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Abstract. We develop theoretical and algorithmic aspects of discrete-time Markov chain com-
parison with the increasing convex order. This order is based on the variability of the process and
it is expected that one can get more accurate bounds with such an order although the monotonicity
property is more complex. We give a characterization for finite state space to obtain an algebraic de-
scription which is suitable for an algorithmic framework. We develop an algorithm and we introduce
some applications related to the worst case stochastic analysis when some high level information is
known, but not the complete structure of the chain.
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1. Introduction. Comparison techniques have gained an increasing popularity
in the study of stochastic processes [23]. These techniques may be related to various
mathematical theory (stochastic ordering, polyhedral theory, Markov chain decision
process, stochastic recurrence equation).

In the context of numerical analysis of Markov chains, the first idea was to analyze
systems which are too difficult for numerical analysis. One can compare a chain of
the model with another one which is simpler to solve. A recent survey [16] presents
several solutions that we can group into two key ideas: reduction of the state space
or using an ad hoc structure, the numerical analysis of which is simpler. The first
approach was shown to be very efficient [25]. The stochastic approach was developed
using projection or functions of Markov chains [13] and an algorithmic derivation of
smaller chains based on strong or weak lumpability [28, 21, 15] was proposed. Other
algorithms to obtain upper Hessenberg or single input macro state chains were also
proposed in [16, 8]. A tool providing all these algorithms was also demonstrated [14].

However all these approaches are based on the strong stochastic ordering (=<-
ordering) among random variables. This order is quite natural because it is associated
with sample-paths and coupling. Nevertheless, many other stochastic orders have
been studied. For instance, the variability orders (<;c; and =<;.,) have been used
to compare different queueing models when we change the variability of arrival or
service distributions. To the best of our knowledge, very little was done to construct
bounding Markov chains with these orders. Vincent’s pioneering work [1] was the
only reference we could find. Note that the lack of algorithms for the increasing
convex order (=) has precluded to compare the accuracy of these orderings when
we bound Markov chains. However, <;.,-ordering provides more accurate bounds
when we compare random variables, as <¢-comparison implies =<;.,-comparison.

Another completely different application of bounds was recently proposed by P.
Buchholz [7]. The main assumption is that the modelers do not know the real transi-
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tion probabilities. Thus, one wants to model a system by a family of Markov chains
where the transition probabilities belong to an interval of probabilities. One has to
derive the worst case (or the best case) for all the matrices in the set. The theoretical
arguments rely on Courtois’s polyhedral approach. The algorithms are very accurate
as the bounds can be reached by a matrix in the set. Unfortunately the complexity
is quite high. Very recently a similar problem was solved independently by Haddad
and Moreaux [18]. Again, one has to find a bound for a set of matrices. However,
Haddad and Moreaux’s approach is quite different and relies on stochastic compari-
son with < order. The set is given through componentwise extremal matrices. Note
that these matrices are useless for a direct computation as they are not stochastic.
The authors derive an algorithm to find an upper bounding monotone matrix for all
elements in the set according to the <4 order. This algorithm is very simple and its
complexity is relatively small (less than quadratic). However the method seems to be
less accurate than Buchholz’s method. Note that to the best of our knowledge there
is no comparison between these two new methods.

The techniques we use in this paper are quite different. Here we improve the
theory of <;.,-ordering for finite discrete time Markov chains. This order is known
for a long time but very little was known in the context of Markov chains. Unlike
the <4 order, this stochastic order imposes difficult constraints for the monotonicity
property and, until recently, it was an open problem to build =<;.,-monotone bound-
ing matrices. In [4] an algorithm has been designed to construct =<;.,-monotone
bounding matrices that belong to a class of matrices denoted as class C. However
the algorithm relies on the specific monotonicity characterization of class C Markov
chains. Here we develop a general algorithm to obtain an <;.,-monotone upper bound
for a given stochastic matrix. We also show that the <., order is more accurate than
the <4 order when we derive some worst case stochastic process for which only the
expected value and a pattern of nonzero transitions are known. This problem is some-
how related to the problem considered by Buchholz, Haddad and Moreaux. We do
not assume that the set of Markov chains we must bound is defined by intervals on
the elements, but we know the pattern of nonzero transitions and the average, and
we build the processes which provides extremal distributions.

The remaining of the paper is organized as follows. In Section 2 we present a
brief overview of the comparison of random variables and Markov chains under some
stochastic order when the state space is endowed with a total order. We also stress
that the stochastic comparison approach is much more versatile than the polyhedral
technique developed by Courtois [10, 11] even if it is often less accurate. Then we de-
velop in Section 3 the theory to compare finite discrete time Markov chains (DTMCs)
with the <., order. Section 4 is devoted to an algorithm to build an =<;.,-monotone
upper bound of a Markov chain. Finally in Section 5 we present two applications of
our approach. The first application consists in deriving the worst case of a family of
Markov chains where the transitions are defined by their expectation and a pattern
for nonzero transitions. The second one is related to the absorption time of a DTMC
with one absorbing state and can be used to bound a phase type (PH) distribution
modeling a general service time. By doing so, the complexity in two level modeling
formalisms can be significantly reduced.

2. A brief presentation. Here we state some basic definitions and results on
the stochastic comparison approach. We refer to [24, 26] for further details. First we
give the definition of stochastic comparison of two random variables taking values on
a totally ordered space €. Let F, denote the class of all increasing real functions on
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& and F;., the class of all increasing and convex real functions on £. We denote by
< the stochastic order relation, where F can be replaced by st, icx to be associated
respectively with the class of functions Fyt, Ficr- Throughout the paper, < denotes
the componentwise comparison when comparing two vectors or matrices.

DEFINITION 2.1. Let X and Y be two random variables taking values on a totally
ordered space &,

X=rY < EfX)<Ef(Y) VieF

whenever the expectations exist.
Remark that, since F;., C Fg, the <g-comparison is stronger than the < .-
comparison, i.e.

X =t Y — X Ricx Y.

Notice that for discrete random variables X and Y with probability vectors p
and ¢, the notations p <y ¢ and X =<z Y are used interchangeably. Stochastic
comparison of discrete random variables according to <, and =;., orders can also
be defined through matrices (see [20, 22]). We assume here that £ = {1,...,n}, but
the following statements may be extended to the infinite case. We denote by K + the
matrix related to the <z order, F € {st,icx}:

1 0 0 ... O 1 0 0 0
1 1 0 0 2 1 0 0
(2.1) Ky = 1 1 1 ... 0 Kipw = 3 2 1 0
1 1 1 ... 1 n n—1 n—-2 ... 1

PROPOSITION 2.2. Let X and Y be two random variables with probability vectors
p= @), and q=(¢:)" (pi=P(X =4)and g =P =1i), 1 <i<n). Then

X 2rY <= pKr <qKr.

For the =<4 and =, orders, this can be given as follows:

(22) X=ZuV =Y p<> a Vie{l,...,n},
k=1 k=1

(23) X R Y =Y (k—i+1)pr <Y (k—i+1) g, Vie{l,...,n}
k=1 k=1

In the following we only compare discrete time Markov chains (DTMCs). Con-
tinuous time models can be considered after uniformization.

It is shown in Theorem 5.2.11 of [24, p. 186] that monotonicity and comparabil-
ity of the probability transition matrices of time-homogeneous Markov chains yield
sufficient conditions to compare stochastically the underlying chains. We first de-
fine the monotonicity and comparability of stochastic matrices and then state this
fundamental theorem.

DEFINITION 2.3. Let P be a stochastic matriz. P is said to be stochastically
=<z-monotone if for any probability vectors p and q,

p<rq = pP <rqP.
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DEFINITION 2.4. Let P and Q be two stochastic matrices. Q 1is said to be an
upper bounding matriz of P in the sense of the <z order (P <z Q) if

P K]-‘ < Q K]:.
Let us remark that this is equivalent to saying that P <r Q, if
P 27 Qin, Vie{l,...,n}

where P; . denotes the ith row of matriz P.
DEFINITION 2.5. Let {Xy}i>0 and {Yi}r>o be two homogeneous DTMCs. We
say that the chain {Xi} is smaller than the chain {Yj} in the sense of <z order,

{Xi} =27 {Yi}

Xk j]: Yk fm’ all k Z 0.

THEOREM 2.6. Two homogeneous Markov chains { Xy} k>0 and {Yi } x>0 with the
transition matrices P and Q satisfy { X} <7 {Yi} if
(1) Xo 3F YO)
(i) there exists an <z-monotone transition matriz R such that

P=rR=rQ.

A special case of Theorem 2.6 is the comparison of two chains when at least one
of two transition matrices P or @ is <z-monotone.
COROLLARY 2.7. Let {X}i>0 and {Yi}r>0 be two homogeneous DTMCs with
the transition matrices P and Q. If
(i) Xo =r Yo,
(i) P <5 Q,
(iii) at least one of the transition matrices P or Q is < x-monotone,
then

{Xi} =27 {Yi}.

COROLLARY 2.8. Let P and Q be two transition matrices such that there exists
an = r-monotone matrix R satisfying P < R <r Q. If the steady-state distributions
(Tp, 7TQ) exist, then

Tp j]:Td’Q.

Let us now consider the comparison of two absorbing chains. The comparison of
two chains in the sense of <z order (we remind that <z stands for < or <., order)
provides =<g;-comparison of their absorption times.

PROPOSITION 2.9. Let { Xy} k>0 and {Yi }r>o0 be two homogeneous Markov chains
with an absorbing state n (the last one), and let To(X) and T,(Y) denote respectively
the absorption times into n for the two chains. If

{Xe} 27 {Yi},
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then
To(YV) <t To(X).

Notice that the =g -comparison of absorption times is now on random variables T,
defined on Ny (dates), and not on states.

Proof. We have X, < Yy, for all & > 0. Particularly, for both <4 and <.,
order, this implies that

(2.4) P(Xy=n) < P(Yy=n), forallk > 0.

Thus, P(T,(X) < k) = P(X =n) < P(Yy, = n) = P(T,(Y) < k), which gives
To (V) <t To(X). d

Remark that we obtain the <4;-comparison of absorption times even if we compare
the DTMCs in the =;.,-ordering sense. In fact, the ordering relation needs only to
satisfy (2.4).

Like the polyhedral approach, the stochastic comparison approach enables the
comparison of steady-state distributions. The Courtois’s approach is often more ac-
curate because the polyhedral constraints are usually weaker than the monotonicity
constraints. But the stochastic comparison approach is much more versatile. It can
provide bounds on the distribution at any time time ¢, it can give a stochastic bound
for the absorption time and for several measures of interest in performance evalua-
tion, reliability modeling, stochastic model checking. For instance, it has been shown
that path properties which are studied by stochastic model checking can be simplified
using the stochastic comparison approach [5].

3. Increasing convex ordering of finite DTMCs. The monotonicity is an
important property for comparison of Markov chains (Theorem 2.6). However, it is
obvious that checking the monotonicity of a transition matrix using Definition 2.3
is not tractable since we must check the implication for all comparable probability
vectors. Thus, an algorithmic characterization of monotonicity is mandatory.

For the usual stochastic order <, a matrix characterization of monotonicity has
been established [20, 24]: P is <y -monotone if and only if all the entries of the
matrix K S_thK st are non negative. This is valid for both finite and infinite state
space cases. In [22] an equivalent characterization for the <;.,-monotonicity has been
provided when the state space is infinite (for the chains taking values in Z): P is <z~
monotone if and only if all the entries of the matrix K ;ciPK icz are non negative.
The finite case has been first studied by Vincent in his pioneering work and the above
condition was assumed to be sufficient [1]. Note that if the condition is necessary and
sufficient for infinite state space, it is only sufficient for finite state space.

In this section we complete Vincent’s work and we obtain a complete matrix
characterization of the <;.,-monotonicity. First, we state in the following proposition
a necessary and sufficient condition for the =<;.,-monotonicity in terms of transition
probabilities P; ;. For a transition matrix P on the state space £ = {1,...,n}, for all
i and j, we will denote by f; ;(P),

n

(3.1) fii(P) = Z(k —Jj+1)Pig.

=J

=

Notice that

(32) fLJ(P) = (PKicac)i,ja VZ,] € {17 .. .,n}.
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REMARK 3.1. For a vector x € R™ we will write x € F if and only if vector x,
seen as a real function on € ={1,...,n}, is in F:
(i) « € Fa if and only if vector x is increasing, i.e.

rEe€Fg <=z <1,V € {1,...,71—1}.
(il) x € Ficx if and only if vector © is increasing and convez, i.e.
X € Fiex < 21 <3 and 2x; < ;-1 + xi41,Vi €{2,...,n — 1}.

Notice that ©1 < x2 and 2x; < x;—1 + xi41,1 <i<n—1wmply x; < ziq1, Vi < n.
PROPOSITION 3.2. A stochastic matriz P is =<.o-monotone if and only if, for
all j € {2,...,n}, the vectors

fei(P) = (fi;(P))iy,

defined by (3.1) are increasing and convez, i.e.

f[1,;(P) < fo ;(P) and 2f; j(P) < fi—1,;(P) + fix1,;(P), Vi € {2,...,n—1}.

Proof. We first show the following relation for two given probability vectors p
and ¢

(33) pP icx qP <~ Zpkfk,j Z qkfk,] ]
k=1 k=1

Using Proposition 2.2, characterizing the =<;.,-comparison of two probability vectors,
and (3.2) we have:

<:>Zpkfkj <qufkj V.

k=1

< Necessary condition: suppose that vectors f. ;(P) are increasing and convex
and show that P is <;.,-monotone. For that let us consider two probability vectors
p and ¢ such that p <;.; ¢ and prove that pP =<;., ¢P. According to Definition 2.1,
P ice q implies that >, pph(k) < >°7_, qrh(k), Yh € Ficp. For each j € &, let us
denote by g; a function on £ defined by

g;(i) = fi;(P), Vi

Since f. ;j(P) are increasing and convex for all j > 2, functions g; belong to Fjc,, Vj >
2 by hypothesis of the proposition. As f; 1(P) =1+ fi2(P), Vi, g1 belongs also to
Fica- Thus, >0 i fii(P) <Y p_y qufr,j(P), Vj € &, 50 pP <icp qP follows from
(3.3).

= Sufficient condition: Suppose that P is <;.,-monotone, and show that vec-
tors fu;(P) € Fica, for all j > 2.
Let us define the probability vectors p(?, 1 < i < n:

pl) = (pgi) =07...,pgi) =1,...,p% =0).
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Using (2.3), it is obvious that p® <., pUt1), 1 < i < n — 1. Matrix P is <je-
monotone, thus p P <., ptt) P. Tt follows from (3.3) that

n

fig(P Zp Y (P Z D [ (P) = iy (P), Vj € €.

Hence, vectors f, ;(P) are increasing.
Let us now define the probability vectors ¢(9, 2 <i < n — 1 as follows:

1 @ 1

=0, ¢ ==, ..., ¢ =0).
3 @ Qs s )

@) — (4 — g (i)
(ql 9 1+ 25

q s 41 =

It can be easily shown that p(i) =ex q(i), 2 <i<n-—1. Thus,

3

K2 1 1 1 .
fii(P Zpk)fzw <0 g (P) = Sfie1i(P) + 3 fir1(P), Vi

k=1

Therefore, 2f; ;(P) < fi—1,;(P) + fit1,;(P) and vectors f. ;(P) are convex for all
jecg€. 0

The above proposition can also be proved from Stoyan’s theorem 5.2.3 [24] which
provides conditions ensuring monotonicity of transition matrices in the general case
of an integral stochastic order <, and an arbitrary state space. However, this requires
to introduce some notions like maximal generators used in this theorem. For the sake
of simplicity and to make the paper self contained, we preferred to give a direct proof
based only on the definition of monotonicity.

In the following proposition we give the matrix characterization for the =;.,-
monotonicity.

PRrROPOSITION 3.3. A stochastic matrix P is =;c.z-monotone if and only if

(34) ZicmPKicw Z 07

where K e, is the matriz given by (2.1) and

1 0 0 0
11 0 0
(3.5) Ziw=| 1 —21 0
0o - 1 -2 1

Proof. Let us denote by A = (Aiﬁj)gszl the matrix PK .., then

Al,_] el
Zi(wA>0 = Vje{l,... n} Al,]+A2,j20
A9 —2A;1;+A4,;>20, Vi>3

Notice that the inequality A;; > 0 is always satisfied and that the conditions for
j = 1 follow from the conditions for j =2 (A;1 = A; 2 +1). Since A; ; = EZ:j(k; —
J+ 1P = fi;(P), by Proposition 3.2 it follows that P is <;.,-monotone if and only
if (3.4) holds O

Let us give some remarks concerning the matrix characterization of Proposition
3.3. First this characterization is not unique. Indeed, the values of the first row of
Z .. can be replaced by any non negative values and several set of values are possible
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for the first column of K;.,. However, the values of the other rows of Z;., and
columns of K., are necessary. For instance, in the case where all values of the first
column of K, are replaced by 1, we obtain the matrix K., (1):

1 0 0 - 0
1 1 0 0
Kico(1) = 1 2 1 - 0
1 n-1 n—-2 --- 1

and we have the following characterization:
P is =;., -monotone <= Kicm(l)_lPKicm(l) > 0.

In fact it can be seen that ng(l)f1 =Zica-

Let us emphasize that the matrix K;.,(1) allows also to define the =<;., order.
For two probability vectors p and ¢ defined on £ = {1,...,n}, it can easily be seen
that

pKicmquicw — pchw(l)Sqchw(l)

Indeed the sum of the first two columns of K., (1) gives the first column of K.
Contrary to the < order, in the case of the finite state space £ = {1,...,n} the

condition K ;;PK ice > 0 is not equivalent to the =<;.,-monotonicity of the matrix

P. We show this by a counter example but we give before K Z_Cglc which is the inverse

of the matrix K., given by (2.1).

1 0 0 0
-2 1 0 0
k1_|1 -21 0
0 1 =21

Note that the only difference between the matrices Z;., and K ;ci is the value of the
first element of the second row. Let us consider the matrix P:

0.5 0.1 0.4
P = 0.4 0.15 045
0.3 0.2 0.5
we have
1.9 0.9 0.4 1.9 0.9 0.4
K lPK,.=| —-175 —075 —0.35 ZiewPKico = | 015 015 0.15
0 0 0 0 0 0

Hence, the condition K i_c:lEPK icz > 0 is not satisfied while P is <;.,-monotone as
Zi.xPK ;.. > 0. In fact, the condition K ;;PK ice > 0 is sufficient but not necessary
for the =<;.,-monotonicity.

We want to emphasize here the importance of this counter-example and the matrix
characterization of Proposition 3.3. Indeed, the condition K ;C_,lﬁPK icx > 0 has very
important consequences. It implies that the first and last states are absorbing (P 1 =
P, = 1) as it has been shown in [1]. Fortunately, the condition Z;.; PKci > 0
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given in Proposition 3.3 is weaker than the condition K ;CglcPK icz > 0 and it can be
easily proven that K ;CiPK ice >0 = Z;.: PK;.; > 0. Moreover, as we will see
in the following section, it is possible to construct <;., bounding monotone matrices
without absorbing states.

In [1], the authors studied the irreducibility of monotone bounding matrices. They
state that if all sub-diagonal entries of the matrix K characterizing the considered
order are positive such as for K and K., then the bounding matrix has only one
recurrent class. Let us emphasize that this result is independent on the algorithm
of construction of the bounding matrix. We recall this result in the case of the <.,
order which is of particular interest for us in this work.

PROPOSITION 3.4. Let P = (P;;){;_ be an irreducible stochastic matriz. A
stochastic matriz Q = (Qi,j)?,jzl such that P <. Q and Q is =;c.-monotone, has
only one recurrent class. This class contains the state n.

Proof. We show that Vi < n, 35 > i such that @); ; > 0. Indeed, this implies that
for each state ¢ < n, there exist a path between state ¢ and state n and consequently
there is only one recurrent class which contains necessarily state n.

By contradiction, if we suppose that 37 < n, such that Vj > i, @;; = 0, then
Z?:i+l(j —1)Qi,; = 0. Using the =,.;-monotonicity of @ (Proposition 3.2), we
have: Vk < 4,37, 1(j — i)Qx; = 0. On the other hand, since P <jc; @Q, then
Vk <4, 300 (G =) Prj < 3511 (j — 1)@k = 0. This implies that Yk <4, Vj >
i, Py; = 0, which means that the set {1,...,¢} is absorbing. This is impossible
because P is irreducible. d

Recall that < -comparison implies =;.,-comparison. However, we cannot com-
pare =g and =;.,-monotonicity property.

EXAMPLE 3.5. Let us consider the following two matrices

05 04 0.1 0.2 05 03
P=| 03 03 04 and Q=1 0.3 03 04
0.1 04 0.5 0.2 03 05

Matriz P is an =g -monotone matrix that is not <;..-monotone. On the other hand,
Q is an example of an =;c-monotone matriz that is not =g -monotone.

4. Algorithm for an =;., bound. Let us suppose that we have a stochastic
matrix P. We would like to compute an <;.,-monotone matrix @ such that P <., Q.
Then by Corollary 2.7 we have =<;.,-comparison of underlying chains.

Contrary to the case of <4 order (see [1]), in the case of <;., order it is not
generally possible to find an optimal <;.,-monotone upper bound @, i.e. a matrix @
such that

(1) P jicw Qu

(ii) @ is =jep-monotone, and

(iii) for each <;.,-monotone transition matrix U, P <;c; U = Q =icr U.
ExXAMPLE 4.1. We will consider the transition matrix

05 04 0.1
P = 0.3 03 04
0.1 04 0.5

Let us suppose now that there is an optimal =;c..-monotone upper bound Q for P.

Both
0.5 04 0.1 0.5 0.2 0.3

U=| 03 03 04 | andU=| 03 03 04
0.1 02 0.7 01 04 0.5
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are =jeq-monotone upper bounds for matriz P. Thus, Q should satisfy Q =icz U
and Q <icx U. If we consider only the last column, this implies Q. 3 = (0.1,0.4,0.5),
which is not conver. This is in contradiction with the fact that Q is =;.,-monotone
(see Proposition 3.2).

However, for each matrix P we can find an <;.,-monotone upper bound. A trivial
one is given by

17.:/)7/7
Qi,j—{ 7

0,7 <n.

In this section we discuss the compatibility of <;.,-monotonicity and comparison
constraints, and we propose an algorithm to derive a non-trivial <;.,-monotone upper
bound for an arbitrary finite transition matrix P.

Let us remind that, for a transition matrix P of size n, f; ;(P) denotes f; ;(P) =
dohei(k—j+1)P;;,¥i,j (see (3.1)). Similarly we will define s; ;(P) as

Siﬁj(P) = ZB’j’Vi’j'
k=j

It can be easily shown that
(4.1) fii(P) = fijx1(P) + s, (P), Vi, Vj < n.
Notice that Q; ; > 0, Vi, j if and only if

sin(Q) >0, Vi and s, ;(Q) > si,;+1(Q), Vi,Vj < n.

The constraints on @ can be then given in terms of s; ;(Q) and f; ;(Q) as follows:
1. Comparison (P <;c: Q)

(4.2) fii(Q) = fi;(P), Vi,Vj = 2.
2. Monotonicity (see Proposition 3.2)
(4.3) vectors f. ;(Q) are increasing and convex for all j > 2.

3. Q is a stochastic matrix

0 S Sz,n(Q) S 17 VZ7
(44) Si,j+l(Q) < Si,j(Q) < 17 VZ,V] <n,
Si,l(Q) = 17VZ

We will compute the entries of the bounding matrix decreasingly by columns. Remark
that we need to compute n — 1 columns as the first one is completely determined by
the fact that the matrix @Q is stochastic.
The constraints for the last column can be written as follows:
Qi,n > })’L',’n.v Vi

Q+«,n is increasing and convex
Qn,n < 1.
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Remark that Q«n € Ficz and @y, < 1 imply Q;, < 1,Vi. Let 0,1 € R™ denote the
vectors 0 = (0,...,0) and 1 = (1,...,1). The last column of a bounding matrix Q
is then a solution of Problem 4.2 for a = P, , and b = 1. Moreover, we will show
in §4.1 (Proposition 4.4) that the computation of each column of an =<;.,-monotone
bounding matrix can be seen as Problem 4.2 with different vectors a and b that can
be easily computed.

PROBLEM 4.2. Let a and b be two vectors such that 0 < a < b. Find an increasing
and convex vector x € R™ such that a < x <b.

Let us remark that Problem 4.2 does not always have a solution. Take for instance
a = b and a; > ay. In our particular problem of last column computation, b = 1
is trivially increasing and convex, so there is at least one solution of Problem 4.2,
x = b. This trivial solution is not satisfying in our case, as this would result by a
bounding matrix @ with all the elements of the last column equal to 1. Intuitively,
we are interested in finding a solution x of Problem 4.2 that is as closest as possible
to the vector a. Notice that if vector a is increasing and convex, we can simply take
x = a. If a is not increasing and convex it is generally not possible to find an optimal
solution z of Problem 4.2 in the following sense:

for each y, a solution of Problem 4.2, z < y.
EXAMPLE 4.3. Consider for example vectors
a=(0.1,0.4,0.5) and b= (1,1,1).

The vectors § = (0.1,0.4,0.7) and § = (0.3,0.4,0.5) are both solutions of Problem
4.2. Thus the optimal solution x of Problem 4.2 should satisfy x < 3§ and x < g
which itmplies © = a. This is not possible as vector a is not increasing and conver
(ag—ag =0.1 <0.3:a2—a1).

Some heuristics for Problem 4.2 will be given in §4.2.

4.1. Basic algorithm. We will present here an algorithm to construct an <;.,-
monotone bounding matrix for a given transition matrix P. If we suppose that
we know the last n — j columns of the bounding matrix @, then the sufficient and
necessary conditions on column j are given by the following proposition.

PROPOSITION 4.4. Let us suppose that we have already computed the columns n
toj+ 1,1 < j <n of matriz Q, satisfying conditions (4.2), (4.3) and (4.4). If we
fix the last n — j already computed columns of Q, then f. ;(Q) must be a solution of
Problem 4.2 with vectors a and b such that

(4.5) a; = max(f; ;(P), fi,ji+1(Q) + si,j+1(Q)), bi = fi j+1(Q) + 1,Vi.

Problem 4.2 with the above vectors a and b always has a solution. Furthermore, each
solution of Problem 4.2 with the above vectors a and b can be taken as f. ;(Q).

Proof. We will first show that Problem 4.2 with vectors a and b given by (4.5)
always has a solution. Notice that vector b given by (4.5) is increasing and convex
by the hypothesis of the proposition (condition (4.3)). Therefore, if a < b, Problem
4.2 always has at least one trivial solution b. By the hypothesis of the proposition we
have f; j+1(P) < fi.j+1(Q) (condition (4.2)) and s; j+1(Q) < 1 (condition (4.4)), so
fii(P) = fij+1(P) +5i;(P) < fij+1(Q) + 1 = b;, Vi and fi j11(Q) + 5ij+1(Q) <
b;,Vi. Thus a < b.

Let z be now any solution of Problem 4.2 with vectors a and b given by (4.5),
and let us take this solution as vector f. ;(Q). We will show that f. ;(Q) satisfies the
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conditions (4.2), (4.3) and (4.4). In other words, that any solution of Problem 4.2 with
vectors a and b given by (4.5) can be taken as f, ;(Q). Condition (4.3) follows directly
from the fact that any solution of Problem 4.2 is increasing and convex. Condition
(4.2) follows from f, ;(Q) > a. It remains us to show that s; j+1(Q) < 5;,(Q) < 1,Vi.
We know that f. ;(Q) > a, thus

$:,5(Q) = fi,;(Q) — fij+1(Q) = 5i,;+1(Q), Vi.

On the other hand, f.;(Q) < b implies s;;(Q) < 1,Vi. Therefore, any solution of
Problem 4.2 with vectors a and b given by (4.5) can be taken as f. ;(Q).

Finally, we will show that this is also a necessary condition for f. ;(Q). Let us
suppose that f. ;(Q) satisfies conditions (4.2), (4.3) and (4.4). Condition (4.2) implies
1i;(Q) > fi;(P), Vi, and condition (4.4) implies s; ;(Q) < s;.;+1(Q), Vi. We have

fij(Q) = fij+1(Q) +5i;(Q) < fij+1(Q) + 5i,j+1(Q), Vi.

Thus, f.;(Q) > a. On the other hand, (4.4) implies s; ;(Q) < 1,Vi which gives
fi;(Q) = fij+1(Q) + s ;(Q) < b;,Vi. Finally, (4.3) implies that f. ;(Q) is increasing
and convex. Therefore, f. ;(Q) is a solution of Problem 4.2 with vectors a and b given
by (4.5). d
Proposition 4.4 allows us to build the bounding matrix @ decreasingly by columns.
As there is generally no optimal <;.,.-monotone upper bounding matrix (see Example
4.3), we prefer to give first the general algorithm. Algorithm 4.5 computes an <.~
monotone upper bounding matrix @ for an arbitrary finite transition matrix P. We
reduce the problem of computing an =;.,-monotone upper bound to Problem 4.2.
Then, in §4.2 we present some heuristics to solve Problem 4.2.
ALGORITHM 4.5. Let P be an arbitrary transition matriz of size n. An <icq-
monotone upper bound Q for matriz P can be obtained as follows:
1. Solve Problem 4.2 with a = Py, and b = 1. Let x,, denote the obtained
solution. Set Gu.n = $x.n(Q) = fun(Q) = xn.
2. For each j=n—1 to 2:
Solve Problem 4.2 with vectors a and b as in Proposition 4.4, i.e.

a; = max(f; ;j(P), fij+1(Q) + 5ij+1(Q)), bi = fij+1(Q) + 1, Vi.

Denote the solution by x;.
Set fi;(Q) = x;, $i;(Q) = [i,;(Q) — fi;+1(Q), Qi = 5i;(Q) — si,j+1(Q).
3. fin1(Q) = fi2(Q)+1, 5i1(Q) =1, i1 =1—5,2(Q).

THEOREM 4.6. Matriz Q obtained by Algorithm 4.5 is an =;c,-monotone matriz
such that P <. Q.

Proof. Follows directly from definition of Problem 4.2 and from Proposition 4.4
by induction on j. d

Notice that Theorem 4.6 does not depend on how Problem 4.2 is solved in Algo-
rithm 4.5.

4.2. Solving Problem 4.2. Let us remark first that in all the n — 1 instances
of Problem 4.2 in Algorithm 4.5, the vector b is increasing and convex. In this case,
Problem 4.2 always has a trivial solution z = b. We remind that we are interested
in finding an increasing and convex vector x that is as close as possible to the vector
a. In terms of Algorithm 4.5, this corresponds to the local optimization for a current
column. Recall that, generally, a global optimal <;.,-monotone upper bounding ma-
trix does not exist (Example 4.3). Additionally, we need solutions that can be easily
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computed. More precisely, we will consider here only the algorithmic constructions
with complexity of O(n) for Problem 4.2.

Vector a does not need to be increasing or convex. However, as we have a < b,
and b is an increasing vector, we know that r(a) < b, where r(a) denotes the vector
of local maxima of vector a,

r(a); = maxa.
k<i

In the following, we will suppose that the vector a is increasing. If this is not the case,
we can simply take r(a) instead of a. Notice that r(a) can be easily computed as

r(a); = a1, r(a); = max(r(a);_1,a;), i > 1.

Therefore, we will only consider Problem 4.2 with an increasing vector a, and an
increasing and convex vector b.

Furthermore, we will distinguish a special case where the vector b is a constant
vector. We will show that the general case, where vector b is an arbitrary increasing
and convex vector, can be reduced to this special case.

PROPOSITION 4.7. Let a and b be two increasing vectors such that a < b. Let the
vector b be additionally convex. Denote by 0 the maximal distance between a and b,
and let d be the vector with all the entries equal to §,

0= 121%)%{()1 —a;}, d=(d,...,9).
If y is a solution of Problem 4.2 with vectors a+d—0b and d, thenx=y+b—d is a
solution of Problem 4.2 with vectors a and b.

Proof. Both b and y are increasing and convex vectors, thus x is increasing and
convex. Asa+d—b<y<d,wehavea <z <b. a

In the following we present some heuristics for Problem 4.2, far from being ex-
haustive. We remind that we focus only on linear time complexity algorithms.

We have the following constraints:

1. a; < < by,
2. wp < w1, T 2> 221 — Ti—2, Vi > 3,
where a and b are increasing vectors and b is additionally convex.

Forward computation. The very simple idea is to order the above inequalities
increasingly in row index and to take equalities instead of inequalities. We obtain

T = a,
T2 = a2,
€Tr; = max{Qxi_l — Ti—2, ai}, Vi Z 3.

However, this can yield 2 £ b. For example, for a = (0.1,0.5,0.5,0.7) and b =
(1,1,1,1), we obtain z = (0.1,0.5,0.9,1.3). We can notice that we cannot guarantee
that vector z will be a solution of Problem 4.2 even in the special case when b is a
constant vector.

Backward computation. If we use the same basic idea as above, but we com-
pute the entries in decreasing order, in the case of a constant vector b, x is a solution
of Problem 4.2.

Ty = An,
(46) Tp—1 = An—1,
x; = max{2w;41 — Tiyo, a;}, Vi <n—2.
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PROPOSITION 4.8. Let a be an increasing vector and let b = (8,...,0) be a
constant vector such that a < b. Then vector x computed by backward computation
(4.6) is a solution of Problem 4.2, i.e. x is an increasing and convex vector such that
a<xz<hb.

Proof. © > a and z is convex are trivial. It remains us to show that z; < z;41,Vi <
n. Then we have z; < z, = a,, < 3, so = is an increasing convex vector such that
a <z <b. We will show that z; < z;41,Vi < n by induction on ¢. For i =n — 1, we
have z,, = a, > ap—1 = n—1. Let us suppose now that z; < xp4+1,Vk,i < k < n.
Then7 Ti41 — Xy = Tj41 — max{2xi+1 — Xj42, ai} = min{a:i_,_g — Ti41, Ti+1 — ai} Z 0,
since ;41 > a;4+1 > a;. Thus, z; < x4, Vi < n. a

Notice that, if there are 7 and j such that ¢ < j and a; = a;, then backward
computation yields ar = a; for all k < j.

ExAMPLE 4.9. For vectors a = (0,0,0.2,0.2,0.45,0.6,0.6,0.9) and b = 1, the
solution of Problem 4.2 obtained by backward computation is x = (0.6,0.6,0.6,0.6,
0.6, 0.6,0.6,0.9).

To avoid this problem, we propose the following heuristic for Problem 4.2.

Modified backward computation. We suppose that a is not convex (other-
wise, take simply = = a). Particularly, a is not a constant vector. Let us denote by
{i1 > 1,...,is} indices for which vector a strictly increases, i.e.

for allj < 8,04 < Ay, and ap = Qi , ij <k< ij+1,

ap =i, k> 1s.

ALGORITHM 4.10 (Modified backward computation).
1. Ifis =n, then , = a,, ds =1,
else,

Tp = by — 0§, where 0 < § < b, — a,,.
d _ Tnpn—Qg
s = Tp—i,

Tp =xn — (n—k)ds, is <k <n.

2. Fort=s—1to1,
. Tiyp, —Qiy
dy :mm{dHl,ﬁ},
Tk = Tiyyy — (it+1 — k)dt, 1 < k< it+1.
3. Computation of entries xp, 1 < k <iy:
d «— dl,
. = —d
Fork:zl—l,...71,{ g = max{ i) a1}
d— Tpy1 — Tk

PROPOSITION 4.11. Let a be an increasing vector and let b = (3,...,0) be
a constant vector such that a < b. Then vector x computed by Algorithm 4.10 is a
solution of Problem 4.2, i.e. x is an increasing and convex vector such that a < x < b.

Proof. We will first show that a < x < b. For z,, either i; =n and x,, = a;, = an,
or x, = 8 —9, where 0 <6 < 3 —a;, = — an. Therefore, a, <z, < . If iy < n,
then for xy, is < k < n, we have xp =z, — (n — k)ds < x,, as ds > 0. On the other
hand,

n—=k
—(zn —ai,) = a;, = ax.
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Thus, ar < 2, < z, < 3, s < k < n. Similarly, by induction on ¢, we can show
that d; > 0, for each ¢ such that 1 <t < s —1. Thus, 2 < x;,,,, 7y < k <i441. By
induction on t, xx < 8, k > i1. On the other hand,

Gyl —k(

T =Ty, — (g1 — k)dy > x4, — Tiy — Qi) > iy 2> Ak, By <k <dgyr.

Tt+1 — U
Thus, ar, < xx < 8, k > 1. For k < i1, using the same arguments as in the proof of
Proposition 4.8, it can be easily shown that a; = ax <z < x5, < 3.

It remains us to show that vector = is increasing and convex. It can be easily
seen that 0 < dy < ... < ds. We have zp41 —x = dy, i < k < t441. Thus,
Tkl — Tk < Thyo — Tht1, 11 < k < n. Using the same arguments as in the proof
of Proposition 4.8, it can be shown that zyy1 — xx < xpyo — Ti41,k < i1, and that
x9 > x1. Therefore, vector x is increasing and convex. O

EXAMPLE 4.12. For vectors a and b from Example 4.9, the solution of Problem
4.2, obtained by modified backward computation is vector x given below:

z = (0,0.075,0.2,0.325,0.45, 0.6, 0.75, 0.9).

Remark that heuristics we presented here do not use the fact that b is a convex
vector. Therefore, it is not surprising that we can actually guarantee that they always
yield a solution for Problem 4.2 only in the case of a constant vector b. Heuristics that
guarantee the solution in the case when b is an arbitrary increasing and convex vector
should exploit the fact that we can start with an initial solution. This can be either b,
or a solution obtained by means of simple heuristics described above and Proposition
4.7. Describing those heuristics is not in the scope of this paper. However, notice
that, if we know a solution = of Problem 4.2, then it can be locally improved in the
following way. Suppose &; = x; — €, &; = x;, j # i. Then,

e <min{z; — a;, & — &1, % — 201 + Ti—2, T — 2Tip1 + Tigo )

For i =n — 1,n, we have € < min{z; — a;,x; — -1, T; — 2x;—1 + x;—2, }, for i = 2,
e < min{ze —ag, xo —x1, 22— 223+ x4}, and for i = 1, e < min{x; —ay, 1 — 229+ 23}
This local improvement is interesting only for the entries of a solution x where the
slope changes, i.e. where

Ti1 — Ti—2 < Ty — Ti—1 and i1 — 2 < Tigo — Tig1-

However, this idea can be generalized to take into account the intervals of constant
slope.

4.3. Example. We will illustrate Algorithm 4.5 on a small matrix P.

0.2 0 04 04 0
01 05 02 01 01
P=] 025 025 0 0.3 0.2
02 0.1 0 0.3 04
0.1 0 035 0 0.55

We will denote by 2! the transposed vector of z. If we use the backward computation
algorithm for the last column, we obtain (Q.5)" = (0,0.1,0.25,0.4,0.55). Let us
consider now column 4. We have

a = (max(fis(P), fe5(Q) +5.5Q))" = (04,0.3,0.7,1.1,1.1),
b = (fos5(Q)+1) (1.0,1.1,1.25,1.4,1.55).
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Thus, in order to compute column 4, we have to solve Problem 4.2 with vectors
r(a) = (0.4,0.4,0.7,1.1,1.1) and b. Note that our vector b is not a constant vector,
so Proposition 4.8 does not apply. Indeed, the backward computation yields x =
(1.1,1.1,1.1,1.1,1.1) £ b so z is not a solution. By means of Proposition 4.7, we have
6= maxlgign{bi—ai} = 0.77 d= (07, ey 0.7), and a+d—b= (0.1, 0, 0.15, 0.4, 025)
Thus, using backward computation for Problem 4.2 with vectors a +d — b and d, we
have y = (0.4,0.4,0.4,0.4,0.4), and

(fea(@)' =y +b—d=(0.7,0.8,0951.1,1.25).

For column 3 we have

a = (max(fus(P), fea(Q)+ 5.4(Q)))
b = (fus(Q)+1)

(1.4,1.5,1.65,1.8,2.0),
(1.7,1.8,1.95,2.1,2.25).

We can notice that a is increasing and convex. Thus, we can take
(f«3(Q)) = a=(1.4,1.5,1.65,1.8,2.0).
Finally, for column 2 we have

a = (max(fr2(P), f+3(Q) + 5.3(Q))) = (2.1,2.2,2.35,2.6,2.9),

which is increasing and convex. Thus, f.2(Q)) = a'. The bounding matrix Q is

given below. The matrix Q' is obtained by Algorithm 4.5 and modified backward
computation.

0.3 0 0 0.7 0 02 01 02 05 0
0.3 0 0 06 0.1 03 01 0 05 01
Q= 0.3 0 0 0.45 0.25 Q=] 025 01 0 04 025
0.2 0.1 0 03 04 02 01 0 03 04
0.1 0.15 0.05 0.15 0.55 015 01 0 02 0.55

The steady-state distributions are respectively

mp = (0.1663,0.1390,0.1982,0.1998,0.2966),
TQ = (0.1955,0.0872,0.0172,0.3553, 0.3447),

TQ = (0.1951,0.1000, 0.0390, 0.3293, 0.3366).

with expectations E(mp) = 3.3213, E(wQ) = 3.5665, and E(TK’Q/) = 3.5122. Notice
that <s-monotone upper bound obtained by Vincent’s algorithm [1] is given by

02 0 04 04 0
01 01 04 03 01
R = 01 01 03 03 02
01 01 01 03 04
01 0 02 015 0.55

with mp = (0.1111,0.0544, 0.2302, 0.2594,0.3449) and E(r ) = 3.6726. We can no-
tice that, for this example, E (ﬂ'Q/) < E(ﬂ'Q) < E(m ). Numerical experimentations

have shown that this is not always the case.
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5. Applications. We will not develop here a complete algorithm to reduce the
state space or the complexity of numerical resolution such as the algorithms presented
in [15] for the <4 order. Indeed, the < -ordering constraints are consistent with
ordinary lumpability [28] and with some matrix structures which allow a simpler
resolution technique [16]. Clearly, it is more complex to build a monotone upper bound
matrix for the =<;., order. Thus, it is difficult to generalize the various algorithms
presented in [16] which design in only one step a monotone bound simpler to solve.

Instead, we advocate a two step approach to design =<;., lumpable bounds. In
the first step we obtain using one of the algorithms described in Section 4 an =<;.,-
monotone upper bound B of matrix A. Then we use a simpler algorithm to design
a lumpable <., bound (say C) of B. C is not monotone (it may be but it is not
enforced by the method). This is a direct consequence of Theorem 2.6. We do not
detail here how we can build a lumpable upper bound. Instead, we present two
applications. The first one consists in the worst case analysis of models which are
not completely specified, while the second one is related to a more traditional use of
bounds to reduce the complexity of numerical computation. Formally, in both cases
we are interested in finding < and <;.,; bounds in a family of distributions.

5.1. Worst case arrivals in a Batch/D/1/N queue. We consider a queue
with a single server, finite capacity N, batch arrivals and deterministic service. Let
A = (ao,...,ar) denote the distribution of the batch arrivals. We assume that we
only know the average batch size « = E(A). Note that the average batch size is
closely related to the load which is quite simple to measure. Assume that N >> K
and a < 1. The exact values of a; (0 < ¢ < K) are unknown. A natural question
when we analyze the average queue size of such a system is to find the worst batch
distribution. We also describe the model by the set of possible nonzero transitions.
Obviously, we know the abstract transition matrix of the Markov chain:

a a1 - ax 0 o0
a ai - ax 0 -~ 0
0 ao a1 aK 0
P =
0 0 ao ai aK
0 0 ao Zfilai

Let F, be the family of all distributions on the space £ = {0, ---,n} having the
same mean «. In the two following properties, we study the existence of a maximal
element in the set F,.

PROPERTY 5.1. (See [26, Theorem 2.A.9]) The worst case distribution in the

n—o

sense of the Xic, order is given by q = (%=2,0,...,0,%), i.c.

qefa and pjichanej:a-

The non existence of the =g bound in the same set (next property) is simply
related to the fact that if Y < X and E(X) = E(Y) then X and Y have the same
distribution.

PROPERTY 5.2. For the <4 order, there is no distribution r satisfying:

reF. and p=gr, Vp e F,
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We proceed in the following way to obtain matrix B which is an <;.,-monotone
upper bounding matrix for P:

(i) First, we obtain an upper bound @ which is not =<;.,-monotone. We apply
Proposition 5.1 at each row to construct matrix Q. For the sake of brevity, we cannot
detail the whole process here (see [9] for a complete derivation). Note that we must
adapt Property 5.1 because the pattern of nonzero transitions changes at every row.
For rows ¢ < N — K + 1, the probability mass is concentrated in transitions to states
i—1and i—14 K. Then the bounding distribution is ¢ = (B, 0,...,0,b) where b = %
and b =1 — b. For the other rows the probability mass is concentrated in transitions
to states ¢ — 1 and N. When i > N — K42, Q;,-1 = 1 —b; and Q; n = b; with
bi = v T
Matrix @ is not =<;.,-monotone. Indeed the last row is not convex. We can see that
QN-rk,N =0, QN-K+1,N = %, and QN_K+42,N = % Moreover, it is not sufficient
to make the last row convex.

(if) We now apply the polynomial transform ¢5(Q) = 6Q + (1 — §)Id, where Id
is the identity matrix. This transform does not change the steady-state distribution
and it is known to increase the accuracy of the <, bounds when it is used as a
preprocessing [12]. Here it allows to move some probability mass to the diagonal
elements.

(iii) Then we apply the forward algorithm to the last row of the transformed
matrix, t5(Q).

(iv) Finally we change some diagonal and sub-diagonal elements to make the
matrix =<;.,-monotone and we obtain matrix B:

Boo =1—6b Bo.ix = b
i=1,-- N—K+1:

B— Biﬁifl = 5(1 —b) Bi,i =1-94 Bi,H*K*l = b
i=N-K+2,---,N—1:
Bi,i—l = f Bi,i =€ Bi,N = 6b(Z—N+K)
BN,N—l 26(1—m) BN,N: 1—5+5m

where

e:1_6+5m_5m(i—N+K)(N—i+l)

and f=1—e—3b(i— N+ K).

K
Let U be the maximum value of w We have proved in [9] the following
property:
PROPERTY 5.3. If 6 < —L— then matriz B is irreducible and stochastic. Fur-

1+mU
thermore, B is =;..-monotone and provides an upper bound of the steady state dis-

tribution of P.

Matrix B has the same structure as ¢5(Q) and its stationary distribution can
be easily computed using an elimination algorithm. This matrix provides an upper
bound for the distribution of the population in the queue.

5.2. Absorption time. Several high level modeling approaches combine a hi-
erarchy of submodels. For instance, PEPA nets [17] are based on Petri nets and the
descriptions of places and transitions use PEPA, a Stochastic Process Algebra. This
is an explicit two level model. For Stochastic Automata Network the hierarchy is im-
plicit [27]: the automata describe local transitions and the interaction between them
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is modeled by synchronized transitions and functions which are carried by the labeled
transitions. This hierarchy is appealing to model complex structures but it is not
always useful to solve the model because the classical technique considers the global
state space. Note that even if we represent the transition matrix by a tensor repre-
sentation [27], we consider the global state space during the resolution process. So
we want to develop new methods which can use the submodels during the resolution
and combine them in an efficient way. Here we present an application of <;., bounds
when the model of the low level is an absorbing Markov chain while the first level of
the hierarchy exhibits some structural properties.

We just introduce the approach which will be developed in a sequel paper. We
assume here that the high level formalism is a precedence graph but the approach
can be easily generalized to other formalisms. There are n nodes representing tasks
to complete according to the synchronization constraints defined by the arcs of the
precedence graph. Each task is modeled by a DTMC with one absorbing state and
the service time (holding time) of task 4, d; is the the absorption time of this Markov
chain. We assume that the precedence graph has an unique input node (1) and an
unique end node (n). The overall completion time is defined as the duration between
the beginning of node 1 and the termination of node n. We are interested in computing
the distribution of the completion time for the underlying graph. Note that if a return
arc from the end node to the beginning node is added, similar techniques can be used
to compute the distribution of the cycle time or the throughput of the system.

The service time of each node follows indeed a discrete PHase type (PH) distribu-
tion. A discrete PH distribution is defined by the initial distribution (say 7) and the
transition probability matrix ). Let X be the absorption time of the corresponding
chain when the initial distribution is 7. Without loss of generality we assume that
there exists only one absorbing state which is the last one. We also assume that the
initial distribution 7 is (1,0,...,0). Indeed, a general distribution can be considered
by adding an extra state at the beginning. The global description of the model is
Markovian but the state space is huge. Typically we must consider a subset of the
product of all the PH distributions for task service times. The main idea here con-
sists in the reduction of the complexity of a PH distribution taking into account the
properties of both levels in the model.

It is known that precedence graphs exhibit (max,+) linear equations for their
sequence of daters (i.e. the triggering instant of a transition) [2]. Let ¢; be the
completion time of node 4, and P(i) be the set of predecessors of ¢ in the precedence
graph. Since node i is trigged (executed) as soon as all its predecessors have been
completed, its completion time is defined as follows:

t; = d; + max t;
JEP(i)

Thus we obtain linear equations with two operators: the addition and the maximum.
Remark that in the case t; = di, the overall completion time is ¢,. Such linear
(max,+) equations have been extensively studied as they allow new types of analytical
or numerical methods which are not based on exponential delays or embedded Markov
chains. They also allow an important reduction of complexity for Markovian models.

A fundamental property of increasing convex ordering is the compatibility with
these operators. Thus if we can build upper bounds on service times of nodes, we
obtain upper bounds on the node completion times, so an upper bound on the com-
pletion time of the global system. Note that service times of nodes are supposed to
be independent.
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PROPERTY 5.4. If for some i, d; =g m (res. d; =jce m), then t, =g b, (res.
tn =icx fn), where t, denotes the completion time of node n in the system where d;
has been replaced by m.

In our application example, we aim to bound PH type service times of nodes. Let
us first define a family of random variables related to a well known set in reliability
modeling [3].

DEFINITION 5.5 (Discrete New Better than Used (in Expectation) (DNBU(E))).
Let X; be an integer valued random wvariable modeling the residual time of X, given
that X > t, i.e. X, =[X —t|X > t]. X is said to be [19]:

(i) DNBUE if E(X;) < E(X) for all t integer,
(i) DNBU if Xy =5t X for all t integer.
Notice that DNBU = DNBUE.

The main result we use is the <;.,-comparison for any DNBUE random variable
with a geometric one.

PROPERTY 5.6. [19] If X is DNBUE of mean m, then X is smaller in the <;cy
sense than a geometric distributed random variable of mean m.

Since we only need a one state model to generate a geometric distribution, if we
can bound the low level model (PH distributions for service times of nodes) by a
DNBUE distribution, the global state space would be largely reduced.

Of course a PH distribution is not in general DNBUE. However it is simple to
bound some set of PH distributions by DNBUE ones. We show in the sequel how
DNBUE bounds can be constructed for acyclic PH distributions. These distributions
have received considerable attention as they are sufficient to approximate general
distributions (see [6] for the theory and a fitting algorithm). The following property
is a direct consequence of the memoryless property of the geometric distribution.

PROPERTY 5.7. A sum of independent but not necessarily identically distributed
geometric distributions is DNBUE. Remark that this distribution is the uniformization
of a hypoexponential distribution.

PROPERTY 5.8. An arbitrary acyclic discrete PH distribution is upper bounded in
the <4 sense by a PH distribution defined as a sum of independent but not necessarily
identically distributed geometric distributions.

Recall that <s-comparison implies <;.,-comparison. Thus, this property can be
combined with Properties 5.6 and 5.7 to derive an upper bound for an acyclic PH
distribution. Let us now illustrate how we can algorithmically construct this upper
bound. Suppose that the acyclic PH distribution X is given by its upper triangular
transition matrix denoted by P. We only need to find a lower bounding (in the <; or
=iex Sense) matrix @ which has nonzero entries only on the diagonal and first upper
diagonal. Note that a matrix of this form is always <4 and <;.,-monotone. Let us
denote the corresponding PH distribution by Y. Then X < Y follows directly from
Proposition 2.9.

It can be easily shown that the greatest lower bound of the above form for matrix
P in the <4 (res. =<;.,) sense is the matrix A (res. B), where

(5.1) Aiiv1 = siit1(P) = Z Pij, Biit1 =min(f;;11(P),1), Vi.
j=itl

Note that for each matrix P we obtain A <, B, since $; ;+1(P) < min(f; i+1(P),1)
(see (4.1)). Thus, in this simple case the <., order provides better bounds.
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Let us now illustrate this on a small numerical example. Let P be the matrix of
an acyclic PH distribution X,

0.3 05 0.2
P = 0 03 07
0 0 1

Then the matrices A and B given by (5.1) are as follows:

03 0.7 O 01 09 O
A= 0 03 07 |, B= 0 03 07 |.
( 0o 0 1 ) ( 0o 0 1 )

Let Y and Z denote PH distributions (starting at state 1) corresponding to A and B.
We have E(X) = 2.449, E(Y) = 2.857, and E(Z) = 2.540. Clearly, the <4 bound
(A) is less accurate than the =<;.;, bound (B). Furthermore, from Property 5.6 it
follows that X <;., Geom(p), where 1/p = E(Z) = 2.540.

We can also easily check if an arbitrary PH distribution (starting at state 1) is
DNBUE. The following property provides only a sufficient condition.

PROPERTY 5.9. Let a;,i =1,...,n— 1 denote the mean residual time X; of PH

distribution X (with transition matriz P ), given that X, = i. Suppose that P; ; < 1,Vi.
Then a; can be found by solving the linear system:

1
a; = 1—R,i(1+;Pi’jaj)'
J#i

If a1 > max;>1 a;, then X (starting at 1) is DNBUE.

Finally, we can use the following property to build an <g-lower bound that is
DNBUE for an arbitrary PH distribution and combine this result with Property 5.6
in order to reduce the state space of our model.

PROPERTY 5.10. An arbitrary PH distribution starting at state 1 with the tran-
sition matriz that is =g or Xjex-monotone is DNBU (and, consequently, DNBUE).
The proof of this property uses similar arguments as the proof of Proposition 2.9.

6. Conclusion. The stochastic comparison has been largely applied in different
areas of applied probability. Recently, algorithmic stochastic comparison in the sense
of the < order has been developed for Markovian analysis. In this paper, we have
considered theoretical and algorithmic issues of the <;., order. We hope that these
will open new horizons for Markov chain analysis approaches. Our aim was not to
compare =;., bounds with <4 bounds. We found that it is generally not possible to
stochastically compare the distributions obtained by both methods. We will see in the
future which approach, if any, is the more accurate and we will develop the complexity
issues about these new algorithms, especially for sparse matrices. We presented some
applications for the worst case analysis which is an important issue in performance
evaluation when the complete specification of the underlying model is unknown.
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