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Abstract

We investigate how we can bound a Discrete Time Markov Chain (DTMC) by a stochastic matrix

with a low rank decomposition. In the first part of the paper we show the links with previous

results for matrices with a decomposition of size 1 or 2. Then we show how the complexity of the

analysis for steady-state and transient distributions can be simplified when we take into account the

decomposition. Finally, we show how we can obtain a monotone stochastic upper bound with a low

rank decomposition.

1 Introduction

The problem of approximating a matrix (not necessarily square) by another one which has a lower rank

has received a considerable attention in the literature (see for instance [2, 11] and references therein).

Indeed many algorithms can be derived with a much lower complexity when the rank is low and there

exist many applications for this approximation (web search model [14], latent semantic indexing [7],

image compression, again see the references already mentioned and [9] for Markov chains). The best

approximation is known to be found from the Singular Value Decomposition (SVD) of the initial matrix.

This is a well-known result by Eckart and Young [12].

Here we address a related problem. We want to compute a monotone upper bound of a stochastic

matrix and we want this stochastic bound to have a low rank decomposition. We formally define a low

rank decomposition of Markov chains in the next section but one must avoid the confusion with the rank
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of the linear system defining the steady-state distribution. Indeed, for an irreducible Markov chain, it is

well-known that this linear system has a rank equal to N − 1, where N is the number of states.

We want to build such a bounding matrix with a low complexity algorithm and we also want to prove

that analyzing the DTMC associated to the bound will be easier with ad-hoc algorithms which are based

on the size of the decomposition. Note that the approach based on SVD is not considered in the literature

on Markov chains. Indeed, computing the SVD of a square matrix of size N has a cubic complexity. Thus

it is as difficult as the computation of steady-state distribution.

Furthermore we compute a monotone stochastic upper bound of the matrix rather than an approxi-

mation. With a monotone stochastic upper bound of the matrix, one can obtain stochastic bounds on the

steady-state distribution or the transient distributions. This allows to derive guarantees in performance

[17] or reliability [16] modeling or in stochastic model checking [5]. Such an approach is not feasible if

we only have an approximation of the matrix.

This approach is motivated by two already published papers which have introduced two families of

matrices which are really easy to analyze. Both the steady-state and the transient distributions have a

closed form distribution based on some parameters. These parameters can be computed with a linear

time algorithm in the size of the matrix. Furthermore, the distribution of the first passage time can also

be solved with a simple numerical computation. These families are denoted as Class C DTMC [4, 6] and

Class CG DTMC [3]. It can be easily checked that matrices in both families have a decomposition of

size one and a rank equal to one or two. Such a statement does not appear in the previous references on

these families. In our opinion, this is the key property which explains why we have algorithms with linear

complexity. Here we show that the size of the decomposition is related to the complexity of resolution of

transient and stationary regimes and we generalize the approach to any DTMC with a low rank (or low

size) decomposition as we establish a simple relation between the size of the decomposition and the rank

of the matrix. We also give an algorithm to build a monotone stochastic upper bounding matrix with a

low rank decomposition for an arbitrary DTMC.

The technical part of the paper is organized as follows. In section 2, we present the results for matrices

of Class CG and we formally introduce the concept of a low rank decomposition of a DTMC. Then in

section 3, we give a short introduction to stochastic ordering to define the stochastic monotonicity and

the stochastic comparison of matrices and DTMC. Section 4 is devoted to the analysis of steady state

distribution of DTMC with a low rank decomposition while Section 5 contains the results about transient

distributions and Section 6 is devoted to stochastic monotonicity. Finally in section 7, we explain how

we can obtain a low rank stochastic bound of a DTMC. The results can be generalized to lower bound as

well but this is omitted in this version of the paper. Instead, we present many small examples to explain

the key ideas and the algorithms.

All the vectors are row vectors. The state space has size N . All the DTMC are time-homogenous.
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2 Matrices with a low rank decomposition

We first recall class CG matrices from [3], then propose a generalization.

2.1 Class CG Matrices

Definition 1 A stochastic matrix M belongs to class CG if there are three vectors v, r, and c such that:

M = eT v + rT c,

where e is a vector whose entries are all equal to 1, v is a stochastic vector (i.e.
∑

i v[i] = 1, and for all

i, v[i] ≥ 0), c is a vector whose entries sum to 0, and eT is the transpose of e.

Example 1 Consider the following class CG matrix:

M = [1, 1, 1, 1]T [0.2, 0.1, 0.4, 0.3]

+ [0, 1, 1, 2]T [0.1,−0.05, 0.05,−0.1].

M is equal to:

M =



0.2 0.1 0.4 0.3

0.3 0.05 0.45 0.2

0.3 0.05 0.45 0.2

0.4 0.0 0.5 0.1


We first need to compute two quantities of interest which appear in the closed form solutions: a = crT

and b = vrT .

Property 1 [3] The stationary distribution of a class CG DTMC is v + E[r]c where E[r] = vrT

1−a if

a = crT is not equal to 1. The fact that E[r] is an expectation will appear more clearly in the next

section.

Property 2 [3] Consider a class CG DTMC defined by matrix M and initial distribution π(0). We have:

Mk = eT v + [ak−1rT + (b

k−2∑
i=0

ai)eT ]c, (1)

and the transient distributions at instant k is:

π(k) = v + νkc
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with the following recursion on νk:

νk = b

k−2∑
i=0

ai + (π(0)rT )ak−1

The distribution of the time to absorption also has a closed form solution which can be numerically

solved by a recursion [8].

Definition 2 [4] A class C stochastic matrix M is defined by 2 vectors v and c such that:

M = [1, 1, 1, . . . , 1]T v + [0, 1, 2, . . . , n− 1]T c,

where v is a stochastic vector and c is a vector whose entries sum to 0.

Property 3 Class C is included into Class CG. This is trivial due to the definition of Class C matrices.

Note that for Class C matrices, it is proved that a = crT is not equal to 1 [4].

2.2 Low rank decomposition

Definition 3 We consider the set Ak of stochastic matrices M defined by:

M = eT v +

k∑
i=1

rTi ci,

where v is a stochastic vector, ci are vectors whose entries sum to 0 and ri are vectors such that ri[j] ≤ 1

for all i and j. We say that a matrix in Ak has a decomposition of size k.

Property 4 Matrices in Ak have rank at most k + 1

Proof: Clear, as we add k + 1 matrices of rank 1. �

Thus we call matrices in Ak, matrices with a low rank decomposition when k is small. We show in

the following that the complexity of the algorithms is related to k.

Remark 1 By construction, matrices of class CG are in A1.

Remark 2 By construction, matrices of A0 have all their rows equal. Therefore, after their first tran-

sition they are at steady-state, for any initial state. Indeed, matrices in A0 are equal to eT v and their

steady-state distribution is v.

Remark 3 It must be clear that every row of M sums to 1 due to the constraints on the decomposition.

However, these constraints do not imply that the entries of the matrix are not negative. Furthermore,

such a decomposition is not unique. If (v, r, c) is a decomposition of size 1, (v, r/α, αc) for any positive α,

is also a valid decomposition of the same matrix. In the following, we only consider a valid decomposition

of a stochastic matrix.
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Property 5 [Simplification rules] For all x, y z row vectors with the same size, xyT z = zxyT as xyT is

a scalar. Furthermore by construction veT = 1 and cie
T = 0 for all i.

We assume in the following that k << N .

3 A brief introduction to stochastic comparison of DTMC

We first have to introduce the strong stochastic comparison of probability vectors. This will allow us to

compare discrete random variables which can be defined through their probability mass functions, and

also stochastic matrices whose rows are probability vectors. See also references [18] and [19] .

Definition 4 Let p and q be two probability vectors of size N . Then

p �st q iff

N∑
j=k

p[j] ≤
N∑

j=k

q[j] ∀k ∈ {1, 2 · · ·N}.

Definition 5 Let X and Y be two discrete random variables taking values in a totally ordered space

S = {1, 2, · · · , N} with probability mass functions p and q respectively. Then

X �st Y iff p �st q.

The strong stochastic comparison is associated to the non-decreasing functions.

Proposition 1 X �st Y , iff E[f(X)] ≤ E[f(Y )], for all non decreasing function f , provided that the

expectations exist.

Important performance and reliability indices such as average population, loss rates or tail probabili-

ties, availability (with a suitable ordering of states) are non decreasing functions. Therefore, bounds

on the distribution imply bounds on these performance indices as well. This property also holds for

many formulas in stochastic model checking. As we deal with stochastic matrices, we use the following

characterization that involves the matrix associated with strong stochastic comparison.

Proposition 2 p �st q, if and only if pKst �el qKst, where �el is the element-wise comparison and:

Kst =



1 0 0 . . . 0

1 1 0 . . . 0

1 1 1 . . . 0

...
...

...
. . .

...

1 1 1 . . . 1


.
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The stochastic comparison of random variables has been generalized to the comparison of Markov

chains. Both continuous time models and discrete time ones can be addressed (the conditions are slightly

different) but we restrict ourselves here to DTMC.

Definition 6 Let {X1(n), n ∈ N} and {X2(n), n ∈ N two Discrete Time Markov Chains taking values

in state space S. {X1(n), n ∈ N} is said to be stochastically smaller than {X2(n), n ∈ N} (denoted as

{X1(n)} �st {X2(n)}), iff

X1(0) �st X2(0) =⇒ X1(n) �st X2(n), ∀n > 0.

Thus the strong stochastic comparison implies the comparison of transient distributions. If the steady-

state distributions exist, their comparison also holds as stated in the next property.

Property 6 (Comparison of steady-state) [18] Let π1 (resp. π2) be the steady-state distribution of

{X1(n), n ≥ 0} (resp. {X2(n), n ≥ 0}). Then

{X1(n)} �st {X2(n)} =⇒ π1 �st π2.

We now give some sufficient conditions for stochastic comparison for DTMCs. These conditions are

based on properties of the stochastic matrices associated with the chains: the stochastic comparison and

the stochastic monotonicity [13] of stochastic matrices. In the following, we denote by P[i, ∗] the i-th row

of stochastic matrix P.

Definition 7 Let P and Q be two stochastic matrices. Q is said to be a stochastic upper bounding matrix

of P (P �st Q) if

∀i, P[i, ∗] �st Q[i, ∗].

Definition 8 Let P be a stochastic matrix. P is said to be stochastically monotone if for any probability

vectors p and q,

p �st q =⇒ p P �st q P.

A DTMC is said to be monotone if its probability transition matrix is stochastically monotone.

In the case of finite state space with a total ordering, the following property provides a much easier

characterization, which has also a nice algorithmic interpretation.

Property 7 P is stochastically monotone if and only if P[i, ∗] �st P[i + 1, ∗] for all states i such that

1 ≤ i ≤ N − 1.

It is now possible to give the first result on sufficient conditions for the comparison of DTMCs.
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Theorem 1 [18] Let P and Q be the probability transition matrices of two DTMCs (say {X(n), n ∈ N}

and {Y (n), n ∈ N}). If

1. X(0) �st Y (0),

2. at least one of the stochastic matrices (P or Q) is stochastically monotone,

3. the stochastic matrices are comparable, (i.e. P �st Q).

then X(n) �st Y (n) for all n ∈ N. Furthermore, if both chains are ergodic, then their steady-state

distributions are also ordered: πX �st πY .

Assuming that matrix P is known and it is not stochastically monotone, we want to compute an

upper bounding matrix Q. It is quite easy to derive a set of linear inequalities which represent conditions

2 and 3 of Theorem 1:
∑N

k=j Q[1, k] ≥
∑N

k=j P[1, k] ∀ j,∑N
k=j Q[i+ 1, k] ≥

∑N
k=j Q[i, k] ∀ j, ∀ i = 1, . . . , N − 1 .

(2)

Vincent’s algorithm [1, 10] consists mainly in replacing inequalities by equalities and reordering them

to obtain a constructive way to build the upper bounding matrix Q.

Algorithm 1 Vincent’s Algorithm for an Upper Bound

Require: P.
Ensure: monotone upper bound Q.

1: for i = 1 to N do
2: Q[1, i] = P[1, i]
3: end for
4: for j = 2 to N do
5: for i = N downto 1 do
6: Q[j, i] = Max(

∑N
k=i P[j, k],

∑N
k=i Q[j − 1, k])−

∑N
k=i+1 Q[j, k]

7: end for
8: end for

Unfortunately the matrix obtained by Vincent’s algorithm is in general as difficult as the original

matrix to analyze. Therefore many algorithms have been proposed (see [10] for a survey) to provide

bounds which are easy to compute. Here we use a property of Vincent’s algorithm: it computes the

maximum for the strong stochastic ordering of the probability distributions associated with the rows of

P. This computation is part of the derivation of an upper stochastic bound with a size k decomposition.

Remark 4 Every stochastic matrix has a monotone upper bound with a size 0 decomposition. Indeed,

we have P �st e
Tmax, where max is the maximum with the stochastic ordering of the rows of P .
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4 Solving the stationary regime for a DTMC with a low rank

decomposition

Let us give the first result which justify to study a DTMC with a low rank decomposition. We define

matrix A by:

A[i, l] = clr
T
i .

This k × k matrix plays a role similar to scalar a for chains of class CG. Similarly, let V be the vector

whose entry i is vrTi .

Property 8 If matrix (I−A) is not singular, then the stationary distribution of an ergodic DTMC M

in Ak is given as follows:

π = v +

k∑
i=1

E[ri]ci, (3)

where the values of E[ri], which represent the expectations of ri on the steady-state distribution π, can be

solved from a linear system of size k:

E[ri] =
∑
j

ri[j]v[j] +

k∑
l=1

E[rl]
∑
j

ri[j]cl[j].

Note that we compute the expectations E[ri] before we compute the steady-state distribution. Let E be the

vector of expectations. As matrix (I−A) is not singular by assumption, we have:

E = V (I−A)−1.

Proof: By definition, as the Markov chain is ergodic, π exists and is the solution of π = πM. After

substitution, we get:

π = πeT v +

k∑
i=1

πrTi ci.

But πeT = 1 and πrTi = E[ri]. After substitution, we get Equation 3. It remains to compute the values

of E[ri] for all i. By definition we have:

E[ri] =
∑
j

ri[j]π[j] =
∑
j

ri[j]

(
v[j] +

k∑
l=1

E[rl]cl[j]

)
.

Thus:

E[ri] =
∑

j ri[j]v[j] +
∑k

l=1 E[rl]
∑

j ri[j]cl[j]

= vrTi +
∑k

l=1 E[rl]clr
T
i .
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This is a non homogenous linear system of size k. The equation can be written in a more abstract form

as:

E = V + EA.

Therefore as matrix (I−A) is not singular by assumption, we have:

E = V (I−A)−1.

�

The property allows to derive an algorithm with a much lower complexity than N3.

Algorithm 2 Computation of the steady-state distribution for a DTMC with a size k decomposition

Require: M.
Ensure: steady-state distribution π

1: Compute vector V : V (i) = vrTi .
2: Compute matrix A: A(i, l) = clr

T
i .

3: Compute vector E = V (I−A)−1.
4: Compute π from Eq. 3 .

Property 9 The complexity for computing the steady state distribution is O(k2N).

Proof: The first step requires k products of vector of size N while Step 2) needs k2 products of vectors

with the same size. The numerical solution of the linear system at Step 3) could be done with any

elimination algorithm. They typically are cubic in time (i.e. O(k3) here). Finally, the last step has a

complexity of O(kN) as we have to compute the N entries of vector π and all of them require k additions

and multiplications. As we assume that k << N , the most important step for time complexity is Step 2.

�

Example 2 Consider matrix M whose decomposition of size 2 is:

[1, 1, 1, 1, 1, 1, 1, 1]T

[0.1, 0.2, 0.1, 0.1, 0.1, 0, 0.2, 0.2]

+ [0, 0.01, 0.01, 0.1, 0.1, 0.2, 0.5, 0.5]T

[−0.05,−0.05,−0.1, 0.2, 0, 0, 0, 0]

+ [0, 0.5, 1, 0, 1, 0, 1, 0]T

[0, 0, 0, 0,−0.1, 0.1,−0.1, 0.1].

Matrix A is readily computed:

 0.0185 −0.125

−0.01 −0.2

 , and V is [0.223, 0.5]. Therefore E = [0.2312031, 0.3925830]
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and the steady state distribution of the matrix is:

v + 0.2312031 ∗ c1 + 0.392583 ∗ c2.

One finally get that this distribution is:

[0.0884, 0.1884, 0.0769, 0.1462, 0.0608, 0.0393, 0.1607, 0.2393].

One can also compute matrix M (see below) from the decomposition and check that the former vector is

the steady-state distribution:



0.1 0.2 0.1 0.1 0.1 0. 0.2 0.2

0.0995 0.1995 0.099 0.102 0.05 0.05 0.15 0.25

0.0995 0.1995 0.099 0.102 0. 0.1 0.1 0.3

0.095 0.195 0.09 0.12 0.1 0. 0.2 0.2

0.095 0.195 0.09 0.12 0. 0.1 0.1 0.3

0.09 0.19 0.08 0.14 0.1 0. 0.2 0.2

0.075 0.175 0.05 0.2 0. 0.1 0.1 0.3

0.075 0.175 0.05 0.2 0.1 0. 0.2 0.2



.

5 Computing the transient distribution for a DTMC with a low

rank decomposition

Let us now consider the transient distribution. Let π
(0)
M be the initial distribution.

Property 10 The transient distribution at discrete time n of a DTMC M in Ak is given π(n) = π(0)Mn

where Mn is given by:

Mn = eT v +

k∑
i=1

(sni )T ci, (4)

where the sni are given by the following recursion:

 s1i = ri

sn+1
i = v(sni )T e+

∑
j cj(s

n
i )T rj

Proof: by induction on the time step n. The equation is clearly true by construction for n = 1.
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Let us now assume that it it true for n and compute Mn+1.

Mn+1 = MMn

= (eT v +
∑k

j=1 r
T
j cj)(e

T v +
∑k

i=1(sni )T ci)

= eT veT v +
∑k

i=1 r
T
i cie

T v + eT v
∑k

i=1(sni )T ci

+
∑k

j=1 r
T
j cj

∑k
i=1(sni )T ci.

Remember that veT = 1 and cie
T = 0 for all i. After substitution we get:

Mn+1 = eT v +

k∑
i=1

eT v(sni )T ci +

k∑
i=1

k∑
j=1

rTj cj(s
n
i )T ci.

As v(sni )T and cj(s
n
i )T cj(s

n
i )T are scalars, we can exchange the terms in the products to obtain:

Mn+1 = eT v +

k∑
i=1

v(sni )T eT ci +

k∑
i=1

k∑
j=1

cj(s
n
i )T rTj ci.

After identification, we get the recursion with

(sn+1
i )T = v(sni )T eT +

∑
j

cj(s
n
i )T rTj .

After a final transposition we get the recursion equation. �

The recursion equation can be solved after introducing some notation. Let γni = v(sni )T and βn
i,j =

cj(s
n
i )T We define vectors G(n) and matrices B(n) as follows:

G(n)[i] = v(sni )T = γni

and,

B(n)[i, j] = cj(s
n
i )T = βn

i,j

We also use matrix A and vector V previously defined. Remember that A[i, l] = clr
T
i and V [i] = vrTi .

Property 11 The recursion  s1i = ri

sn+1
i = γni e+

∑
j β

n
i,jrj ,

where γni and βn
i,j are the entries of the following vectors and matrices:

G(n) =

n−1∑
m=0

AmV,
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and

B(n) = An.

Proof:

Remember the recursion equation:

(sn+1
i )T = v(sni )T eT +

∑
j

cj(s
n
i )T rTj .

Multiply by vector v:

v(sn+1
i )T = vv(sni )T eT +

∑
j

vcj(s
n
i )T rTj .

Remember that v(sni )T is a scalar. So are cj(s
n
i )T for all j. Therefore

v(sn+1
i )T = v(sni )T veT +

∑
j

cj(s
n
i )T vrTj .

Now remember that veT = 1 and we substitute with γni and βn
i,j to get a recursion:

αn+1
i = γni +

∑
j

βn
i,jvr

T
j .

Using a matrix form:

R(n+1) = R(n) + B(n)V.

Let us now consider again the recursion equation and let us multiply it by cl to get:

cl(s
n+1
i )T = clv(sni )T eT +

∑
j

clcj(s
n
i )T rTj .

With the same properties previously used and taking into account that cle
T = 0, we get a recursion on

βn
i,j :

βn+1
i,l =

∑
j

βn
i,jclr

T
j =

∑
j

βn
i,jA[j, l]

Or in matrix form:

B(n+1) = B(n)A.

By induction we get B(n) = B(1)An−1.

Let us now compute B(1). By construction:

B(1)[i, j] = cj(s
1
i )T ,
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and s1i = ri for all i. Therefore:

B(1)[i, j] = cj(ri)
T = A[i, j].

Finally,

B(n) = An.

Let us now return to the recursion on γmi to conclude. We have A(1) = V . And,

R(n) = V +

n−1∑
m=1

AmV =

n−1∑
m=0

AmV.

�

Property 12 Taking into account the decomposition into a sum of rank 1 matrices, once A and V have

been computed, the computation of the transient distribution at time n has a complexity in O(ln(n)k3) with

an improved number of matrix multiplications using a fast algorithm based on the binary decomposition

of n.

Proof: The most expensive step of computation is the derivation of An. We apply the fast exponentiation

algorithm [15] to minimize the number of matrix multiplication. We have assumed a basic multiplication

of dense matrices with a complexity in O(k3). �

6 Stochastic monotonicity of a DTMC with a low rank decom-

position

Among the matrices with a low rank decomposition, some of them are stochastically monotone. We

prove in the following conditions which are easy to check (i.e. with a smaller complexity than Vincent’s

algorithm). Such a result was previously proved for matrix of class CG.

Property 13 [4] A matrix of class CG is stochastically monotone if vector r is non decreasing and

vector cKst is non negative.

Property 14 If the following conditions hold, matrix M is st-monotone:

1. for all i, vector ri is non decreasing.

2. for all i, vector ciKst is non negative.

Proof: Consider two arbitrary distributions such that p �st q and compute pM:

pMKst = peT vKst +

k∑
i=1

rTi ciKst.
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As peT = 1, we get:

pMKst = vKst +

k∑
i=1

prTi ciKst = vKst +

k∑
i=1

(prTi )(ciKst).

The second equation is justified by associativity and is written to emphasize the decomposition approach

of the assumptions. Similarly we get:

qMKst = vKst +

k∑
i=1

(qrTi )(ciKst).

Remember that p �st q. Therefore if vector ri is non decreasing, we have prTi ≤ qrTi . Finally, all vectors

ciKst are non negative by assumptions. Thus we get:

k∑
i=1

(prTi )(ciKst) �el

k∑
i=1

(qrTi )(ciKst).

and pMKst �el qMKst. �

Example 3 Let us consider the matrix with the following decomposition of size 2 studied in Example 2.

One can easily check that vector r2 does not satisfy the assumptions. Furthermore the resulting matrix is

not stochastically monotone (clearly seen with the last column).

We change r2 and we obtain a new matrix which satisfies the assumptions of the theorem (new vector

r2 is not decreasing),

[1, 1, 1, 1, 1, 1, 1, 1]T

[0.1, 0.2, 0.1, 0.1, 0.1, 0, 0.2, 0.2]

+ [0, 0.01, 0.01, 0.1, 0.1, 0.2, 0.5, 0.5]T

[−0.05,−0.05,−0.1, 0.2, 0, 0, 0, 0]

+ [0, 0, 0, 0, 0, 0, 0.1, 0.1]T

[0, 0, 0, 0,−0.1, 0.1,−0.1, 0.1].

and we can verify that the resulting matrix (see below) is monotone.



0.1 0.2 0.1 0.1 0.1 0. 0.2 0.2

0.0995 0.1995 0.099 0.102 0.1 0. 0.2 0.2

0.0995 0.1995 0.099 0.102 0.1 0. 0.2 0.2

0.095 0.195 0.09 0.12 0.1 0. 0.2 0.2

0.095 0.195 0.09 0.12 0.1 0. 0.2 0.2

0.09 0.19 0.08 0.14 0.1 0. 0.2 0.2

0.075 0.175 0.05 0.2 0.09 0.01 0.19 0.21

0.075 0.175 0.05 0.2 0.09 0.01 0.19 0.21


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7 Monotone stochastic bounds with a low rank decomposition

Several algorithms have been presented in the past for the computation of a bounding matrix of class C

or CG. Let us first present the algorithm introduced in [8] which we will modify to obtain a bound with a

size k decomposition. Let us remember the problem for class CG and then we present two generalisations

based on column or row partition.

We consider a DTMC P and we want to build a monotone upper bound of P (say M) in A1. Thus

we have (assuming that row i− 1 exists):

P(i, ∗) �st M(i, ∗) and M(i− 1, ∗) �st M(i, ∗)

Algorithm 3 Monotone Upper Bound in class CG

Require: P.
Ensure: monotone upper bound in class CG described by (v, r, c).

1: v = P[1, ∗]
2: r[1]=0
3: w = vKst.
4: Compute with Vincent’s algorithm max, the maximum for the strong stochastic ordering of the rows

of P.
5: c = max− v
6: z = cKst

7: r[N] = 1
8: for j = 2 to N − 1 do
9: s = P[j, ∗]Kst

10: h[j] = Maxz[k]>0
s[k]−w[k]

z[k]

11: r[j] = max(h[j], r[j − 1])
12: end for

Intuitively, the algorithm works as follows: the bounding matrix has the same first row and the same

last row as the bound provided by Vincent’s algorithm. The first row is equal to the first row of the initial

matrix (Line 1 of the algorithm) and the last row is max, the maximum for the stochastic ordering. Row

i (for i between 2 and N − 1) is chosen such that:

1. it is larger using the stochastic ordering than the corresponding row in the initial matrix (i.e.

P[i, ∗]),

2. it is a linear combination of P[1, ∗]Kst and maxKst.

Finally, Line 11 makes the matrix stochastic monotone.
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Example 4 Consider matrix P:

P =



0.1 0.1 0.2 0.2 0.3 0.1

0.1 0.2 0.3 0.2 0 0.2

0.2 0.1 0.1 0.2 0.3 0.1

0.1 0 0.5 0 0.2 0.2

0 0.1 0.3 0.1 0.2 0.3

0.1 0.1 0.1 0.4 0.2 0.1


Vector v is [0.1, 0.1, 0.2, 0.2, 0.3, 0.1]. We use Vincent’s algorithm to compute max = [0, 0.1, 0.3, 0.1, 0.2, 0.3].

Vector c is [−0.1, 0, 0.1,−0.1,−0.1, 0.2].

Multiplying c by Kst we obtain vector z from which we know that we have to compute h using columns

2, 3, 5 and 6. For instance, we get:

h[2] = max(0/0.1,−0.1/0.1,−0.2/0.1, 0.1/0.2) = 0.5,

h[3] = max(−0.1/0.1,−0.1/0.1, 0/0.1, 0/0.1) = 0.0,

and

h[4] = max(0/0.1, 0.1/0.1, 0/0.1, 0.1/0.2) = 1.0,

To be complete and allow to compare the results with Algorithm 4 we also report the values of h[5] = 1

and h[6] = 0. Finally r = [0, 0.5, 0.5, 1, 1, 1]. The decomposition of the upper bound is:

eT [0.1, 0.1, 0.2, 0.2, 0.3, 0.1]

+ [0, 0.5, 0.5, 1, 1, 1]T [−0.1, 0, 0.1,−0.1,−0.1, 0.2],

or with an explicit form:

M1 =



0.1 0.1 0.2 0.2 0.3 0.1

0.05 0.1 0.25 0.15 0.25 0.2

0.05 0.1 0.25 0.15 0.25 0.2

0 0.1 0.3 0.1 0.2 0.3

0 0.1 0.3 0.1 0.2 0.3

0 0.1 0.3 0.1 0.2 0.3


.
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For the sake of comparison, we also give the bounds provided by Vincent’s algorithm:



0.1 0.1 0.2 0.2 0.3 0.1

0.1 0.1 0.2 0.2 0.2 0.2

0.1 0.1 0.2 0.2 0.2 0.2

0.1 0 0.3 0.2 0.2 0.2

0 0.1 0.3 0.1 0.2 0.3

0 0.1 0.3 0.1 0.2 0.3


One can easily check that Vincent’s bound is tighter but it does not have any structure which helps for

the numerical resolution of transient or steady-state distributions.

7.1 A generalisation based on column partition

We modify Algorithm 3 to obtain a size k decomposition. Lines 1 and 2 are kept unchanged as they

compute the first term (i.e. v.eT ) which is the same for both decompositions. We just add index i to

consider the ri in the size k decomposition.

We introduce C, the set of indices such that c[i] 6= 0. We assume that we can find a partition

{C(1), C(2), . . . , C(k)} of C in k subsets such that:

• We define the vectors ci as follows:

ci[j] = c[j] if j ∈ C(i) and ci[j] = 0 otherwise. (5)

•
∑

m∈C(j) cj [m] = 0, for all j between 1 and k.

• Vectors cjKst are non negative, for all j between 1 and k.

• The elements in any subset of the partition are contiguous: If j and k are in the same subset C(i),

then there is no state l in C(m) with m 6= i such that j ≤ l ≤ k.

Property 15 If the partition satisfies the constraints then we have the following property for all state m

and index i: If m /∈ C(i), then (ciKst)[m] = 0.

Proof: We have only two cases as the states in a subset are contiguous:

• m is larger than any element of C(i),

• m is smaller than any element of C(i).

In the first case, (ciKst)[m] =
∑

l≥m ci[l] = 0. Indeed, all the entries considered in the summation are

not in C(i) and therefore ci[l] = 0 for all l.
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For the second case, we write (ciKst)[m] =
∑

l ci[l] −
∑

l<m ci[l]. The first term is equal to 0 by

assumption. The last term is also equal to 0 because all the l considered in the summation are outside

C(i).

As a consequence the lower elements of the subsets of the partition are states j such that cKst[j] = 0.

This gives a simple heuristic to build a partition. �

Example 5 Consider again vector c equal to

[−0.1, 0, 0.1,−0.1,−0.1, 0.2], already used in a previous example. Vector cKst is [0, 0.1, 0.1, 0, 0.1, 0.2].

One can check that cKst[1] = cKst[4] = 0. This gives the subsets {1, 2, 3} and {4, 5, 6} to define the

partition.

We compute vectors hi using the same technique as in Algorithm 3 but we compute the maximum

over the subset C(i) to get hi. As a consequence, we have h = maxi(hi). This is the main difference with

the previous algorithm.

Algorithm 4 Monotone Upper Bound in Ak

Require: P.
Ensure: monotone upper bound Q.

1: v = P[1, ∗]
2: for i = 1 to k do
3: ri[1] = 0
4: end for
5: Compute with Vincent’s algorithm max, the maximum for the strong stochastic ordering of the rows

of P.
6: w = vKst.
7: c = max− v
8: z = cKst

9: Find a partition of C into k subsets
10: Define the vectors ci as in Eq. 5.
11: for j = 2 to N − 1 do
12: sj = P[j, ∗]Kst

13: for i = 1 to k do
14: hi[j] = Maxz[l]>0,l∈C(i)

s[l]−w[l]
z[l]

15: ri[j] = max(hi[j], ri[j − 1])
16: end for
17: end for
18: for i = 1 to k do
19: ri[N ] = 1
20: end for

Property 16 For any stochastic matrix P, Algorithm 4 has the following properties:

1. cic
T
j = 0 for i 6= j,

2. it computes a size k decomposition of a monotone upper bound of matrix P,

3. This bounding matrix is stochastically smaller than the matrix computed by Algorithm 3,
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Proof: Let P be the initial matrix, and let Q be the matrix associated to the decomposition we want to

build with Algorithm 4.

• Point 1) is a simple consequence of the definition of ci. Remember that ci[m] = 0 if m /∈ C(i). As

subsets C(i) form a partition of C, we always have ci[m]cj [m] = 0 if i 6= j.

• First by construction, the matrix is stochastically monotone, as vectors ri and ci satisfy the con-

straints of Property 14.

We need to show that P �st Q. This is equivalent to PKst �el QKst. For 1 ≤ j ≤ N , we have

Q[j, ∗]Kst = vKst +
∑k

i=1 ri[j]ciKst.

For j = 1, by line 2 of the algorithm, we have ri[0] = 0, ∀i, so Q[1, ∗]Kst = vKst = P[1, ∗]Kst.

Similarly, for j = N , we get Q[N, ∗]Kst = vKst +
∑k

i=1 ciKst = vKst + cKst = maxKst �el

P[N, ∗]Kst.

Consider now 2 ≤ j ≤ N − 1. By construction,Q[j, ∗]Kst = vKst +
∑k

i=1 ri[j]ciKst. The en-

tries of vector ciKst are non negative and 0 ≤ hi[j] ≤ ri[j]. Therefore: Q[j, ∗]Kst �el vKst +∑k
i=1 hi[j]ciKst.

Now remark that:

hi[j] = Maxl∈C(i),(cKst)[l]>0

s[l]− w[l]

cKst)[l]

A simple consequence of Property 15 is that for any state l and index i, if l ∈ C(i), then (cKst)[l] =

(ciKst)[l]. Therefore

hi[j] = Maxl∈C(i),(ciKst)[l]>0

s[l]− w[l]

ciKst)[l]

Note that we now have the same definition of h as in Algorithm 3. We use the same argument as

in [8] to conclude the proof.
k∑

i=1

hi[j]ciKst �el sj − w.

Finally,

Q[j, ∗]Kst �el w + sj − w = P[j, ∗]Kst.

• Point 3) is a simple consequence of the construction of the bound. As for all i, ciKst is non negative

and ri is not decreasing and due to the definition of the ci, we have:

∑
i

rTi ci �st s
T
∑
i

ci

where vector s is maxi(ri) component-wise. We have already noticed that h = maxi(hi). As a

consequence r = maxi(ri). Finally ∑
i

rTi ci �st r
T c

19



This completes the proof of this point.

�

Example 6 Let us consider the same matrix as in Example 4 and use the following partition: {{1, 3}, {4, 5, 6}}.

Note that, as c[2] equal to 0, we do not have to consider it in the set. As h1 and h2 are not computed on

the same set, we get now:

h1[2] = 0, h1[3] = 0, h1[4] = 1, h1[5] = 1, h1[6] = 0,

and,

h2[2] = 1/2, h2[3] = 0, h2[4] = 1/2, h2[5] = 1, h2[6] = 0,

Finally,

r1[1] = 0, r1[2] = 0, r1[3] = 0, r1[4] = 1, r1[5] = 1, r1[6] = 1,

and,

r2[1] = 0, r2[2] = 1/2, r2[3] = 1/2, r2[4] = 1/2, r2[5] = 1,

r2[6] = 1.

And the bounding matrix in an explicit form is:

M2 =



0.1 0.1 0.2 0.2 0.3 0.1

0.05 0.1 0.25 0.15 0.25 0.2

0.05 0.1 0.25 0.15 0.25 0.2

0 0.1 0.3 0.15 0.25 0.2

0 0.1 0.3 0.1 0.2 0.3

0 0.1 0.3 0.1 0.2 0.3


.

It can be easily checked than the bound is slightly tighter than M1 obtained with Algorithm 3.

One may expect that we can improve the tightness of the bound if we increase the rank of the

decomposition. We were not able to prove such a general result due to the lack of structure between the

partitions.

7.2 A generalisation based on row selection

We give now another algorithm to compute an �st-upper bound for a stochastic matrix P. Let Q be the

smallest �st-upper bound for P, obtained by 1. The bound given by Algorithm 3 is the matrix with a
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size 1 decomposition whose rows are convex combinations of the first and the last row of matrix Q. The

main idea of Algorithm 5 is to construct an upper bound with a decomposition of size k, using additional

k − 1 rows of matrix Q.

Algorithm 5 Monotone Upper Bound in Ak

Require: P; 1 = l1 < l2 < . . . < lk < lk+1 = N .
Ensure: monotone upper bound R.

1: Compute Q with Algorithm 1.
2: for i = 1 to k + 1 do
3: vi = Q[li, ∗]
4: end for
5: for i = 1 to k do
6: ci = vi+1 − vi
7: z = ciKst

8: w = viKst

9: for j = 1 to li do
10: ri[j] = 0
11: end for
12: for j = li + 1 to li+1 − 1 do
13: s = P[j, ∗]Kst

14: hi[j] = Maxz[m]>0
s[m]−w[m]

z[m]

15: ri[j] = max(hi[j], ri[j − 1])
16: end for
17: for j = li+1 to N do
18: ri[j] = 1
19: end for
20: end for

Property 17 For a stochastic matrix P let Q be the bound obtained by Algorithm 1, and R the bound

obtained by Algorithm 5.

1. R is a monotone upper bound of matrix P with a decomposition of size k.

2. R is stochastically smaller than the matrix computed by Algorithm 3.

3. Rows 1 = l1 < l2 < . . . < lk < lk+1 = N satisfy R[li, ∗] = Q[li, ∗].

4. The bounding matrix R′ obtained using l′ = {l′1, . . . , l′k′+1} such that l ⊂ l′, is stochastically smaller

than R. For l = {1, . . . , N}, R = Q.

Proof: Note that vi+1 = vi + ci = v1 +
∑

j≤i ci. Algorithm 5 consist of applying Algorithm 3 to k

successive blocks of matrix P, where block i contains rows li to li+1. The proof follows now directly from

properties of Algorithm 3. �

Example 7 Let us consider the same matrix as in Example 4. Set k = 2 and l = (1, 3, 6). We get

c1 = [0, 0, 0, 0,−0.1, 0.1] and c2 = [−0.1, 0, 0, 0, 0, 0.1].
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The bound is:

M3 =



0.1 0.1 0.2 0.2 0.3 0.1

0.1 0.1 0.2 0.2 0.2 0.2

0.1 0.1 0.2 0.2 0.2 0.2

0 0.1 0.3 0.1 0.2 0.3

0 0.1 0.3 0.1 0.2 0.3

0 0.1 0.3 0.1 0.2 0.3


For k = 3 and l = (1, 3, 4, 6) we obtain Vincent’s (optimal �st) bound:

M4 =



0.1 0.1 0.2 0.2 0.3 0.1

0.1 0.1 0.2 0.2 0.2 0.2

0.1 0.1 0.2 0.2 0.2 0.2

0.1 0 0.3 0.2 0.2 0.2

0 0.1 0.3 0.1 0.2 0.3

0 0.1 0.3 0.1 0.2 0.3


.

Remark 5 It can be easily checked that:

• P �st M2 �st M1. The algorithm based on column partition improves the bound.

• P �st M4 �st M3 �st M1. The algorithm based on row selection improves the bound.

• Both assertions M3 �st M2 and M2 �st M3 are false. In general, we cannot compare the results

obtained by the new algorithms.

8 Conclusion

Two important points need to be investigated now. First, as mentioned in the presentation of class

CG matrices, an algorithm with a low complexity to compute the distribution of the first passage time

has been proved in [8]. We still have to find a generalization of this algorithm if the matrix has a

decomposition of size k. Second, we have presented two algorithms to find bounding matrices with a

decomposition of size k. We must further investigate to understand which algorithm is the more accurate

and how to chose the best partitions of the rows or the columns. Finally, we will continue to explore the

algorithmic questions on Markov chain models in biology and reliability to find better solutions based on

a low rank decomposition.
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