈ [8, 12.5]× 10−6 Ts = 15 sec

Θ− ∈ [108, 112] F γ ∈ [2.6, 2.8]× 10−2 κ = 4

Θa ∈ [68, 72] F α ∈ [6.5, 6.7]× 10−2 % = 0.8

Θin ∈ [68, 72] F Pon = 4.5 kW θ0 = Θ−

Heterogeneous population: 100 000 WHs simulated by uniform sampling of the
values in the table
Usage data from Oakridge National Laboratory (35WHs over 50 days)



Local Control Design

Tracking performance
and the controlled dynamics for an individual load

100,000 water-heaters
When on, individual load consumes 4, 5 kW
With no usage, approx. 2% duty cycle, avg. power consumption 10MW.
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Local Control Design

Tracking performance
Potential for contingency reserves and ramping
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Local Control Design

Tracking performance
and the controlled dynamics for an individual load

Heterogeneous setting:

40 000 loads per experiment;

20 different load types in each case

Lower plots show the on/off state for a typical load
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Local Control Design

Unmodeled dynamics

Setting: 0.1% sampling, and

1 Heterogeneous population of loads

2 Load i overrides when QoS is out of bounds
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Control Architecture
Frequency Allocation for Demand Dispatch
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Conclusions
Virtual storage from flexible loads

Approach: creating Virtual Energy Storage through direct control of flexible loads
- helping the grid while respecting user QoS

Challenges:

− Stability properties for IPD and myopic design?

− Information Architecture: ζt = f(?)
Different needs for communication, state estimation and forecast.

− Capacity estimation (time varying)

− Network constraints

− Resource optimization & learning
Integrating VES with traditional generation and batteries.

− Economic issues
Contract design, aggregators, markets . . .
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Conclusions

Thank You!



Conclusions and Future Directions

References: this talk
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Mean Field Model
Linearized Dynamics

Mean-field model: µt+1 = µtPζt , yt = 〈µt,U〉

ζt = ft(y0, . . . , yt)

Linear state space model:
Φt+1 = AΦt +Bζt

γt = CΦt

Interpretations: |ζt| is small, and π denotes invariant measure for P0.

• Φt ∈ R|X|, a column vector with
Φt(x) ≈ µt(x)− π(x), x ∈ X

• γt ≈ yt − y0; deviation from nominal steady-state

• A = P T
0 , C = UT, and input dynamics linearized:

BT =
d

dζ
πPζ

∣∣∣
ζ=0
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