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Abstract

We analyze the effect of a few fiber delay loops on the
number of deflections in an all optical packet switch. The
switch is based on the ROMEO architecture developed by
Alcatel. We use deflection routing because of the lack of
optical memory. Some fiber delay loops allow the packets
to be locally deflected instead of being sent on the network
for much longer delays. As the model is numerically dif-
ficult, we apply stochastic bounds. First, we consider a
partial ordering on the state space and we prove that the
problem is monotone. Then we present a new method which
strongly relies on this property. Note that this method is
quite general as partial order monotone multicomponent
systems are quite frequent in performance evaluation. The
upper bounds are computed using robust numerical algo-
rithms on a smaller state space. We also show how we can
compute lower bounds to check the accuracy of the method.

1 Introduction

Recent technology advancements in optical packet
switching [7, 9] give rise to an increasing need for per-
formance evaluation methodologies. Semiconductor Op-
tical Amplifiers achieve reconfiguration time in the order
of a few nanoseconds or even a few hundred picoseconds
[7]. These improvements allow to design in the near fu-
ture switches based on Optical Packets rather than Optical
Bursts. For instance, the ROM project [9] promoted by Al-
catel has proved the feasibility of the optical components
and the electronic control plane for an all optical packet
core network. However, some performance issues are still
crucial before one can completely design such switches.
One of the major problems is related to routing without the
buffers which are necessary for the store and forward prin-
ciple. Here we assume that the switch is synchronous and
that the packets have a constant size. Even if it is not com-
pletely true that the arrivals are synchronous, the technology
to synchronize was shown to be available and the choice of

a constant size packet offers many advantages (see the con-
clusions of the ROM project [9]).

Deflection routing is an attractive routing strategy for
Optical Packet Switching networks since it does not rely
on optical buffering of packets [2]. However, with deflec-
tion routing, a packet can stay in the optical network for an
arbitrary long time due to the large number of deflection it
experiences. In Shortest-Path Deflection Routing, switches
attempt to forward packets along a shortest hop path to their
destinations. Each link can send a finite number of packets
per time-slot (the link capacity). Incoming packets have to
be sent immediately to their next switch along the path. If
the number of packets which require a link is larger than the
link capacity, only some of them will use the link they ask
for, and the others have to be misdirected or deflected and
they will travel on longer paths.

Using simulations it has been shown that the average
number of deflections is not that large but a significant frac-
tion of the number of packets is heavily deflected when
the traffic is unbalanced and the link capacity is small [3].
These packets constitute a real problem: they are never
physically lost due to physical errors or buffer congestion
but they can be logically lost because the transport delay is
larger than the timeouts. As optical packets are very long
and contain a lot of TCP packets, the loss of an optical
packet will provoke a lot of TCP session slow starts. Thus,
it is quite important to have the smallest transport time and
the smallest deflection probability.

When the number of wavelengths per link is high, one
can observe that the probability of deflection becomes
smaller. But this is usually not sufficient to avoid long de-
lays. Adding a few Fiber Delay Loops (FDLs in the follow-
ing) will help to reduce the effect of a deflection. If a packet
must be deflected, we send it in this loop instead of sending
it in a wrong direction and it will be inputted again into the
switch at the end of the loop. The FDLs have the length
equivalent to an integer multiple of the time slot. When the
packet comes back into the switch, it will compete with the
other deflected packets, and with the transit packets and the
fresh packets which have just entered. Using fiber delay



loops is sometimes denoted as local deflection. The deflec-
tion probability is not much modified by the loop, but the
effect of a deflection is now significantly less important. In-
deed, a local deflection only takes a few time slots (i.e. the
length of the loop), while a real deflection will add at least
one propagation delay. Remember that in a core network
the propagation delay due to the link lengths is quite impor-
tant (typically tens of time slots).

Previous analytical studies of deflection algorithms and
networks [5, 1] have proposed models for networks based
on ����� switching blocks without FDLs. However, these
models have a too simplified model for a switch and they do
not consider the effect of FDLs to allow local deflections.

Another type of approach was recently proposed [12] to
analyze the FDLs. However, the authors assume that the
switch has an infinite number of FDLs and each loop has
a different length. Clearly this assumption implies that the
switch has an infinite bandwidth. If the number of FDLs
becomes large, this approximation may be valid. But real
switches do not have such a large bandwidth to provide for
loops. For instance, the switch architecture developed with
Alcatel (the ROMEO core switch) has only a few FDLs for
packet recirculation and the infinite FDL assumption is not
acceptable.

We develop here a detailed model of a ROMEO switch
and we show how efficient the FDLs can be to avoid real de-
flections. Using some independence assumptions, we build
a Markov chain representation of the number of packets
in the loops. Unfortunately, this chain is numerically in-
tractable. Thus we use stochastic comparison to state that
these FDLs provide low real deflection probability.

Stochastic comparison of random variables has often
been presented as a powerful technique in various areas of
applied probability (see for instance the books by Stoyan
[11], and Shantikumar [13]). When models are too complex
to be solved efficiently, this method allows to study sim-
pler or smaller models with the guarantee that the results
are upper or lower bounds. The distributions or rewards
of the simpler model are greater or smaller than the results
of the original problem which remain unknown. Then we
can directly prove that Quality of Service requirements are
satisfied. Stochastic comparison of Markov Chains is also
possible. Sufficient conditions for the existence of stochas-
tic comparison of two time-homogeneous MCs are given
by the stochastic monotonicity and bounding properties of
their one step transition probability matrices [11]. An al-
gorithmic derivation of their stochastic bounds have been
introduced [6]. However, this theory is based on a total
ordering of the state space, while many problems that we
consider are based on a natural partial order. Of course, it
is possible to transform this partial order into a total one,
but this modification adds a lot of unnecessary constraints
making the bounds less accurate.

Quite often, we analyze Markov chains which are spec-
ified by several components and their composition rules.
These formalisms (for instance Stochastic Automata Net-
works, Queuing Networks or Stochastic Process Algebra)
generally lead to multidimensional Markov chains which
are clearly associated to partial order. Similarly, when the
problems involve rewards, we have a total order on the re-
wards but only a partial order on the states if several states
have the same rewards. In this paper we use the natural
partial order monotonicity of the model to build a bounding
system that is easy to analyze.

The remaining of the paper is organized as follows. In
Section 2 we present the architecture of the switch and the
routing. Then we state the model of the system. In Section
3 we show how to compare multicomponent systems whose
components are monotone. We also show that we can com-
pute upper and lower bounds and how we can check the ac-
curacy of the bound. Section 4 is devoted to the numerical
analysis of the bounds. We have also computed numerically
the deflection probability for a system without FDLs. We
show that one or two loops are sufficient to provide a very
low real deflection probability even at a very high load. Fi-
nally, in the conclusion, we stress that the approach is much
more general and can be applied to most systems which we
may define as partially ordered and monotone.

2 The model and its properties

We first describe the architecture of the switching nodes
promoted by the ROMEO project conducted by Alcatel (for
more details see [4]). The switch has � bidirectional links
(see Figure 1). Each of them uses � wavelengths. In the
usual configuration, � links are used for interconnection
of switches according to the core network topology. Two
links are connected to the edge network and are used for the
add and drop mechanism (the input and the output of pack-
ets). Finally, the Fiber Delay Loops use the last remaining
� links. Note that this long delay FDLs are different of the
small delay loops which are associated to all links. These
small loops allow to delay the optical payload while the op-
tical header of the packet is decoded and transferred into the
electronic control plane for routing.

Note that it is possible to exchange links between the set
of add and drop links and the set of FDLs. We study in this
paper configurations with � or � FDLs. The stochastic com-
parison result we prove in Section 3 does not require some
particular number of FDLs or some assumptions on their
lengths. For the sake of readability we will detail here only
rather simple 2 FDL configuration with a link of length �
and a link of length � . Similarly, when we consider a 1 FDL
configuration, we assume the FDL of length � . Numerical
results show that these simple configurations are sufficient
to obtain very low real deflection probability.
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Figure 1. Architecture of the ROMEO switch

In the following we assume that the number of traffic
links is � , that the number of add and drop links is � and
that the number of FDL links is � ( � or � ). Remember that
the link capacity is � . The packets have only one output
link required at each step. This link is computed based on
the destination and the current place of the packet. The list
of links constitute the route followed by a packet. We as-
sume that the packets are independent. The switching is
processed as follows:

1. The packets from core network enter the switch. Let���
be this random variable. The packets locally de-

flected in the former slots also enter the switch. Let� ��� � be this number of packets.

2. The packets which are now arrived at their destination
must leave. Let � � be the number of packets which
need to leave and 	 � the packets in transit which have
to be routed. As each packet routing decision is i.i.d.
with probability 
 to leave the switch, we have:

� ���
���� � ��� � ��� ��� 
�� � 	 � 
 � ��� � ��� ��� � ��� (1)

where ����� ��� � denotes the Binomial distribution.

3. But we only have ��� � output capacity. If � � exceeds
�!�"� , then some packets will be deflected because
we do not have enough bandwidth to leave the core
network. The number of packet to be deflected due to
this output bandwidth limitation is � � ��� �"�#�$�&%(' As
usual, )*% 
,+�-/.�� ) �10 � .

4. Then, new packets may enter. Denote the offered load
by 2 � . As the global bandwidth is � � � � � � and the
transit or deflected packets have higher priority, some
new packets may be blocked and do not enter the
switch. Let 3 � be the number of new packets which
really enter the switch, it is clearly the minimum be-
tween the offered load and the available bandwidth:

3 � 
4+6587 � 2 � � � � � � � � � 	 � � � � � � �9�:�$� % �;' (2)

5. We now have to route 	 �<� 3 � packets according to
their destinations. Let =?>� , . . . , =9@� be the partition of	 � � 3 � packets into � directions (i.e. the � outputs
of the switch connected to the core). Let

� > � 'A'A' � @ the
probability distribution for the routing. Again we as-
sume that the packets are independent. Thus,

� = >� � 'A'B' � = @� � �
DCE� 	 ��� 3 ���F� > � 'A'B' ��� @ � (3)

where CE�G� ��� > � 'A'A' ��� @ � denotes the Multinomial dis-
tribution.

6. Again each link has capacity � and some packets must
be deflected. Thus � =9H� � ���&% is the number of packets
deflected due to link I .

Clearly the number of deflected packets, JLK�M&� � is:

JLK*M&� � 
N� � � � �6�O�$� % � @P
HRQS>

� = H� � ��� % ' (4)

Local deflection is always preferred to real deflection and
we use the shortest FDL first. We now have to establish the
connection between the packets entering at time M after a lo-
cal deflection and the packets locally deflected in the past.
We only present here a simple 2 FDL configuration. The
general case is straightforward but it requires more nota-
tions. The first loop ( T9�VU > ) adds a delay of � time slot,
while the second loop ( T9�VUXW ) keeps the packets for two
time slots. Note that a Fiber Delay Loop is a constant delay.
When the packet is injected in the FDL of length � at timeM , it will enter again the switch � time slots later, even if we
have bandwidth available in the good direction at time M � � .
The output of this FDL at time M � � are exactly the packets
which enter the loop at time M . On the FDL of size � , we can
send another packet at time M � � on the same wavelength
we have used to send a packet at time M .

Let us denote by T � � the number of packets at time M inT9�VU > . Let T � � be the number of packets sent at time M inT9�VU<W . If the number of deflection is smaller than � , we
have only local deflections and they all use T9�YU > . If there
are more deflections, up to � packets are sent in T9�VU(W .
Finally, if we have more than � � deflected packets, they are
really deflected. Thus,Z[ \ T � � 
 +�587 � � � JLK�M&� � �T � � 
 +�587 � � � � JLK�M&� �S� ���&%]�^ � � 
 � JLK�M&� �:� � ���&% (5)

where
^ � � is the number of really deflected packets.

The locally deflected packets return to the switch after
one time slot if they are in T9�VU > or two time slots for
packets in T9�VU W . Therefore,

� ��� � %S> 
 T � � � T � �`_ > '
Thus if

���
and 2 � are i.i.d., and if the deflected packets

do not have memory we can model the system with an or-
der � Markov chain. As usual, we can obtain a Markov



chain adding a new component in the chain description:� T � ��� T � �1� T � �`_ > � . The reward is the number of real de-
flections

^ � . Remark that the lack of memory for deflected
packets is a key property to get the Markov property here.
Once they enter again in the switch the deflected packets
choose again if they try to leave or along which link they
try to route.

Remember that T � � is positive only when T � � is equal
to � . Thus the state space has size � � � � � � � � � � � when we
model the above described configuration with � loops. Typ-
ically the number of wavelengths is

� � or � � � . When we
consider systems with a larger number of FDLs or longer
FDLs the state space becomes much larger. It is possible to
perform some exact aggregation but the state space is still
too large to be handled efficiently. Indeed, the eigenvalues
are badly distributed and iterative algorithms do not con-
verge easily. So we use a stochastic comparison approach
to bound the number of really deflected packets

^ � by re-
wards computed on a smaller chain. This small chain is
solved by a direct method known for its accuracy (i.e. the
GTH algorithm [8]).

The system with only one delay loop is easily derived
from the former equations. The first set of equation describ-
ing the quantities involved in the routing is kept unchanged
while the FDL description is now simplified. The Markov
chain is much simpler as we only need to represent one
loop: T � � is sufficient. We have: T � � 
 +65R7S� � � JLK�M&� � � ,^ � � 
N� JLK�M&� �S� ���&% and

� ��� � %S> 
 T � � .
Note that the comparison theorem we state in the next

section is established for an arbitrary number of loops. We
do not need at this time assumptions about the arrival pro-
cess. The comparison results only assume independence
and identical distribution among the packets. This last as-
sumption is not necessary but it is quite natural ant it helps
to derive a simpler proof of our main result.

3 Stochastic Bounds for Monotone Multi-
component Systems

We now present the basic methodology we use to ob-
tain the comparison results. It is worthy to remark that this
method is more general and can be used to establish bounds
of rewards and distributions for a wide set of models which
exhibit some partial order monotonicity properties that we
will now define. In particular the theorem we proved does
not take into account the nature of traffic and the number of
links.

We will first define the strong stochastic order with re-
spect to the partial ordering on the state space. Then we will
introduce the monotonicity property for transition matri-
ces of homogeneous discrete time Markov chains (DTMC).
The monotonicity property together with the transition ma-
trix comparison (Definition 3) are sufficient conditions for

stochastic comparison of two DTMC (Theorem 1). More
details on stochastic orders and monotonicity properties on
partially ordered spaces can be found in [10, 11].

Definition 1 Let ��� ��� � be a partially ordered space and� and � two random variables on � . � is smaller than �
in a strong stochastic sense, � ��� � � if, provided that the
expectations exist,

	�
 � �G� �
��� 	�
 � � � �
� ��� � increasing function '
In the following, we will consider only a finite partially

ordered space � , and we will use interchangeably � � � � �
and ) � � ��� , where ) and

�
denote the probability distribu-

tion vectors of random variables � and � .
A subset =�� � is called an upper set if its indicator

function ��� is increasing. It follows that = is an upper set
if and only if )��$= and ) ��� imply

� � = . The following
characterization is often used as definition of

��� �
-order on

a partially ordered space � [13].

Proposition 1 � ��� � � if and only if � �G� � =9���
� � ��� =9� , for all upper sets =! � .

For example, let us consider the space ��
#" � � � �%$ � ��&
with the partial order defined by � � � � � and � �'$(� � .
Then ) � " ��& � " � � ��& � " $ � �*& � " � �+$ � �,& � � are all upper subsets
of � . If we consider the random variables � , � and -
with the following distribution vectors � 0 ' $ �10 ' � �10 ' � � 0 ' � � ,� 0 ' $ � 0 ' � �10 ' $ �10 ' $ � and � 0 ' � � 0 ' � �10 ' $ �10 ' � � , then we have� � � � - and � � � � - , but � and � are not comparable in
the

� � �
-sense since � �G� 
 ��� 
 0 ' �/.0� � � 
 � � 
 0 ' $

but � �G� � " � � ��& � 
 0 ' ��1 � � �2� " � � �*& � 
 0 ' � .
Let us now introduce the monotonicity property and the

comparison for transition matrices of homogeneous DTMC.

Definition 2 A transition matrix � of a homogeneous
DTMC " � � & �4365 is monotone if for all probability vectors) and

�
, ) ��� � � implies )6� �7� � � � .

The monotonicity property for a transition matrix of a
homogeneous DTMC simply states that if the distributions
at time M ( ) and

�
in the former definition) are ordered, the

relation is kept at time M � � . Of course the monotonic-
ity property strongly relies on the order considered. The
example below shows that a chain can be monotone for a
partial order and not monotone with a total order on the
state space. Let us denote � H98 : the row I of the transition
matrix � . We have the following characterization of

��� �
-

monotonicity (see [11]).

Proposition 2 Let " � � & �43;5 be a homogeneous DTMC with
a partially ordered state space �<� �=� � . The transition matrix
� of " � � & is

�7� �
-monotone if for all I �<> � � such thatI �?> , � H98 : � � � ��@ 8 : , i.e if ACBED � � H98 B �FAGBHD � ��@ 8 B for all

upper sets = .



Definition 3 For transition matrices � and � we say that
� � � � � if � H98 : � � � � H 8 : for all I � � , i.e if A BHD � � H 8 B �ACBHD � � H98 B for all upper sets = .

We give now the classical comparison theorem for two
homogeneous DTMC. The proof of this theorem can be
found in [11].

Theorem 1 Let �<� �=� � be a partially ordered space and let"B� � & and " � � & be two DTMC and � and � be their re-
spective transition matrices. If � 5 �7� � � 5 , at least one
transition matrix � or � is

��� �
-monotone and � ��� � � ,

then � � M � �7� � � � M � � ���������	�<M 1 0
. If � and � have

steady-state distributions 
�� and 
�
 , then 
�� �7� � 
�
 .

We will now show that the Markov chain of the FDL
based switch has a monotone transition matrix with respect
to a partial order that we will define. Then, by using Theo-
rem 1 we can design both upper and lower bounding chains
that are numerically easier to analyze. We illustrate this step
in the next section.

First, let us define the state space. Without loss of gen-
erality we can suppose that FDL links are indexed increas-
ingly in their length. Remember that the packets to be lo-
cally deflected are put to the shortest FDLs first. We sup-
pose that the number of loops is � and we denote by � H the
length of the FDL I , � � I � � . Let � be the maximal FDL
length ( � 
 ��� ).

Let us denote by T�� H 8 @��� 
 T�� H ��`_ @ %S> the number of packets
that entered T9�VU H at time M ��>9� � . Then the state space� can be given by the vector T � 
 � T � H98 @��� � >���H�� � 8 >�� @ �����
which describes the number of packets in each step of the
loops.

The state space � is rather simple. However, we do not
need all the information contained in vector T � . It is suffi-
cient to know the total number of packets in all FDLs that
will return to the switch after � slots, for each � . More for-
mally, let � � B �� be the total number of packets which have
already been locally deflected and that will return to the
switch after exactly � slots:

� � B �� 
 P
H�� ��� 3 B T � H98 ���

_ B %S> �� ��� � � ��� � �!� � (6)

We only take into account the packets which are already
present in some loops. Of course, the length of the loop
must be larger than � ; otherwise the packets will leave be-
fore � . For instance, for the � FDL system described in
Section 2 with � 
 $

, if the state is � T � > 8 > � 
 $ � T � W 8 > � 

� � T � W 8 W"� 
 � � , we have # packets leaving next slot � � > � 
$9� � 
 # and � packet already in the loops leaving after
two time slots � � W"� 
 T � W 8 > � 
 � . � � B � represents the con-
tribution of the past to the traffic entering the switch in �
slots.

Based on this property, we now define a function $ on� : for ) 
 � ) � H98 @�� � >���H�� � 8 >�� @ ����� � � , we define $ � )�� 
� $ � > � � )�� � 'B'A' � $ � � � � )�� � , where

$ � B � � )�� 
 P
H�� � � 3 B ) � H 8 ���

_ B %S> � �
� � � � �%� �%�"'
We can show that $ � )�� contains all the information

needed concerning the FDLs for the state ) . For a ran-
dom variable � and an event

�
, we will denote by


 �!& � �
a random variable that has as its distribution the conditional
distribution of � given

�
.

Lemma 1 For ) �+� � � such that $ � )�� 
 $ � � � ,

 � � � > �� %:> � 'A'A' � � � � �� %S> � & T � 
 )�� 
 
 � � � > �� %S> � 'A'B' � � � � �� %:> � & T � 
 � � '
Proof. Remember that we have supposed that FDL links are
indexed increasingly in their length and that the packets to
be locally deflected are put to the shortest FDL first. Thus
we have

T � H98 > �� %:> 
4+6587 � � � � JLK�M&� � %S> � � I � � ��� ��� � % � ' (7)

Remark also that for all I , T � H 8 @��� %S> 
 T � H98 @ _ > �� �
for all

> 1 � '
Thus, for all � ,

� � B �� %:> 
 P
H�� ��� 3 B T � H98 ���

_ B %S> �� %S>

 P

H�� � �(' B T � H98 ���
_ B %S> �� %S> � T � B 8 > �� %:>


 � � B %S> �� � T � B 8 > �� %S> ' (8)

The second term is a function of � � �;� � � %S> � 2 � %S> � . As��� %S> , 2 � %S> , and � � are mutually independent, it follows
that for ) � � � � , such that $ � )�� 
 $ � � � , 
 � � %:> & T � 
 )*� 

 � � %:> & T � 
 � � . )

Thus, we can aggregate all the states with the same value
of $ into one state. We will denote this smaller state space
by �+* . Notice that �,* can be seen as the image of function
$ defined on � . Thus, the state at instant M of our model is
fully described by the vector � � 
 � � � B �� � >�� B ��� '

We will denote by
�
: the usual product partial order on

the state space �,* :
� �"- � � * � � � : - if and only if � B � - B � ���.� �/�"' (9)

We give first some technical lemma and then state the
monotonicity result for the FDL model (Theorem 2). We re-
call that, on a product space endowed with the usual product
order, a function 0 is increasing if and only if it is increasing
in each variable.

Lemma 2 1. If - 
 � - > � 'B'A' � - B � �7� � - * 
� - *> � 'A'A' � - *B � then 0 � -�� � � � 0 � - * � for each increas-
ing function 02143 B65 3 @ .



2. If - > and -]W are independent random vectors of size � >
and � W , and - H � � � - *H � I 
 � � � , where - *> and - *W are
also independent, then 0 � - > � - W � �7� � 0 � - *> � - *W � for
each increasing function 021 3 B 5 3 @ , � 
 � > � � W .

The proof can be found in [13, 11].

Lemma 3 1.
� �G� �F� � is an increasing function of ran-

dom variable � .

2. � �G� �F� > � 'A'B' ��� @ � is an increasing function of random
variable � .

Proof. Follows from the fact that sum is an increasing func-
tion and that a Binomial distribution

� �G� �F� � can be seen as
number of success of � independent identically distributed
(i.i.d.) Bernoulli trials.

The statement for multinomial distribution uses similar
arguments. )
Lemma 4 For all M�� 0

, with respect to the usual product
order, JLK*M&� � is an increasing function of � � ��� � � ��� � 2 � � .
Proof. First, notice that � � and 	 � are both increasing
functions of � � ��� � � � � � . This follows directly from (1),

Lemma 3 and the fact that 	 � �
 �V� ��� � � ��� � � � � 
�� .
Thus, � � � � � �6�$�&% is also an increasing function of� � ��� ��� � � � as a composition of increasing functions. De-
note by

^ � 
N� � �S� �6�O� � % .
Let us now denote by � � the packets that will go to the

FDL links ( � links) or to the next switching node ( � links).
We have:

� � 
 ^ ��� 	 ��� 3 � '
Now, from (2) it follows that � � 
,+65R7S� ^ � � 	 � � 2 � � � � �� �A� ��� � thus � � is an increasing function of � � ��� � � ��� � 2 � � .

Finally, we will show that JLK�M&� � is an increasing func-
tion of � ^ � � � � � . Then, JLK�M&� � is an increasing function of� � ��� � � ��� � 2 � � as a composition of increasing functions.

Equation (4) can be written as:

JLK*M&� � 
 ^ � ��� � � � � ^ � � � (10)

where
� �G� � 
 A @H8QS> � = H� � ��� % and � =">� � 'B'A' � =9@� � �
CD��� ��� > � 'B'A' �F� @ � . Lemma 3 implies that

� �G� � is an in-
creasing function of � . Moreover, for � � ��� 0

, from the
properties of multinomial distribution, it follows easily that� ��� � �?� �
 � �G� � ��� � ��� '

Consider now � ^ >� � � >� �G� � ^ W� � � W� � and denote by
-�H� 
 �DH� � ^ H� � 0 � I 
 � � � . If -�>� �F- W� , then JLK�M&� >� �JLK*M&� W� follows trivially from (10) and the fact that

�
is in-

creasing. Finally, if - >� 1 - W� , denote by 	 � 
 -�>� � - W� .
Then, JLK�M&� W� 
 ^ W� �
� � - W� ��� ^ >� � 	 � ��� � - W� �
�^ >� ��� � 	 � � ��� � - W� � �
 JLK*M&� >� ' Thus, JLK�M&� � is an increas-
ing function of � ^ �;� � � � and, consequently, an increasing
function of � � ��� ��� � ��� 2 � � . )

Theorem 2 Let " � � & �43;5 and " 2 � & �4365 be two mutually in-
dependent i.i.d. processes modeling respectively the packets
from core network and the offered load of new packets. Un-
der the independence hypothesis of the packets, the Markov
chain of the FDL model has a monotone transition matrix in
the strong stochastic sense with respect to the partial order�
: on the state space �,* .

Proof. Let � �"- � �,* such that � ��� - . We need to show that


 � � %S> & � � 
 �H� �7� � 
 � � %:> & � � 
 - � (11)

with respect to the partial order
���

on �+* . Then, by Propo-
sition 2 it follows that the transition matrix of our model is�7� �

-monotone with respect to the partial order
���

. Recall
that (see (8)) � � B �� %S> 
 � � B %:> �� � T � B 8 > �� %S> �
� ��' From (7) it fol-

lows that T � B 8 > �� %S> is an increasing function of JLK�M&� � %S> . Now

from Lemma 4 and the fact that
� ��� � %S> 
 � � > �� it follows

that � � B �� %S> is an increasing function of � � �;� � � %S> � 2 � %S> � . As��� %S> , 2 � %:> , and � � are mutually independent, the theorem
follows now from Lemma 2. )

Let us remark that the proof of this theorem does not
use the fact that all the 2 � , and respectively

���
, are iden-

tically distributed. However, by taking 2 � i.i.d. and
� �

i.i.d., we assure the homogeneous property of our Markov
model. Theorem 2 remains valid even in the case of a non-
homogeneous Markov chain.

4 Numerical Results

We now add more assumptions to compute the bounds,
check the accuracy of the method, and show that adding a
few FDLs is an efficient way to avoid useless propagation
delay.

����� �������� "!
#$#&%('*)�+-,/.10�#

We present the two arrival processes we have considered
in this study and we explain why we have considered such
processes to model traffic in an all optical switch. As the
transit traffic has a higher priority than entering traffic the
transit arrivals are always accepted while fresh packets may
be blocked.

First, the arrivals from the core network are slotted and
the number of wavelengths per link is � . As the ROMEO
core switch has � transit links, the number of input packets���

is upper bounded by � � . We assume i.i.d. batch arrivals
for transit packets, and we consider two different batch dis-
tributions: a truncated Poisson distribution and a “simple
batch”. Let us now describe this last arrival process. We as-
sume that we have a full batch (i.e. � � packets) with prob-
ability 2 and no packets with probability ( � � 2 ). We do
not claim that the real arrivals follow such a traffic model.



But we may expect that the real arrival process is less bursty
than this batch process and that this batch process provides
some kind of conservative analysis. On the other hand, the
truncated Poisson distribution for the batch arrivals may be
a valid approximation for core network traffic. Indeed, if
some measurements show that Internet traffic is not Poisson
today at TCP packet level, it is very difficult to predict the
traffic properties in the future in an all optical core network
which aggregates a lot of sessions.

The arrivals of new optical packets (i.e. the 2 � process)
follow a batch process that can be either a truncated Pois-
son process or a “simple batch”. We assume that the traffic
assumptions are constant. We use the same type of batch
for core arrivals and fresh arrivals. Note, however, that the
maximal batch size for fresh arrivals is � � . To fix the av-
erage of this batch, we consider two cases according to the
mean exchange of packets between the edge and the core.
As packets are independent, the average number of packets
which try to leave the core is 
 	 � � � , where 
 is the prob-
ability that a packet will try to leave the network. As the
core network is quite small (typically between � # and

$ 0
nodes), the average distance is small. Thus, the departure
probability is quite large. In all experiments shown here,
 
 0 ' � . The average offered load is

	 � 2 ��� � . The two
different cases we consider are:
� Node in Equilibrium :

	 � 2 � 
 
 � 	 � � �
� Node with more inputs than outputs

	 � 2 � 
 � 
 � 	 � � �
We consider two set of parameters for the routing prob-

abilities. We assume that the traffic matrix is uniform
or close to uniform. To model an uniform traffic matrix,
we assume that the routing probabilities

� > � 'A'A' ��� @ are all
equal. The close to uniform routing model is defined by:� > 
 ���/� � � � � � ��� ��� H 
 ���/� � � � I��
 � '

Remember that the proof of our main theorem on the
comparison of models does not depend on all these param-
eters which can take arbitrary values.

���
	 � . 0
���1% �-��+�, .10���, +���.1%�+������ #

We first consider the case without any FDL link ( � 
 0
).

Clearly,
� ��� � 
 0

and the transit traffic comes only from���
. The number of packets � � which need to leave and

the number of packets in transit 	 � which have to be routed

are simply: � � �
 �V� � �;� 
 � and 	 � 
 � �]� � � ' Let us re-
mark that all deflections are real deflections in this case, i.e.^ � � 
 JLK�M&� � . As � 
 � 
 � , we have enough bandwidth
to allow all the � � packets to leave the switch. Thus, the
first term in relation (4) is zero. The number of fresh pack-
ets that might try to enter the switch at time M , 2 � , is upper
bounded by � � , and the number of new packets 3 � which
really enter the switch is the minimum of the offered load2 � and the available bandwidth, 3 � 
 � I`� � 2 ��� � � � 	 � � '

Finally, 	 �S� 3 � packets are routed according to their des-

tinations, � = > � 'A'B' � =��� � �
 CE� 	 �(� 3 ����� > � 'A'A' ��� � �;' The
number of deflected packets is then:

^ � � 
 JLK�M&� � 

A � H8QS> � = H� � ��� %X' Let us remark that

^ � � is upper bounded
by
$ � , as 	 � � 3 � is upper bounded by the bandwidth size

� � . As
^ � � depends only on

� �
and 2 � which are inde-

pendent and both i.i.d., the random variables
^ � � are also

i.i.d. Once the distributions
�

and 2 (for
� �

and 2 � ) are
known, distribution

^ � can be easily computed following
the above steps.

����� � 0 �!�����#"/,�0 $  .10
���1%�����+-,/.10

For the case with only one FDL link of length � , the
state space of the corresponding homogeneous DTMC can
be completely described by the number of locally deflected
packets T � � . Remark that the partial order

�
: introduced

in previous section is a total order in the case of only one
FDL of length � . The size of the state space is � � � so
we can compute directly the exact values of the steady-state
distribution T � . After solving the linear system for T � , we
can easily compute the distribution of the number of real
deflections

^ � in the steady-state by following the similar
steps as described for the case of zero FDL links (all the
distributions are in the steady-state):

� �
 ��� � � T � � 
�� � ��
 	 
 � � T � � � �3 
,+65R7S� 2 � # � � 	 � � � � $ ��� % � �� = > � 'B'A' � = � � �
DCD� 	 � 3 �F� > � 'A'B' �F� � � �
JLK*M&� 
 � � � $ ��� % � �P

HRQ:>
� = H � ��� % �

^ � 
N� JLK�M&� � ��� % '
��� � ��� � ,&%�,�0
�(' )()�� �*) .1% 0 +(#

In order to analyze the case with two FDL links de-
scribed in Section 2, we will use the monotonicity property
of the FDL model (Theorem 2). We will use the homoge-
neous DTMC comparison theorem (Theorem 1) and design
a bounding model that is stochastically larger in the

� � �
-

sense with respect to the partial order
�
: . Since our FDL

model is already stochastically monotone, we only have to
satisfy the comparison constraints. Let us remark here that
constructing a bounding model in the sense of Theorem 1
allows us to obtain bounds for means of all increasing re-
wards. Notice that the reward we are interested to bound
must be increasing in the sense of the same partial order
on the state space we used to establish the comparison and
monotonicity results (the partial order

�
: in our case).

Using similar arguments as in Section 3, we can easily
prove the following property.



Property 1 The number of real deflections
^ � is an in-

creasing reward with respect to the partial order
� �

.

Let the matrix � be the transition matrix of the FDL
model. Let us suppose that � is ergodic and let 
�� be the
steady-state distribution of � . Note that this is the case for
both truncated Poisson and “simple batch” arrival distribu-
tions. Suppose that we know how to build an ergodic transi-
tion matrix � such that � ��� � � with respect to the partial
order

�
: on the state-space. Let us denote by 
�� the steady-

state distribution of � . Then from Theorem 1 and Property
1 it follows that

	���� � ^ �Y� � 	���� � ^ �Y� '
Note that the bounding matrix � does not need to be� � �

-monotone, as we proved in Theorem 2 the
� � �

-
monotonicity of matrix � .

Additionally, we want the bounding model to be sim-
pler to solve. Specifically, we will construct a bounding
model that has an ordinary lumpable transition matrix. Re-
call that a DTMC is ordinary lumpable with respect to a
given partition 	 B , � 
 � � � � 'A'B' � � of the state space if its
transition matrix � satisfies the following: for all states �
and 
 which belong to the same arbitrary macro state 	 B ,
A @ D�� �

��

8 @ 
 A @ D�� � ��� 8 @ ������� -���� 	 H � � � I � ��'

By taking the lumped version - of a lumpable upper
bounding chain for a monotone DTMC � , we can compute
bounds for increasing rewards by defining a reward on the
macro-states as a maximal reward for the individual states.
Denote by � the reward on the individual states and by

-
the new reward on the macro-states. Then,

	 � � � � is upper
bounded by

	�� � - � , for both transient and steady-state re-
wards. Remark that the actual computations are done on a
much smaller chain.

We will now define the partition into macro-states for the
model with two FDL links. The defined partition takes into
account the order

�
: . Remark that we use the chain de-

scription � � � > �� � � � W"�� � 
 � T � � � T � �`_ > � T � � � (see Section
3). We will denote the reachable state space by � * . Recall
that � � > �� 
 T � �/� T � �`_ > represents the packets in the FDL
links that will return to the switch in the next slot, while
��� W��� 
 T � � represents the packets that will return to the
switch in two time slots. We choose to give more impor-
tance to the packets � � > �� in the considered partition:

1. The states ) 
 � ) > � )*W ��� �+* with )�W 
 0
are not

aggregated.
2. The other states are first grouped according to the value

of ) > .
3. Each group from the previous step is divided into 


macro-states according to the value of ) W . For exam-
ple, if � 
 � � � and 
 
 � , then for each � 
 0 'A'A'�� ,
we put the states with )�W 
 �(� � � � I � ��� I � � � into
the same macro-state.

We now show how to build the transitions to obtain a
lumpable matrix which is an upper bound. We only consider
here macro states which are not singleton. Assume that 

divides � and let � 
 � ��
 . For any value of ) W , we denote
by � � ) W � the smallest multiple of � greater or equal to ) W .
The transitions from state � ) > � ) W � are now changed and are
exactly the transitions out of state � ) > � � � ) W � � . Clearly, the
chain is lumpable and it is quite simple to prove that the
new matrix is

� � �
-larger than the transition matrix of the

original chain.
To check the accuracy of the method we can also com-

pute a lower bound as follows: we change the transitions
out of � ) > � )*W � to the ones from state � ) > � � � )*W � � � � . Note
that for aggregated states � � )�W �(�%��'
����� !
0 � "�� #&,/#

First we show that the method is accurate. We compute
the average number of deflections for a small system with �
FDLs and with

� � wavelengths. As the state space is small,
it is possible to solve the exact problem. We just perform
the computation of the bound to illustrate the accuracy of
the method.

Table 1. Truncated Poisson distribution, f=64,
node at equilibrium

rate
Mean real deflection

exact lower bound upper bound
0.85 5.9049e-32 5.9018e-32 5.9625e-32
0.9 1.4165e-27 1.3899e-27 1.7744e-27
0.95 3.5154e-23 2.5144e-23 1.5199e-22
0.99 2.0322e-21 1.1456e-21 1.1913e-20

We give in Table 1 the exact values and the bounds for
various arrival rates for

� �
process for a node in equilib-

rium. We assume that the routing is uniform. We only
present here the results for truncated Poisson batch distribu-
tion. Clearly, the results are very accurate. We also present
in Table 2 the results for a node which sends more packets
than it receives, still accurate with a truncated Poisson batch
process.

Table 2. Truncated Poisson distribution, f=64,
node not at equilibrium

rate
Mean real deflection

exact lower bound upper bound
0.8 9.7646e-14 6.1356e-14 2.2838e-13
0.85 1.8134e-08 6.4540e-09 6.4907e-08
0.9 3.6084e-05 1.5443e-05 5.8506e-05
0.95 2.1806e-04 3.6083e-05 2.2537e-04
0.99 2.4905e-04 2.1707e-04 2.5230e-04

Then we show that our method remains accurate and ef-
ficient when we have a larger state space. We consider a



system with � FDLs but we now have � � � wavelengths per
link. We consider the model with uniform routing probabil-
ities but the node sends more packets than it receives from
the core. In Table 3 we consider a truncated Poisson distri-
bution for the batch arrivals and give bounds on mean real
deflection for various loads. For the case f=128, the size of
the aggregated bounding Markov chain is � � ��� for all the
results presented. Thus, an algorithm like GTH can solve
such a problem is a few seconds on an ordinary PC. In Ta-
ble 4 we give the results for “simple batch” process. Clearly
the bounds are very close.

Table 3. Truncated Poisson distribution,
f=128, node not at equilibrium, block size=16

rate
Mean real deflection

lower b. upper b.
0.8 1.3634e-26 2.0339e-25
0.85 4.5848e-16 4.4175e-14
0.9 1.5349e-09 1.5737e-08
0.95 6.0196e-08 7.9197e-08
0.99 8.3536e-08 9.1247e-08

Table 4. Simple batch, f=128, node at equilib-
rium, block size=16

rate
Mean real deflection

lower b. upper b.
0.8 5.1781e-09 5.6603e-09
0.85 6.9154e-09 7.5504e-09
0.9 9.1268e-09 9.9284e-09
0.95 1.1915e-08 1.2881e-08
0.99 1.4641e-08 1.5716e-08

Let us now check the effect of the macro-state definition.
We change the size of the macro-state and perform the same
analysis (see Table 5) for a system with � FDLs and � � �
wavelengths. As expected, the more blocks we keep, the
more accurate the results are. However, this effect is not
that important.

Table 5. Simple batch, f=128, node not at
equilibrium, rate=0.7

block Mean real deflection
size lower b. upper b.
8 7.6550e-09 8.1552e-09
16 7.2840e-09 8.4278e-09
32 6.5486e-09 9.2386e-09

Finally, we check the method when we change the as-
sumptions about the routing probabilities. We give here an
example of non uniform traffic with

� > 
 0 ' $ � , � W 
 0 ' � $ ,��� 
 0 ' � $ and
�
� 
 0 ' � $ . The bounds for the mean real

deflection are still very close:

# ' � � � # � 0 _�� � 	�
 ^ �(���.# ' � � � � � 0 _�� '

As the routing is not uniform, we introduce some variance
and we now have larger deflection probabilities.

In the following we study the effect of the FDLs. We
compare systems without FDLs (column D0) with systems
with � FDL (column D1) or with � FDLs (the last two
columns) with � � � wavelengths. One can easily compute
these averages exactly for

0
or � FDL. For two FDL con-

figuration, we use the stochastic bounds. For all the cases
presented here, the routing is uniform. In Table 6 we con-
sider truncated Poisson arrival process and we present the
results for the three configurations when we vary the load
of transit packets. We only consider heavy loaded systems
as we want to check the efficiency of the FDLs for the worst
case scenario. Clearly, in Table 6 the configuration with �
FDL is sufficient to avoid almost all real deflections, even if
the load is

0 ' ��� .

Table 6. Truncated Poisson batch distribu-
tion, f=128, node at equilibrium

rate
Mean real deflection

D0 D1 D2 lower D2 upper
0.8 1.0261e-01 2.3681e-29 � 1e-39 � 1e-39
0.85 6.2365e-01 9.6248e-24 � 1e-39 � 1e-39
0.9 2.5137e+00 8.6971e-19 � 1e-39 � 1e-39
0.95 6.9018e+00 3.9545e-14 � 1e-39 � 1e-39
0.99 9.4589e+00 1.0607e-11 � 1e-39 � 1e-39

This is mainly due to the low variance of the processes
involved in the model, due to the independence assumption
on the routing of customers. When we change the add and
drop arrivals to send more packets (Table 7), the configu-
ration with � FDLs is the only one which avoids almost all
real deflections.

Table 7. Truncated Poisson batch distribu-
tion, f=128, node not at equilibrium

rate
Mean real deflection

D0 D1 D2 lower D2 upper
0.8 8.0738e+00 1.3051e-08 1.3634e-26 2.0339e-25
0.85 1.3710e+01 5.0881e-04 4.5848e-16 4.4174e-14
0.9 1.5474e+01 1.1942e-02 1.5349e-09 1.5737e-08
0.95 1.5622e+01 1.6336e-02 6.0196e-08 7.9196e-08
0.99 1.5624e+01 1.6553e-02 8.3536e-08 9.1247e-08

Similarly, when we use a more bursty arrival process (the
“simple batch” process), the configuration without FDL has
poor performance. Even if the average number is small, it
will introduce very large delay for the packet transport time
in the core. Do not forget that a real deflection implies a de-
lay of several tens of time slots while a local deflection only
cost one or two time slots. Clearly, with � loops, almost all
deflections are now local when the node is at equilibrium
(Table 8) or not (Table 9).

Thus we have reached our objectives: a two FDL system



Table 8. Simple batch, f=128, node at equilib-
rium

rate
Mean real deflection

D0 D1 D2 lower D2 upper
0.8 6.3136e-01 2.8297e-03 5.1781e-09 5.6603e-09
0.85 6.7080e-01 3.1944e-03 6.9154e-09 7.5504e-09
0.9 7.1024e-01 3.5813e-03 9.1268e-09 9.9283e-09
0.95 7.4968e-01 3.9903e-03 1.1915e-08 1.2880e-08
0.99 7.8123e-01 4.3334e-03 1.4641e-08 1.5715e-08

Table 9. Simple batch, f=128, node not at
equilibrium

rate
Mean real deflection

D0 D1 D2 lower D2 upper
0.8 1.2560e+00 8.6668e-03 2.4402e-08 2.6877e-08
0.85 1.3345e+00 7.9806e-03 3.2359e-08 3.5079e-08
0.9 1.4130e+00 7.1627e-03 4.2038e-08 4.4673e-08
0.95 1.4914e+00 6.3889e-03 5.3517e-08 5.5563e-08
0.99 1.5542e+00 5.6594e-03 6.3994e-08 6.5104e-08

allows to keep almost all deflections local. This has been
shown by all the analysis we have performed.

5 Conclusion

We must stress that the result is much more general. It
can be applied to more complex sets of FDLs and to various
scheduling algorithms under different traffic assumptions.
Theorem 2 applies as soon as Lemma 4 holds and we have
an induction on � � B � based on increasing functions. Note
that within the proof of Lemma 1 we have derived such a
relation: � � B �� %S> 
 � � B %S> �� � T � B 8 > �� %S> '

For more complex examples of FDLs we obtain more
complex relations but they are all increasing. Indeed, these
relations state how the traffic already in the loops exits from
the loops and also how it enters the loops. Clearly, the more
packets we have to switch, the more packets we will have
to deflect. This is also true from random variables if we use
stochastic comparison arguments. As all the packets which
enter the FDLs must leave (FDLs are lossless), these pack-
ets will add more traffic in the future of the process. This
reason is the key reason of monotonicity in this model and
in its multiple generalizations. Clearly, if we change the
traffic assumptions, we will still have this property about
the influence of traffic. If we need a chain to modulate the
arrival process, the result is still true but we must add the
modulating chain in the Markovian model of the system
and we must modify the order accordingly. This is quite
simple if we use a partial order. However, this is much
more difficult when one uses a total order on a multicompo-
nent state space. Here, with the partial order approach, one
can also generalize this approach with modulated traffic like
Switched Batch Bernoulli Process.

We plan to generalize the presented model by taking ex-
plicitly into account the type of packets which are stored in-
side the FDLs. Such a model will have a larger state space
but it is expected that it will be still monotone for a natural
partial ordering which will be unfortunately more complex.
This extension of the model will allow to remove the inde-
pendence assumption on the traffic inside the loops.

Acknowledgment: This work was supported by the re-
search project ROMEO from the RNRT and by the research
project SMS.

References

[1] J. Bannister, F. Borgonovo, L. Fratta, and M. Gerla. A versa-
tile model for predicting the performance of deflection rout-
ing networks. Performance Evaluation, 16:201–222, 1992.

[2] P. Baran. On distributed communication networks. IEEE
Transactions on Communication Systems, CS-12:1–9, 1964.
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