
Stochastic Bounds for Partially Generated
Markov Chains: An Algebraic Approach

Ana Bušić1 and Jean-Michel Fourneau1,2

1 INRIA Grenoble - Rhône-Alpes
51, Av. J. Kuntzmann, 38330 Montbonnot, France

2 PRiSM, Université de Versailles-St-Quentin
45, Av. des Etats-Unis, 78035 Versailles, France

Abstract. We propose several algorithms to obtain bounds based on
Censored Markov Chains to analyze partially generated discrete time
Markov chains. The main idea is to avoid the generation of a huge (or
even infinite) state space and to truncate the state space during the
visit. The approach is purely algebraic and provides element-wise and
stochastic bounds for the CMC.

1 Introduction

Even if it is simple to model systems with Markov chains, the analysis of such
chains is still a hard problem when they do not exhibit some regularity or symme-
try which allow analytical techniques or lumping. Furthermore, some transitions
rates may be unknown. An alternative approach is to compute bounds on the
rewards we need to check against requirements. We first bound the steady-state
or transient distributions at time t. We define the elementary reward for all
states and compute the expected reward by a simple summation of the product
of the elementary rewards by the state probabilities. The main difficulty is to
obtain a bound of the steady state or transient distributions. The key idea is
to derive a smaller chain which provides a bound. Several algorithms have been
proposed to obtain some stochastic bounds on Discrete Time Markov Chains
(DTMC). Most of these algorithms have used the lumpability approach to re-
duce the size of the chain [1, 6, 7, 16]. Stochastic comparison of DTMC can also
be applied when some transition probabilities are unknown [2, 10]. Recently a
new approach based on Censored Markov Chain (CMC) have been proposed [4,
8] to deal with large or infinite DTMC. Here we present new algorithms based
on CMC when only some parts of the matrix are known. Indeed, when the state
space is very large or infinite, we have to truncate the chain during the gener-
ation and only some parts of the matrix are computed [5]. CMCs provide an
efficient way to describe such a truncated generation.

Consider a DTMC {Xt : t = 0, 1, . . .} with a finite state space S. Suppose
that S = A∪Ac, A∩Ac = ∅. Suppose that the successive visits of Xt to A take
place at time epochs 0 ≤ t0 < t1 < . . . Then the chain {XA

u = Xtu , u = 0, 1, . . .}
is called the censored chain with censoring set A [17]. Let Q denote the transition

probability matrix of chain Xt. Consider the partition of the state space to obtain
a block description of Q:

Q =
[
QAA QA∗
Q∗A Q∗∗

]
A
Ac

The censored chain only observes the states in A. Assume that the chain is
ergodic (it may be finite or infinite). It can be proved [17] that the stochastic
matrix of the censored chain is:

SAA = QAA +QA∗(I −Q∗∗)−1Q∗A = QAA +QA∗

(∞∑
i=0

(Q∗∗)i
)
Q∗A. (1)

The second term of the right-hand side represents the probabilities of paths that
return to set A through states in Ac.

Censored Markov chains have also been called restricted or watched Markov
chains. They are also strongly related to the theory of stochastic complement
[11]. Note that it is not necessary for censored Markov chains to be ergodic and
we can study for instance the absorption time [8]. However, we assume in this
paper that the chains are ergodic and that the CMC is finite.

In many problems, initial chain Q can be large or even infinite or some
transition rates may be unknown. Therefore, it is difficult or even impossible
to compute (I −Q∗∗)−1 to finally get SAA. Deriving bounds of SAA from QAA
and from some information on the other blocks is thus an interesting alternative
approach. Note that we may have various interesting cases:

– Partial Generation: Q∗∗ and Q∗A are difficult to build or contain unknown
rates while QAA is easy to compute from the specifications.

– Complete Generation: all the blocks are easy to compute but (I − Q∗∗) is
difficult to invert because of its size.

Our major concern is the difficulty to obtain a complete description of the
block Q∗A from a high-level specification framework such as a Stochastic Process
Algebra model or a set of stochastic equations. They provide a continuous time
Markov chain which can be uniformized to obtain a DTMC. All these formalisms
are very efficient in describing forward transitions (i.e. transitions from state x to
any state of the chain). Thus we can easily obtain the rows of matrix QAA. The
first problem is to find the reachable state space to define Ac (the set of reachable
states which are not censored). Remember that the reachability problem is a time
consuming question in many high-level specification languages. Let us now turn
to the block Q∗A. We have typically four problems :

– Reachability. Even with a tensor based approach it is hard to find the reach-
able state space. For a Stochastic Automata Network (SAN) we define a
product space which contains the reachable state space [14]. It is simple to
find the column of the matrix associated to a SAN or to any tensor based
model with an algorithm developed by Sbeity in [9], but we build the column

of the matrix for the product state space which is a superset of the reachable
state space. We must remove the rows associated to non reachable states to
obtain block Q∗A which is difficult because of the reachability problem.

– Inversion of a stochastic equation. For some high-level specification lan-
guages, transitions out of x are described by a stochastic recurrence equation
Xn+1 = f(Xn, U), where U is a random variable. This is typically the case
when one describes queues. But the transitions entering state x are described
by function f−1. This problem is very similar to the computation of the in-
verse function of a distribution. For some functions f , it is well known in
simulation that the complexity of the computation of the inverse of function
f is highly dependent on the state where we invert the function.

– Infinite State Space. When the chain is infinite, Q∗A has an infinite number
of rows and it is not possible to generate all of them.

– Unknown rates. Assume that some rates of a transition from y to x in A are
unknown. Assume that y is not a censored state. Then the transition from
y to x is in column x of Q∗A. Here we consider that if a rate is missing in a
column, the complete column of the block is unknown.

In [15], Truffet has proposed a two-level algorithm for Nearly Completely
Decomposable (NCD) chains by using aggregation and stochastic ordering to
compute bounding distributions. In [13], Truffet’s approach has been combined
with state reordering to improve the accuracy of a component-wise probability
bounding algorithm. In these works, before employing the aggregation of blocks,
the slack probabilities βi = 1−

∑
j∈AQ[i, j], i ∈ A (which are small due to the

NCD structure) are included in the last column for the upper bound and in the
first column for the lower bound. Clearly Truffet’s approach is optimal when only
the block QAA has been computed. Indeed the bound is tight in that case. For
general Markov chains (i.e. not NCD), Dayar, Pekergin, and Younes proposed
recently an algebraic approach to dispatch slack probabilities when blocks QAA
and Q∗A are known [4]. In this paper, we will refer to their algorithm as DPY.
DPY exhibits a desirable feature: under some algebraic conditions it provides
the exact result (see [4] for a proof and some examples):

Property 1. If block Q∗A has rank 1, then the bound given by DPY is exact.

However, DPY needs both QAA and Q∗A to be known. Bounds of SAA have
also been derived in [8] in a completely different way by applying graph al-
gorithms. This approach requires that QAA is computed and some parts (not
necessary all elements) of Q∗A, Q∗∗ and QA∗ are known. Here we propose a new
approach and several algorithms which require less information on the blocks.

The paper is organized as follows. In Sect. 2 we present a brief introduction
to stochastic bounds and CMC. Sect. 3 is devoted to the main concept and
the first algorithm we obtained when Q∗A is known and satisfies some algebraic
constraints. We also show that this first algorithm also gives exact result when
Q∗A has rank 1. In Sect. 4, we present new algorithms when some columns of
Q∗A are unknown, based on various assumptions on Q∗A. Due to the number of
algorithms proposed, we do not have enough space to present a large example.
Instead we show on small matrices how the algorithms perform.

2 Some Fundamental Results on Stochastic Bounds

We give first the definition of strong stochastic ordering of random variables
on a finite state space {1, . . . , n}. Let X and Y be two random variables with
probability vectors p and q (pk = P (X = k), qk = P (Y = k), ∀k). Throughout
the paper, all the vectors are column vectors, vt denotes a transposed vector,
and �el element-wise comparison of two vectors (or matrices).

Definition 1. X �st Y if
∑n
k=j pk ≤

∑n
k=j qk, ∀j.

Let {Xt}t≥0 and {Yt}t≥0 be two DTMC with transition probability matrices
P and Q. Then we say that {Xt}t≥0 �st {Yt}t≥0 if Xt �st Yt for all t ≥ 0.
Sufficient conditions for comparison of two DTMC are given by the following
classical theorem [12]:

Theorem 1. {Xt}t≥0 �st {Yt}t≥0 if X0 �st Y0 and there exists a transition
probability matrix R such that:

– P �st R �st Q, i.e. P [i, ∗] �st R[i, ∗] �st Q[i, ∗], ∀i (comparison),
– R[i− 1, ∗] �st R[i, ∗], ∀i > 1 (monotonicity).

Furthermore, if both chains are ergodic, then πP �st πQ (where πP and πQ are
the steady-state distributions).

The above conditions can be easily checked algorithmically. Furthermore, it
is also possible to construct a monotone upper bound for an arbitrary stochastic
matrix P [3]. We define operators r and v as in [3]:

– r(P)[i, j] =
∑n
k=j P [i, k], ∀i, j,

– v(P)[i, j] =
{
r(P)[1, j], if i = 1
max {v(P)[i− 1, j], r(P)[i, j]} , if i > 1 , ∀j.

Remark 1. It it worthy to remark that P �st Q is equivalent to r(P) �el r(Q).

Proposition 1. (Vincent’s algorithm [3]) Let P be any stochastic matrix and
Q = r−1v(P), where r−1 denotes the inverse of r. Then Q is �st-monotone et
P �st Q, therefore (by Theorem 1) Q is a transition probability matrix of an
upper bounding DTMC. Furthermore, if P1 �st P2, then r−1v(P1) �st r−1v(P2).

2.1 CMC and Stochastic Bounds

Let us now consider CMC and it’s transition probability matrix given by (1):

SAA = QAA +QA∗(I −QA)−1Q∗A︸ ︷︷ ︸
Z

Z is a sub-stochastic matrix which shows how the missing transition probability
must be added to QAA to obtain SAA. Truffet proposed in [15] an algorithm for
the case when we know only the block QAA. An upper bound for SAA can be
obtained by adding first the slack of probability mass to the last column, and
then applying operator r−1v to compute a monotone bound. More formally, let
θ be the operator which transforms a sub-stochastic matrix M into a stochastic
matrix by adding in the last column of M all the probability missing in M :

θ(M)[i, j] =
{
M [i, j], if j < n
M [i, j] + βi, if j = n

, ∀i,

where βi = 1−
∑n
j=1M [i, j], ∀i. Of course, if M is stochastic, then θ(M) = M .

The upper bound for SAA proposed in [15] is given by r−1v(θ(QAA)).

Remark 2. Similarly, a monotone lower bound for SAA is given by r−1w(φ(QAA)),
where operator φ adds the slack of probability mass to the first column and

w(P)[i, j] =
{
r(P)[n, j], if i = n
min {w(P)[i+ 1, j], r(P)[i, j]} , if i < n

, ∀j.

Notice that operator r−1w corresponds to the maximal st-monotone lower bound.

Suppose now that we have some partial information on Z, given by positive
matrices L and U such that L �el Z �el U. Furthermore, we know that Ze = β,
where e denotes a vector with all components equal to 1.

In the following we describe how we can use matrices L and U to construct an
upper and a lower stochastic bound for SAA that is more accurate than Truffet’s
bound (that uses only the information contained inQAA). Once we have obtained
bounds on SAA, we apply Vincent’s algorithm to check the monotonicity and
analyze the resulting chain to get steady-state or transient distributions (see [4,
8] for more details). Here we only present the computations of the bounds of
SAA under various assumptions on the knowledge of Q∗A.

2.2 Bounds for a Family of Positive Matrices

In a recent paper [10], Haddad and Moreaux have proposed an algorithm to build
a stochastic bound from two element-wise bounding matrices. More precisely,
they are interested in absorption time and they only consider finite transient
Markov chains. They assume that they do not know exactly the stochastic matrix
P they need to analyze (because some terms are difficult to compute), but they
know two positive matrices L and U such that L �el P �el U . In [10], matrix
P is supposed transient (i.e. the last state is absorbing). Let PL,U be the set of
stochastic matrices which satisfy these constraints. They derived an algorithm
to compute the smallest (in the st sense) transient matrix in PL,U . We give in
Algorithm 1 a generalization of that algorithm: a) we don’t need to have any
absorbing state; b) we consider positive matrices (not necessarily stochastic).
Let ML,U,β be a family of positive matrices given by element-wise upper and
lower bounds L and U , and a positive vector of normalization constants β:

ML,U,β = {M : L �el M �el U and Me = β}.

We will use the following operator: `(M)[i, j] =
∑j
k=1M [i, k], ∀i, j.

Proposition 2. Algorithm 1 computes matrices M and M inML,U,β such that:

r(M) �el r(M) �el r(M), ∀M ∈ML,U,β.

Proof. Notice that L �el M �el U implies r(L)[i, j] ≤ r(M)[i, j] ≤ r(U)[i, j]
and `(L)[i, j] ≤ `(M)[i, j] ≤ `(U)[i, j],∀i, j. The proof follows easily from the
fact that r(M)[i, j] = βj − `(M)[i, j − 1], ∀M ∈ML,U,β. We omit the technical
details. ut

Algorithm 1: r-maximal (M) and r-minimal (M) elements for a family
of positive matrices ML,U,β = {M : L �el M �el U and Me = β}.

Input : β - positive vector; L,U - positive matrices : 0 �el L �el U �el eβt
Notation : n - number of lines; m - number of columns
for i = 1 to n do

for j = m downto 2 do

H[i, j] = min{r(U)[i, j], βj − `(L)[i, j − 1]};
H[i, j] = max{r(L)[i, j], βj − `(U)[i, j − 1]};

end

H[i, 1] = βj ; H[i, 1] = βj ;
M = r−1(H); M = r−1(H);

end

Let us now go back to CMC problem. We assumed that we know matrix QAA
and element-wise lower and upper bounds L and U for Z = QA∗(I−QA)−1Q∗A.
Denote by β = QAAe. Algorithm 1 gives matrices M and M such that r(M) �el
r(Z) �el r(M). Denote by S = QAA +M and S = QAA +M.

Theorem 2. Matrices S and S satisfy:

φ(QAA) �st S �st SAA �st S �st θ(QAA).

Proof. Follows directly from Remark 1. ut

Since operator r−1v (resp. r−1w) preserves the �st-comparison, the upper
(resp. lower) bound obtained by taking into account the partial information on
Z is more accurate than the bounds proposed in [15]. In the following section
we propose how to compute element-wise lower and upper bounds for Z.

3 Element-Wise Bounds for Matrix Z

First let us define the following binary relation on positive real vectors:

Definition 2. Let x,y be two positive real vectors. Vector y supports x if there
exist α > 0 and γ ≥ 0 such that α y �el x �el (α+ γ) y.

Remark 3. Vector y supports vector x if and only if they have the same support
(the non zero elements have the same indices in both vectors). Note that if
vectors x and y are colinear we have γ = 0.

Property 2. Relation “supports” is reflexive, symmetric and transitive. Thus the
binary relation “supports” is an equivalence relation.

Suppose that vector y 6= 0 supports vector x and define αx,y and γx,y as
follows:

αx,y = min
k : yk>0

xk
yk
, γx,y = max

k : yk>0

xk
yk
− αx,y. (2)

Lemma 1. Constants αx,y and γx,y satisfy αx,y y �el x �el (αx,y + γx,y) y.
Furthermore, αx,y = 1

αy,x+γy,x
and γx,y = 1

αy,x
− αx,y.

Proof. Follows directly from (2). Note that if vector y supports vector x then
αx,y > 0. By symmetry of relation “supports”, we also have αy,x > 0. ut

3.1 Main Idea

We introduce here the main idea behind the algorithms for element-wise bounds
for matrix Z on a very simple case. The following assumptions will be relaxed
in Sect. 4.

Assumption 1. We assume in this section that all columns of Q∗A are in the
same class of equivalence for relation “supports” or are null. Furthermore, we
suppose that there is at least one non null column.

In the following, let us note by Ci(M) the i-th column of a matrix M . Let v
be any vector that belongs to the same equivalence class as the non null columns
of matrix Q∗A. Thus, for all i, Ci(Q∗A) supports v or Ci(Q∗A) = 0.

For non null columns denote by αi := αCi(Q∗A),v and γi := γCi(Q∗A),v. For
columns i such that Ci(Q∗A) = 0 we will define αi := 0 and γi := 0 to simplify
the formulas. Note that ||α||1 =

∑
i αi > 0 and ||γ||1 =

∑
i γi ≥ 0.

We will derive simple component-wise upper and lower bounds for columns
of matrix Z in Algorithm 2. We use the following trivial property:

Property 3. Ci(Z) = QA∗(I −Q∗∗)−1Ci(Q∗A).

Lemma 2. β
||α||1+||γ||1 �el QA∗(I −Q∗∗)

−1v �el β
||α||1 .

Proof. We have αjv �el Cj(Q∗A) �el (αj + γj)v,∀j, which implies αjQA∗(I −
Q∗∗)−1v �el Cj(Z) �el (αj + γj)QA∗(I − Q∗∗)−1v. Now by summation for all
columns j we obtain ||α||1QA∗(I − Q∗∗)−1v �el β �el (||α||1 + ||γ||1)QA∗(I −
Q∗∗)−1v. ut

Lemma 3. Assume that vector v supports column i. Then:

β
αi

||α||1 + ||γ||1
�el Ci(Z) �el β

αi + γi
||α||1

.

Proof. By definition of constants αi and γi we have:

αiv �el Ci(Q∗A) �el (αi + γi)v.

By Property 3, αiQA∗(I − Q∗∗)−1v �el Ci(Z) �el (αi + γi)QA∗(I − Q∗∗)−1v,
which together with Lemma 2 gives the result. ut

Algorithm 2: Element wise upper (U) and lower (L) bounds for matrix Z
Input : β = e−QAAe; matrix Q∗A
Notation : m - right-most non null column of Q∗A
v = Cm(Q∗A);
α = 0; γ = 0;
foreach non null column j of Q∗A do

αj = mink : vk>0
Q∗A[k,j]

vk
; γj = maxk : vk>0

Q∗A[k,j]
vk

− αj ;
end
U = 1

||α||1
β(α+ γ)t; L = 1

||α||1+||γ||1
βαt;

Remark 4. We can use Algorithm 1 to obtain matrices M and M such that
r(M) �el r(M) �el r(M), ∀M ∈ML,U,β. However, element-wise bounds L and
U given by Algorithm 2 are rank 1 matrices. Therefore, it is sufficient to compute
only two row vectors w and w, the maximal and minimal elements of the family
MU ′,L′,β′ for U ′ = 1

||α||1 (α+γ)t, L′ = 1
||α||1+||γ||1α

t and β′ = 1. Vectors w and
w can be computed by Algorithm 1 (as a special case of a matrix with only 1
row). Finally, matrices M and M are obtained as M = βw and M = βw.

Example 1. Let us consider a matrix Q∗A given as follows:

Q∗A =

0.2 0.1 0.0 0.1
0.2 0.1 0.0 0.1
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.2 0.2 0.0 0.1

All the columns are null or support column 4. αt = [2, 1, 0, 1] and γt = [0, 1, 0, 0].
Thus the upper bound is (α + γ)/4 and the lower bound is α/5. The st-upper
bound is w = [0.4, 0.35, 0, 0.25] and the st-lower bound is w = [0.5, 0.3, 0, 0.2].
It is interesting to remark that DPY [4] gives the same st-upper bound for this
example.

Corollary 1. If Q∗A is of rank 1, then Algorithm 2 gives the exact result.

Proof. If Q∗A is of rank 1, then γi = 0, ∀i, so in Algorithm 2, U = L = Z. ut

4 Finding Bounds Using Incomplete Information

In this section we present different algorithms based on complete or partial infor-
mation on the block Q∗A. Also, we consider here the general case where we can
have more than one equivalence class (i.e. when Assumption 1 is not satisfied).
In Algorithm 3 we assume less restrictive assumptions and in Algorithm 4 we
iterate an approach based on Algorithm 3. In Algorithm 5 we apply Algorithm 2
on groups of columns.

These algorithms apply even if we do not know all the columns of matrix Q∗A.
It is still possible to obtain in this case an element-wise and an st-upper bound.
Lower bounds are much harder to obtain and only some methods will provide
lower bounds under stronger assumptions. Finally, in the last two approaches
we assume that the sum of the columns of Q∗A is known while some columns
are unknown. Indeed, for some modeling frameworks it is possible to compute
easily the sum of probabilities of a set of events even if the exact transitions are
unknown.

Note that it may be possible to use more than one method for some problems
and we can combine them to improve the accuracy using a very simple argument:

Lemma 4. Let βλt1 and βλt2 be two element-wise upper bounds. Then β(min{λ1,
λ2})t is a more accurate upper bound (the min operator is element-wise).

Finally, the preprocessing step of each algorithm is to compute β = e−QAAe.

4.1 Less Constrained Matrices

Denote by m the right-most non null column of Q∗A and let vm = Cm(Q∗A).

Assumption 2. We assume that some columns (not all of them) of Q∗A support
vm. We can decompose Q∗A as follows:

Ci(Q∗A) = αivm +Wi, (3)

with 0 �el Wi and αi ≥ 0. This decomposition is always possible. If column
Ci(Q∗A) supports column vm we get αi > 0 as usual, otherwise we may have
αi = 0 or a positive αi if we are lucky. So we decompose Q∗A into a rank 1 matrix
and a positive matrix W whose columns are Wi. The stochastic complement is:

QAA +QA∗(I −Q∗∗)−1vmα
t +QA∗(I −Q∗∗)−1W.

Let Z1 = QA∗(I − Q∗∗)−1vmα
t and Z2 = QA∗(I − Q∗∗)−1W . Z1 and Z2 are

positive matrices.

Some results obtained in the last section for more constrained matrices are
still true.

Lemma 5. Cm(Z) �el β 1
||α||1

Proof. The decomposition implies that: QA∗(I − Q∗∗)−1vm||α||1 �el β. In the
decomposition Wm = 0. Thus: Cm(Z) = QA∗(I − Q∗∗)−1vm. Combining both
relations, we get the result. ut

It is also possible to find an upper bound for all the columns which support
column m.

Lemma 6. Assume that column i supports column m. Then Ci(Z) �el βαi+γi

||α||1 .
But when the column does not support vm, the upper bound is β.

Proof. From Lemma 5, we get Cm(Z) �el β 1
||α||1 , and if column i supports

column m we have Ci(Z) �el Cm(Z)(αi + γi). Combining both inequalities we
get the first result. Finally it is sufficient to remark that Ci(Z) �el β. ut

We introduce two operators, q (quotient) and R (reminder) defined as follows.
Let x and y 6= 0 be two positive vectors:

q(x,y) = min
k:yk>0

{
xk
yk

}
, R(x,y) = x− q(x,y)y. (4)

Algorithm 3: Upper bounds for Z when Assumption 1 is not satisfied
1. Consider the right-most non null column of Q∗A, say vm. Set αm = 1, γm = 0

and αi = 0 for all index i > m.
2. For all columns i between 1 to m check if it supports vm:

(a) If YES compute αi and γi.
(b) If NO perform the decomposition described in (3) to obtain αi:

αi = q(Ci(Q∗A), Cm(Q∗A)) and W = R(Ci(Q∗A), Cm(Q∗A)).
3. The upper bound is 1

||α||1
β(αi + γi)

t for columns i which support vm, 0 for the
null columns and β for the remaining ones.

Remark 5. All the columns where αi > 0 are used to bound column m. αi is
positive when column i supports column m but this is not necessary. For instance
[1, 1, 1]t does not support [1, 1, 0]t but we obtain αi = 1. Note however we are
only able to obtain a non trivial bound for columns which support column m.

Theorem 3. Algorithm 3 provides an upper bound when we know all columns
of Q∗A. If some columns of Q∗A are unknown, Algorithm 3 provides an upper
bound based on known columns. The upper bound for unknown columns is β.

Proof. Lemmas 5 and 6 give the answer for known columns. Unknown columns
i do not support the column m (the last known non null column) so the corre-
sponding αi = 0. ut

The following lemma gives a bound of all the colinear columns (it is a simple
consequence of Lemma 3).

Lemma 7. Let i be the index of a column of Q∗A which is colinear to vm, then
we have Ci(Z) �el β αi

||α||1

Proof. For a column i colinear to column m, we have γi = 0. ut

4.2 Iteration

We decompose the columns according to their equivalence class and we perform
a modified version of Algorithm 3 on each class. Then an upper bound for Z
can be obtained by taking element-wise minimum of upper bounds obtained for
each equivalence class (see Lemma 4).

Algorithm 4: Iteration
1. Decompose the columns of Q∗A according to the equivalence relation “support”.
2. Upper bounds for columns which are equal to 0 are equal to 0.
3. For all (non null) equivalence classes:

(a) Let ∆ be the set of index of the columns that belong to that class.
(b) Let v be the right-most non null vector in ∆.
(c) For all i, αi = q(Ci(Q∗A),v). (Note that for i ∈ ∆, αi = αCi(Q∗A),v.)
(d) For all i ∈ ∆, compute γi = γCi(Q∗A),v.
(e) Compute α =

P
i αi.

(f) The upper bound for column i ∈ ∆ is β αi+γi
α

.

Theorem 4. When all columns of Q∗A are known, Algorithm 4 provides an
upper bound. Assume now that some columns of Q∗A are unknown, Algorithm
4 provides an upper bound based on known columns. The upper bound for un-
known columns is β. (Note that Algorithm 4 gives always better bounds than
Algorithm 3.)

Proof. The proof is similar to the proof of Algorithm 3. It is omitted here for
the sake of conciseness. ut

4.3 Partial Summations

Assumption 3. Without loss of generality we assume that Cn(Q∗A) 6= 0. The
main assumption is the following: we can find a partition of {1, . . . , n} into
k subsets Γ1, . . . , Γk such that for all set index j,

∑
i∈Γj

Ci(Q∗A) supports
Cn(Q∗A). Without loss of generality we assume that Γk = {n}. Let us denote
by αj and γj the coefficient of the support relation for set Γj. Clearly we have:
αk = 1 and γk = 0.

Algorithm 5 consists in building a new matrix where the columns are summed
up for all index in the same subset in the partition. This new matrix satisfies
the assumptions of Algorithm 2.

Algorithm 5: Partial summations
1. Find a partition satisfying the constraints.
2. Sum up the columns of Q∗A according to the partition to obtain a new matrix

with k columns.
3. Apply Algorithm 2 on this matrix to obtain some αj and γj for all set index j.

4. The element-wise upper bound for an arbitrary column i is β
αj+γj

||α||1
where j in

the index of the set which contains i.
5. The st-upper bound for an arbitrary column i is β

αj+γj

||α||1
if i is the largest

element of set Γj and 0 otherwise.

Theorem 5. Algorithm 5 provides an upper bound when all columns are known.
Assume now that some columns of Q∗A are unknown, Algorithm 5 provides an
upper bound based on the known columns. The upper bound for the unknown
column is β.

Proof. Step 3 and the bound computed for the sum are exactly the same as
in Algorithm 2 and we can apply the results we have already proved. Thus∑
i∈Γj

Ci(Z) �el βαj+γj

||α||1 . Step 4 simply states that each element has the same
upper bound than the sum. In Step 5 the st-bound is computed from the element-
wise upper bound with Algorithm 1. ut

4.4 If the Sum of Columns is Known

Assumption 4. We assume that
∑n
i=1 Ci(Q∗A) = σ is known. Only some

columns are known. For all the known columns (say with index i) that are not
equal to 0, we use operators q and R in (4) to get σ = qiCi(Q∗A) + Wi, where
Wi is non negative.

Note that it is not necessary to know matrix Q∗A to compute σ, it can be
obtained from a high-level specification of the model.

Lemma 8. As all the columns are non negative (even if they are unknown. . .)
we clearly have qi ≥ 1.

Theorem 6. Consider σ and an arbitrary column index k. Use operators q and
R in (4) with input arguments σ and Ck(Q∗A) to obtain qk and Wk. Ck(Z) is
element-wise upper bounded by β

qk
.

Proof. We clearly have:

β =
∑
i

Ci(Z) = QA∗(I −Q∗∗)−1
∑
i

Ci(Q∗A) = QA∗(I −Q∗∗)−1σ. (5)

As σ = qkCk(Q∗A) + Wk, and as Wk, QA∗, and (I − Q∗∗)−1 are non negative,
we get: QA∗(I −Q∗∗)−1Ck(Q∗A) �el βqk

. As QA∗(I −Q∗∗)−1Ck(Q∗A) = Ck(Z)
we prove the theorem. ut

It is even possible to find a bound if we are not able to compute exactly
σ. Assume that we are able to compute δ such that δ �el σ. This is typically
the case when we have a high level description of the chain and we are able to
classify the transitions according to their destination set.

Theorem 7. Consider δ and an arbitrary column index k. Use operators q and
R in (4) with parameters δ and Ck(Q∗A) to obtain q′k and W ′k. If q′k ≥ 1, column
k of Z is element-wise upper bounded by β

q′k
.

Proof. As δ �el σ, we have q′k ≤ qk and we apply the former theorem. ut

4.5 Examples

We illustrate algorithms proposed in this section on small numerical examples.

Algorithm 3. Let

QAA =

0.1 0.3 0.2 0.1
0.1 0.4 0.2 0.0
0.2 0.1 0.5 0.2
0.2 0.0 0.4 0.0

 β =

0.3
0.3
0.0
0.4

 Q∗A =

0.1 0.0 0.1 0.2
0.0 0.1 0.0 0.0
0.2 0.2 0.1 0.1
0.0 0.0 0.0 0.0
0.0 0.1 0.0 0.0
0.1 0.1 0.1 0.1

Let us consider the columns of Q∗A. Clearly, column 3 supports column 4

and α3 = 0.5, γ3 = 0.5. Column 2 does not support column 4 and α2 in the
decomposition is 0. Finally column 1 supports column 4 and α1 = 0.5 γi = 1.5.
So ||α||1 = 2. We find upper bounds for columns 1, 3 and 4 which are respectively
2β/2, β/2 and β/2. The upper bound for Z is thus β[1, 1, 1/2, 1/2]. A strong
stochastic bound for Z is β[0, 0, 1/2, 1/2] (see Remark 4). The bound provided
by DPY is β[0, 1/4, 1/4, 1/2], so DPY is better for this example.

Now assume that we are not able to compute column 2.

Q∗A =

0.1 ∗ 0.1 0.2
0.0 ∗ 0.0 0.0
0.2 ∗ 0.1 0.1
0.0 ∗ 0.0 0.0
0.0 ∗ 0.0 0.0
0.1 ∗ 0.1 0.1

where ∗ denotes that the value is unknown. We are not able to use DPY
because the matrix is unknown. But the st-bound with Algorithm 2 is still
β[0, 0, 1/2, 1/2].

Now assume that we are not able to compute columns 1 and 2. Again it is
not possible to use DPY. We still have a support for column 4 from column
3. But as α1 is unknown, ||α||1 = 1.5. The element-wise upper bound is now
β[1, 1, 2/3, 2/3] and the st-upper bound is β[0, 0, 1/3, 2/3].

Algorithm 4. Let

β =

0.3
0.3
0.0
0.4

 Q∗A =

0.4 0.1 0.1 0.2
0.0 0.1 0.1 0.0
0.2 0.15 0.1 0.1
0.0 0.0 0.0 0.0
0.0 0.1 0.1 0.0
0.2 0.1 0.1 0.1

 H14 =

0.4 0.2
0.0 0.0
0.2 0.1
0.0 0.0
0.0 0.0
0.2 0.1

 H23 =

0.1 0.1
0.1 0.1
0.15 0.1
0.0 0.0
0.1 0.1
0.1 0.1

We have two classes of equivalence in this example, corresponding to matrices
H14 (columns 1 and 4) and H23. For the first class (H14), v = C4(Q∗A) and

the values of αi are [2, 0.5, 0.5, 1], so α = 4. Since columns 1 and 4 are colinear,
γ1 = γ4 = 0. The corresponding upper bounds for columns 1 and 4 are: β/2 and
β/4. Thus the upper bound for Z for this class is β[1/2, 1, 1, 1/4]. For the second
class (H23), v = C3(Q∗A), the values of αi are [0, 1, 0, 1], α = 2, and γ2 = 0.5,
γ3 = 0. The corresponding upper bound for Z is β[1, 3/4, 1/2, 1]. The final upper
bound for Z is then β[1/2, 3/4, 1/2, 1/4] and the corresponding strong stochastic
bound is β[0, 1/4, 1/2, 1/4]. For the sake of comparison, the st bound provided
by DPY is β[0, 1/2, 1/4, 1/4].

Known sum. Let

β =

0.3
0.3
0.0
0.4

 Q∗A =

0.1 0.0 0.1 0.2
0.0 0.1 0.0 0.0
0.2 0.2 0.1 0.1
0.0 0.0 0.0 0.0
0.0 0.1 0.0 0.0
0.1 0.1 0.1 0.1

 σ =

0.4
0.1
0.6
0.0
0.1
0.4

Then we use operators q and R in (4) to obtain the ratios qi. Some values of
the rests Wi are omitted for the sake of conciseness. We have: q1 = 3, W t

1 =
[0.1, 0.1, 0, 0, 0.1, 0.1], q2 = 1, q3 = 4, and q4 = 2. And finally the bounding
matrix is β[1/3, 1, 1/4, 1/2] and the st bound is β[0, 1/4, 1/4, 1/2].

Assume now that we are not able to compute the second column of Q∗A. We
have: δt = [0.4, 0, 0.4, 0, 0, 0.3]. Then q1 = 2, W t

1 = [0.2, 0, 0, 0, 0, 0.1], q3 = 3 and
q4 = 2. As we cannot compute another bound for the second column, we keep
the simplest one (i.e. 1), so the element-wise bound is β[1/2, 1, 1/3, 1/2] and the
st bound is β[0, 1/6, 1/3, 1/2].

5 Concluding Remarks

In this paper we have presented several algorithms to obtain bounds of the
transition probability matrix SAA of a CMC. These methods apply even if the
initial chain is infinite. The CMC is obtained after a partial generation of the
state space. More precisely, we only know QAA and some columns of Q∗A. When
the whole block Q∗A is known, it is possible to use both DPY and the algorithms
presented here. On many examples DPY and Algorithm 2 provide the same result
for the upper bound and lower bound. We have also proved that they give an
exact result if matrix Q∗A has rank 1. Note however that in general Algorithm 2
requires strong assumptions on the matrix and we have also found some matrices
where the bound is worse than the bound provided by DPY even if we have no
proof that DPY is always better. However, the aim of our algorithms is to find
bounds of SAA when Q∗A is only partially known or when Q∗A is infinite. In both
cases we cannot apply DPY. The algorithms presented here (except Algorithm 2)
still apply if some columns of matrix Q∗A are unknown. Thus they may be used
even when some part of the matrix (or the models) are difficult to compute.
We do not have comparison of results for these algorithms (except Algorithm 4

which is always better than Algorithm 3). Indeed, they are not based on the
same assumptions. When several algorithms can be applied, the best solution is
to use all of them and combine the element-wise upper bounds.

Acknowledgments. This work was partially supported by ANR-05-BLAN-
0009-02 SMS and ANR-06-SETIN-002 Checkbound.

References

1. A. Busic and J.-M. Fourneau. Bounds for point and steady-state availability: An
algorithmic approach based on lumpability and stochastic ordering. In EPEW
2005, LNCS 3670, pages 94–108. Springer, 2005.

2. A. Busic, J.-M. Fourneau, and N. Pekergin. Worst case analysis of batch arrivals
with the increasing convex ordering. In EPEW 2006, LNCS 4054, pages 196–210.
Springer, 2006.

3. T. Dayar, J.-M. Fourneau, and N. Pekergin. Transforming stochastic matrices for
stochastic comparison with the st-order. RAIRO-RO, 37:85–97, 2003.

4. T. Dayar, N. Pekergin, and S. Younes. Conditional steady-state bounds for a subset
of states in Markov chains. In SMCtools ’06. ACM Press, 2006.

5. E. de Souza e Silva and P. Mejiá Ochoa. State space exploration in Markov models.
ACM SIGMETRICS Perform. Eval. Rev., 20(1):152–166, 1992.

6. J.-M. Fourneau, M. Lecoz, and F. Quessette. Algorithms for an irreducible and
lumpable strong stochastic bound. Linear Algebra and its Applications, 386(1):167–
185, 2004.

7. J.-M. Fourneau and N. Pekergin. An algorithmic approach to stochastic bounds. In
Performance Evaluation of Complex Systems: Techniques and Tools, Performance
2002, Tutorial Lectures, LNCS 2459, pages 64–88, 2002.

8. J.-M. Fourneau, N. Pekergin, and S. Younes. Censoring Markov chains and stochas-
tic bounds. In EPEW 2007, LNCS 4748, pages 213–227. Springer, 2007.

9. J.-M. Fourneau, B. Plateau, I. Sbeity, and W. J. Stewart. SANs and lumpable
stochastic bounds: Bounding availability. In Computer System, Network Perfor-
mance and Quality of Service. Imperial College Press, 2006.

10. S. Haddad and P. Moreaux. Sub-stochastic matrix analysis for bounds computation
- theoretical results. Eur. Jour. of Op. Res., 176(2):999–1015, 2007.

11. C. D. Meyer. Stochastic complementation, uncoupling Markov chains and the
theory of nearly reducible systems. SIAM Review, 31(2):240–272, 1989.

12. A. Muller and D. Stoyan. Comparison Methods for Stochastic Models and Risks.
Wiley, New York, NY, 2002.

13. N. Pekergin, T. Dayar, and D. Alparslan. Compenent-wise bounds for nearly com-
pletely decomposable Markov chains using stochastic comparison and reordering.
Eur. Jour. of Op. Res., 165:810–825, 2005.

14. B. Plateau, J.M. Fourneau, and K.H. Lee. PEPS: a package for solving complex
Markov models of parallel systems. In Proceedings of the 4th Int. Conf. on Mod-
elling Techniques and Tools for Computer Performance Evaluation, Spain, 1988.

15. L. Truffet. Near complete decomposability: Bounding the error by a stochastic
comparison method. Ad. in App. Prob., 29:830–855, 1997.

16. L. Truffet. Reduction technique for discrete time Markov chains on totally ordered
state space using stochastic comparisons. Jour. of App. Prob., 37(3):795–806, 2000.

17. Y.Q. Zhao and D. Liu. The censored Markov chain and the best augmentation.
Jour. of App. Prob., 33:623–629, 1996.

