
Perfect Sampling with Aggregated Envelopes
Ana Bušić

INRIA and ENS
Paris, France

Email: ana.busic@ens.fr

Emilie Coupechoux
INRIA and ENS

Paris, France
Email: emilie.coupechoux@ens.fr

Abstract—Perfect sampling is a technique that uses coupling
arguments to provide a sample from the stationary distribution
of a Markov chain. This technique is efficient if the transition
function of the Markov chain is monotone. In the non-monotone
case, one can construct bounding chains that can detect whether
the initial chain has coupled. For instance, if the state space
is a lattice, then one such bounding chain can be defined by
taking the smallest interval that contains the image of the one
step transition function. Here we propose to combine the ideas
of bounding processes and the aggregation of Markov chains.

We illustrate the proposed approach of aggregated envelope
bounding chains on the service tools model proposed by Vliegen
and Van Houtum (2009). For this model, the aggregated envelope
method allows to reduce exponentially the dimension of the state
space and allows effective perfect sampling algorithms. Under
some conditions on the transition rates (high service case), the
running time of our algorithm is linear in terms of the total
capacity in the system.

Index Terms—Perfect sampling, Markov chains, queueing
systems.

I. INTRODUCTION

A Perfect Sampling Algorithm (PSA) for finite Markov
chains has been introduced by Propp & Wilson [1] using a
coupling from the past scheme. Perfect sampling procedures
have been developed since in various contexts. We mention
here only some works directly linked to the present article. For
more information, see the annotated bibliography: Perfectly
Random Sampling with Markov Chains, http://dimacs.rutgers.
edu/∼dbwilson/exact.html/.

The main drawback of the initial Propp & Wilson PSA is
the need to consider the coupled trajectories from all possible
initial states of the Markov chain. This can be avoided if the
transition function of the Markov chain is monotone, as in
that case one can consider only trajectories from extremal
initial states (two if the state space is a finite lattice) [1].
Similarly, a perfect sampling algorithm for chains with anti-
monotone events was given in [2]. These techniques have been
successfully used in [3] to construct a PSA for networks of
queues.

In the case of general non-monotone chains, Kendall and
Møller [4] proposed to consider a new bounding process, that
sandwiches all the original trajectories of the Markov chain.
This bounding process is usually derived ad-hoc for a given
Markov chain with specific simplifying properties. Bušić et al.
[5] proposed Envelope Perfect Sampling Algorithm (EPSA),
that constructs a bounding Markov chain in the case when the
state space is a finite lattice. Intuitively, the bounding chain

used by EPSA is defined on the non-empty intervals of the
state space, and the transition function of this envelope chain
is obtained by taking the smallest interval that contains the
image of the one step transition function of the original chain.
We give a more formal overview of EPSA in Section II.

The clear advantage of EPSA is the fact that one needs to
consider only one trajectory of the envelope chain (the one
that starts with the initial interval equal to the whole state
space). However, the computation of the envelope transition
function can be very difficult. In some extreme cases, it can
be linear in the cardinality of the state space, so that there
is no gain compared to the original PSA. In many cases of
queueing networks, however, the complexity of the envelope
transition function is linear in the dimension of the state space
[6]. For many applications, this is more than acceptable and
allows effective perfect sampling algorithms.

However, in many variants of loss networks (see Kelly
[7]), the dimension of the state space is exponential with
the number of different resources in the system. In loss
networks, demands, for example phone calls, need several
links to be simultaneously available. If all links are available,
the call is connected. After the call is finished, all links are
simultaneously released. When one or more of the links are
not available, the call does not connect, and the demand for
all links is lost. Although loss networks have a product-form
solution, exactly computing the blocking probabilities for this
system is known to be a difficult problem (Louth et al. [8]),
due to the normalizing constant.

The main issue we address in this paper is how to handle the
state space explosion problem in perfect sampling algorithms.
We propose a new method of aggregated envelopes, that
combines EPSA with the aggregation of Markov chains. For
loss networks and its variants, our aggregated envelope method
allows to reduce exponentially the dimension of the state
space and allows effective perfect sampling algorithms. Under
some conditions on the transition rates (high service rate), the
running time of our algorithm is linear in terms of the total
capacity in the system.

Our work is motivated by a variant of loss networks,
called the service tools model, introduced by Vliegen and
van Houtum [9]. In their problem, to perform a maintenance
action, several service tools are needed at the same time.
Whenever one or more tools are not present, they are sent
by an emergency shipment to enable the initiation of the
maintenance action as soon as possible. For the supply location

under consideration the demand for these emergency shipped
tools is lost. Furthermore, after usage all tools return to the
location they were sent from together. The difference between
the service tools model and loss networks is only at the
boundary of the state space: If some of demanded resources
are not available, in the service tools model the available
resources are allocated, while in loss networks the entire
demand is lost. This difference breaks the product form and
makes the analysis considerably more difficult. Vliegen and
van Houtum [9] developed different approximations. Bušić et
al. [10] proved that some of the previous approximations give
bounds for the original system. However, for larger instances
those bounds are still time consuming, and there is in general
no guarantee on their accuracy.

Both loss networks and the service tools models can be
seen as special cases of assemble-to-order queueing systems
(ATO), whose general characteristics are that both arrivals and
services in different queues can occur simultaneously. For an
overview on ATO systems, see Song and Zipkin [11]. In the
framework of ATO systems, we focus here on continuous-
review models, with exponential replenishment times and finite
stock capacities. We consider two different options for the out-
of-stock situation: A demand can be fulfilled partly (as in the
service tools case), referred to as partial order service (POS);
or lost fully (as in loss networks), referred to as total order
service (TOS). Also, we can distinguish between two different
situations for the service/return of components: components
are either returned individually (and independently) or jointly
(as in loss networks and its variants).

In the case of ATO systems with individual service, Song et
al. [12] proposed an exact evaluation, both for TOS and POS,
by using a matrix geometric approach. This exact method,
however, is computationally inefficient for larger problem
instances. Dayanik et al. [13] presented several approxima-
tions and bounds on the performance of ATO-POS systems
with individual returns. We can conclude that all four cases
(POS/TOS with individual/joint services) of ATO systems can
be difficult to analyze directly. Simulation can thus be an in-
teresting alternative for bounding or approximation techniques
developed in the literature.

In the case of individual returns, the state space is an I-
dimensional lattice (where I is the number of different item
types), so EPSA can be used directly. For the case of joint
services, loss networks have a product-form solution, which
makes the exact calculation somewhat easier. We therefore
focus on the case of the ATO-POS system with joint services,
i.e. the service tools model in [9]. However, we would like
to highlight that the presented approach can be very easily
adapted for loss networks, where it can be used to estimate
the normalizing constant of the product form solution.

In Section II we give an overview of perfect sampling
technique and the related literature. In Section III we introduce
the method of aggregated envelopes. In Sections IV and
V we illustrate this method on the example of the service
tools model. Finally, in Section VI we discuss some possible
extensions of our work and provide conclusions.

II. PERFECT SAMPLING AND THE METHOD OF ENVELOPES

The evolution of a finite Discrete Time Markov Chain
(DTMC) can always be obtained using a finite number of
discrete events (or actions). We consider a system description
similar to Generalized Semi Markov Processes [14], with a
focus on state changes rather than on time: we consider the
tuple M = (X , E , ν, f) where X is a finite state space, E is
the set of events, ν is a probability distribution on E , and f is
a transition function, f : X × E → X .

This transition function f can be naturally extended to
words a1→t

def= a1a2 . . . at ∈ Et, t ∈ N (where a1→0 := ε
is the empty word). For any t ∈ N, f : X × Et →
X is defined by: f (x, ε) def= x and f (x, a1→t)

def=
f (. . . f (f (x, a1) , a2) , . . . , at) .

Let (at)t≥1 = (a1, . . . , at, . . .) be an infinite i.i.d. sequence
of random events in E , distributed according to ν. Then for
any x0 ∈ X , the random process (Xt

def= f(x0, a1→t))t≥0

is a Markov chain issued from x0 with probability transition
matrix P given by:

for all x, y in X , P (x, y) =
∑

a∈E, f(x,a)=y

ν(a). (1)

We say that the Markov chain (Xt) is generated by M and
(at)t≥1.

Conversely, for any probability transition matrix P on a
finite state space X , it is easy to see that there exists a
tuple M = (X , E , ν, f) such that (1) holds, i.e. such that
M generates a Markov chain on X with transition matrix P ,
but that representation is in general not unique. However, such
a representation naturally arises for many systems, including
Markovian queueing networks.

We can build a family of Markov chains {(Xt(x) =
f(x, a1→t))t≥0 | x ∈ X} starting from each state x ∈ X ,
referred to as the grand coupling generated byM and (at)t≥1

[15]. We will say that the grand coupling has coupled (or
more precise coalesced) at time t if all the Markov chains
of the family has reached the same state. Using the notation
f (U, a1→t)

def= {f (x, a1→t) , x ∈ U} for any subset U ⊂ X ,
this is equivalent to the fact that f(X , a1→t) is reduced to
a singleton. In the following, |V | denotes the cardinality of
set V .

A. Perfect Sampling

Let (Xt)t∈N be an irreducible and aperiodic DTMC with
finite state space X and transition matrix P . Consider a
discrete event system representation M = (X , E , ν, f) that
satisfies (1), and let π denote the steady state distribution of
the chain: π = πP . Perfect Sampling Algorithm (PSA) allows
one to draw a steady state distributed random variable in finite
time, using coupling from the past.

Theorem 1 (Propp and Wilson [1]). Let (a−t)t∈N =
(a0, a−1, . . . , a−t, . . .) be a sequence of events i.i.d. with
distribution ν on E . There exists ` ∈ N such that
limt→∞

∣∣f(X , a−t+1→0)
∣∣ = ` almost surely. The grand

coupling generated by M and (a−t)t∈N is coalescing if

` = 1. In that case, let τ def= inf
{
t :

∣∣f(X , a−t+1→0)
∣∣ = 1

}
be the coupling time of the chain. Then E(τ) < ∞ and
f(X , a−τ+1→0) is steady state distributed.

The main drawback of PSA is the fact that one needs to
simulate one Markov chain starting from each state in X ,
that could be too large for a practical use of the algorithm.
Several approaches have been used to overcome this problem.
The main one for a partially ordered state space (X ,�) and
monotone events was already given in [1].

Definition 2. An event a ∈ E is said to be monotone if, for
all x, y ∈ X , x � y ⇒ f(x, a) � f(y, a).

If all events are monotone, then one can consider only the
trajectories issued from maximal and minimal initial states [1].

In the case of general non-monotone chains, it is possible
to use a bounding chain method, introduced by Kendall and
Møller in [4]. EPSA (Envelope Perfect Sampling Algorithm)
[5] constructs bounding chains in the case when the state space
is equipped with a lattice order relation. We give next a short
overview of EPSA.

B. Bounding Interval Chains

We assume that the state space (X ,�) is a lattice. For
m,M ∈ X , denote by [m,M] def= {x ∈ X : m �
x � M} the (lattice) interval between the endpoints m
and M (note that [m,M] 6= ∅ if and only if m � M).
Let J be the set of all nonempty lattice intervals: J =
{[m,M] : m,M ∈ X , m �M}. Given a grand coupling
{(Xt(x))t≥0 | x ∈ X}, a bounding interval chain is any
Markov chain of nonempty intervals ([mt,Mt])t≥0 such that:
for all x in X and all t ≥ 0, Xt(x) ∈ [mt,Mt]. In particular we
notice that when mt = Mt, the grand coupling has necessarily
coalesced.

A new envelope transition function F : J × E → J ,
that transforms intervals into intervals, is defined by: for all
[m,M] ∈ J and a ∈ E ,

F ([m,M], a) def=
[

inf
m�x�M

f(x, a), sup
m�x�M

f(x, a)
]
.

As with f , transition function F can be extended to a
finite word of events a1→t = a1 . . . at ∈ Et, t ∈ N:
F ([m,M], a1→t)

def= F (. . . F (F ([m,M], a1) , a2) , . . . , at) .
Let ⊥ def= inf X (resp . > def= supX) be the bottom (resp. top)
element of X . The process [mt,Mt]

def= F ([⊥,>], a1→t) is a
Markov chain over the state space X ×X , called the envelope
chain, and is a bounding interval chain of the grand coupling
{(f(x, a1→t))t≥0 | x ∈ X}. Notice that the lower envelope
(mt)t∈N alone is not a Markov chain, neither is the upper one
(Mt)t∈N, since they depend on each other.

The envelope process can be used to detect the coalescence
of the grand coupling. The following result was shown in [5]:

Theorem 3. Let (a−t)t∈N be a sequence of events i.i.d. with
distribution ν on E . Assume that the envelope chain
F ([⊥,>], a−t+1→0) hits the set of single point intervals

P = {[x, x] : x ∈ X} a.s. in finite time. Let τe
def=

min {t : F ([⊥,>], a−t+1→0) ∈ P} , then τe is a backward
coupling time of the envelope chain. The state defined by
F ([⊥,>], a−τe+1→0) has the steady state distribution of
DTMC (Xt)t∈N.

Algorithm 1: EPSA [5]

Data: I.i.d. events (a−t)t∈N ∈ EN
Result: A state x∗ ∈ X generated according to the

stationary distribution of the Markov chain
begin

t := 1;
repeat

m := ⊥; M := >;
for i = t− 1 downto 0 do

[m,M] := F ([m,M], a−i) ;
t := 2t;

until m = M ;
x∗ := m;
return x∗;

end

Envelope Perfect Sampling Algorithm (EPSA) is given in
Algorithm 1. The reason to double t at each loop of the
algorithm is that we need to compute F ([⊥,>], a−t+1→0)
in each loop, which corresponds to t iterations of F . While
increasing t by 1 at each loop would lead to a quadratic cost in
τe, doubling it keeps the complexity linear. This was already
observed in [1].

III. AGGREGATED ENVELOPES

In many applications, the main drawback of the perfect
sampling method is the cardinality of the state space. In the
case of ATO systems with joint services (loss networks and
its variants), the dimension of the state space is exponential
with respect to the number of different resource types. Indeed,
although we are usually interested only in the total number
of available resources of each type, this information is not
sufficient to describe the evolution of the system: In order to
have a Markov chain, we need to track detailed information
on which resources were allocated together (as they will be
released together). Thus even storing the vector representing
the state of the system becomes challenging.

The idea of aggregated envelope method is to consider
only the projection of the state space on a smaller space.
However, this projection does not contain all the information
about the evolution of the system so we will need to construct
a bounding chain that takes into account all such possible
evolutions.

We assume that our initial Markov chain is given by a tuple
M = (N , E , ν, g). We assume further that there is a projection
function ψ : N → X such that (X ,�) is a finite lattice. The
state space N is not necessarily a lattice (we do not assume
any ordering relation on N). In fact, this is another important
motivation for the aggregated envelope method.

In practice, |X | will be much smaller that |N | (in the model
considered in Sections IV and V, the dimension of space N

is 2I − 1, where I is the dimension of space X).
In this section, we develop a method that allows to sample

an interval of X containing the projection of a state distributed
according to the stationary distribution π of the original
Markov chain. We will see that, sometimes (e.g. ATO systems
with joint services under high service rate assumption, see
Section V), it is even possible to sample a state in N ,
distributed according to the stationary distribution.

A. The idea of aggregation

Our starting idea is to use the projected state space X
for simulations. Intuitively, the original Markov chain X =
(Xt)t∈N evolves in N , but we can only observe its projection
Y = (Yt)t∈N = (ψ(Xt))t∈N. Assume that the original
chain is in state n0 ∈ N . The only information we have is
x = ψ(n0) ∈ X . When an event a ∈ E occurs, we need to
determine the next state in X . As Y is not a Markov chain, we
cannot determine the next state only from knowing x. Instead,
we will consider the evolution from all the states n ∈ N such
that ψ(n) = x. More formally, for x ∈ X , we consider the
following subset Sx ⊂ N :

Sx = {n ∈ N , ψ(n) = x} = ψ−1({x}).

Let P(X) denotes the family of subsets of X , and f : P(X)×
E → P(X) a transition function defined by:

f(U, a) = ∪x∈U{ψ (g(Sx, a))},

where g is the transition function of the original Markov chain.
If the projected space is small enough, we can use Algo-

rithm 2.
Algorithm 2: Perfect Sampling using Aggregation

Data: I.i.d. events (a−t)t∈N ∈ EN.
Result: Subset U ⊂ X containing the projection of a state

n∗ ∈ N distributed according to π.
begin

t = 1; c = 0;
repeat

U = X ;
for i = t− 1 downto 0 do

U := f (U, a−i) ;
if |U | = 1 then c = 1;

t := 2t;
until c = 1 ;
return U ;

end

The lack of knowledge induced by the projection on X
forces to consider all the states n ∈ N with the same
projection x. This induces two main problems:
• Even if the original system couples, we may never have
|U | = 1 in Algorithm 2.

• Even if at some time −t we have only one value for the
projected process (i.e. |U | = 1), this is not necessarily
the case for times −s, −t ≤ −s ≤ 0, as in fact this
single projected value at time −t can correspond to many
different states in N .

In addition to these problems, space X can be too big to
consider all the initial states x ∈ X . So, first, we would like
to be able to compute ψ (g(Sx, a)), for a given state x and
event a, without considering all n ∈ Sx (for ATO systems
with joint services, |Sx| grows exponentially with the number
of item types). Also, we do not want to be forced to calculate,
at each step, ψ (g(Sx, a)) for all the current states x (even if
we are able to calculate it easily for each state). To overcome
this, we will combine the idea of aggregation with the method
of envelopes developed in [5].

B. Combining aggregation and envelopes
First we need to define the Markov chain Y inf (respec-

tively Y sup) that maps x to the infimum (resp. supremum)
of f({x}, a) = ψ (g(Sx, a)). We consider the following
transition functions: for all x ∈ X and a ∈ E ,

ginf(x, a) def= inf f({x}, a), gsup(x, a) def= sup f({x}, a).

Let m,M ∈ X such that m �M . The method of envelopes
changes the subset [m,M] into a new subset [m′,M ′] (that
depends on the event a ∈ E and that usually involves only the
transition function of the Markov chain we consider). Here
we are considering two Markov chains Y inf and Y sup on
the same space X , with the same set of events E , but with
two different transition functions ginf and gsup. Considering
separately the envelopes of the infimum and the supremum
chains does not necessarily sandwich the projected process (if
either ginf or gsup is not monotone). We define the aggregated
envelope transition function as follows: For m,M ∈ X such
that m �M , and a ∈ E ,

H ([m,M], a) def=
[

inf
m�x�M

ginf(x, a), sup
m�x�M

gsup(x, a)
]

=
[
H ([m,M], a) , H ([m,M], a)

]
.

In order to compare the projected process Y = ψ(X) of
the original chain X to the lower and the upper envelopes
of H , we need the following notations. Let Z be a process
with state space Z . For (t, z) ∈ N×Z , the notation Z(−t, z)
stands for a realization of Z that starts from z at time −t, while
Z−s(−t, z) denotes the value of this realization at time −s.
The next lemma shows that the chain with transition function
H is a bounding interval chain for the projected process ψ(X).

Lemma 4. Let n ∈ N and y, z ∈ X such that y � ψ(n) � z.
Let t ∈ N and a−t+1, . . . , a0 ∈ E . Then we have for any
s ≤ t:

H ([y, z], a−t+1→−s) � ψ(X−s(−t, n))
� H ([y, z], a−t+1→−s) .

Proof: Let x := ψ(n). We prove the result by descending
induction on s. First, for s = t the result is trivial, as
a−t+1→−s = ε (empty word), so

H ([y, z], ε) = y � ψ(X−t(−t, n)) � z = H ([y, z], ε) .

Assume now the result is true for some s, s ≤ t. Let n′ :=
X−s(−t, n), x′ := ψ(n′), y′ := H ([y, z], a−t+1→−s) and

z′ := H ([y, z], a−t+1→−s). Then we have that y′ � x′ � z′

by induction hypothesis. For s− 1, we have:

H ([y′, z′], a−s+1) � ginf(x′, a−s+1) � ψ(X−s+1(−t, n))
� gsup(x′, a−s+1) � H ([y′, z′], a−s+1) .

By the definition of y′ and z′, H ([y′, z′], a−s+1) =
H ([y, z], a−t+1→−s+1) and H ([y′, z′], a−s+1) =
H ([y, z], a−t+1→−s+1), which gives the result for s− 1.

The aggregated envelope method is summarized as Algo-
rithm 3.

Algorithm 3: Aggregated Envelope Perfect Sampling

Data: I.i.d. events (a−t)t∈N ∈ EN.
Result: Interval [m∗,M∗] ⊂ X containing the projection

of a state n∗ ∈ N distributed according to π.
begin

t = 1; c = 0;
repeat

m := ⊥ (∈ X); M := > (∈ X);
for i = t− 1 downto 0 do

[m,M] := H ([m,M], a−i) ;
if m = M then c = 1;

t := 2t;
until c = 1 ;
m∗ := m; M∗ := M ;
return m∗, M∗;

end

IV. ATO-POS WITH JOINT SERVICES

A. Model description

We consider an assemble-to-order system with partial order
service (ATO-POS) and joint returns of items, also called
the service tools model by Vliegen and van Houtum [9]. We
assume that there are I different item types and denote by
I = {1, . . . , I}. For each i ∈ I, let Ci be the total amount
of items of type i (i.e. we consider finite stock capacities).
The customers arrive in the system according to a Poisson
process of rate λ. Each customer asks for a subset of items
and the probability to ask subset A is denoted by pA. Thus the
demands for each subset A follows a Poisson process of rate
λA = pAλ. If some demanded items are not available, then
the customer takes the available items (POS case) and these
items return from the customer together (joint service) after
an exponential time of rate µ. The demand for the items that
are not available is lost.

This system can be modeled as a network of I queues
with joint arrivals and services: arrivals to queues represent
demands for different subsets of items and service in a queue
models returns of items. Denote by C = (C1, . . . , CI) the
vector of queue capacities.

We consider joint services, so that items that entered the
system together (borrowed by one customer) will also leave
the system together (returned from the customer). Therefore
we need to keep memory of the way items entered the queues
together. The system can be modeled as a continuous time

Markov chain with state space:

N =

{
(nA)A⊆I,A ∅ ; ∀A,nA ≥ 0 & ∀i,

∑
A:i∈A

nA ≤ Ci

}
.

where nA is the number of subsets A currently borrowed
by the customers. Let eA denote the vector of N whose
coordinate A is equal to 1, and others are 0.

We introduce the projection ψ on space X = {0, ..., C1} ×
{0, ..., C2} × · · · × {0, ..., CI}:

ψ :
{

N −→ X
n = (nA)A⊂I 7−→ x =

(∑
A:i∈A nA

)
i∈I

The total number of items of each type in queues (i.e. currently
used by the customers) is given by a vector x = (x1, . . . , xI) ∈
X , where xi is the number of items of type i. We consider
the product order ≤ on X .

We have two different types of transitions. For each n ∈ N ,
and for each A ⊂ I:
• There is a demand for subset A, with rate λA. The new

state is: n+ eA(n) , where

A(n) = {i ∈ A : (ψ(n))i < Ci} (2)

denotes the items of set A that are available in state n
and that are sent together to the customer.

• If nA > 0, there is a joint service of A, with rate µ ·nA.
The new state is n− eA.

By a standard uniformization procedure, we can transform
the above continuous time Markov chain to a discrete time
Markov chain. The outgoing rate for each state is smaller
than λ + µ

∑
i∈I Ci. To simplify notation and without loss

of generality, we assume that the following condition holds:

λ+ µ
∑
i∈I

Ci = 1, (3)

and we take the uniformization constant to be equal to 1.
We now explain briefly the discrete event representation of

our (uniformized) Markov chain. Precisions for services are
given in Appendix A.

1) Arrivals: For any A ⊂ I, A 6= ∅, let dA be the event of
probability λA that corresponds to a “joint arrival to queues
in A”. We give the transition function g of the Markov chain
X on N for an arrival dA, A ⊂ I, A 6= ∅, when the state is
n ∈ N :

g(n, dA) = n+ eA(n) , (4)

where A(n) ⊂ A is defined by (2).
2) Services: Unfortunately, if services are not well chosen,

the supremum chain does not move with any service. Indeed,
let us consider a possible service a. For gsup(x, a) to be
different from x on the i-th coordinate, 1 ≤ i ≤ I , we have
that all states n ∈ N such that ψ(n) = x must be served on
some coordinate A ⊂ I that contains i (A can depend on n).
Otherwise, if there is at least one state n whose i-th queue is
not served, then the i-th coordinate of the supremum does not
move. This makes the definition of services a little tricky; we

give the details in Appendix A.

B. Another stopping condition
Note that Algorithm 3 only gives an interval that contains

the projection of a state distributed according to the stationary
distribution. We can relax further the stopping condition:
Instead of stopping when the upper and lower envelopes meet
(m = M), we can stop when they meet at least once on each
component between time −t+ 1 and time 0, see Algorithm 4.
In fact, we will provide some bounds for the stopping time of
Algorithm 4 (see Theorem 5), and compare Algorithms 3 and
4 with simulations (see IV-C).

Algorithm 4: Modified stopping condition

Data: I.i.d. events (a−t)t∈N ∈ EN.
Result: Interval [m∗,M∗] ⊂ X containing the projection

of a state n∗ ∈ N distributed according to to the
stationary distribution.

begin
t := 1; c := zeros(1, I);
repeat

m := ⊥ (∈ X); M := > (∈ X);
for i = t− 1 downto 0 do

[m,M] := H ([m,M], a−i) ;
for j = 1 to I do

if m(j) = M(j) then c(j) := 1;

t := 2t;
until c = ones(1, I) ;
m∗ := m; M∗ := M ;
return m∗, M∗;

end

We can give bounds for the complexity of Algorithm 4,
assuming the following conditions. We suppose there exist two
subsets I ′0 and I ′C ⊂ I, I = I ′0 ∪ I ′C , such that:
(i) µ >

∑
i∈I′0

λi,

(ii) δp
def= λp − µ (

∑p
i=1 Ci − 1) > 0 for all p ∈ I ′C .

Without loss of generality, we can change the numbering of
queues such that:
(iii)

(
i ∈ I ′0 and j ∈ I ′C

)
=⇒ i ≤ j.

Theorem 5. Assume conditions (i) to (iii) hold. Then we can
bound the time τAlg for which all components couple at least
once by: E [τAlg] ≤ 1

µ−
P

i∈I′0
λi

∑
i∈I′0

Ci +
∑
p∈I′C

1
δp
Cp.

The proof is given in Appendix E, and uses the results of
Appendixes B, C, and D.

C. Numerical results
In Figure 1 on the top, we give stopping times for Al-

gorithms 3 and 4 (ATO-POS with joint services), for the
following parameters: I = 5, Ci = 10,∀i, λA = 1

2|A|−1 ,
and µi(xi) = µxi, with ρ = λi

µ . The size of the sample is
N = 100. We can observe that the mean stopping times of
both algorithms are very close. In Figure 1 on the bottom,
we provide mean distance between upper and lower bounding
states at time 0 using 1-norm, i.e.

∑
i∈I(M∗i −m∗i).

Fig. 1. On the top: Stopping times for Algorithms 3 and 4 (ATO-POS with
joint services), and the upper bound for Algorithm 4 (we display log2(T)
where T is the mean stopping time), together with the 95% confidence
intervals. On the bottom: Mean distance (in 1-norm) between upper and lower
bounding states at time 0 for Algorithms 3 and 4, together with the 95%
confidence intervals.

V. ATO-POS SYSTEM WITH JOINT SERVICES: HIGH
SERVICE RATE CASE

The supremum chain Y sup is monotone (Proposition 8,
Appendix B). This gives directly the computation for the upper
envelope of H: for any m,M ∈ X , a ∈ E , H ([m,M], a) =
gsup(M,a). This result and Lemma 4 give that the projected
chain ψ(X) is between zero and the supremum chain Y sup. If
the service rate is high, we can wait until the supremum chain
Y sup hits zero. The main advantage is that this provides some
solution for the possible decoupling of the system: When Y sup

reaches zero, the projected process is also in state zero, and
thus the only possible state for the original Markov chain X is
also zero. Thus the original chain X couples in N . Hence, we
can do backward simulation for Y sup until we find a time −t
such that Y sup

−t = 0, and then, from time −t to time 0, simulate
the only trajectory of X starting from state zero (with the same
events). We will refer to this algorithm as Algorithm 5.

Lemma 11 in Appendix B gives that the expected hitting
time of zero for Y sup is O (

∑
i Ci), provided that µ >

∑
i λi.

This result leads to the following theorem (since the only
possible state for the chain X when ψ(X) = 0 is the state
0: hence if the projected process reaches zero, the original
system defined on N also reaches zero, and so couples).

Theorem 6. Let τ be the coupling time of the original chain
X defined on N , and corresponding to the ATO-POS system
with joint services. Assume µ >

∑
i λi. Then we have:

E[τ] ≤ 1
µ−

∑
i λi

I∑
i=1

Ci.

Furthermore, Lemma 11 shows that Algorithm 5 has linear
complexity in

∑I
i=1 Ci, when µ >

∑
i λi.

VI. FURTHER REMARKS AND CONCLUSIONS

Up to our knowledge, this is the first time that the aggre-
gation of Markov chains is combined with perfect sampling
technique to avoid state space explosion problems. This direc-
tion sounds promising for various applications.

Note that, in the case of ATO-POS systems with joint
services the state space is extremely big - only its dimension
is 2I − 1 - and up to our best knowledge, there is no known
efficient solution technique in the literature for this case. Thus
our perfect sampling algorithms can be of great interest to
evaluate their performance, as well as replace different existing
approximation techniques used in the optimization algorithms
for capacity dimensioning. Also, one possible natural future
research direction in that area seems to be to perform an
extensive study to evaluate accuracy of these approximations.
Further, in most applications, the lost probability is demanded
to be very low, thus the conditions in Section V seem to
be natural, under which the exact samples of the stationary
distribution can be obtained by Algorithm 5.

REFERENCES

[1] J. G. Propp and D. B. Wilson, “Exact sampling with coupled Markov
chains and applications to statistical mechanics,” Random Structures and
Algorithms, vol. 9, no. 1-2, pp. 223–252, 1996.

[2] O. Häggström and K. Nelander, “Exact sampling from anti-monotone
systems,” Statist. Neerlandica, vol. 52, no. 3, pp. 360–380, 1998.

[3] J.-M. Vincent, “Perfect simulation of monotone systems for rare event
probability estimation,” in Winter Simulation Conference, Orlando, 2005.

[4] W. S. Kendall and J. Møller, “Perfect simulation using dominating
processes on ordered spaces, with application to locally stable point
processes,” Advances in Applied Probability, vol. 32, no. 3, pp. 844–
865, 2000.

[5] A. Bušić, B. Gaujal, and J.-M. Vincent, “Perfect simulation and non-
monotone markovian systems,” in Valuetools’08, Athens, Grece, 2008.

[6] A. Bušić, B. Gaujal, and F. Pin, “Perfect sampling of Markov
chains with piecewise homogeneous events,” 2010, submitted. Preprint
arXiv:1012.2910.

[7] F. P. Kelly, “Loss networks,” The Annals of Applied Probability, vol. 1,
no. 3, pp. 319–378, 1991.

[8] G. Louth, M. Mitzenmacher, and F. Kelly, “Computational complexity
of loss networks,” Theoretical Computer Science, vol. 125, no. 1, pp.
45–59, 1994.

[9] I. M. H. Vliegen and G. J. van Houtum, “Approximate evaluation of
order fill rates for an inventory system of service tools,” International
Journal of Production Economics, vol. 118, no. 1, pp. 339–351, 2009.

[10] A. Bušić, I. Vliegen, and A. Scheller-Wolf, “Comparing Markov chains:
Aggregation and precedence relations applied to sets of states, with
applications to assemble-to-order systems,” HAL, Tech. Rep., 2009.

[11] J.-S. Song and P. Zipkin, “Supply chain operations: Assemble-to-order
systems,” in Supply Chain Management: Design, Coordination and
Operation, ser. Handbooks in Operations Research and Management
Science, A. de Kok and S. Graves, Eds. North-Holland, 2003, vol. 11,
ch. 11, pp. 561–596.

[12] J.-S. Song, S. H. Xu, and B. Liu, “Order-fulfillment performance
measures in an assemble-to-order system with stochastic leadtimes,”
Operations Research, vol. 47, no. 1, pp. 131–149, 1999.

[13] S. Dayanik, J.-S. Song, and S. H. Xu, “The effectiveness of several
performance bounds for capacitated production, partial-order-service,
assemble-to-order systems,” Manufacturing & Service Operations Man-
agement, vol. 5, no. 3, pp. 230–251, 2003.

[14] C. G. Cassandras and S. Lafortune, Introduction to discrete event
systems, 2nd ed. Springer, 2008.

[15] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov chains and mixing
times. Providence, RI: American Mathematical Society, 2009, with a
chapter by James G. Propp and David B. Wilson.

[16] P. Brémaud, Markov chains: Gibbs fields, Monte Carlo simulation, and
queues. New York: Springer-Verlag, 1999.

APPENDIX

A. Events: definition of services

Before defining services, we need to define an ordering for
the non-empty subsets of I.

Ordering of the subsets. For all i ∈ I, we define(
Aik
)
0≤k≤2I−i−1

as an ordering of all the subsets of {i, ..., I}
containing i (for instance, subsets

(
A1
k

)
k

are those that contain
1,
(
A2
k

)
k

those that contain 2 but not 1, and so on). More
precisely, let i ∈ I and k ∈ {0, 1, ..., 2I−i − 1}. We set k =
k1 ... kI−i for the binary coding of k (k =

∑I−i
s=1 ks2

I−i−s,
where ks ∈ {0, 1}). Then the subset Aik is by definition such
that: i) i ∈ Aik, and ii) for s ∈ {i + 1, ..., I}, s ∈ Aik if and
only if ks−i = 0.

Services. Let rij , 1 ≤ i ≤ I , 1 ≤ j ≤ Ci, be independent
events of probability µ to occur, such that the transition
function g of X is given by:

• For each n ∈ N , if
∑2I−i−1
`=0 nAi

`
< j, set: g(n, rij) = n

;
• For each n ∈ N , if

∑2I−i−1
`=0 nAi

`
≥ j, let k be

the minimal element of {0, 1, ..., 2I−i − 1} such that∑k−1
`=0 nAi

`
< j ≤

∑k
`=0 nAi

`
. Set: g(n, rij) = n− eAi

k
.

We can notice that the total number of events corresponding
to services is only:

∑I
i=1 Ci.

B. Monotonicity of the supremum chain

1) Computation of the supremum chain:

Lemma 7. For all x ∈ X , set x̂i
def= max{xi − (x1 + ... +

xi−1), 0}. Then the transition function of the supremum chain
is, for A ⊂ I, A 6= ∅, i ∈ I, 1 ≤ j ≤ Ci, and x ∈ X : gsup(x, dA) = x+

∑
k∈A

1{xk<Ck}ek,

gsup(x, rij) = x− 1j≤x̂iei.

2) Monotonicity: As a corollary of Lemma 7, we have the
following result (the proof for services follows from the fact
that x ≤ y and xi = yi imply x̂i ≥ ŷi).

Proposition 8. Let a ∈ E be any arrival or service. With the
natural order on X , the event a is monotone for the supremum

chain in the ATO-POS system with joint services, that is to say:
for all x, y ∈ X such that x ≤ y, we have that: gsup(x, a) ≤
gsup(y, a).

C. The aggregated envelope chain H

Let m,M ∈ X , m ≤ M . Our goal is to compute
H ([m,M], a) for a ∈ E (see the definition in III-B).

Arrivals. Let A ⊂ I, A 6= ∅. Then H ([m,M], dA) =
[f(m, dA), f(M,dA)] where f(x, dA) = gsup(x, dA) = x +∑
k∈A 1{xk<Ck}ek = ginf(x, dA) for all x ∈ X . Indeed, the

computation of gsup(x, dA) is given in Lemma 7, and the same
proof can be applied to compute ginf(x, dA). In addition, the
expression of f(·, dA) shows that it is monotone, which gives
the result for H .

Services. Let i ∈ I and j ∈ {1, 2, ..., Ci}. By Proposition
8, gsup is monotone, thus H

(
[m,M], rij

)
= gsup(M, rij) =

M − 1j≤M̂i
ei. In order to compute H

(
[m,M], rij

)
, we first

need to compute the infimum chain ginf(·, rij) (Lemma 9). We
will see that it is not monotone, hence we also need to compute
the lower envelope of the infimum chain (Lemma 10).

1) Computation of the infimum chain for services:

Lemma 9. We compute the p-th coordinate of ginf(x, rij), p ∈
I, and we have to distinguish three cases:
• If p < i, then

(
ginf(x, rij)

)
p

= xp;
• If p = i, then

(
ginf(x, rij)

)
p

= xi − 1{j ≤ xi};
• If p > i, then

(
ginf(x, rij)

)
p

=
xp − 1

{
xp > 0 & j ≤ min

(∑p
i′=i+1 xi′ , xi

)}
.

2) Computation of the lower envelope for the infimum chain
(for services): The computation above leads to the following
observation: services are not monotone for the infimum chain.
Indeed, let us take I = 2, x = (0, 1), and y = (1, 1). Then
x ≤ y, yet ginf(x, r11) = (0, 1) ≥ (0, 0) = ginf(y, r11). Thus,
we have to compute the lower envelope of the infimum chain
Y inf .

Lemma 10. Let m, M ∈ X such that m ≤ M . Let i ∈ I
and j ∈ {1, 2, ..., Ci}. Set m′ = H

(
[m,M], rij

)
. We compute

each coordinate p of m′, for p ∈ I, and we can distinguish
three cases:
• If p < i, then m′p = mp;
• If p = i, then m′p = mi − 1{j ≤ mi};
• If p > i, then m′p = mp−
1
{
mp > 0 & j ≤ min

(∑p−1
i′=i+1Mi′ +mp,Mi

)}
.

D. Hitting time to zero for the supremum chain

The next lemma gives the mean hitting time to zero for the
supremum chain, using the results of Appendix B. We use it
in the proofs of both Theorems 5 (IV-B) and 6 (V).

Lemma 11. Let τ̄ be the time that the supremum chain,
starting from C = (C1, ..., CI), reaches the state 0 in X .

Assume µ >
∑
i λi. Then we have: E[τ̄] ≤ 1

µ−
P

i λi

∑I
i=1 Ci.

To prove this, we will use the following result that is often
used as a part of the proof of Foster’s theorem (see for instance
[16, proof of Theorem 1.1]). It gives a bound on the mean
hitting time of a subset for a Markov chain that verifies the
following assumptions:

Theorem 12. Let the transition matrix P on the finite state
space E be irreducible and suppose that there exists a function
h : E → R+ such that∑

z∈E
P (y, z)h(z) ≤ h(y)− ε for all y /∈ U, (5)

for some subset U ⊂ E. Let τU be the hitting time of U and
Ey denote the expectation, knowing that the chain starts in y.
Then, for all y /∈ U ,

Ey[τU] ≤ h(y)
ε
. (6)

Proof of Lemma 11. Let P be the transition matrix of
the supremum chain whose transition function is given in
Lemma 7.

We use Theorem 12, with E = X , U = {0} and
h(z) :=

∑I
i=1 zi for all z ∈ X . For all y ∈ X \{0}, we have:∑

z∈X P (y, z)h(z) =
∑
A λA

(∑
i yi +

∑
i∈A 1{yi < Ci}

)
+µ
∑
i ŷi

(∑
j yj − 1

)
+ µ

∑
i(Ci − ŷi)

∑
j yj

=
∑
i yi +

∑
A

∑
i∈A 1{yi < Ci}λA − µ

∑
i ŷi

≤ h(y) +
∑
A |A|λA − µ

∑
i ŷi = h(y) +

∑
i λi − µ

∑
i ŷi,

where the second equality comes from equation (3). Hence we
proved that, for all y ∈ X\{0},

∑
z∈X P (y, z)h(z) ≤ h(y)−δ,

where δ = µminy 6=0

∑
i ŷi −

∑
i λi. In addition δ > 0 since

µ · miny 6=0

∑
i ŷi = µ >

∑
i λi by hypothesis. Hence the

condition (5) of Theorem 12 is proved: we can apply (6) with
y = (C1, ..., CI). It follows that E[τ̄] = Ey[τ{0}] ≤ h(y)

δ =
1
δ

∑I
i=1 Ci, since the time for the system to hit zero is the

time for state y = (C1, ..., CI) to hit zero, due to monotonicity
(Proposition 8).

E. Proof of Theorem 5

The proof Theorem 5 is based on Lemma 11 and the
following lemma, that gives a bound on the mean hitting time
of Cp for the p-th coordinate of the infimum:

Lemma 13. Let p ∈ I, and assume δp := λp −
µ (
∑p
i=1 Ci − 1) is positive. Let τ (p) be the time for the

p-th coordinate of H to hit Cp (starting from 0). Then:
E
[
τ (p)

]
≤ 1

δp
Cp.

Proof of Theorem 5. Thanks to condition (iii), the projec-
tion of H on I ′0 is a Markov chain. Condition (i) allows to
apply Lemma 11 to this Markov chain. Condition (ii) allows
to apply Lemma 13, and the fact that I = I ′0 ∪ I ′C concludes
the proof.

