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Cellular automata

Cellular automata (CA), introduced in the 50’s by S. Ulam and
J. von Neumann, are dynamical systems in which space and
time are discrete.

o E : asetof cells (ex. Z% or Z\nZ).
e Each cell contains a letter from a finite alphabet A.

e The contents of all the cells evolve synchronously: the con-
tent of each cell evolving as a function of the contents of
the cells 1n its finite neighborhood and according to a local 4
rule.

Example 1. E = Z, A= {0,1}, and F : AEX — AF defined by

(F(x)) = T + )4 mod 2. figuration 1s at the bottom).

Probabilistic cellular automata (PCA)

Motivations:

e Fault-tolerant computational models [8, 3].
e PCA appear in combinatorial problems related to the enumeration of directed animals [3, 1].
e In classification of deterministic CA (Wolfram’s program): robustness to random errors [4].

Assumption: E = Z% or Z/nZ.

Definitions and notations:

o X = A~ equipped with the product topology (generated by cylinders).
A cylinder is a subset of X having the form y = {x € X;Vk € K, x; = y;.} for a given finite
subset K of F and a given sequence (v )rc i € A™. C(K) is the set of all cylinders of base K .

o M(A)and M(X) are resp. the sets of probability measures on .4 and X.

Def. Given a finite neighborhood V' C F, a (local) transition
function of neighborhood V is a function f : AV — M(A).

Def. The probabilistic cellular automaton (PCA) P of transi-
tion function f is the application M(X) — M(X), u — puP 4
defined on cylinders by:

nPlyg)= >

ry(x)€EC(V(K))

wlay o) ] F(@icksv) r),

ke K

where V(K) = UkGKk + V.

Interpretation: A PCA P 1s a Markov chain on the state space 4
AL Tf E is finite, the transition probabilities are given by

P(%,y) — H f((xl)lék—FV)(yk)a L, Y S AE Example 2. A — {O, 1}, V — (
el flx,y) =pdp+(1—p)dy, p €]

Ergodic PCA

Def. m € M(X) is a stationary measure of the PCA P if 7P = .
A PCA has at least one stationary measure.
Example 3. ACP from Example 2 has 0,z et 0,z as stationary measures.

Def. The PCA P 1s ergodic 1if it has exactly one stationary measure 7, and if for any measure y €
M(X), the sequence P converges weakly to 7 (i.e. uP"(C') conv. to w(C') for any cylinder C").

Ergodicity of a PCA 1s undecidable [8].

Sufficient conditions [8, Chap. 3]. There exists a constant 7, depending only on the size n of the
neighborhood, such that

] L)% b n
_gﬂai)gﬁgw]"((wev)() > 1) |

—> P ergodic.

The value of 7, is not known exactly, but satisfies n, < 1 — 1/n.

How to sample the stationary measure of an ergodic ACP?

Perfect ssmulation of PCA

Assumptions: E = Z/nZ and A = {0, 1}.
Let P be an ergodic PCA and 7 its stationary measure on X = AE.

Perfect sampling: a random algorithm which returns a state x € X with probability = (x).

Coupling from the past (Propp and Wilson, 1996) :

o ¢: X x |0, 1]E — X an update function. Example:

~ J 00 <1 < f((4)iek+v)(0)
o, 7)g = { 1 otherwise =

o (rj)jEN a sequence of i.i.d. r.v’s, with each 7/ uniform on [0, 1]¥.

e Compute the sets {o(z,71), z € X}, {0(o(x,r2), 1)),z € X}, {d((é(x,r),r?), 1)),z € X}....
Stop when the computed set 1s a singleton and return its value.

Prop. [7] If the procedure stops a.s., then it returns state x with probability 7(x).

Space-time diagram (the initial con-
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Example. Toy example of a PCA on the alphabet {0, 1} and the set of cells Z/27Z. The state space is
X ={z; =00,29 = 01,25 = 10, 24 = 11}. On this sample, the algorithm returns 5.

Envelope PCA

New alphabet B = {0, 1,7} (unknown letters replaced by “?”’). Can be seen as a subset of the power
set of A :

e ( is the singleton {0},
e 1 is the singleton {1},

o 7is A=1{0,1}.

The envelope PCA of P, is the PCA env(P) of alphabet 5, defined on the set of cells F, with the same
neighborhood V" as for P, and a local function env(f) : BY — M(B), defined for each y € B by

env(f)(y)(0) = min  f(x)(0)

re AV xey

env(f)(y)(1) =  min

f()(1)
reAY, zey
e()()=1= min _ f)©) - mn

f(z)(1).
Construction of an update function for the envelope PCA: ¢ : BY x 0, 1]E — BE

0if 0 < 1y, < env(£)((wi)ier1)(0) 0 v

: . 0 — £
oy, )= 1if 1 —env(f)((¥i)ier+v)(1) <1 <1 ; . |
? Oth@l’WiS@. Milye A, ve(y)icppr S (2)(0) Milge AV, ey f(2)(1)

Data: the pre-computed function ¢, and

a sequence (T@'_])(i,—j)eExN of
i.i.d. uniform in [0, 1].

Properties:

1. For any x € AL and y € BY such that z € y:

begin vr € [0,1)%, ¢(x,7) € ¢y, 7).
c="1"; 2. If the algorithm stops almost surely, then the PCA P
t ~ 5 P 1s ergodic and the output of the algorithm is distributed
while ¢ sz{O’ 1}+ do according to the stationary measure of P.
c="1";

3. The algorithm stops almost surely if and only 1f

for j = —t to —1do env(f)(?V)(7) < 1, ie

e=d(c, (r; ier)

— t=2t min f(x)(0)+ min f(x)(1) > 0.
return c; xeAVf( )(0) xeAVf( )(1)
end
Extensions

e Alphabet A with more than two elements.
e Non-homogeneous finite PCA.

Infinite case

Assumptions: F = 7Z, A = {0, 1}, ergodic PCA P with stationary distribution 7.

A perfect sampling procedure 1s a random algorithm taking as input a finite subset K of £ and return-
ing a cylinder x ;- € C(K) with probability ().

tho r—z Theorem. There exists a critical value 0 < o™ < 1, de-
/ 1 pending only on |V|, such that env(P) is ergodic if
A ER N max env(f)(z)(?) = env(£)(?V)(?) < o
R reBY
3
and non-ergodic if
4

min  env(f)(x)(?) > a*.

Dependence cone of a cell reBY\{0,1}V

Alternative approach: restriction to finite windows & boundary conditions.

Open questions and further directions

e Coupling times PCA vs. envelope PCA?

e Open problem:
For a PCA on E = Z%, d > 1, does the uniqueness of the stationary measure imply ergodicity?
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