
Bounds based on lumpable matrices for partially ordered
state space

Ana Bušić and Jean-Michel Fourneau
PRiSM, Université de Versailles

Saint-Quentin-en-Yvelines
78035 Versailles, France

{abusic, jmf}@prism.uvsq.fr

ABSTRACT
We consider the strong stochastic (“st”) ordering on Markov
chains whose states are naturally endowed with a partial or-
der and we present an algorithmic derivation of lumpable
upper bounding matrix.
The comparison of Markov chains relies on the monotonic-
ity property even if it is only sufficient. When the model
is not monotone, we must build a monotone upper bound.
Quite often the natural partial order of the model makes
the problem monotone with this order. However, if we use
a total order consistent with the partial one the model is
often not monotone anymore for the total order. Further-
more, the monotonicity property for total order adds a lot
of constraints which are irrelevant and make the bound less
accurate.
Here we assume that the model is monotone for the natural
partial order and we must build a matrix which is larger in
the strong stochastic sense and easier to solve. We build
a lumpable bound and we store the lumped version to be
analyzed.
Lumpable upper bounding matrices may also be useful when
they are associated to a total order. We can derive a bound
of the Markov chain with a two phase algorithm: first we
derive a lumpable upper bound from the specifications, we
store the lumped version and we make this lumped matrix
monotone in a second phase.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Markov processes; C.4
[Performance of systems]: modeling techniques; perfor-
mance attributes; reliability, availability, and serviceability

General Terms
Algorithms, Performance, Reliability

Keywords
Markov chains, stochastic comparison, lumpability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SMCtools, October 10, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-506-1 ...$5.00.

1. INTRODUCTION
It is well understood now that Markov chains easily model

complex systems performance but also reliability and avail-
ability problems. The definition and generation of large-
scale Markov models from high level specifications are rela-
tively easy and efficient in both time and memory require-
ments due to numerous approaches and tools. The remain-
ing difficulty is to actually solve the Markov chain and derive
useful rewards to study performance or reliability.
Consider an irreducible finite continuous-time Markov chain
X whose stochastic transition rate matrix is denoted by
A. Then there exists the steady-state distribution of the
Markov chain π which is the unique solution of equation
πA = 0. Performance and reliability measures are related
to the steady-state and transient distributions of this chain.
For instance, the availability measure is defined by separat-
ing the states into two classes, up states and down states.
A state is said to be up if the system is operational for that
state; otherwise it is down. Let U denote the set of up

states. The reliability at time t is defined as the probability
that the system has always been in the up states between 0
and t:

R(t) = P (Xs ∈ U, ∀ s ∈ [0, t[).

The point availability is the probability that the system is
operational at time t:

PAV (t) = P (Xt ∈ U)

and the steady-state availability is the limit, if it exists, of
this probability. It can also be defined as the expectation of a
reward on the steady state distribution of X:

P
i|i is up π(i).

We must compute transient and steady state probability dis-
tributions for matrix A. But for many problems these ma-
trices are so huge that this is not even possible to store them
in sparse form or to find steady-state or transient distribu-
tions. Thus we must use methods which provide a guarantee
or a bound on these performance or reliability measures and
which are not limited by the size of the state space. As we
need to bound both transient and steady state distributions,
the polyhedral approach based on Courtois and Semal’s re-
sults [6], improved by Muntz et al. [15, 10], Carrasco [4] and
Mahevas and Rubino [11], does not apply as it only deals
with steady-state equations.
Fortunately enough, the stochastic comparison of Markov
chains provides bounds for both transient and steady-state
measures. Strong aggregation is also consistent with tran-
sient and steady-state analysis of a chain and the aggregated
chain is smaller and is expected to be easier to analyze. In

[9] a theory for an algorithmic derivation for strong stochas-
tic comparison of Markov chains based on necessary con-
ditions on its transition matrix has been presented. Then
algorithms based on lumpability have been proved [7, 3] and
a tool has been demonstrated [8].
The comparison of Markov chains requires an order on the
state space. Let �S denote the order on the states and �F

the order on the distributions. The order on the states may
be total or only partial. To compare two Markov chains the
fundamental theorem (see [14] and the next section) states
that it is sufficient that one of the two transition matrices
is monotone. Intuitively (see the next section for the defini-
tion), a transition probability matrix P is monotone if and
only if for all distribution vectors u and v, if u �F v then
uP �F vP . Note that we can choose these two orders (�S

and �F) according to the model requirements: the order
on the distributions must be consistent with the rewards we
study, while the order on the states has many implications
on the monotonicity property and on the set of constraints
we must check. Usually, one considers a total ordering on
the states and strong stochastic (also denoted as “st” or
sample-path) ordering on the distributions for the sake of
simplicity. Basically, the set of constraints to derive the
monotonicity property is large for an arbitrary partial order
�S . However, when the ordering on the states is total, this
set can be heavily reduced to finally obtain a linear number
of constraints.
Most of the problems we analyze are endowed with a natural
partial order. Multi-component systems are often modeled
with Queuing Networks, Petri Nets or Stochastic Process Al-
gebra. These formalisms allow to define local behavior and
interconnection or composition of these sub-models. States
in a sub-model often have a natural order: the number of
customers in a queue, the number of tokens in a place of a
Petri net are clearly endowed with the natural order on the
integers. But the composition of these sub-models is only
associated to a partial order. Quite often the natural partial
order of the model makes the problem monotone with this
order. However, if we use a total order consistent with the
partial one the model is not monotone anymore for the to-
tal order. For instance some Queuing network routings are
monotone when we consider partial order but not for the
total order [13]. Forcing the total order monotonicity when
bounding a model that is monotone for the natural partial
order of the considered system adds a lot of irrelevant con-
straints that make the bound less accurate.
Here we assume that the model is monotone for the natural
partial order and we must build a matrix which is larger
in the stochastic sense for this partial ordering of the state
space and which is also easier to solve. As in [7, 3] we build
the bound to be lumpable and we store the lumped version
to be analyzed. However, the approach is quite different of
the former algorithms like LIMSUB [7] and LMSUB [3] as
we do not need to check the monotonicity property. We just
have to build a lumpable matrix which is larger according
to the stochastic ordering on partially ordered states. Note
that the comparison of matrices is also quite different when
the state space is only partially ordered and relies on the
theory of increasing sets developed by Massey [12].
When we consider a totally ordered state space, it may be
also useful to build a lumpable upper bound of a matrix. In-
deed, if the matrix size is quite large it is easier to use a two
phase algorithm rather than LMSUB which requires the ma-

trix as input: first we derive a lumpable upper bound from
the specifications, we store the lumped version and we make
this lumped matrix monotone in a second phase. This two
phase algorithm will not require the initial matrix being gen-
erated and stored. To illustrate this last point we consider
the modeling of highly available multicomponent systems
such as the example studied by Muntz et al. [15] and Car-
rasco [4]. A typical system consists of several disks, CPUs
and controllers. We have two types of failures: soft and hard.
The failures may occur in batches and all the failed items
compete to be repaired. The system is operational (i.e. up)
if there is enough CPUs, disks and controllers. Clearly, if the
number of components is large, the state space is huge and
the up states are relatively rare. Furthermore, if the system
is highly available, the up states concentrate most of the
probability distribution. For instance, the system depicted
in Fig. 1 has more than 9.0 1010 states and 1012 transitions.
Thus it is even not possible to generate and store the state
space and the transition matrix. In [3] we have presented
the global approach. Due to the size of the paper it had
not been possible to present the algorithmic derivation of
lumpable chains. Thus we present here several algorithms
to perform this task. We have considered total order on the
states to analyze the Muntz’s problem and we have also ex-
tended the approach to partial orders.
The paper is organized as follows. Section 2 contains a short
introduction to stochastic ordering on a partially ordered
state space. In Section 3, we present the LL (Lumpable and
Larger) algorithm for a total order to simplify the presen-
tation. Section 4 is devoted to an example showing that
the approach is efficient to handle large problems. Then in
Section 5 we consider state spaces endowed with a partial
order and we derive new algorithms for computing lumpable
bounding matrices.

2. STOCHASTIC ORDERING ON A PAR-
TIALLY ORDERED SPACE

In this section we recall definitions of stochastic compar-
ison on a totally or partially ordered state space and some
fundamental results for the algorithmic bounding approach.
Recall that a binary relation �S on a set S is called a partial
order on S if it is reflexive, transitive, and antisymmetric.
If additionally for all x, y ∈ S either x�Sy or y�Sx holds,
then the relation �S is called a total order on S. A typi-
cal example of a partial order that is not a total order is the
product order on a product space. Let S be N

I or R
I , where

I is a countable set. The product order �S on S is defined
by x, y ∈ S, x �S y if xi ≤ yi, ∀i ∈ I.

Definition 1. Let (S,�S) be a partially ordered space and
let X and Y be two random variables on S. X is smaller
than Y in a strong stochastic sense, X �st Y , if

E[f(X)] ≤ E[f(Y)], for each increasing function f,

provided that the expectations exist.

In the following, we will consider only a finite totally or par-
tially ordered space (S,�S), and we will use interchangeably
X �st Y and x �st y, where x and y denote the probability
distribution vectors of random variables X and Y . When
we consider two different orders �A and �B on the same
state space S, we will denote by �st,A the strong stochastic
comparison on (S,�A) and by �st,B the strong stochastic

comparison on (S,�B) to avoid confusion.
Strong stochastic comparison of random variables on a par-
tially ordered set (S,�S) can be characterized by means of
increasing sets. A subset U ∈ S is called an increasing set
if its indicator function 1U is increasing. It follows that U
is an increasing set if and only if x ∈ U and x �S y imply
y ∈ U . The following characterization is often used as defi-
nition of �st-order on a partially ordered space S [12]. The
proof can be found in [14].

Proposition 1. X �st Y if and only if P (X ∈ U) ≤
P (Y ∈ U), for all increasing sets U ⊂ S.

In the case of a finite totally ordered set (S,�S), |S| = n,
there are exactly n different increasing sets U 6= ∅. For
instance, let S = {1, 2, . . . , 5} with the usual ordering re-
lation 1 �S 2 �S · · · �S 5, then all the increasing sets
∅ 6= U ⊂ S are: {5}, {4, 5}, {3, 4, 5}, {2, 3, 4, 5} and S. The
�st-comparison of two probability vectors can then simply
be characterized as:

Proposition 2. Let X and Y be two random variables

on S = {1, 2, . . . , n} with 1 �S 2 �S . . . �S n, and let x and

y be their probability distribution vectors. Then

X �st Y ⇐⇒
nX

k=j

xk ≤
nX

k=j

yk, j = 1, 2, . . . , n.

Let us now consider an example of a partial order that is
not a total order. Let S = {1, 2, 3, 4, 5} and let the ordering
relation �A be defined as 1 �A i �A 5, ∀i ∈ S. Note that
states 2, 3, 4 are not comparable. There are 9 increasing sets
U 6= ∅: {5}, {2, 5}, {3, 5}, {4, 5}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5},
{2, 3, 4, 5} and S. If we consider the random variables X, Y
and Z with the following distribution vectors:

x = (0.3, 0.3, 0.1, 0.1, 0.2),
y = (0.3, 0.1, 0.2, 0.1, 0.3),
z = (0.1, 0.2, 0.2, 0.1, 0.4),

then we have X �st,A Z and Y �st,A Z, but X and Y

are not comparable in the �st,A-sense since P (X = 5) =
0.2 < P (Y = 5) = 0.3 but P (X ∈ {2, 5}) = 0.5 > P (Y ∈
{2, 5}) = 0.4. However, if we consider the total order �B

on S, 1 �B 2 �B . . . �B 5, then we can notice that
X �st,B Y �st,B Z.
Note that �A⊂�B. We say that the total order �B is con-
sistent with the partial order �A on S. For an arbitrary
ordering relation �A such that the total order �B on S is
consistent with �A, the number of non-trivial constraints to
be satisfied in Proposition 1 is larger. In our simple exam-
ple there are 4 non-trivial constraints for the totally ordered
space (S,�B) and 8 for the partially ordered space (S,�A).
Thus the total order is far more convenient for the algorith-
mic approach. For larger partially ordered spaces we are
faced with the problem of the combinatorial explosion of
the non-trivial constraints to be satisfied. The above exam-
ple shows that we can easily construct partial orderings on
|S| = n with θ(2n) non-trivial comparison constraints.
In the following we consider some properties of homogeneous
Discrete Time Markov Chains (DTMCs) on a finite par-
tially ordered state space (S,�S). Our algorithms apply
on DTMCs. Continuous time Markov chains (such as the
example in Section 4) must be uniformized first. We recall
the definitions of monotonicity property and the comparison

for transition matrices. Those two properties yield sufficient
conditions for stochastic comparison of two DTMCs [14].

Definition 2. A transition matrix P of a homogeneous
DTMC {Xt} is monotone if for all probability vectors x
and y, x �st y implies xP �st yP .

The monotonicity property for a transition matrix of a ho-
mogeneous DTMC simply states that if the distributions at
time t (x and y in the above definition) are ordered, the
relation is preserved at time t+ 1. The monotonicity prop-
erty strongly relies on the order considered. We will see in
Section 5 that a chain that is monotone under a partial or-
der �A on the state space S does not necessarily need to
be monotone under a total order �B on S even when �B is
consistent with �A.
Let us denote Pi,∗ the row i of the transition matrix P . We
have the following characterization of �st-monotonicity (see
[14]).

Proposition 3. Let {Xt} be a homogeneous DTMC on a

partially ordered state space (S,�S). The transition matrix

P of {Xt} is �st-monotone if for all i, j ∈ S,

i �S j =⇒ Pi,∗ �st Pj,∗,

i.e. if
P

k∈U Pi,k ≤
P

k∈U Pj,k for all increasing sets U .

Let P and Q be transition matrices of two homogeneous
DTMCs on the same state space.

Definition 3. For transition matrices P and Q we say that
P �st Q if

Pi,∗ �st Qi,∗ for all i ∈ S,

i.e. if
P

k∈U Pi,k ≤
P

k∈U Qi,k for all increasing sets U .

We give now the classical comparison theorem for two ho-
mogeneous DTMCs. The proof of this theorem can be found
in [14].

Theorem 1. Let (S,�S) be a partially ordered space and

let {Xt}t≥0 and {Yt}t≥0 be two DTMCs and P and Q their

respective transition matrices. If

• X0 �st Y0,

• at least one transition matrix P or Q is �st-monotone,

• P �st Q,

then Xt �st Yt, for all t ≥ 0. If {Xt} and {Yt} have steady-

state distributions πX and πY , then πX �st πY .

3. LUMPABLE AND LARGER (LL) ALGO-
RITHM

Let S = {1, 2, . . . , n} be a totally ordered space with the
usual ordering relation ≤. We suppose an event based de-
scription of a DTMC model. A DTMC X = {Xt} on S is
fully defined by (EX ,AX ,ΦX ,DX), where EX is the list of all
the possible events in the system, and AX = {AX

e | e ∈ E
X},

ΦX = {φX
e | e ∈ E

X} and DX = {dX
e | e ∈ E

X} are defined
as follows:

• AX
e ⊂ S denotes the states in which event e occurs

with a strictly positive probability.

• φX
e : AX

e → (0, 1].
For s ∈ AX

e , φX
e (s) is the strictly positive probability

of event e when the system is in state s.

• dX
e : AX

e → S.
For s ∈ AX

e , dX
e (s) is the new (destination) state of

the chain after the occurrence of event e in the system
that was in state s.

Denote by S = ∪r
i=1Mi, Mi ∩Mj = ∅, i 6= j, a partition of

the state space S into r macro-states.

Hypothesis 1. The states of the same macro-state are suc-
cessive, i.e. for i, j ∈ {1, 2, . . . , r} such that i ≤ j,

∀v ∈Mi, ∀w ∈Mj , v ≤ w.

Let g : S → {1, 2, . . . , r} be the projection function defined
by the partition M1, . . . ,Mr,

g(s) = i⇔ s ∈Mi, ∀s ∈ S.

Then g−1 denotes the generalized inverse of g,

g
−1(i) = {s ∈ S | g(s) = i}, 1 ≤ i ≤ r. (1)

3.1 LL algorithm
Suppose that we can easily obtain the following informa-

tion for each macro-state Mi:

1. The list of all the events that may occur in macro-state
Mi,

EX
i = {e|AX

e ∩Mi 6= ∅}.

2. A function mX
i : EX

i → {1, 2, . . . , r}, where mX
i (e) is

the index of the greatest macro-state Mj that can be
reached from states of macro-state Mi by the occur-
rence of event e ∈ EX

i :

m
X
i (e) = max

s∈AX
e ∩Mi

n
g(dX

e (s))
o
. (2)

3. The maximal values of φX
e within each macro-state i:

φ
X
e,i = max

s∈AX
e ∩Mi

φ
X
e (s). (3)

Then we can easily build a chain Y on S such that Y

is lumpable under the partition M1, . . . ,Mr of the state
space S and that the transition matrix of Y is �st-larger
than the transition matrix of X. We will actually construct
only the chain Z, the aggregated version of Y . Denote by
(EZ ,AZ ,ΦZ ,DZ) the chain description of Z. The construc-
tion of Z is given in Algorithm 1.

Proposition 4. Let X be an arbitrary DTMC and Z the

chain obtained by Algorithm 1. Then there exists a DTMC

Y on S such that:

• Y is lumpable under the partition M1, . . . ,Mr of S,

• Z is the aggregated version of Y ,

• PX �st P
Y , where PX and P Y denote the transition

matrices of DTMCs X and Y .

Algorithm 1: LL

(EZ and AZ
e , ∀e are initialized to ∅)1

for i = 1 to r do2

Sort EX
i decreasingly in mX

i (·)3

Denote by ej the jth event in the sorted list4

p← 0, j ← 15

while p < 1 do6

e← ej7

EZ ← EZ ∪ {e}, AZ
e ← AZ

e ∪ {i}8

dZ
e (i)← mX

i (e)9

if φX
e,i + p < 1 then φZ

e (i)← φX
e,i10

else φZ
e (i)← 1 − p11

p← p+ φZ
e (i), j ← j + 112

end13

end14

Proof. Denote by upp(i) the greatest state of macro-
state Mi. Consider the chain Y given by (EY ,AY ,ΦY ,DY),
where:

8
>><
>>:

EY = EZ

∀e ∈ EY : AY
e = ∪i∈AZ

e
Mi

∀e ∈ EY , s ∈ AY
e ∩Mi :

φY
e (s) = φZ

e (i), dY
e (s) = upp(dZ

e (i)).

(4)

It is obvious that Y is lumpable and that Z is the aggregated
version of Y . It remains us to show that PX �st P

Y , i.e.
(see Definition 3 and Proposition 2)

nX

u=v

P
X
s,u ≤

nX

u=v

P
Y
s,u, ∀s, v ∈ S. (5)

Let us define the subsets CX
s,v ⊂ E

X , CY
s,v ⊂ E

Y , s, v ∈ S

and CZ
i,j ⊂ E

Z , i, j ∈ {1, . . . , r} as follows:

CX
s,v = {e ∈ EX | s ∈ AX

e and dX
e (s) ≥ v},

CY
s,v = {e ∈ EY | s ∈ AY

e and dY
e (s) ≥ v},

CZ
i,j = {e ∈ EZ | i ∈ AZ

e and dZ
e (i) ≥ j}.

Then,

nX

u=v

P
X
s,u =

X

e∈CX
s,v

φ
X
e (s) and

nX

u=v

P
Y
s,u =

X

e∈CY
s,v

φ
Y
e (s),

for all s, v ∈ S. From (4) it follows that
P

e∈CY
s,v

φY
e (s) =

P
e∈CY

s,upp(Mg(v))
φY

e (s)

=
P

e∈CZ
g(s),g(v)

φZ
e (g(s)), s, v ∈ S.

Equation (5) can be therefore written as:
X

e∈CX
s,v

φ
X
e (s) ≤

X

e∈CZ
g(s),g(v)

φ
Z
e (g(s)),∀s, v ∈ S. (6)

The events in Algorithm 1 are considered in decreasing or-
der with the respect to their maximal destination mX

g(s)(·).
Denote by

δ = min
e∈AZ

e

m
X
g(s)(e).

For g(v) ≤ δ,
P

e∈CZ
g(s),g(v)

φZ
e (g(s)) = 1, thus (6) trivially

holds. By construction of chain Z in Algorithm 1 and Hy-
pothesis 1 which implies that g is increasing, if g(v) > δ,

then for each event e ∈ CX
s,v we have mX

g(s)(e) ≥ g(d
X
e (s)) ≥

g(v) > δ, thus e ∈ CZ
g(s),g(v) (see lines 8 and 9 of Algorithm

1) and φZ
e (g(s)) = φX

e,g(s) ≥ φ
X
e (s) (see line 10 of Algorithm

1 and (3)). Therefore (6) holds for all s, v ∈ S. Recall that
(6) is equivalent to (5), thus PX �st P

Y .

3.2 Example
We will illustrate LL-algorithm on a toy example of a re-

pairable multicomponent system (see also Section 4). A typ-
ical repairable multicomponent system consists of different
types of components and a certain number of units per com-
ponent type. Suppose that we have a system that consists
of only 2 component types and K units of each component
type. The state space of our model is then

S = {(x1, x2) | 0 ≤ xi ≤ K, i = 1, 2}

where xi denotes the number of failed components of type i.
We consider a total order �S on S that is consistent with the
usual product order �A on S: x �A y ⇔ x1 ≤ y1 and x2 ≤
y2. The detailed description of �S is irrelevant for this ex-
ample. Only one component of each type is active, if there
is any operational component of that type, and only active
components can fail. Both failures and reparations are ex-
ponentially distributed. There are three types of failures:
failure of active component of type 1 with rate λ1, failure of
active component of type 2 with rate λ2 and the failure of
all active components in the system with rate λ3. The third
type failure may occur if there is at least one operational
component (x1 + x2 < 2K) and induces two new failures in
the case when there is at least one operational component of
each type (x1 < K and x2 < K) or only one new failure oth-
erwise. There is only one repairman with reparation rate µ
and if there are failed components of both types he chooses
to repair a component of type 1 with probability 1

2
. We

suppose that µ > λ1 + λ2 + λ3. Denote the uniformization
constant by ∆. Then ai = λi

∆
, i = 1, 2, 3, and b = µ

∆
denote

failure and reparation probabilities in uniformized chain X:

• EX = {f1, f2, f3, r1, r2, enorm}:

– f1: failure of active component 1,

– f2: failure of active component 2,

– f3: failure of all active components,

– r1: reparation of component 1,

– r2: reparation of component 2,

– enorm: event corresponding to uniformization.

• AX :

– AX
f1

= {x ∈ S | x1 < K},

– AX
f2

= {x ∈ S | x2 < K},

– AX
f3

= AX
f1
∪AX

f2
,

– AX
r1

= {x ∈ S | x1 > 0},

– AX
r2

= {x ∈ S | x2 > 0},

– AX
enorm

= S.

• ΦX and DX :

– φX
f1

(x) = a1, d
X
f1

(x) = (x1 + 1, x2), ∀x ∈ A
X
f1

,

– φX
f2

(x) = a2, d
X
f2

(x) = (x1, x2 + 1), ∀x ∈ AX
f2

,

– φX
f3

(x) = a3, ∀x ∈ A
X
f3
,

dX
f3

(x) =

8
><
>:

(x1 + 1, x2 + 1), x ∈ AX
f1
∩AX

f2

(x1 + 1, x2), x ∈ AX
f1
\AX

f2

(x1, x2 + 1), x ∈ AX
f2
\AX

f1

– φX
r1

(x) =

b
2
, x ∈ AX

r1
∩AX

r2

b, x ∈ AX
r1
−AX

r2

dX
r1

= (x1 − 1, x2), ∀x ∈ A
X
r1

,

– φX
r2

(x) =

b
2
, x ∈ AX

r1
∩AX

r2

b, x ∈ AX
r2
\AX

r1

dX
r2

= (x1, x2 − 1), ∀x ∈ AX
r2

,

– φX
enorm

(x) = 1 − a1 · 1{x∈AX
f1

} − a2 · 1{x∈AX
f2

} −

a3 · 1{x∈AX
f3

} − b · 1{x∈AX
r1

∪AX
r2

},

dX
enorm

= x, ∀x ∈ S.

We will consider the following partition of the state space
into 2K + 1 macro-states:

Mi = {x | x1 + x2 = i}, i ∈ {0, 1, . . . , 2K}.

The chain Z obtained by Algorithm 1 has the same set of
events: EZ = EX . Macro-states M0 and M2K are single-
state macro-state so we need only to sum the probabilities
of all the events going to the same macro-state. Note that
EX
0 = {f1, f2, f3, enorm} and EX

2K = {r1, r2, enorm}. For a
macro-state Mi, 0 < i < 2K we have:

• EX
i = EX

• mX
i (·) and φX

·,i:

– mX
i (f1) = i+ 1, φX

f1,i = a1

– mX
i (f2) = i+ 1, φX

f2,i = a2

– mX
i (f3) =

i+ 2, i ≤ 2K − 2
2K, i = 2K − 1

, φX
f3,i = a3

– mX
i (r1) = mX

i (r2) = i− 1,

φX
r1,i = φX

r2,i =

b, 0 < i ≤ K
b
2
, i > K

– mX
i (enorm) = i,

φX
enorm,i =

8
<
:

1− a1 − a2 − a3 − b, i < K
1−min(a1, a2)− a3 − b,

K ≤ i ≤ 2K − 1
Indeed, in a macro-state Mi, K ≤ i ≤ 2K − 1
there is at least one state x such that x1 = K,
i.e. x 6∈ AX

f1
and thus φX

enorm
(x) = 1 − a2 −

a3 − b. Symmetrically, there is also at least one
state y ∈ Mi such that x2 = K, i.e. x 6∈ AX

f2

with φX
enorm

(x) = 1 − a1 − a3 − b. Therefore,

φX
enorm,i = 1 −min(a1, a2)− a3 − b.

Suppose that µ > 2 max(λ1, λ2). Then Algorithm 1 yields
chain Z:

• EZ = EX

• AZ
f1

= AZ
f2

= AZ
f3

= {i | 0 ≤ i < 2K},

AZ
r1

= {i | 1 ≤ i ≤ 2K}, AZ
r2

= {i | K + 1 ≤ i ≤ 2K}

AZ
enorm

= {i | 0 ≤ i ≤ 2K}

• φZ
f1

(i) = a1, i ∈ A
Z
f1

, φZ
f2

(i) = a2, i ∈ A
Z
f2

φZ
f3

(i) = a3, i ∈ A
Z
f3

φZ
r1

(i) =

8
<
:

b, 1 ≤ i < K
b−max(a1, a2), i = K
b
2
, K + 1 ≤ i ≤ 2K

φZ
r2

(i) = b
2
−max(a1, a2), i ∈ A

Z
r2

φZ
enorm

(i) =

8
>>><
>>>:

1− a1 − a2 − a3, i = 0
1− a1 − a2 − a3 − b, i < K

1−min(a1, a2)− a3 − b,
K ≤ i ≤ 2K − 1

1− b, i = 2K

• dZ
e (i) = mX

i (e), ∀e ∈ EZ

3.3 Improving LL
In the basic version of LL-algorithm each event e ∈ EX

i

is considered separately. This is suitable for models where
all the events have constant probability within each macro-
state. When the probabilities of events depend on state
of the chain this can introduce a significant bounding error.
Here we present how we can improve the tightness of bounds
by merging the events having the same maximal macro-state
destination mi(·). Let us first illustrate this on an example.
Consider for instance the above toy example with the follow-
ing modification: the individual failures (events f1 and f2)
may occur also for non-active components. Denote the uni-

formization constant by e∆ and eai = λi
e∆
, i = 1, 2, 3, eb = µ

e∆
.

We have

eφf1(x) = (K − x1) ea1, eφf2(x) = (K − x2) ea2.

Let us consider a macro-state Mi, 0 < i < K. Then:

eφf1,i = K ea1, eφf2,i = K ea2.

Indeed, there is at least one state x ∈ Mi with no failed
components of type 1 (x1 = 0) and at least one state y ∈Mi

with no failed components of type 2 (x2 = 0). The while
loop in Algorithm 1 gives the following for a macro-state
Mi, 0 < i < K:

• Iteration 1: p = 0 < 1

– e← f3, E
Z ← EZ ∪ {f3}, A

Z
f3
← AZ

f3
∪ {i}

– dZ
f3

(i) = i + 2, φZ
f3

(i) = ea3

– p← ea3

• Iteration 2: p = ea3 < 1

– e← f1, . . .

– dZ
f1

(i) = i + 1, φZ
f1

(i) = K ea1

– p← K ea1 + ea3

• Iteration 3: p = K ea1 + ea3 < 1

– e← f2, , . . .

– dZ
f2

(i) = i + 1, φZ
f2

(i) = K ea2

– p← K ea1 +K ea2 + ea3

• Iteration 4 . . .

Thus, in the basic version of LL (Algorithm 1) in the bound-
ing chain we will have a transition i→ i+1 with probability

eφf1,i + eφf2,i = K ea1 +K ea2.

However, remark that for all states in macro-state Mi we
have only 2K − i non failed components. Both f1 and f2
induce the transition to Mi+1. If we considered events f1
and f2 as one event, say f , we can take:

eφf,i = maxx∈Mi

“
eφf1(x) + eφf2 (x)

”

= Kmax(ea1, ea2) < K ea1 +K ea2.

Formally, suppose that we can easily obtain the following
information for a group of events ∅ 6= G ⊂ EX

i :

φG,i = max
x∈Mi

(
X

e∈G

φ
X
e (x)

)
.

Then we can first merge the events with the same value of
mi(·) into one single event in Algorithm 1. For all i, k ∈
{1, 2, . . . , r} denote by GX

i,k the set of all events e ∈ EX
i

having the maximal macro-state destination equal to k:

GX
i,k = {e ∈ EX

i | mi(e) = k}.

Then for each k such that GX
i,k 6= ∅ we can consider GX

i,k as
one single event gi,k with maximal macro-state destination
k and probability

ψ
X
i,k = φGX

i,k
,i. (7)

The modified LL-algorithm is given in Algorithm 2 and will
be referred in the following as LL-1. Finally, we can im-

Algorithm 2: LL-1

(EZ and AZ
g , ∀g are initialized to ∅)1

for i = 1 to r do2

Compute GX
i,k, ∀k3

L ← {k | GX
i,k 6= ∅}4

p← 05

while p < 1 do6

j ← max{L} , L ← L\{j}7

G ← GX
i,j8

g ← gi,j9

EZ ← EZ ∪ {g}, AZ
g ← AZ

g ∪ {i}10

dZ
g (i)← j11

ψX
i,j ← φX

G,i12

if ψX
i,j + p < 1 then φZ

g (i)← ψX
i,j13

else φZ
g (i)← 1 − p14

p← p+ φZ
g (i)15

end16

end17

prove further the probabilities ψX
i,k. Denote by HX

i,k the
events with mi(·) greater than k:

HX
i,k = ∪j≥kG

X
i,j = {e ∈ EX

i | mi(e) ≥ k}.

Let HX
i,r+1 := ∅. Then we can take

ψ
X
i,k = φHX

i,k
,i − φHX

i,k+1
,i. (8)

The proof follows easily from the fact that �st-comparison
on a totally ordered space consists in comparing the tails
of distributions (see Proposition 2). In order to take this
improvement, called LL-2 algorithm in the following, into
account one can just replace lines 8 and 12 of Algorithm 2
with:

• line 8: H ← HX
i,j

• line 12: ψX
i,j ← φX

H,i − p

Notice however that it is generally more difficult to com-
pute φHX

i,k
,i than φGX

i,k
,i as the event subsets HX

i,k are larger.

Thus, even though LL-2 (see (8)) improves the tightness of
bounds, LL-1 (see (7)) may be sometimes preferred for its
lower complexity.

3.4 Computation of lower bounds
We can easily adapt Algorithms 1 and 2 to compute an

aggregated chain Z of a DTMC Y with a transition matrix
P Y that is lumpable and smaller than the transition matrix
PX of DTMC X. In order to compute lower bounds for
increasing rewards on X using Theorem 1, instead of using
LIMSUB or LMSUB algorithm in the second step, we can
use their equivalents LIMSLB or LMSLB that compute an
�st-monotone lower bounding chain.
Instead of mX

i (e) (see (2)) we need to know lXi (e), the min-
imal macro-state destinations of events e ∈ EX

i :

l
X
i (e) = min

s∈AX
e ∩Mi

n
g(dX

e (s))
o
.

Algorithm 3 computes the aggregated chain Z of a DTMC
Y such that P Y is lumpable and smaller than PX .

Algorithm 3: LS

(EZ and AZ
e , ∀e are initialized to ∅)1

for i = 1 to r do2

Sort EX
i increasingly in lXi (·)3

Denote by ej the jth event in the sorted list4

p← 0, j ← 15

while p < 1 do6

e← ej7

EZ ← EZ ∪ {e}, AZ
e ← AZ

e ∪ {i}8

dZ
e (i)← lXi (e)9

if φX
e,i + p < 1 then φZ

e (i)← φX
e,i10

else φZ
e (i)← 1− p11

p← p+ φZ
e (i), j ← j + 112

end13

end14

Proposition 5. Let X be an arbitrary DTMC and Z the

chain obtained by Algorithm 3. Then there exists a DTMC

Y on S such that:

• Y is lumpable under the partition M1, . . . ,Mr of S,

• Z is the aggregated version of Y ,

• P Y �st P
X, where PX and P Y denote the transition

matrices of DTMCs X and Y .

Proof. Denote by low(i) the smallest state of macro-
state Mi. The proof is similar to the proof of proposition 4
for the chain Y given by (EY ,AY ,ΦY ,DY), where:

8
>><
>>:

EY = EZ

∀e ∈ EY : AY
e = ∪i∈AZ

e
Mi

∀e ∈ EY , s ∈ AY
e ∩Mi :

φY
e (s) = φZ

e (i), dY
e (s) = low(dZ

e (i)).

(9)

Algorithm 2 can be adapted for lower bounds by defining
the subsets GX

i,k ⊂ E
X
i as:

GX
i,k = {e ∈ EX

i | li(e) = k}

and taking min in line 7 of Algorithm 2:

j ← min{L}.

Finally, for LL-2 algorithm the subsets HX
i,k should be

defined as:

HX
i,k = ∪j≤kG

X
i,j = {e ∈ EX

i | li(e) ≤ k}.

Let HX
i,0 := ∅. Then (8) should be modified for lower bounds

to the following:

ψ
X
i,k = φHX

i,k
,i − φHX

i,k−1
,i.

4. THE AVAILABILITY OF REPAIRABLE
MULTICOMPONENT SYSTEMS

Muntz et al. [15] (see also [4]) considered the following
multicomponent system that consists of several disks, CPUs
and controllers (Figure 1). There are two failure modes (soft
and hard) which occur with equal probability. The failures
of components are exponentially distributed with distinct
rates for all the components. The system is operational if at
least one of processors PA or PB is operational, at least one
controller of each type and at least three out of four disks of
each of the six clusters are operational. Only one processor
of each type is active and only the active processors can fail.
A failure of active processor PA may provoke a failure of the
active processor PB with a fixed probability. There is only
one repairman who chooses the component to be repaired at
random from the set of failed components. The repair times
follow exponential distributions. The repair rates depend
on the type of components, the type of error (soft or hard)
and the availability of the system (up or down). When the
system is down, the rates are 10 times larger as the conse-
quence of the additional precautions to be taken when the
system is operational. We model the system with a contin-
uous time Markov chain and we begin by a uniformization
process to design a discrete time chain which can be aggre-
gated by algorithm LL. We used LL-2 version of Algorithm
2 (see (8)).

PA PB

C1 C2

D1 D2 D3 D4 D5 D6

Figure 1: A typical system of duplicated compo-
nents (Muntz et al.)

Let us now design the macro states we build from the ini-
tial states of the chain. A state is described by the number
of failed components with hard failures and the number of
failed components with soft failures. The model has only
36 components of 10 different types yet the size of the state
space is roughly 9.0 1010. Most of the states are down

states. Thus we do not aggregate the up states. We ag-
gregate the down states which have the same total number

of faults and then order the macro-states such that the up

states are smaller than the down states. Let us now show
the effects of the algorithm on this partition of the states
into macro-states. We have three events: single failures,
double failures (because a failure of processor PA may pro-
voke a failure of processor PB) and repair. For this example
LL algorithm changes the transitions as follows:

• The transition probabilities between simple states do
not change.

• The transition from a simple state x to an aggregated
state C is the sum of the transition probabilities from
x to y, for all y in C.

• For an aggregated state C:

– If in a macro state C there is a state x such that
a double failure can occur in x, then it must now
occur with the same probability for all the states
in the macro-state. As the probability of a double
failure is smaller than the probability of a single
failure (this is a modeling assumption), the algo-
rithm adds this transition from C to C + 2 and
do not delete the transition from C to C + 1 but
changes its probability.

– For a macro-state C with total number of fail-
ures smaller than the total number of components
(36), there is a transition from C to C + 1 for all
the states in C. The algorithm keeps this transi-
tion but it changes its probability such that the
sum of transition probabilities to the macro-states
C + 1 and C + 2 is equal to the maximal sum of
those transitions in the original chain for all the
states in C.

– The sum of all the transitions corresponding to
repairs is constant for all the states of an aggre-
gated macro-state C, as the repair rate is fixed for
the repairman and not for individual components.
We distinguish two cases:

1. There is at least one state x in C such that
there are no transitions from x to an up state.
The algorithm deletes all the transitions from
C to the up states and the only transition
corresponding to repairs is from C to C − 1.

2. For all states in C there is at least one tran-
sition to up states. Algorithm modifies the
destination of these transitions to the great-
est up state in the total order considered on
the state space.

This partition gives a new model with 1 312 235 macro-states
(1 312 200 up and 35 down macro-states) and 25 754 089
transitions. In [3] we have built this matrix and we have
then applied a sparse matrix LMSUB algorithm to make it
monotone and to reduce further the state space. Generation
of lumped matrix by LL algorithm takes 182 seconds on an
ordinary PC (CPU 3.20GHz, 1GB RAM), while the sec-
ond step takes 152 seconds (reordering of states 95.5s and
LMSUB algorithm 56.5s). Note that it was impossible to
directly apply LMSUB algorithm because of the size of the
original matrix (again roughly 9.0 1010).
We want to emphasize that this method allows computation

of bounds for both steady-state and transient increasing re-
wards such as steady-state availability, point availability and
reliability. The numerical results for these rewards can be
found in [3].
Deriving a lumped matrix is easier because we do not work
on the state space. The algorithm is based on the set of
events and the macro-state definition. It is required that
the macro states will not be generated during this algorithm
to avoid the state space generation. But the events and the
transitions (source, destination and rates) must be described
in such a way that the operations required are simple to im-
plement. Typically we must:

• Preprocessing: Describe the macro-states

• For each event:

– Describe the set of initial states

– Describe the effect of the event

– Describe the probability of the event

• Main Operation: For each event e and Macro State
C1:

– Find the macro state C2 with the largest number
which is reached by event e for a state in C1.

– Find the maximal probability of event e in C1.

The main operation has typically a complexity which is the
product of the number of events by the number of macro-
states which can be reached by an event. Thus the complex-
ity depends on the events but also on the macro-state defini-
tion. At the time being the algorithms have been written for
specific problems where these events and macro-states are
hard coded into the model. Deriving a general algorithm
will require a formal definition of events and macro-states.

5. PARTIAL ORDERING AND COMPARI-
SON OF STOCHASTIC MATRICES

Quite often, one can observe that when we use a natural
partial ordering, the Markov chain of the model is monotone
(see for instance [13] for routing in queuing network and [2]
for a model of optical switch). Unfortunately, it is rarely
possible to find some total order on the state space under
which the model remains monotone.

5.1 Bounding monotone DTMCs on a partially
ordered state space using total ordering

Suppose that we want to analyze a DTMC X that is
�st,A-monotone under some partial order �A on the state
space S. Additionally suppose that S is too big for the exact
analysis. The usual approach [9, 8, 3] consists in consider-
ing a total order �B on S. By forcing a total order �B

on the state space one introduces some unnecessary per-
turbation. Indeed, as the initial chain is no longer �st,B-
monotone under the total order �B, we need to force the
�st,B-monotonicity of the bounding chain. The monotonic-
ity constraints under a total order are rather strong and can
result by quite loose bounds as �B is not a natural order on
the state space for the considered system. We will illustrate
this on a small example.

Example 1. Let us consider the Markov chain with the
state space S = {1, 2, 3, 4, 5} and transition matrix P :

P =

2
6664

0.3 0.2 0.4 0.1 0
0.1 0.3 0.1 0.4 0.1
0.5 0.3 0.1 0.1 0
0.1 0.4 0 0.2 0.3
0.1 0.3 0 0.1 0.5

3
7775 .

Assume that we have a partial order on the state space de-
fined by 1 �A 2 �A 5 and 3 �A 4 �A 5, then according to
Proposition 3 the chain is �st,A-monotone.
If, like with the methods presented in [9], we do not know
how to take into account a partial order, we must first build
a total order on the state space consistent with the par-
tial order �A. In this case, one can consider for instance :
1 �B 2 �B 3 �B 4 �B 5. Now the chain is not monotone
for this order and the best monotone upper bounding matrix
computed by Vincent’s algorithm [1] (see also [9]) is:

Q =

2
6664

0.3 0.2 0.4 0.1 0
0.1 0.3 0.1 0.4 0.1
0.1 0.3 0.1 0.4 0.1
0.1 0.3 0.1 0.2 0.3
0.1 0.3 0 0.1 0.5

3
7775 .

Let us now compute the two steady-state distributions:

πP = (0.182, 0.303, 0.115, 0.212, 0.188),
πQ = (0.125, 0.287, 0.115, 0.245, 0.228).

Clearly, using a total order when the problem is based on a
partial order makes the result less accurate.

5.2 LL algorithm for an “st”-monotone chain
on a partially ordered state space

We propose here another method that exploits fully the
monotonicity of the system under the natural partial or-
der on the state space S. Indeed, one can notice that LL-
algorithm presented in Section 3 does not rely on the fact
that the state space (S,�S) is totally ordered. We will show
here how we can relax this hypothesis. However, in the case
of partially ordered space some additional care should be
exercised when choosing the partition of the state space.
Let (S,�S) be a partially ordered state space that admits
an upper bound for any two states in S:

Hypothesis 2. For all x, y ∈ S, there exists z ∈ S such
that x �S z and y �S z.

Then, by induction, there exists an upper bound for an arbi-
trary subset M ⊂ S. Let S = M1, . . . ,Mr, Mi ∩Mj = ∅ be
an arbitrary partition of the state space. Denote by uppi ∈ S
the upper bound of macro-state Mi:

s �S uppi, ∀s ∈Mi.

Note that uppi does not necessarily need to be in Mi. How-
ever, it is usually better to take a partition of S such that
uppi ∈Mi.
Suppose that a DTMC X is monotone on (S,�S). Then we
can use a very simple version (Algorithm 4) of LL-algorithm
in order to build a chain Z, the aggregated version of a
lumpable chain Y such that PX �st P

Y . Note that, if we
know the transition matrix PX of chain X, then PZ can be
easily obtained as follows:

P
Z
i,j =

X

s∈g−1(Mj)

P
X
uppi,s, ∀i, j ∈ {1, 2, . . . , r}. (10)

Recall that g−1 denotes the generalized inverse of projection
function g (see (1)).

Algorithm 4: LL algorithm for an �st-monotone chain
on a partially ordered state space

(EZ and AZ
e , ∀e are initialized to ∅)1

for i = 1 to r do2

for each e such that uppi ∈ A
X
e do3

EZ ← EZ ∪ {e}, AZ
e ← AZ

e ∪ {i}4

dZ
e (i)← g(dX

e (uppi))5

φZ
e (i)← φX

e (uppi)6

end7

end8

Proposition 6. Let (S,�S) be a partially ordered space

satisfying Hypothesis 2. Let X be an �st-monotone DTMC

and Z the chain obtained by Algorithm 4. Then there exists

a DTMC Y on S such that:

• Y is lumpable under the partition M1, . . . ,Mr of S,

• Z is the aggregated version of Y ,

• PX �st P
Y , where PX and P Y denote the transition

matrices of DTMCs X and Y .

Proof. Let the chain Y given by (EY ,AY ,ΦY ,DY) be
defined as follows:

8
>><
>>:

EY = EZ

∀e ∈ EY : AY
e = ∪i∈AZ

e
Mi

∀e ∈ EY , s ∈ AY
e ∩Mi :

φY
e (s) = φZ

e (i), dY
e (s) = dX

e (uppi).

(11)

Note that g(dY
e (s)) = g(dX

e (uppi)) = dZ
e (i). Y is obviously

lumpable and Z is the aggregated version of Y .
Since X is �st-monotone on (S,�S), it follows that

P
X
x,∗ �st P

X
uppi,∗, ∀x ∈Mi. (12)

On the other hand, from Algorithm 4 and (11) it follows
that

P
X
uppi,∗ =st P

Y
x,∗, ∀x ∈Mi. (13)

Thus PX �st P
Y follows now from (12) and (13).

The lower bounds can be computed using the same method.
Let (S,�S) be a partially ordered space that admits a lower
bound for any two states in S:

Hypothesis 3. For all x, y ∈ S, there exists z ∈ S such
that z �S x and z �S y.

Then for a partition M1, . . . ,Mr of S denote by lowi ∈ S

the lower bound of macro-state Mi:

lowi �S s, ∀s ∈Mi.

As in the case of an upper bound, the states lowi do not
necessarily need to be in Mi it is better to take a partition
of S for which this is the case. Let X be an �st-monotone
DTMC on (S,�S). If we know the transition matrix PX

of chain X, then PZ , the aggregated version of a lumpable
chain Y such that P Y �st P

X can be easily obtained as:

P
Z
i,j =

X

s∈g−1(Mj)

P
X
lowi,s, ∀i, j ∈ {1, 2, . . . , r}.

The algorithm that computes chain Z can be obtained from
Algorithm 4 by simply replacing uppi by lowi in lines 3, 5
and 6.
These algorithms are typically useful when we model a sys-
tem whose rates are modulated by a Markov chain. Con-
sider again the toy problem: if the failure rates and the
repair rates are modulated by an external Markov chain, we
must add a new component into the description of the state
space. Using a partial order allows to only compare the
states where the modulating phase has the same value (see
[5] for an example of such an application of partial ordering).

6. CONCLUSION
The algorithms we proposed allow to study huge Markov

chains without explicitly generating the state space. We
must describe the states and the events. The description
of states is straightforward but the events must be carefully
defined as the main operation of the algorithm consists of
finding some maximal transition in the macro-state. Clearly,
this operation takes also into account the way we have de-
fined the macro-states we want to consider.
At the time being we have only hard coded some problems
to design the lumped chain for some well known hard ex-
amples like the availability problem studied by Muntz. To
develop a complete algorithm one must first define a com-
plete formalism where we can work on the states, on the
events and on the set of events (i.e. macro states). This
formalism will certainly be useful for other application as
well. Stochastic Model Checking is a promising application
for such a formalism.
Finally we want to stress again the importance of the mono-
tonicity property for performance evaluation of systems for
discrete-time or continuous-time models. The approach com-
bining partial order and monotonicity is even still more gen-
eral and many applications in numerical analysis or perfect
simulation of Markov chains are still to be derived.

7. ACKNOWLEDGMENT
This research is supported by projects SurePaths and SMS

from ACI Sécurité Informatique and by European Network
of Excellence EuroNGI.

8. REFERENCES
[1] O. Abu-Amsha and J.-M. Vincent. An algorithm to

bound functionals of Markov chains with large state
space. In 4th INFORMS Conference on

Telecommunications, Boca Raton, FL, 1998.

[2] A. Busic, M. Ben Mamoun, and J.-M. Fourneau.
Modeling fiber delay loops in an all optical switch. In
QEST 2006, Riverside, CA, USA. IEEE Computer
Society, 2006.

[3] A. Busic and J.-M. Fourneau. Bounds for point and
steady-state availability: An algorithmic approach
based on lumpability and stochastic ordering. In
EPEW 2005, volume 3670 of LNCS, pages 94–108.
Springer, 2005.

[4] J. A. Carrasco. Bounding steady-state availability
models with group repair and phase type repair
distributions. Performance Evaluation, 35:193–204,
1999.

[5] H. Castel-Taleb, J.-M. Fourneau, and N. Pekergin.
Stochastic bounds on partial ordering: Application to
memory overflows due to bursty arrivals. In ISCIS

2005, volume 3733 of LNCS, pages 244–253. Springer,
2005.

[6] P.-J. Courtois and P. Semal. Bounds for the positive
eigenvectors of nonnegative matrices and for their
approximations by decomposition. Journal of the

ACM, 31(4):804–825, 1984.

[7] J.-M. Fourneau, M. L. Coz, and F. Quessette.
Algorithms for an irreducible and lumpable strong
stochastic bound. Linear Algebra and its Applications,
386:167–185, 2004.

[8] J.-M. Fourneau, M. Le Coz, N. Pekergin, and
F. Quessette. An open tool to compute stochastic
bounds on steady-state distributions and rewards. In
MASCOTS 2003, Orlando, FL, USA, page 219, 2003.

[9] J.-M. Fourneau and N. Pekergin. An algorithmic
approach to stochastic bounds. In Performance 2002,

Tutorial Lectures, volume 2459 of LNCS, pages 64–88.
Springer, 2002.

[10] J. C. S. Lui and R. R. Muntz. Computing bounds on
steady state availability of repairable computer
systems. Journal of the ACM, 41(4):676–707, 1994.

[11] S. Mahevas and G. Rubino. Bound computation of
dependability and performance measures. IEEE

Trans. Comput., 50(5):399–413, 2001.

[12] W. A. Massey. Stochastic orderings for Markov
processes on partially ordered spaces. Math. Oper.

Res., 12(2):350–367, 1987.

[13] D. Mattson. On perfect simulation of Markovian

Queueing Networks with Blocking. PhD thesis,
Chalmers, Goteborg University, 2002.

[14] A. Muller and D. Stoyan. Comparison Methods for

Stochastic Models and Risks. Wiley, New York, NY,
2002.

[15] R. Muntz, E. de Souza e Silva, and A. Goyal.
Bounding availability of repairable computer systems.
IEEE Trans. on Computers, 38(12):1714–1723, 1989.

